
Animation Palette: An Interface for Prototyping

Dynamic Aerial Motions

by

Peng Zhao

B.E., Tsinghua University, 2000

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

August 2004

c© Peng Zhao, 2004



Abstract

This thesis presents an interface for the interactive design of dynamic aerial stunts,

such as platform diving, freestyle aerial ski jumps and half-pipe snowboarding. This

has applications for the prototyping of sports motions or for computer character an-

imation in video games. The user selects from a library of actions, such as “stand”,

“pike” and “extend”, in order to create a motion. Some actions define a set of tar-

get joint angles for proportional-derivative controllers, while others invoke balance

controllers employing closed-loop feedback. A real-time physics based simulation

determines the final motion. A motion can be created interactively in real-time, or

edited off-line to allow for incremental refinement. Motion timings can be optimized

automatically to produce desired outcomes. The interface can be used to explore

questions such as “Is this new stunt possible?” or “What if the pike began earlier?”

We demonstrate the interface using simulations of platform diving (29 unique dives),

freestyle aerial ski jumps (13 unique jumps), and half-pipe snowboarding (4 unique

jumps).

ii



Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Animation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 Physics-based Animation . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Constraint-based Approaches . . . . . . . . . . . . . . . . . . 8

2.1.2 Controller-based Approaches . . . . . . . . . . . . . . . . . . 8

iii



2.2 Finite State Machine Controllers . . . . . . . . . . . . . . . . . . . . 9

2.3 Interactive Interfaces for Character Animation . . . . . . . . . . . . 10

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Animation Palette Interface 12

3.1 Interface and Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Action Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Kinematic Actions . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Dynamic Actions . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Switching Between Actions . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Kinematic to Kinematic Transitions . . . . . . . . . . . . . . 17

3.3.2 Dynamic to Dynamic Transitions . . . . . . . . . . . . . . . . 17

3.3.3 Kinematic to Dynamic Transitions . . . . . . . . . . . . . . . 18

3.3.4 Dynamic to Kinematic Transitions . . . . . . . . . . . . . . . 19

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Prototyping Dynamic Aerial Motions 20

4.1 Motion Stages and Stage Parameters . . . . . . . . . . . . . . . . . . 20

4.2 Dynamic Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Proportional-derivative Controller . . . . . . . . . . . . . . . 24

4.2.2 Balance Controller . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Offline Motion Refinement . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Manual Adjustment . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Automatic Optimization . . . . . . . . . . . . . . . . . . . . . 30

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



5 Implementation and Results 33

5.1 Dynamics Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Character Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Platform Diving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Freestyle Aerial Ski Jumping . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Half-pipe Snowboarding . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 User Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions and Future Work 50

6.1 Improved Dynamic Controller Actions . . . . . . . . . . . . . . . . . 50

6.2 Natural Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 GamePad Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 52

Appendix A Dynamic Model Details 56

Appendix B Description of Virtual Buttons 60

v



List of Tables

5.1 Dimensions of kicker jumps. . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Physical parameters of diver model. . . . . . . . . . . . . . . . . . . 56

A.2 Joint strength of diver model. . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Physical parameters of skier model. . . . . . . . . . . . . . . . . . . . 57

A.4 Joint strength of skier model. . . . . . . . . . . . . . . . . . . . . . . 58

A.5 Physical parameters of snowboarder model. . . . . . . . . . . . . . . 58

A.6 Joint strength of snowboarder model. . . . . . . . . . . . . . . . . . . 59

B.1 Description of diving buttons. . . . . . . . . . . . . . . . . . . . . . . 60

B.2 Description of buttons for aerial ski jump control. . . . . . . . . . . . 61

B.3 Description of buttons for snowboard control. . . . . . . . . . . . . . 61

vi



List of Figures

1.1 Example of animation created online using our system. . . . . . . . . 4

3.1 Interface of Animation Palette. . . . . . . . . . . . . . . . . . . . . . 13

3.2 Control of kinematic motions. . . . . . . . . . . . . . . . . . . . . . . 16

3.3 A kinematic action to dynamic action transition. . . . . . . . . . . . 18

4.1 Simulated platform diving and ski jumping. . . . . . . . . . . . . . . 21

4.2 5 stages for forward somersaults pike. . . . . . . . . . . . . . . . . . 22

4.3 Three examples of stage parameters. . . . . . . . . . . . . . . . . . . 23

4.4 Sagittal plane balance control in standing. . . . . . . . . . . . . . . . 25

4.5 Lateral balance control in standing. . . . . . . . . . . . . . . . . . . . 26

4.6 Lateral balance control in crouching. . . . . . . . . . . . . . . . . . . 27

4.7 Interface for offline design. . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Dive entry before and after optimization of the time for extension. . 31

4.9 Ski landing before and after optimization of the time for stretch. . . 31

5.1 Degrees of freedom used for diving, snowboarding and skiing models. 35

5.2 States of Platform Diving. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Platform diving: forward 11

2
somersault pike with one twist. . . . . 38

5.4 Platform diving: backward 11

2
somersault pike. . . . . . . . . . . . . 38

vii



5.5 Platform diving: reverse 11

2
somersault tuck. . . . . . . . . . . . . . 39

5.6 Platform diving: bad entry for inward 11

2
somersault pike. . . . . . 39

5.7 States of Ski Jumping. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 Specification of ski-hill. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.9 Dimensions of kicker jumps. . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Ski jump: double twisting double back flip. . . . . . . . . . . . . . . 43

5.11 Ski jump: front pike single. . . . . . . . . . . . . . . . . . . . . . . . 43

5.12 Ski jump: back layout-tuck-layout. . . . . . . . . . . . . . . . . . . . 44

5.13 Ski jump: bad landing for a back-full-full. . . . . . . . . . . . . . . . 44

5.14 States of Half-pipe Snowboarding. . . . . . . . . . . . . . . . . . . . 45

5.15 Section view of half-pipe. . . . . . . . . . . . . . . . . . . . . . . . . 46

5.16 Half-pipe snowboarding: back-grab. . . . . . . . . . . . . . . . . . . 48

5.17 Half-pipe snowboarding: front-grab. . . . . . . . . . . . . . . . . . . 48

5.18 Half-pipe snowboarding: back 360. . . . . . . . . . . . . . . . . . . 49

5.19 Half-pipe snowboarding: crash landing for back-grab. . . . . . . . . 49

viii



Acknowledgements

First, I would like to thank my supervisor, Michiel van de Panne, for leading me into

the world of computer animation. His guidance and encouragement was invaluable.

I would also like to thank Alla Sheffer and Jason Harrison for giving me useful

comments to improve my thesis.

Thanks to other members in Imager lab, who I was pleasant to work with.

In particular, I wanna thank Hamish Carr for his suggestions on my thesis project,

thank Ken Alton for his help in my English, and thank Dave Burke for introducing

me into the group of playing the Quake game.

I am grateful to my friends here, including Shuzhen Wang, Xiaojing Wu, Long

Li, Pingdong Ai, Yushuang Liu, Dan Xiao, Lin Zhong, Qian Huang, Kangkang Yin,

Chen Yang, Zhijin Wang and many others. They made my life in UBC a wonderful

memory.

Finally, I’d like to thank my parents and my wife, Huanchun Ren, for their

endless love and support.

Peng Zhao

The University of British Columbia

August 2004

ix



Chapter 1

Introduction

Computer animation is a rapidly developing area in computer science, with appli-

cations such as feature films, digital simulators, computer games and virtual reality.

Improved techniques are required to simplify and speed up the process of creating

convincing animations. One key direction involves the use of physical simulation

to generate physically realistic motions. This thesis presents an approach for the

interactive design of dynamic aerial stunts. Before further discussing the motivation

of our thesis, we will first provide a brief overview of methods for creating human

figure animations.

1.1 Animation Methods

Broadly speaking, there are three widely used methods to make computer anima-

tions: keyframing, motion capture and dynamic simulation. In keyframe character

animation [3], the animator defines the position of all parts of characters at specific

points in time. These specified positions are known as keyframes. The computer

then computes the in-between frames using an interpolation algorithm. Although

1



keyframing is time consuming and requires significant skill, it remains the method

of choice in many animated productions because of the complete control it offers

the animator.

A straightforward approach for generating realistic motion is to use a motion

capture system [18] to record the 3D motion of a human actor and then map this

motion onto an animated character. The ability to blend and transition between

motions is very important for motion capture based animation system in order to

provide adequate flexibility to create the wide range of desired animated motions

required by video games, for example. Another key technology is that of retargeting

the pre-recorded motions to an animated character having different dimensions from

the person used to capture the motion, which is a common occurrence. One disad-

vantage of this approach is that it is difficult to alter captured motions to realistically

interact with environments different from the one in which they are obtained.

Dynamic simulation [26] is a potentially powerful tool for making physically

realistic animations. It has been used to both analyze and animate many classes

of motion, including diving, running, and gymnastic motions. A major challenge

in creating physically-based animation is that of solving for the required control to

achieve desired behaviours, especially for complex models such as humans and many

animals. Typically, this necessitates a great deal of trial-and-error in the design of

the controllers for any given motion.

1.2 Motivation

Presently, animators have used all three of the methods described above to produce

high quality animations. For interactive applications such as video games, however,

the animated characters need also respond to various environments, such as varying

2



terrains and interaction with obstacles. In this case, the simulation approach has

advantages over the keyframing and motion capture. Also, the speed of today’s

computers now enables us to simulate a fully dynamic-based character in real-time.

Recent games incorporate “rag doll” simulations which involve no active control.

We believe this is due to the difficulty of designing controllers and that of defining

appropriate interfaces between the game player and the game character.

We present an interface which exploits the structured nature of acrobatic

aerial movements to simplify the specification of physically-based prototypes of such

motions. Specifically, we support platform diving, acrobatic ski jumping and half-

pipe snowboarding based upon fully dynamic character simulations. Our system,

called “Animation Palette”, represents the required actions using a series of sequen-

tially executed stages. For example, platform dives typically have the following

sequence of actions: stand, crouch, takeoff, an aerial position such as a tuck or a

pike, and extension prior to entry into the water. The complete diving motion can

be created through the proper timing and execution of all these stages.

Our interface maps each possible action for any given stage to an on-screen

two dimensional virtual button. The timing of the button press represents when the

specified action begins, and the exact location of the press on the button is used to

represent two additional parameters which gives greater control over the action to

be executed. When the interface is used in an online fashion, the simulation runs

in real-time to produce the animation. As a result, the user is able to control a 3D

character simulator in a fashion that is analogous to steering a plane via a flight

simulator.

The interface can also be used in an off-line fashion. For off-line design, we

incorporate a timeline into the interface to represent the sequence of user inputs.

3



Figure 1.1: Example of animation created online using our system.

The user can refine the timing and location parameters of previous online inputs

and then simulate to see whether the desired result is achieved. Also, given a metric

to evaluate the quality of a motion, e.g., the water entry angle for a platform dive,

our system can automatically optimize the timing of a specified input to achieve the

best outcome.

1.3 An Example

Figure 1.1 shows an example of our interface for designing acrobatic aerial motions.

The animator uses a mouse or stylus to choose what action the simulated character

4



should do and how it should be performed by clicking at the appropriate position

inside the virtual button. Our system then maps the timing and position parameters

of these selections to controllers that compute the torque at each joint to drive the

motion of the dynamic character. A physics-based simulation calculates the external

forces such as gravity, and determines the final motion. Both the physical simula-

tion and graphical rendering run in real time to provide the user with immediate

feedback, displaying the animation as it is being created.

1.4 Contribution

The primary contribution of this thesis is to provide a method for the interactive

control of 3D physically-based characters. Specifically, we present an interface for

prototyping dynamic aerial motions such as platform diving. This interface presents

the control parameters of the simulation in an understandable manner, which allows

the user with little knowledge of the underlying control mechanisms to make various

of dynamic aerial motions in a short time.

We develop a system that implements this interface technique and use it to

design three types of stunts: platform diving, freestyle aerial ski jumps, and half-

pipe snowboarding. This system demonstrates the feasibility of designing sports

games based upon fully dynamic character simulations, as well as the possibility of

creating useful tools for sports prototyping.

1.5 Thesis Organization

The remainder of this thesis is structured as follows. After reviewing previous

related work in Chapter 2, we provide an overview of the structure of our interface

5



in Chapter 3. Chapter 4 describes the components of our interface and the specific

actions that our system currently supports. Chapter 5 demonstrates a variety of

results obtained using our interface. Finally, Chapter 6 presents conclusions and

future work.

6



Chapter 2

Related Work

The use of dynamic simulation to design animation is a topic of interest in the

area of character animation. This chapter describes the work which is particularly

relevant to ours. First, we provide an overview of methods for producing physics-

based animation. We then discuss the work specific to controllers based on finite

state machines. Finally, relevant work on interactive control for character animation

is reviewed.

2.1 Physics-based Animation

Physical simulations can simplify the work required to generate realistic motions

of passive objects, such as sliding blocks, bouncing balls, or clothing. However,

for active objects such as humans and animals, we must also solve for the control

mechanism to direct their movements. These must determine how the muscles act

in order to produce desired motions. There are two different approaches to this

problem, one is constraint-based and the other is controller-based.

7



2.1.1 Constraint-based Approaches

Constraint-based techniques [2, 4, 16, 35] attempt to generate the animation through

an optimization of a specified objective function subject to the constraints. Typi-

cally, the motions are defined as a trajectory with a collection of constraints imposed

at specific times, such as the starting and ending positions. The physics is also im-

posed as a constraint by adding the equations of motion as a constraint for each time

step. The entire space-time trajectory is then optimized with respect to an objective,

e.g., minimum control energy or minimum time, to achieve a unique “best” solution,

thereby solving for a complete motion as a single optimization problem. The work

of [8] presents an approach which can scale well to more complex characters using

a set of objective functions and constraints that lead to linear time analytical first

derivatives. More recently, this approach has been expanded upon in interactive

techniques developed to control physical simulations of passive objects [23].

Space-time constaint techniques have several limitations. The solution de-

rived by constraint-based techniques must be recomputed in new situations for which

it was not calculated. Also, the available numerical methods often do not converge

to acceptable answers because of spurious local minimum.

2.1.2 Controller-based Approaches

Another approach, that of controller-based techniques, is to synthesize a controller

that activates the muscles to perform some action. For instance, the locomotion

of snakes [19] and the walking motion of cockroaches [17] have been produced with

periodic controllers. In many cases, controllers are designed by hand [11, 36], which

requires carefully fine-tuning the control parameters. There are also several meth-

ods based on automatically synthesizing controllers [31, 32] using stochastic search

8



strategies. These automatic synthesis techniques work well only for finding con-

trollers for simple creatures with a small number of degrees of freedom. This is

because the space of possible controllers becomes exceedingly large as the degrees of

freedom increase, which makes it difficult for the stochastic search method to locate

useful solutions.

One of the principle advantages of using controller-based techniques is that

controllers are generally reusable and composable [6, 7, 27, 33]. A reusable con-

troller can potentially be used to achieve a given motion within different environ-

ments. Composable controllers may be composed sequentially over time to generate

a sequence of motions, which is what the user does with our system. That is, the

user chooses controllers for certain actions and arranges them in particular order to

create the entire animation.

2.2 Finite State Machine Controllers

Controllers can be based on finite state machines, which exploit the structured

nature of certain motions, representing each phase of motion by a single state. The

transitions between states can be time-based [31] that occurs after the controller

has spent a prespecified time in a given state, or sensor-based [10] that occurs on a

particular event. [11] created the animation of running, bicycling and vaulting using

finite state motion control. These controllers are designed by hand which is difficult

in that it requires specifying and testing many control parameters at each state.

[31] presented an algorithm to automatically generate-and-test these parameters for

relatively simple creatures and motions. The work of [14] uses a local stabilization

technique upon a state machine model for the bipedal locomotion.

The animations created in our system are similar to the work of [36], which

9



explored the creation of three simulated 10m platform dives. The controller in that

work is also based on a finite state machine model, with all the parameters tuned

by hand. We provide a system for user based mid-level control, which significantly

speeds up the creation of new motions by exposing all the key parameters in a

readily accessible fashion, as shown in Figure 1.1. As a result, we are able to rapidly

author many new motions, as demonstrated by the set of 46 motions across 3 sports

that we have authored to date using the system.

2.3 Interactive Interfaces for Character Animation

There are many kinds of interactive interfaces for character animation. Most of them

are based on kinematic approaches [15, 24], which copy particular joint angles from

an input device, or copy things such as the positions of the hands or feet and then

use inverse kinematics (IK) to compute joint angles. [21] developed a framework

that used the two 6-DOF tracking devices to control a 33-DOF character by layer-

ing motions in several passes. [37] uses a foot pressure sensor pad to interactively

control avatars. [28] demonstrates sketch-based interface for animating an articu-

lated human character. The system presented in [5] presents a novel mimic-then-act

interface for creating animations.

The increase of computer processor speed has made it possible to simulate

the motion of articulated human models in real-time. This provides opportunities

to extend the interactive control approaches used in flight and driving simulators

to physically-simulated human figures. Early work on the use of interactive control

for physically-based character was presented in [29, 30], which proposed the use of

manual manipulation to control the motion of bipedal characters. The work of [13]

mapped the 2D movements of a mouse and keystrokes to control parameters in order

10



to design the motion of planar models. However the system did not provide support

for refining inputs and there are potential scalability problems for 3-dimensional

motions. Our system employs additional levels of abstraction in the interface and

allows for the control of 3D character motion. The timeline component of our

interface further supports the refinement of timing parameters. More recently, [22]

demonstrates interaction with a partial dynamic 3D simulation for stepping motions.

Our system is focussed specifically on dynamic-based aerial motions.

More recently, NaturalMotion has developed an industrial software, called

endorphin [1], for dynamic motion synthesis. This software allows users to instruct

characters like directors instruct actors by choosing from an extensive list of available

behaviours, such as balancing, jumping, and staggering. The AI and biomechanics

techniques built in this system enable the simulated character to interact realistically

with the environment. For example, when characters walk over a swaying bridge,

they try to negotiate the bridge’s movements for keeping balance. The motions

created in our system depend mostly on user-based control which exploits the user’s

knowledge and intuition. The system-based control is only for maintaining balance

during standing and crouching.

2.4 Summary

We have presented the work from the computer animation literature that is related to

our method. Our system builds on previous work in controller-based animation and

interactive interfaces, as applied to 3D characters. The key ideas are embodied in

our animation palette interface, which we describe in detail in the following chapter.

11



Chapter 3

The Animation Palette Interface

The core of our animation system consists of an Animation Palette, which is intended

to be analogous to a painting palette. Simply put, it provides a library of actions for

the user to interactively select. The user can specify both when a particular action

should happen and how it should be done, such as “walk quickly in this direction”

and “fall to the left.” This chapter presents an overview of this system, while the

following chapter elaborates on the specifics of how it is used to create dynamic

aerial motions.

3.1 Interface and Workflow

Figure 3.1 shows an example interface of our system. The top part is a window

displaying the animation that is being created. The inset-window in the bottom left

corner of the animation window serves to show information related to the current

action, such as the action name and the target pose1. This inset-window is helpful

for refining the motion offline, which is discussed in section 4.3.1.

1This term will be defined shortly.

12



Figure 3.1: Interface of Animation Palette.

13



Below the animation window is a palette with 14 action buttons, one for each

possible action. Each button defines an action and has two associated parameters

that can be directly specified by the relative location of the user mouse-click or

stylus-tap within the action button. The meanings of the two parameters are defined

according to the attributes of the action. The specific details of the palette and

actions are presented later in sections 3.2 and 4.1.

The bottom part of the interface is a timeline, which represents the sequence

of user inputs. The user can adjust the timing and parameters of previous action

events and then replay or resimulate to see the result. For dynamic aerial motions,

our system can automatically optimize the timing of a specified input to achieve the

best outcome. This process is described in further detail in section 4.3.2.

A typical workflow starts by interactively creating an animation through the

use of the action buttons. This is an online process that has the user specifying

actions during an ongoing physics-based simulation of the character. The user then

manually fine-tunes the motion offline using the timeline provided in our interface,

or can resort to using the automatic timing optimization feature.

3.2 Action Buttons

There are two basic classes of actions in our system, kinematic actions and dynamic

actions. Kinematic actions produce kinematically-generated animation, i.e., it in-

volves a direct specification of positions and orientations over time and does not

involve the use of a physics-based simulation. For dynamic actions, motions are the

result of physical simulation, which models of the body mass and moments of inertia,

internal and external forces and torques, and interaction with the environment.

14



3.2.1 Kinematic Actions

Our system supports two types of kinematic actions, keyframe-based and motion

capture-based. The first allows the user to specify parameterized keyframes. For

instance, a “Point” action may use the x and y virtual button parameters to indicate

the direction of the finger pointing, thus various pointing actions could be specified

by clicking different positions of a “Point” button.

An alternate technique for kinematic animation is the use of motion capture

clips. In this case, the two parameters are used to offer high level control over the

motion sequence. Figure 3.2 shows two examples of this. The “Walk” button tells

the character to walk, and the click position of this button controls the direction

(θ) and speed (v = k · r, where k is a constant) of walking. Likewise for the “Fall”

button, the y position specifies the forward distance of the fall and the x position

indicates the direction of the fall relative to the current walking direction.

3.2.2 Dynamic Actions

Dynamic character motions include both passive “rag doll” simulation and the use

of active controllers. For passive simulations, the x and y parameters specify the

environment properties such as the gravity and ground elasticity, or some inactive

attributes of the character such as the joint stiffnesses.

In our system, the majority of action buttons for prototyping dynamic aerial

motions implement active controllers. The x and y parameters of click position

are used to parameterize the controllers, such as the target pose for proportional-

derivative controllers, and the target lean angle for balance controllers. The details

of this will be elaborated in section 4.1 and Appendix B.

15



Figure 3.2: Control of kinematic motions.

3.3 Switching Between Actions

When action A is in progress and a user then selects action B, we need a method for

transitioning between these two types of actions. As stated above, our interface sup-

ports both kinematic actions and dynamic actions. This section discusses the four

types of transitions that can occur during animation, namely kinematic to kinematic

transitions, dynamic to dynamic transitions, kinematic to dynamic transitions, and

dynamic to kinematic transitions.

16



3.3.1 Kinematic to Kinematic Transitions

Transitions between kinematic actions in our system are computed by blending

from one animation to another over a period of 0.5 seconds. We blend the global

position, global orientation, and joint angles using a linear interpolation method.

This can work well when the new motion is sufficiently similar to the current motion.

Other issues need to be solved to expand the range of motions between which we

can make realistic transitions, such as the footskate cleanup. We do not solve this

problem because the focus of our work is on generating and controlling dynamic

aerial motions.

3.3.2 Dynamic to Dynamic Transitions

Transitioning between dynamic motions is straightforward because it involves a sim-

ple substitution of controllers. The continuity of the motion is guaranteed because

the state of the system (positions and velocities) is preserved when the new dynamic

action begins. The new controller begins control over the simulated character imme-

diately upon the user choosing a new dynamic action. For example, the “landing”

action of ski jumps happens once the user selects it and drives the character to-

ward the pose preparing for landing. Note that the new controller does not provide

a guarantee of a successful motion. Rather, it relies on the user’s experience and

perception to determine whether the character can successfully perform landing. De-

veloping “automatic landing” controllers for actions which are difficult to reliably

achieve is not within the scope of this thesis.

17



Figure 3.3: A kinematic action to dynamic action transition.

3.3.3 Kinematic to Dynamic Transitions

During kinematic to dynamic transitions, current positions and computed velocities

for the degrees of freedom of the character become the initial states of the physical

simulation which is initiated. Thus, the animated characters will initially preserve

their linear and angular momentums immediately after the transition, which results

in a natural-looking motion. Figure 3.3 shows an example of this. The character in

red represents the first animation frame after the transition from a kinematic motion

to the dynamic simulation. After that point the character can have physically-

realistic interaction with the environment, such as the collisions with the block and

the tree.

18



3.3.4 Dynamic to Kinematic Transitions

The dynamic to kinematic transition is a hard problem which requires a large library

of motion clips and adaptive blending algorithms. In our system, we simply stop

the physical simulation and do a straight cut to the kinematic action, which thus

results in a visible discontinuity in the motion.

3.4 Summary

The animation palette interface provides a library of parameterized actions for the

user to choose. These actions can be kinematic or dynamic. The user can inter-

actively select among them to create a motion sequence, or refine them offline to

improve upon a previous animation. In the next chapter, we will discuss in detail

the use of dynamic actions for prototyping acrobatic aerial motions.

19



Chapter 4

Prototyping Dynamic Aerial

Motions

Interactively controlling 3D dynamic characters is challenging due to the number of

degrees of freedom (DOF) and issues such as the difficulty of maintaining balance.

The interface should ideally be sufficiently expressive for the user to create a large

variety of motions while still being tractable to learn. The animation palette provides

a generic framework for creating animations, and we shall use it to design dynamic

aerial stunts. Figure 4.1 shows two examples of the types of simulated motions that

can be rapidly constructed using our interface.

4.1 Motion Stages and Stage Parameters

The structured nature of acrobatic aerial motions makes it possible to represent

the required actions using a series of sequentially executed stages. For example,

platform dives can typically be represented by the following sequence of actions:

stand, crouch, takeoff, an aerial position such as a pike or a tuck, and extension. A

20



Figure 4.1: Simulated platform diving and ski jumping.

user can create the complete diving motion through specifying the proper timing

and execution of all of these stages. As an example, Figure 4.2 illustrates the stages

for forward somersaults in a pike position for platform diving. The simplest of our

presented motions have 4 stages, while the most complex have 8 stages. Throughout

the remainder of the thesis, the words stage and action will be used interchangeably.

We use one action button for controlling each possible action. The timing

of the button selection represents when the associated action takes over the control

of the simulated character, while two action parameters are given by the x and

y location of the selection within the button. These action parameters serve to

parameterize the action to make a variety of motions.

The following list describes the types of action parameters used in our system.

• Target joint angle: Sets the desired angle of a single joint for proportional-

derivative controllers discussed in section 4.2.1. For example, the x-location

of the takeoff button specifies the desired bend angle of the waist during a

takeoff jump.

• Target body position: Indicates the desired position of several joints. For

21



Figure 4.2: 5 stages for forward somersaults pike.

instance, the x-location of the open pike button click represents the target

angle of the pike, which is a combination of the waist and hip angles.

• Stiffness of joint: Designates the stiffness of one or more joints for the

proportional-derivative controllers, which is helpful to create jumping motions

with different heights.

• Center of mass: Denotes a target position for the center of mass relative

to the location of ankles. This is an important parameter for the standing and

crouching actions and preparing the body for a somersault, as illustrated in

section 4.2.2.

• Speed of performance: Specifies how fast the character will reach the

given target pose. It is important for most aerial actions like pike or tuck and

it is discussed in detail in section 4.2.1.

• Initial state: Represents the starting locations of the motions. For example,

in the case of ski jumps, this parameter specifies the starting height on the

hill leading towards the ski jumps.

Figure 4.3 shows three examples of action buttons used in our platform diving

interface. The two key parameters for the crouch action are the lean angle and

22



(a) Crouch (b) Takeoff (c) Open Pike

Figure 4.3: Three examples of stage parameters.

the height of crouch, which are mapped to the x parameter and the y parameter

respectively. The lean angle is determined by the position of center of mass relative

to the location of ankles, and is implemented in our system by setting the target

lean angle of the balance controller discussed in section 4.2.2. The height of crouch

is determined by the target hip and knee angles. The important attributes for the

takeoff action are the initial rotation momentum, as determined by the target waist

bend angle while taking off (x), and the height as determined by the stiffness of

the hips and knees while jumping (y). For the open-pike action, the controllable

parameters are the target angle of pike (x), which is a combination of the waist

and hip angles, and the speed to reach this pose (y), which is determined by the

interpolation duration of the target angles discussed in section 4.2.1.

A complete summary of the set of buttons used for the platform diving,

acrobatic ski jumping, and snowboard control is given in Appendix B.

23



4.2 Dynamic Controllers

In order for a given dynamic action to be realized, we need to determine low-level

controllers that compute how much torque each joint should exert in order to achieve

the desired result. There are two classes of controllers used in our system, one

for driving the character toward target poses and another class of controller for

maintaining balance. We now discuss each of these in turn.

4.2.1 Proportional-derivative Controller

The joint torques that drive joint angles toward their desired values are computed

using proportional-derivative (PD) controllers:

τ = kp · (θdesired − θcurrent) − kd · θ̇,

where τ is the torque applied at the joint, θdesired is the desired joint angle, θcurrent

is the current joint angle, θ̇ is the relative angular velocity of the two links connected

by that joint, and kp, kd are proportional and derivative control constants.

The values of kp and kd control the strength of the actuator for each joint,

which should be strong enough to achieve particular desired actions. Appendix A

gives the specific control constants used for our dynamic models. For the hip, knee,

and ankle joints, their control constants are different across various actions. For

example, the “stand” action usually requires higher kp and kd values at the ankles

than the “pike” action.

Linear interpolation of the target angles, i.e., θdesired, is used between target-

angle poses in order to produce smooth transitions between the most recent pose

and a newly chosen pose. The duration of the interpolation is exposed as one of the

motion parameters for many actions, such as pike and tuck.

24



Figure 4.4: Sagittal plane balance control in standing.

4.2.2 Balance Controller

Maintaining balance is crucial for stages that preceed and follow the aerial portions

of the motion. Balance control can depend on many factors, such as the distance

between two feet and the placement of two feet. In our system, we focus on the

balance during a regular stance with the feet being spaced at shoulder width.

According to [34], balance in the sagittal plane can be modeled as an inverted

pendulum about the ankle joint, as shown in Figure 4.4. The torque due to gravity

is

M · g · h · sin(θ) ≈ M · g · h · θ,

where M is the mass of the character, g is gravitational acceleration, h is the height

from the ankle to the Center Of Mass (COM), and θ is the leaning angle as measured

in radians. The torque exerted by the spring muscle at the ankle is τ = kp · θ. As

long as kp > M ·g ·h, the ankle will be sufficiently strong to maintain the equilibrium

position. The addition of damping in the ankle joint torque ensures that the body

25



Figure 4.5: Lateral balance control in standing.

will eventually stop near the target leaning angle, which is set by the x parameter of

the “Stand” and “Crouch” buttons. The body can no longer maintain balance when

the lean angle is such that the projection of COM onto the ground plane falls outside

the support polygon of two feet. However, such a body position is required before

a jump in order to initiate angular momentum. The front-back balance controller

thus does not only serve to maintain balance, but also to prepare the body for

somersaults.

Using the ankles for lateral stability is not very stable because the width of

foot is much smaller than the length of foot. Thus, other joints must be used to

help keep lateral balance. The hip abductor and adductor moment can move the

Center Of Pressure (COP) between two feet, which draws the COM back to the

equilibrium position. For human during the quiescent stance, the lateral balance is

dominated by this hip load-and-unload strategy [34]. Figure 4.5 shows the character

in the frontal plane, in which the equilibrium position is the point midway between

26



Figure 4.6: Lateral balance control in crouching.

the two feet. The torques of the hip abductor and adductor are computed using a

spring-damper model:

τ = kp · x − kd · ẋ

where x is the distance between the COM and its equilibrium position and ẋ is the

velocity of the COM.

In the crouched position, a knee-based strategy is used for lateral balance.

Similar to the hip strategy, the knee flexor and extensor also serve to move the

location of the COP in order to control the COM. For example, extending the left

knee and flexing the right knee will move the COM to the right. Figure 4.6 illustrates

a crouching character, using knee joints to maintain lateral balance.

Maintaining balance is a challenging part of creating dynamic character mo-

tions. The mechanisms discussed above can only solve the balance problem in some

cases. For complex problems, such as the landing of the skier and the snowboarder,

27



we need to develop more adaptive controllers. This is discussed as future work in

Chapter 6.

4.3 Offline Motion Refinement

Our system supports both online and offline authoring of aerial motions. Online use

of the interface enables the creation of simulated animations in real time through

the use of the action buttons during an ongoing simulation. Offline adjustments

can be used to refine the resulting motions, through either manual adjustment or

automatic optimization.

4.3.1 Manual Adjustment

Manual adjustments are useful for producing a motion through iterative refinement

and is supported through the use of a timeline included at the bottom of the inter-

face panel. Each virtual button press introduces an event that is displayed on the

timeline, as shown in Figure 4.7. The timing of this event can be adjusted directly

on the timeline by dragging with the mouse. Selecting any event marker on the

timeline also allows for the associated action parameters to be altered, as specified

by the selection point within the associated virtual button. In Figure 4.7, the red

cross-hairs drawn on the “Takeoff” button illustrate the current parameter settings

associated with a selected takeoff action. These parameters can be adjusted with

a mouse or stylus press at the desired location within the button. Once a set of

desired adjustments has been made, the user hits a “Resimulate” button in order

to review the newly refined motion.

Unlike during online creation, manual adjustments offline have no real-time

feedback of the animation. Nevertheless, there are several useful feedback signals

28



Figure 4.7: Interface for offline design.

29



that can help the user with the motion refinement. A simple-but-helpful cue is

showing the target pose while the user adjusting the parameters associated with a

button. This provides the user with immediate feedback of what kind of action is

specified. As shown in Figure 4.7, the inset-window in the bottom left corner of the

animation window serves this purpose.

Another useful form of visual feedback is to display the animation frames

while the user drags the timeline cursor. This is especially helpful for adjusting the

timing of inputs. Since some aerial motions pass by too quickly for the user to catch

particular events, such as the specific time instant when the skier reaches the top of

the kicker jump, offline scrolling through the animation is the best way to handle

this.

4.3.2 Automatic Optimization

To further speed the creation of successful simulated aerial motions, our system can

automatically optimize the timing of a specified input to achieve the best outcome.

Accomplishing this requires a metric to evaluate the quality of a motion and a fast

function evaluator, which in our case consists of a simulation that determines how

changes in timing affect the given metric. Numerical methods which exploit deriva-

tive information will generally require the fewest function evaluations. However,

this requires differentiable optimization metrics, which may be difficult to achieve

in the face of non-linear effects such as joint limits and other discontinuous events

that may occur during the course of a simulation. In the face of these difficulties, we

perform the optimization by discretely sampling the timing parameter in question

at regular intervals that bracket its current value. Function evaluations are then

carried out using a dynamic simulation from that point in time forward to the time

30



Figure 4.8: Dive entry before and after optimization of the time for extension.

Figure 4.9: Ski landing before and after optimization of the time for stretch.

where the metric is evaluated. The previous motion is used to start each of these

simulations from the appropriate dynamic state.

Our optimization metric for platform diving is computed by integrating the

error of the water entry angle for the body:

C =

∫ t2
t1

E2(t) dt

t2 − t1

where C is the total error which needs to be minimized, t1 is the time at which the

diver first touches the water, t2 is the time at which the upper body is fully under

water, and E(t) is the error of the entry angle at time t which is defined in terms of

the angular deviation from the vertical. A component measuring twist errors could

31



also be added, although we have not experimented with this. Figure 4.8 illustrates

several frames from a diving motion before and after the optimization of the timing

parameter associated with the extension action, which is the last action prior to

water entry.

Similarly, the optimization metric for ski jumping is calculated by integrating

the error of the landing angle for the body, from the time the skier first contacts

the ground to the time it reaches the end of the landing area. Figure 4.9 shows

the landing motions before and after the optimization of the timing for the stretch

action, which is the last action prior to landing.

4.4 Summary

In this chapter, we have presented the animation palette framework for prototyping

dynamic aerial motions. The required actions are represented by a series of sequen-

tially executed stages. We use one action button for controlling each possible action.

PD-controllers compute the torque at each joint for driving the character to achieve

a desired action. Balance controllers are responsible for actively maintaining the

balance. Finally, offline motion refinement can serve to improve motions to achieve

the desired result.

In the following chapter, we will describe implementation issues in detail and

we present the resulting motions created using our system.

32



Chapter 5

Implementation and Results

We have implemented a system using our- interface ideas to design motions for

platform diving, freestyle aerial ski jumps, and half-pipe snowboarding. The next

two sections will describe the dynamic simulation and the character models we used

to make the aerial motions, and the remaining sections will describe our results in

detail.

5.1 Dynamics Simulation

Our system makes use of the publicly-available Open Dynamics Engine (ODE) [26]

for computing and integrating the equations of motion. One advantage of this

simulation library is that models can be assembled on the fly. Links and joints can

be added, removed or changed during the simulation. This feature makes ODE

more flexible to use than some other libraries such as SD/FAST [12] which requires

pre-compiling the models before the simulation begins.

The process of simulating the motions of rigid bodies through time has two

parts. During each time step, the first part uses the equations of motion to determine

33



the instantaneous accelerations for all the rigid bodies. The second part, namely

the integration, advances the current time by a given step size and adjusts the

state of all the rigid bodies for the new time value. ODE uses a first order semi-

implicit integrator, which includes both the implicit forces (i.e., constraint forces at

the joints) and explicit forces (i.e., external forces applied by the environment and

the applied joint torques). Since we use controllers to drive the character toward

target poses and the external forces are explicit, the integration can become unstable

when the system is stiff, i.e., when kp and kd are large. Reducing the simulation

time step enhances the stability, but results in slower simulation speed. We limit

the maximum torque that each joint can exert to avoid excessively-large control

torques, which reflects the reality of limited muscle forces and also helps with the

stability of the simulation. In our system, the maximum allowable torque at each

joint is given by τmax = 1.0 · kp, where kp is the spring constant for this joint.

For collision detection, we assign each body a simple shape (e.g. sphere or

box), and use the collision detection engine supplied with ODE to determine which

bodies are in contact at each time step. The average time of this collision engine for

intersection testing is O(n) [26], where n is the number of objects. To simplify the

control and increase the stability, we only process collisions between the character

and the environment (e.g., ground), and we ignore the self-collision of different parts

of the character model. The collision reaction forces in ODE are based on a penalty

method and a Coulomb friction model is used to limit the tangential component of

the reaction forces. This is sufficient to simulate the interaction forces between the

character and the ground.

The ODE-based simulation runs in real-time on a 2.66 GHz P4 PC. The fixed

time step which we use to integrate the equations of motion is 0.001s. Without

34



Figure 5.1: Degrees of freedom used for diving, snowboarding and skiing models.

graphical display, our diving simulation can compute 3.7 simulation seconds in 1

wall-clock second. For skiing and snowboarding, the performance numbers are 1.68

and 1.69 respectively. The diving simulation requires significantly fewer collision

detection computations and is faster as a result.

5.2 Character Models

The character models are based on the anthropometric parameters used in [6]. We

make changes to the original model according to the nature of each aerial motion.

For example, the skier needs to bind each foot to a ski. In order to increase the

speed and stability of dynamic simulation, we remove the wrist joints and the joint

35



Figure 5.2: States of Platform Diving.

between head and neck. These joints have little effect on the simulation results and

can make the simulation unstable, due to the large disparity between lightweight

body parts such as the hands and the heavier links such as the torso.

The structures of the three character models are shown in Figure 5.1. The

diver model has 13 links and 26 Internal Degrees Of Freedom (IDOF). The snow-

boarder is the same but with an extra DOF for each ankle. Lastly, the skier has

fixed ankles, giving 13 links and 22 IDOF. The details of these dynamic models are

given in Appendix A, including all the physical parameters of the links (e.g., mass

and moment of inertia) and joints (e.g., joint strength).

5.3 Platform Diving

Platform diving is the least difficult motion to design because it does not need to

solve the problem of balance upon landing, as is the case with ski jumping and

snowboarding. We represent the motion of dives with 5 stages of actions: stand,

crouch, takeoff, one or more aerial positions, and extension before entry into water.

Our interface has 12 action buttons for the control of all possible actions during

diving. Figure 5.2 shows the actions and the possible transitions between them.

36



Table B.1 illustrates the actions and x and y parameters associated with each button.

We have used the interface to author 29 types of 5m platform dives, including

all four takeoff methods a diver can use: forward, backward, inward and reverse

dives. In the diving terminology of [20], we have authored dive types 101a, 101b,

101c, 103b, 103c, 105b, 107c, 201a, 201b, 201c, 203b, 203c, 205c, 301a, 301b, 301c,

303b, 303c, 305c, 401a, 401b, 401c, 403b, 403c, 405b, 405c, 407c, 5132d. Figures 5.3,

5.4 and 5.5 show three of them, while Figure 5.6 illustrates an unsuccessful dive in

which the extension action is executed too early.

37



Figure 5.3: Platform diving: forward 11

2
somersault pike with one twist.

Figure 5.4: Platform diving: backward 11

2
somersault pike.

38



Figure 5.5: Platform diving: reverse 11

2
somersault tuck.

Figure 5.6: Platform diving: bad entry for inward 11

2
somersault pike.

39



5.4 Freestyle Aerial Ski Jumping

For skiing, we unite the lower leg, foot and ski into one rigid body segment for

the simulation model. Similar to platform diving, aerial ski jumps have 6 executed

stages: in-run, crouch, takeoff, aerial positions, stretch for landing and finish posi-

tion. The purpose of the “finish” position is to improve the visual effect by making

the character straighten and raise the arms upon a successful landing. Table B.2

describes the definition of the virtual buttons we use to control the acrobatic ski

actions and Figure 5.7 shows the feasible transitions between them. For the in-run

action, one of the button parameters provides control over the start position on the

in-run, and hence the speed accumulated upon take-off.

Figure 5.7: States of Ski Jumping.

The kicker jumps and ski-hill in our system have been designed to match

freestyle skiing competition specifications [25]. Figure 5.8 shows the specification of

ski-hill, while Figure 5.9 and Table 5.1 illustrates the dimensions of kicker jumps.

In reality, the snow friction coefficients are different between the forward sliding Cf

and the sideway sliding Cs. We use 0.001 for Cf and 0.1 for Cs to ensure the realistic

interaction of the skis and the snow.

40



Figure 5.8: Specification of ski-hill.

Figure 5.9: Dimensions of kicker jumps.

kicker A B C D(1m) E(2m) F(2m) G(2m)

small 6.70 3.25 5.95 50◦ 30◦ 13◦ 5◦

big 8.10 3.65 6.70 55◦ 33◦ 14◦ 6◦

Table 5.1: Dimensions of kicker jumps.

The creation of successful aerial ski jumps is more difficult than diving be-

cause of the difficulty of maintaining balance upon landing. It is important to find

the best time for extension in order to decrease the rotation and twist speed before

landing. We decrease the stiffness of knees and hips for landing position in order to

41



cushion the kinetic energy of the character when landing on the ground. This also

makes the landing action look more natural.

A series of 12 aerial ski jumps were created using our interface: bFF, bL,

bLLT, bLTL, bPP, bTT, fF, fL, fPP, fT, fTT, and fTTT, where ‘f’ and ‘b’ indicate

front and back flips respectively, ‘F’ indicates a flip with a full twist, and ‘L’, ‘P’,

and ‘T’ indicate layout, pike, and tuck positions, respectively. Figures 5.10, 5.11 and

5.12 show three of them and Figure 5.13 illustrates a bad landing for a back-full-full

jump. We have also experimented with simulating landings in water, as is typical

of summer training.

42



Figure 5.10: Ski jump: double twisting double back flip.

Figure 5.11: Ski jump: front pike single.

43



Figure 5.12: Ski jump: back layout-tuck-layout.

Figure 5.13: Ski jump: bad landing for a back-full-full.

44



5.5 Half-pipe Snowboarding

Half-pipe snowboarding was the most difficult motion to produce using our system,

the principal reason being the difficulty of maintaining balance at a variety of points

in the half-pipe. Landing diagonally on the transition between the wall and ground

was found to be much harder to control than on the landing hill of ski jumps. Also,

the snowboarder needs to be well balanced upon approaching the wall of the half-

pipe in the lead up to the jump in order to successfully initiate a jump. The terrain

anticipation of a real snowboarder during the rapid transition from the horizontal

to the near-vertical edge of the half-pipe is not implemented in our system, making

this challenging to properly execute.

Figure 5.14: States of Half-pipe Snowboarding.

From our experience with platform dives and ski jumps, motions with twists

were generally found to be more difficult to reconstruct than motions without twists.

Most half-pipe stunts involve a twist and this thus makes the snowboarding motions

more challenging to control. We have thus far created 4 types of half-pipe snow-

boarding stunts, including a back 360, back 360 with grab, a front grab, and a back

grab. Figure 5.16, 5.17, 5.18 and 5.19 illustrate some successful or unsuccessful mo-

45



tions we have made. Figures 5.14 and Table B.3 explains the virtual buttons for this

stunt. The specification of the half-pipe comes from [9]. Figure 5.15 illustrates the

section view of the half-pipe, which has an inclination with respect to the horizontal

of 15◦ in the dimension going into the page.

Figure 5.15: Section view of half-pipe.

5.6 User Experiences

Our system has been used by several users who have little knowledge of control

mechanisms. After 10 minutes tutorial, all of them can create relatively simple

diving motions in 5 minutes, such as forward 11

2
somersaults in pike position, and

backward 21

2
somersaults in tuck position. For the dives which involve more som-

ersaults, these users need some basic knowledge of platform diving and about half

an hour guided practise before they can produce such motions within 10 minutes.

For the creation of ski jumps, these users usually spend most of time on finding the

appropriate time of takeoff and the proper pose for landing. This makes the time

of creating successful ski jumps three times as much as that of creating successful

platform dives. As we expected, the most difficult part is the creation of half-pipe

snowboarding or motions which involve a twist. Making these motions may take

several hours to fine-tune the inputs.

46



5.7 Summary

Our animation system provides a method for interactively controlling 3D simulated

characters. It allows for dynamic aerial motions to be produced in a short time by a

novice user. A variety of motions and variations can be created as demonstrated in

this chapter. Since we expose the key parameters of each action in a readily accessi-

ble fashion, this interface can work in different environments with no modification.

For example, the virtual buttons for 5m platform diving can also be used to produce

10m platform diving without any changes to the animation palette.

The main weakness of this system lies in the balance controllers, especially for

motions with twist and landing actions. More robust and adaptive control strategies

are required to make the interface more tractable for creating successful examples

of these types of motions.

47



Figure 5.16: Half-pipe snowboarding: back-grab.

Figure 5.17: Half-pipe snowboarding: front-grab.

48



Figure 5.18: Half-pipe snowboarding: back 360.

Figure 5.19: Half-pipe snowboarding: crash landing for back-grab.

49



Chapter 6

Conclusions and Future Work

We have presented an interface for prototyping dynamic aerial motions. This tech-

nique demonstrates the future feasibility of designing sports games based upon fully

dynamic character simulations. It allows a user to exploit his knowledge and in-

tuition to design a variety of motions. Our interface can also help the user to

understand and learn these acrobatic stunts.

There are several directions which require further research to make the in-

terface easier to use and the resulting motions more realistic.

6.1 Improved Dynamic Controller Actions

We plan to investigate how controllers specific to the execution of twists and landing

actions can be constructed. Additional work on “automatic landing” controllers and

user control is required in order to make the required user skill more manageable

for use in a game scenario. Our current automatic optimization tool uses a simple

metric and optimization technique. We wish to explore the use of other metrics that

allow for more abstract specifications of a desired motion, as well as an analysis of

50



the timing requirements of the various stages of the motion.

6.2 Natural Motion

We wish to seek feedback from coaches and athletes with regard to using this type of

tool. In order to become an accurate prototyping tool, better strength models will

likely be required. It would also be interesting to use this system in conjunction with

a vision-based motion tracking system. This would support the asking of “what if”

questions in the context of exploring changes to a recently executed motion.

6.3 GamePad Interface

Another possible direction for future work is toward the using of gamepad as the

input device. One of the potential applications of our research is sports genre

video games. These are most commonly played on video game consoles, which are

equipped with a gamepad rather than a mouse. Although a gamepad has a large

number of inputs, namely dual thumb sticks and about ten buttons, it is difficult to

map our parameterized action button interface onto such a device. We need to find

other methods to map the gamepad inputs to the control parameters.

51



Bibliography

[1] Nick Alexander. Endorphin. http://www.naturalmotion.com/.

[2] Lynne Shapiro Brotman and Arun N. Netravali. Motion interpolation by op-

timal control. In SIGGRAPH 88, Computer Graphics Proceedings, pages 309–

315. ACM Press, 1988.

[3] Kyle Clark. Inspired 3D Character Animation. Premier Press, 2002.

[4] Michael F. Cohen. Interactive spacetime control for animation. In SIGGRAPH

92, Computer Graphics Proceedings, pages 293–302. ACM Press, 1992.

[5] Mira Dontcheva, Gary Yngve, and Zoran Popovic. Layered acting for character

animation. ACM Trans. Graph., 22(3):409–416, 2003.

[6] Petros Faloutsos. Composable Controllers for Physics-Based Character Ani-

mation. PhD thesis, Department of Computer Science, University of Toronto,

2002.

[7] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Composable

controllers for physics-based character animation. In SIGGRAPH 2001, Com-

puter Graphics Proceedings, pages 251–260. ACM Press / ACM SIGGRAPH,

2001.

[8] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of physically valid

human motion. ACM Trans. Graph., 22(3):417–426, 2003.

[9] Frank Gille. Snowboarding: make a perfect start. Meyer & Meyer Sports, 2002.

[10] Jessica K. Hodgins, Paula K. Sweeney, and David G. Lawrence. Generating

natural-looking motion for computer animation. In Proceedings of the confer-

ence on Graphics interface ’92, pages 265–272. Morgan Kaufmann Publishers

Inc., 1992.

52



[11] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien.

Animating human athletics. Proceedings of SIGGRAPH 95, pages 71–78, Au-

gust 1995. ISBN 0-201-84776-0. Held in Los Angeles, California.

[12] Michael G. Hollars, Dan E. Rosenthal, and Michael A. Sherman. Sd/fast, 1991.

[13] Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Interactive control for

physically-based animation. In Kurt Akeley, editor, SIGGRAPH 2000, Com-

puter Graphics Proceedings, pages 201–208. ACM Press / ACM SIGGRAPH /

Addison Wesley Longman, 2000.

[14] Joseph F. Laszlo, Michiel van de Panne, and Eugene Fiume. Limit cycle control

and its application to the animation of balancing and walking. Proceedings of

SIGGRAPH 96, pages 155–162, August 1996.

[15] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.

Pollard. Interactive control of avatars animated with human motion data. In

SIGGRAPH 2002, Computer Graphics Proceedings, pages 491–500. ACM Press,

2002.

[16] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hierarchical spacetime

control. In SIGGRAPH 94, Computer Graphics Proceedings, pages 35–42. ACM

Press, 1994.

[17] Michael McKenna and David Zeltzer. Dynamic simulation of autonomous

legged locomotion. In SIGGRAPH 90, Computer Graphics Proceedings, pages

29–38. ACM Press, 1990.

[18] Alberto Menache. Understanding Motion Capture for Computer Animation

and Video Games. Morgan Kaufmann, 1999.

[19] Gavin S. P. Miller. The motion dynamics of snakes and worms. In SIGGRAPH

88, Computer Graphics Proceedings, pages 169–173. ACM Press, 1988.

[20] Ronald F. O’Brien. Springboard & Platform Diving: a complete guided for

divers and coaches. Human Kinetics, 2003.

[21] S. Oore, D. Terzopoulos, and G. Hinton. A desktop input device and interface

for interactive 3d character animation. In Proceedings of Graphics Interface

2002, pages 133–140, 2002.

[22] S. Oore, D. Terzopoulos, and G. Hinton. Local physical models for interactive

character animation. Computer Graphics Forum, 21(3):337–346, 2002. ISSN

1067-7055.

53



[23] Jovan Popovic, Steven M. Seitz, Michael Erdmann, Zoran Popovic, and Andrew

Witkin. Interactive manipulation of rigid body simulations. In SIGGRAPH

2000, Computer Graphics Proceedings, pages 209–217. ACM Press/Addison-

Wesley Publishing Co., 2000.

[24] Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michael Gleicher. Computer

puppetry: An importance-based approach. ACM Trans. Graph., 20(2):67–94,

2001.

[25] Pat Smith. Canadian freestyle ski association. http://www.freestyleski.com/.

[26] Russell Smith. Open dynamics engine. http://q12.org/ode/.

[27] A. James Stewart and James F. Cremer. Beyond keyframing: an algorithmic

approach to animation. In Proceedings of the conference on Graphics interface

’92, pages 273–281. Morgan Kaufmann Publishers Inc., 1992.

[28] Matthew E. Thorne. Motion doodles: A sketch-based interface for character

animation. Master’s thesis, Department of Computer Science, University of

British Columbia, 2003.

[29] J. Troy. Dynamic Balance and Walking Control of Biped Mechanisms. PhD

thesis, Department of Mechanical Engineering, Iowa State University, 1995.

[30] J. Troy and M. Vanderploeg. Interactive simulation and control of planar biped

walking devices. In Workshop on Simulation and Interaction in Virtual Envi-

ronments, pages 220–224, July 1995.

[31] Michael van de Panne, Ryan Kim, and Eugene Fiume. Virtual wind-up toys

for animation. In Proceedings of Graphics Interface ’94, pages 208–215, Banff,

Alberta, Canada, 1994.

[32] Michiel van de Panne. Sensor-actuator networks. In SIGGRAPH 93, Computer

Graphics Proceedings, pages 335–342. ACM Press, 1993.

[33] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion

synthesis using state-space controllers. In SIGGRAPH 90, Computer Graphics

Proceedings, pages 225–234. ACM Press, 1990.

[34] David A. Winter, Aftab E. Patla, Francois Prince, Milad Ishac, and Krystyna

Gielo-Perczak. Stiffness control of balance in quiet standing. Journal of Neu-

rophysiology, 80:1211–1221, 1998.

54



[35] Andrew Witkin and Michael Kass. Spacetime constraints. Computer Graphics,

22(4):159–168, 1988.

[36] Wayne L. Wooten and Jessica K. Hodgins. Animation of human diving. Com-

puter Graphics Forum, 15(1):3–14, 1996. ISSN 0167-7055.

[37] KangKang Yin and Dinesh K. Pai. Footsee: an interactive animation sys-

tem. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 329–338. Eurographics Association, 2003.

55



Appendix A

Dynamic Model Details

Below are the details of three dynamic models shown in Figure 5.1: diver, skier and

snowboarder. For each model, the COM of hip is placed at the origin, with the

character facing the positive z-axis. We present only the information of left arm,

hand, leg and foot; the properties of corresponding right parts are symmetrical. For

some joints, the strength constants depend on whether the character is in stance,

takeoff, flight or landing state. In these tables we use ‘s’, ‘t’, ‘f’ and ‘l’ to represent

them.

link mass center of mass moment of inertia
(kg) (x,y,z m) (x,y,z kgm2)

hip 16.61 0.000 0.000 0.000 0.1147 0.1147 0.1445

thigh 8.35 0.086 -0.237 0.025 0.1654 0.0176 0.1662

shin 4.16 0.086 -0.663 0.025 0.0522 0.0069 0.0522

foot 1.34 0.086 -0.887 0.075 0.0076 0.0084 0.0020

chest 29.27 0.000 0.335 0.025 0.5282 0.1645 0.5829

neck 1.00 0.000 0.611 0.025 0.0021 0.0021 0.0021

head 5.89 0.000 0.792 0.025 0.0457 0.0261 0.0417

upper arm 2.79 0.300 0.498 0.025 0.0047 0.0229 0.0229

lower arm 1.21 0.568 0.498 0.025 0.0009 0.0061 0.0062

hand 0.55 0.732 0.498 0.025 0.0004 0.0018 0.0015

Table A.1: Physical parameters of diver model.

56



name location axis kp kd

(x,y,z m)

x 1275 60
hip 0.086 0.000 0.025 y 200 10

z 1275 60

knee 0.086 -0.475 0.025 x 1275 60

z 80 5
ankle 0.086 -0.850 0.025 x (s) 1275 60

x (t, f) 120 12

x 1275 60
waist 0.000 0.114 0.025 z 1275 120

y 800 40

z 100 10
neck 0.000 0.555 0.025 y 20 2

x 200 10

y 100 5
shoulder 0.152 0.498 0.025

z 100 10

x 20 1
elbow 0.449 0.498 0.025

y 100 5

Table A.2: Joint strength of diver model.

link mass center of mass moment of inertia
(kg) (x,y,z m) (x,y,z kgm2)

hip 16.61 0.000 0.000 0.000 0.1034 0.1034 0.1445

thigh 8.35 0.086 -0.237 0.025 0.1654 0.0176 0.1662

shin 4.16 0.086 -0.663 0.025 0.0522 0.0069 0.0522

foot 2.34 0.086 -0.891 0.083 0.0141 0.0147 0.0044

ski 1.80 0.086 -0.952 0.094 0.3376 0.3394 0.0020

chest 29.27 0.000 0.335 0.025 0.5282 0.1645 0.5829

neck 1.00 0.000 0.611 0.025 0.0021 0.0021 0.0021

head 5.89 0.000 0.792 0.025 0.0457 0.0261 0.0417

upper arm 2.79 0.300 0.498 0.025 0.0047 0.0229 0.0229

lower arm 1.21 0.568 0.498 0.025 0.0009 0.0061 0.0062

hand 0.55 0.732 0.498 0.025 0.0004 0.0018 0.0015

Table A.3: Physical parameters of skier model.

57



name location axis kp kd

(x,y,z m)

z 900 30
y 1275 60

hip 0.086 0.000 0.025 x (s) 4000 60
x (t, f) 1275 60
x (l) 400 60

x (s) 4000 60
knee 0.086 -0.475 0.025 x (t, f) 1275 60

x (l) 400 60

x 2000 100
z 2000 100

waist 0.000 0.114 0.025
y (s, f, l) 2000 100

y (t) 3000 100

z 100 10
neck 0.000 0.555 0.025 y 20 2

x 200 20

y 100 5
shoulder 0.152 0.498 0.025

z 100 10

x 20 1
elbow 0.449 0.498 0.025

y 100 5

Table A.4: Joint strength of skier model.

link mass center of mass moment of inertia
(kg) (x,y,z m) (x,y,z kgm2)

hip 16.61 0.000 0.000 0.000 0.1147 0.1147 0.1445

thigh 8.35 0.127 -0.234 0.025 0.1654 0.0176 0.1662

shin 4.16 0.201 -0.652 0.025 0.0522 0.0069 0.0522

foot 2.34 0.233 -0.887 0.075 0.0141 0.0147 0.0044

snowboard 3.80 0.000 -0.950 0.075 0.0390 0.6595 0.6209

chest 29.27 0.000 0.335 0.025 0.5282 0.1645 0.5829

neck 1.00 0.000 0.611 0.025 0.0021 0.0021 0.0021

head 5.89 0.000 0.792 0.025 0.0457 0.0261 0.0417

upper arm 2.79 0.300 0.498 0.025 0.0047 0.0229 0.0229

lower arm 1.21 0.568 0.498 0.025 0.0009 0.0061 0.0062

hand 0.55 0.732 0.498 0.025 0.0004 0.0018 0.0015

Table A.5: Physical parameters of snowboarder model.

58



name location axis kp kd

(x,y,z m)

x (s, f) 1275 60
x (t) 200 60

hip 0.086 0.000 0.025 x (l) 400 60
z (s) 4000 60

z (t, f, l) 900 30

x (s, f) 1275 60
knee 0.168 -0.468 0.025 x (t) 200 60

x (l) 400 60

x 170 17
ankle 0.233 -0.837 0.025 y 50 5

z 80 8

z 2000 100
x 2000 100

waist 0.000 0.114 0.025
y (s, f, l) 2000 100

y (t) 4000 100

x 200 20
neck 0.000 0.555 0.025 z 100 10

y 20 2

y 100 5
shoulder 0.152 0.498 0.025

z 100 10

x 20 1
elbow 0.449 0.498 0.025

y 100 5

Table A.6: Joint strength of snowboarder model.

59



Appendix B

Description of Virtual Buttons

name axis definition note

x target c.o.m. position
stand forward

y arm position
stand facing water

x target c.o.m. position
stand backward

y arm position
stand back to water

x target c.o.m. position crouch, raise arms
crouch arms-up

y height of crouch for forward takeoff

x target c.o.m. position crouch, lower arms
crouch arms-down

y height of crouch for backward takeoff

x waist bend extend hips, knees
takeoff forward

y jump height and ankles for jump

x waist bend extend hips and ankles
takeoff backward

y jump height swing arms back

pike y time to reach pose

x target pike angle
open pike

y time to reach pose

tuck y time to reach pose

x twist of waist right hand to head,
twist

y time to reach pose left hand to chest

x waist bend bring arms laterally
lateral extend

y time to reach pose to over head

x waist bend bring arms straight
straight extend

y time to reach pose over head

Table B.1: Description of diving buttons.

60



name axis definition note

x start position
start big

y angle of arm raise
start for the big kicker

x start position
start small

y angle of arm raise
start for the small kicker

x hip bend bring arms to front
crouch arms-up

y knee bend for forward takeoff

x hip bend swing arms down
crouch arms-down

y knee bend for backward takeoff

x waist bend extend hips, knees
takeoff forward

y strength of jump and ankles for jump

x waist bend extend hips and ankles
takeoff backward

y strength of jump for jump, swing arms back

x waist twist extend hips, knees, and
takeoff twist fwd

y strength of jump ankles while twisting waist

x waist twist as above, but swing arms back
takeoff twist bwd

y strength of jump and apply less knee extension

pike y time to reach pose

tuck y time to reach pose

x waist bend
layout

y time to reach pose
extend arms

twist y time to reach pose bring arms to body

x hip bend alter stiffness of hips
landing

y knee bend and knees for landing

x arm position
finish

y time to reach pose
stand up and raise arms

Table B.2: Description of buttons for aerial ski jump control.

name axis definition note

x waist twist
crouch left

y front/back balance
crouch down facing left

x waist twist
crouch right

y front/back balance
crouch down facing right

grab front y time to reach pose grab front side of snowboard

grab back y time to reach pose grab back side of snowboard

x waist bend
takeoff

y time to reach pose

x waist bend
landing

y lateral balance position

Table B.3: Description of buttons for snowboard control.

61


