
QuestVis and MDSteer: The Visualization of

High-Dimensional Environmental Sustainability Data

by

Matt Williams

B.Ed., University of British Columbia, 1998;

Hon.B.Math., University of Waterloo, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

July 2004

c© Matt Williams, 2004

Abstract

The visualization of large high-dimensional datasets is an active topic within the

research area of information visualization (infovis), a research area that studies the

visual representations of complex abstract datasets. My thesis presents two infovis

systems that were motivated by the desire to explore a 294-dimensional environmen-

tal sustainability dataset. Our collaborators developed the environmental dataset

from expert knowledge on ecological, economical, and social systems which were

used to model future scenarios consisting of 294 measures of environmental sustain-

ability such as urban population, water supply levels, or tonnes of waste. Since

these complex systems and large datasets are difficult for a non-expert user to com-

prehend, we developed QuestVis, a tool that applies infovis theories and techniques

to improve the comprehensibility during exploration of the environmental dataset.

The tool consists of three components: the input panel, the Multiscale Dimension

Visualizer (MDV), and the Scenario Space Explorer (SSE). The MDV presents up to

ten 294-dimensional future scenarios simultaneously on the screen to enable users

to get a quick overview of the data. The simultaneous presentation also enables

users to compare multiple future scenarios side-by-side. The SSE presents the space

of all 120 000 future scenarios in an interactive two-dimensional layout which pro-

vides the user an overview of the possibilities. The SSE is tightly coupled with

the MDV to provide context to the specific future scenarios that are presented in

the MDV. These tightly linked components together provide an overview+details

framework within which users can effectively explore the dataset and immediately

see the consequences of their choices.

The creation of the dimensionality reduced overview in QuestVis led to a

second research direction. We realized that current implementations of Multidi-

mensional Scaling (MDS), a technique that attempts to best represent data point

similarity in a low-dimensional embedding, are not suited for many of today’s large-

scale datasets. This realization motivated us to develop MDSteer, a steerable MDS

computation engine and visualization tool that progressively computes an MDS

layout and handles datasets of over one million points. Our technique employs hi-

erarchical data structures and progressive layouts that allow the user to steer the

computation of the algorithm to the interesting areas of the dataset. The algorithm

ii

iteratively alternates between a layout stage in which a sub-selection of points are

added to the set of active points affected by the MDS iteration, and a binning stage

which increases the depth of the bin hierarchy and organizes the currently unplaced

points into separate spatial regions. This binning strategy allows the user to se-

lect onscreen regions of the layout to focus the MDS computation into the areas

of the dataset that are assigned to the selected bins. We show both real and com-

mon synthetic benchmark datasets with dimensionalities ranging from 3 to 300 and

cardinalities of over one million points.

iii

Contents

Abstract ii

Contents iv

List of Tables vi

List of Figures vii

Acknowledgements viii

1 Introduction 1
1.1 Information Visualization Background 2

1.1.1 Overview+Details . 3
1.1.2 High Dimensionality . 3
1.1.3 Visual Encoding . 4

1.2 Overview of Research . 4
1.3 Contributions . 5
1.4 Thesis Organization . 6

2 Related Work 7
2.1 High Dimensionality . 7

2.1.1 Dimensionality Reduction . 8
2.1.2 Explicitly High-Dimensional Visualizations 11

2.2 Interaction . 13
2.3 Aggregation . 14

3 QuestVis 16
3.1 Future Scenario Modelling . 17
3.2 The Quest Usage Model . 17
3.3 QuestVis Design . 18

3.3.1 Quest Limitations . 18
3.3.2 QuestVis Design Goals . 22
3.3.3 Database Architecture . 23

3.4 Multiscale Dimension Vizualizer (MDV) 24
3.4.1 Colour Encoding . 24
3.4.2 Aggregation . 26

iv

3.4.3 Detailed Output . 28
3.5 Input Choices . 28

3.5.1 Coupling Input Choices with Output Indicators 29
3.6 Scenario Space Explorer (SSE) . 31

3.6.1 Colourization . 33
3.6.2 Trail . 33
3.6.3 Filtering . 34

3.7 The QuestVis Usage Model . 35
3.8 Implementaion . 37

4 MDSteer 38
4.1 Steerable, Progressive MDS . 39

4.1.1 Algorithm . 40
4.1.2 Bins . 41
4.1.3 Termination Conditions . 45

4.2 Results . 46
4.2.1 Timing . 47
4.2.2 Stress . 48
4.2.3 Visual Quality . 49

5 Discussion and Future Work 54
5.1 QuestVis . 54

5.1.1 Future Work . 56
5.2 MDSteer . 59

5.2.1 Future Work . 60
5.3 Conclusions . 62

Bibliography 63

v

List of Tables

3.1 Quest Limitations . 22

vi

List of Figures

2.1 Multidimensional Scaling. 9
2.2 Parallel Coordinates. 12

3.1 The Quest input stage. 19
3.2 The Quest output stage. 20
3.3 The Quest output overview. 21
3.4 Multiscale Dimension Visualizer (MDV). 25
3.5 Multiscale views of chosen environmental futures. 27
3.6 Comparing future scenarios. 27
3.7 Detailed output. 29
3.8 Input choices. 30
3.9 Scenario Space Explorer (SSE). 32
3.10 Trail of selected future scenarios. 34
3.11 Filtering the scenario space. 35
3.12 The three components of QuestVis. 36

4.1 MDSteer. 41
4.2 Results: time. 49
4.3 Results: layout stress. 50
4.4 Visual quality: S dataset . 51
4.5 Visual quality: environmental dataset. 52
4.6 Steerable progressive layout. 53

5.1 Labelling of the scenario space. 57

vii

Acknowledgements

I would like to thank my supervisor, Tamara Munzner, for her support and guidance.
Her creative insights and tireless schedule have both challenged and motivated me
throughout the last two years. I would also like to thank Nando de Freitas for his
time and contributions as the second reader.

I would also like to thank all the great people I met here in Computer Science
at UBC. In particular my office mates, Leah Findlater, Karyn Moffatt, Dana Sharon
who provided me endless support, both emotionally and academically. I would also
like to thank James Slack and Kristian Hildebrand who helped me through many
technical and intellectual road blocks.

My mentor Maria Klawe was directly responsible for my great experience
at UBC computer science, as she both suggested, and inspired me to accept the
challenge. Her enthusiasm, commitment, and caring shown in improving the life of
others always will inspire me to try to do likewise.

I thank our collaborators at the University of British Columbia’s Sustainable
Development Research Initiative, Georgia Basin Futures Project, and Envision Sus-
tainability Tools for their support and dataset. Specifically I would like to mention
Mike Walsh, Dave Biggs, Jeff Carmichael, John Robinson, and Sonia Talwar for
their valuable and generous contributions to my project. I also thank Luc Girardin
of Macrofocus for the multiple-cardinality S dataset. I appreciate many productive
discussions on dimensionality reduction with Katherine St. John, and the techni-
cal writing contributions of Ciarán Llachlan Leavitt. This work was funded by the
GEOIDE NCE.

Finally, I would like to thank my friends and family who give me happiness.
In particular, I would like to thank Jessica Zallen for her caring and understand-
ing, and my family members, Betty, Jake, and Chris Williams, for their love and
encouragement throughout my whole life.

Matt Williams

The University of British Columbia

July 2004

viii

Chapter 1

Introduction

Our information visualization (infovis) research group was presented with

the challenge of improving the comprehensibility and interaction of Quest, an en-

vironmental sustainability tool. Infovis is a research area that studies the visual

representation and interaction of complex non-spatial datasets in an attempt to im-

prove user comprehension of the data by offloading cognitive load to useful graphical

visualizations. The visualization of large-scale, high-dimensional datasets is a par-

ticularly active area of research within infovis as these datasets are typically difficult

for people to comprehend and for systems to represent graphically. The infovis com-

munity commonly employs the design study method as part of its research repertoire.

An infovis design study explores and applies infovis techniques to solve real-world

problems within a particular domain. Infovis design studies have proven successful

in such areas as biology [37], software engineering mining [49], architecture [23], and

linguistics [36]. For the design study I present here, my supervisor Tamara Mun-

zner and I worked with collaborators in the area of environmental sustainability

to develop and apply infovis techniques that help understand and interact with an

environmental dataset of 120 000 points and 294 dimensions.

1

Prior to our research, our collaborators at Envision Sustainability Tools and

the Sustainability Development Research Initiative (SDRI) developed the Quest

environmental sustainability tool. Quest allows users to choose and analyze envi-

ronmental future scenarios. An environmental future scenario is defined here as

a set of future measures of environmental sustainability such as carbon monoxide

emissions, or water use. The particular future scenario that is presented by Quest is

dependent on a sequence of present-day regional planning decisions that are chosen

by the users. These policy choices are used by the system to calculate the future

values for the sustainability indicators. Comprehending the consequences of user

inputs and the meaning of the output indicators is a difficult task for the novice

user. Building on infovis theories and techniques, we implemented an alternative

system in an attempt to convey this information in a more comprehensible manner.

Our research began with an extensive analysis of the Quest tool so that we

could identify its limitations and conceive alternative designs. We conceived an

interface that offered users a learning experience through exploration. Specifically,

our goal was to provide the user an interface that allowed for discovery of higher

level interactions or of trends that exist within the dataset through fluid visual

navigation.

1.1 Information Visualization Background

We developed the QuestVis system in an attempt to achieve our goal of fluid

exploration of the large environmental dataset. Our design choices for QuestVis

were heavily influenced by several research threads within the infovis research area.

These threads are introduced below.

2

1.1.1 Overview+Details

The presentation of large datasets is a difficult task given the limited screen size

and resolution offered in today’s computer systems. The limited screen real-estate

means that detailed displays of information can only offer a view into a small subset

of the data at any one time. Navigating multiple detailed views does not provide

the user a context within which to comprehend and explore the dataset. The com-

mon infovis approach to solve the limited screen real-estate problem is summarized

by Shneiderman’s Visual Information Seeking Mantra, “overview first, zoom and

filter, details on demand” [43]. This overview+details theme heavily influenced the

conception and design of the work presented here.

1.1.2 High Dimensionality

The curse of high dimensionality, a term first introduced by Bellman over 40 years

ago [13], now generally refers to any problems that occur as dimensionality grows.

In infovis, it has come to refer to the difficulty in representing and comprehending

the ever increasing dimensionality in datasets of today. We reviewed, applied, and

extended various techniques that have been developed to aid the investigation of

high-dimensional datasets.

Dimensionality Reduction

One approach of handling the high-dimensionality problem, referred to as dimen-

sionality reduction, is to methodically reduce the number of dimensions down to

two or three dimensions and then present the data in this reduced space. Multi-

dimensional Scaling (MDS) is an approach that maps the high-dimensional data

points down to a lower dimensional embedding while attempting to best preserve

3

inter-point distances. Our Scenario Space Explorer (SSE) component, described in

Section 3.6, presents a low layout of the Quest data created using MDS.

While attempting the use of several dimensionality reduction techniques with

the environmental dataset, we found that existing tools and techniques did not

scale well to large high-dimensional datasets. This problem led us in a second

research direction; the development of the steerable MDS technique that we present

in Chapter 4.

1.1.3 Visual Encoding

When visually presenting data, there is an explicit or implicit mapping between the

graphical elements of the visualization and the data elements of the dataset. The

choice of this mapping is referred to as the visual encoding strategy. Graphical

elements such as size, shape, texture, hue, saturation, and brightness have all been

used to encode data. Proposed taxonomies of encoding schemes suggest that the

efficacy of an encoding scheme is dependent on the task [18, 31]. In particular,

research suggests that efficacy of the encoding strategy depends on the type of

data [16, 31]. Within the colour dimensions of hue, saturation and brightness,

Brewer [16] suggests that while hue is good at representing nominal values, its lack

of inherent order does not lend itself to encode ordinal or quantitative data; however,

people do perceive saturation and brightness as having an inherent order, and thus

represents quantitative data well. Cognizant of these considerations, we employed

the diverging colour scale in QuestVis that is described in Section 3.6.1.

1.2 Overview of Research

My work as a Master’s student began with the task of improving the comprehen-

sibility of the Quest interface. Once the extensive analysis of Quest and related

4

research was complete, we began the development of QuestVis, our alternative to

Quest. We started the work by reversing the usage model of the original Quest

interface. Rather than making decisions that are used to select a future, we wanted

QuestVis to begin by showing the users a future scenario and allow them to adapt

it. The majority of our research was focused on how we could best present the large

number of output factors so as to support user exploration and understanding. This

included work on visual encoding strategies, dimensionality reduction of the output

space, and improving interactivity through increased coupling of inputs and outputs.

The result was the three-component QuestVis system that is described in detail in

Chapter 3.

While investigating the use of dimensionality reduction techniques we found

that none of the available tools scaled well to extremely large datasets where both

dimensionality and cardinality of the dataset were high, for example, more than 200

dimensions or more than 200 000 points . We took this as an opportunity to begin a

second direction in my Master’s research; the investigation of large dataset dimen-

sionality reduction. We developed a technique and its corresponding system, named

MDSteer, that allows a user to steer the computational resources of the MDS to the

areas of the dataset of most interest to the user. This technique progressively com-

putes the MDS on more and more points allowing the user to get an overview of the

dataset before deciding to focus the computation or possibly stop the computation

altogether.

1.3 Contributions

We developed two systems as part of my thesis research, QuestVis and MDSteer.

QuestVis is a system designed for effective exploration of a large high-dimensional

environmental dataset of future scenarios. The QuestVis system consists of three

5

tightly linked visual components. Two of the components should be easily general-

izable to other high-dimensional datasets:

• Multiscale Dimension Viewer (MDV): a novel visual encoding and interac-

tion technique for the representation of high-dimensional, multiscale data.

Although originally designed to support the presentation of a collection of

sustainability indicators, the technique can be applied to other multiscale

datasets.

• Scenario Space Explorer (SSE): a highly interactive layout of a dimensionally

reduced space.

The MDSteer system exhibits the first steerable dimensionality reduction

algorithm. This system and technique allows users to explore datasets of sizes not

possible with previous systems.

1.4 Thesis Organization

Chapter 2 surveys the work related to the dimensionality reduction, high dimen-

sional visualization, interaction, and aggregation techniques that we applied to

QuestVis and MDSteer. Chapter 3 describes the QuestVis tool and the necessary

background in sustainability future modelling. Chapter 4 describes the MDSteer

tool and algorithms. This chapter was based on a paper describing the MDSteer

system [51]. Chapter 5 discusses the research and contributions of each of these

projects.

6

Chapter 2

Related Work

In this chapter we review the literature relevant to our research.

InfoVis research has led to the development of multiple high-dimensional

data exploration tools. Some tools, such as Polaris [45], DataSplash [53], Spotfire [3],

XmdvTool [50], and Xgobi [46] are generic database tools that attempt to provide

a visualization environment for any given dataset, while others such as Rivet [15]

and VisCraft [24] are developed to be applied to a particular domain. Our research

into the development of QuestVis falls into the second class of systems, as it was

specifically designed to support the Quest database for future scenario exploration,

although, we believe that much of this research could be generalized and applied to

other domains.

2.1 High Dimensionality

Our biggest challenge throughout the project was the high dimensionality of our

data. Previous visual solutions to the presentation of high-dimensional data can

be categorized into two general types. Some, referred to as dimensionality reduc-

tion techniques, attempt to reduce the data down to a low dimensional embedding

that tries to best represent the high-dimensional data. Others, which we refer to

7

as explicitly high-dimensional visualizations, attempt to represent the data in its

original high-dimensional space using creative views and encoding strategies. Be-

low, we describe relevant research in both categories beginning with past work on

dimensionality reduction.

2.1.1 Dimensionality Reduction

Dimensionality reduction techniques attempt to overcome high dimensionality by

methodically reducing the dataset into a low-dimensional embedding. When at-

tempting to visualize a high-dimensional dataset, Multidimensional scaling and Ko-

honen’s Self Organizing Maps have commonly been employed.

Multidimensional Scaling

One method for dimensionality reduction in particular, referred to as multidimen-

sional scaling (MDS), attempts to create a low dimensional layout of the data so

that the distance between points in the layout best represents the distance be-

tween the points in the higher dimensional data. Figure 2.1 illustrates the MDS

approach on a simple two-dimensional to one-dimensional projection. Such low-

dimensional representations have been created using a variety of methods. Classic

metric MDS begins by creating a distance matrix between all points using a pre-

defined metric [14]. The eigenvectors are found for the matrix and are used to

create the orthogonal low-dimensional basis vectors for a subspace that preserves

the highest amount of variance. This eigensolving approach does not scale well to

large datasets and is limited to finding a linear subspace. Since the matrices in

the eigensolving computation are usually dense, the computational cost of solving

the eigen-problem is O(n3). Other non-linear approaches such as ISOMAP [47],

LLE [42], and Laplacian Eigenmaps [12] have recently been developed that can pro-

duce more meaningful embeddings if the original dataset contains low dimensional

8

manifolds. These manifold finding techniques all involve a preprocessing stage be-

fore applying the same eigensolving calculations that are required by classic metric

MDS. For all of these techniques, scalability is still an issue due to their reliance on

eigensolving techniques. In the case of [47], the preprocessing stage is also expensive

as it computates the graph of geodesic distances between all points.

Figure 2.1: Multidimensional Scaling (MDS). MDS attempts to project points
from the full-dimensional dataset into a low-dimensional space. This example shows
three points in their original two-dimensional space (left) projected into a one-
dimensional space (right). Notice that the distances between the points in the
projection attempt to preserve the distances in the original dataset.

With the possibility of improved scalability, iterative methods that gradu-

ally adjust inter-point distances until an error measure is minimized have been most

interesting to infovis researchers. The basic spring model MDS approach [20] itera-

tively calculates a low-dimensional displacement vector for each point to minimize

the difference between the low-dimensional and high-dimensional distance. Since ev-

ery iteration requires each point to be compared with all other points in the dataset,

the computational complexity for each iteration is O(n2).

In 1996, Chalmers proposed a spring model technique that has a linear cost

for each iteration [20]. Instead of allowing forces on a point from every other point

in the dataset, the position of a point was determined by interacting with two

small sets of points that each contained a constant number of items. Each point

p maintained a list of V neighbourhood points that persisted across spring-model

9

iterations, and S randomly sampled points that were resampled at each iteration.

At the beginning, the neighbourhood was populated randomly from all points in

the dataset. The neighbourhood quality improved over iterations because a new

random sample would force out the most distant neighbourhood point, if it were

closer. Although the per-iteration cost was linear in n, the total number of iterations

required for this approach depended on the dataset size, so overall cost of this

approach was O(n2). The paper reports good results with V = 10 and S = 5, and

the implementation of this algorithm as distributed in the HIVE system [41] uses

V = 6 and S = 3. We use the latter.

In 2002, Morrison improved on this result with an efficient three-step ap-

proach: a initial base layout, interpolation, and final refinement layout [34]. The

Chalmers [20] algorithm was used to lay out an initial
√

n sample of points. That

initial layout was followed by an interpolation stage that used the location of the

sample points to find a good initial position for all remaining unplaced points. The

final stage ran several MDS iterations on the entire dataset, refining the approximate

initial placements into better final positions. The interpolation stage was the most

expensive, with a O(n ∗ √
n) cost, since it compared each of the n − √

n unplaced

points with the
√

n placed points in order to find the initial layout location for those

unplaced points. In 2003 Morrison [33, 35] improved the performance of computing

starting spots for unplaced points by applying an efficient nearest-neighbour search

technique at the interpolation stage.

After evaluating the techniques and systems, we chose to use the Morrison

2002 approach to lay out our Quest future scenario data as it was both available and

scalable to large high-dimensional datasets such as ours. Although the results from

applying the Morrison 2002 approach were successful and we integrated them in the

QuestVis scenario space visualization, the layout took over two hours to complete.

We noted the lack of scalability of the available MDS techniques to larger datasets

10

and began a second thread of research described in Chapter 4. This research led

to the development of MDSteer, an MDS technique that allows users to steer the

MDS computation to areas of the dataset that they are most interested in. The

work of Basalaj on incremental MDS [6, 7] is perhaps the most similar to our work

on MDSteer. While they ignore local detail to focus on overall shape, we take the

opposite approach, instead encouraging people to build up local detail in areas of

interest. Basalaj has one of the very few systems that handles large datasets of over

100,000 nodes.

Kohonen’s Self Organizing Maps

Another popular dimensionality reduction technique often used in visualization sys-

tem are Kohonen’s Self Organizing Maps (SOM) [26]. SOM is an unsupervised

neural network learning technique that maps data to regions of a two-dimensional

rectangular grid. Points in the high-dimensional dataset are placed into nodes on the

two-dimensional grid that become tuned to patterns in the dataset to best represent

high-dimensional similarity. Although SOMs have produced successful layouts [28],

this method scales exponentially with dataset size and there is no guarantee that

the algorithm converges.

2.1.2 Explicitly High-Dimensional Visualizations

Instead of attempting to restructure the data for lower dimensional viewing, other

approaches show the full-dimensional view. The parallel coordinates approach [25]

connects separate one-dimensional graphs of all of the dimensions in sequence, see

Figure 2.2. While this is probably today’s most popular method that visually rep-

resents high-dimensional data, patterns found in the data are highly dependent on

the arbitrary order that the dimensions are presented. Moreover, datasets with high

cardinality or high dimensionality result in cluttered display areas that are difficult

11

for users to parse. The Hierarchical Parallel Coordinates approach [22] offers a so-

lution to the clutter resulting from cardinality by aggregating clusters of points.

Figure 2.2 shows how the Hierarchical Parallel Coordinates approach reduces the

clutter problem that arises when presenting large datasets.

Figure 2.2: Parallel Coordinates. (Left) Parallel Coordinates connect data points
along a sequence of vertical axes. Each vertical axis represents a dimension of the
data and each point in the dataset is visually presented as a line that connects
the values for the data point along each dimension. This figure demonstrates the
clutter that results from presenting a large number of points. (Right) Hierarchical
Parallel Coordinates solves the clutter problem of the standard parallel coordinates
approach. Cluster information is presented using opacity bands that represent both
the centre and the extent of the cluster. Images from [22] used courtesy of Matt
Ward.

An alternative to parallel coordinates uses scatterplot matrices [9, 21, 45] to

present the cross product of all two-dimensional or three-dimensional representations

in multiple coordinated views. Similar to the parallel coordinates approach, screen

12

clutter is again a problem when dimensionality is high. Even with ten dimensions,

45 two-dimensional or 36 three-dimensional scatterplots are required to show all of

the dimension combinations.

Since existing explicitly high-dimensional visualizations do not scale to the

number of dimensions that we tackle with the QuestVis system, we developed a

linked component approach to viewing the high-dimensional data. One compo-

nent provides an overview of the dataset using a dimensionally reduced layout, as

described in Section 3.6, while a closely coupled second component presents the

details of up to ten high-dimensional data points, as described in Section 3.4.

2.2 Interaction

Our QuestVis interface consists of three components, a set of sliders that can be

used to register user input, the overview Scenario Space Explorer (SSE) visualiza-

tion and the Multiscale Dimension Visualizer (MDV). The integration of these three

components to allow seamless interaction and navigation was informed by past work

on tightly coupled systems [1, 38, 52]. Linked highlighting was first introduced as

“brushing scatterplots” by Becker and Cleveland [8]. This work displayed multiple

scatterplot views of the same data and allowed the users to select data points from

one view to highlight them in any of the other plots. Such tight coupling of inter-

face components incorporates the idea of “output-is-input” [1] where the difference

between an input and an output becomes indistinguishable. For example, in their

Film Finder system Ahlberg and Shneiderman [1], offered a scatter plot of movies

to the left of sliders that that are used to populate the scatterplot. When the sliders

are adjusted, the scatterplot is immediately updated. If a subset of the scatterplot

is selected, the dynamic queries are adjusted to show only the ranges that are in-

cluded in the items on the scatterplot. Both the scatterplot and the sliders take

13

input and provide output information. All of our components in QuestVis also have

this attribute. To support this design, North and Shneiderman [38] offered empirical

studies that suggested users were more effective when using linked views.

The sliders described above from the Film Finder system are a form of dy-

namic queries. Ahlberg and Shneiderman [2] coined the term dynamic queries to

refer to a data query technique that allows users to graphically view and adjust

the query and the result with immediate feedback. Rather than composing com-

plex database queries, simple mouse gestures with sliders were used to query the

database. We apply these techniques in our interface to help the user reduce the

clutter in the SSE representation discussed in Section 3.6.

The design choice of presenting our data in multiple linked visualizations

is supported by Baldenado and Kuchinsky’s guidelines on when to use multiple

views [5], which suggest that multiple views can provide insight into large complex

datasets. In a design approach similar to ours, Wills [52] summarized the interaction

techniques proposed by the infovis community and exemplified their advantages in

the EDV system.

2.3 Aggregation

Semantic zoom, first offered in Pad [40] and then later extended in Pad++ [11] and

Jazz [10], refers to the ability to smoothly change the visual representation as the

user changes the level of magnification of the view. In multiscale systems that offer

semantic zoom, as the the user navigates the display, the representation gradually

is altered so that the display is coherent at all times. City map visualizations

exemplify the need for semantic zoom. When fully zoomed in to a small portion

of the map, users might be interested in details such as street names whereas in a

zoomed out overview of the map, street names would clutter the map and render it

14

illegible. The key insight offered by semantic zoom research is that the efficacy of the

visual representation is dependent on the level of magnification. Both Polaris [45]

and DataSplash [53] implement semantic zoom techniques to improve navigation

for relational data. Most recently, Stolte et al. [44] expanded the idea of changing

the visual representation for multiscale systems to include the ability to change the

level of aggregation of the data. This insight enables the visual representation to

be dependent on both the magnification level and the data aggregation level; two

independent but complimentary dimensions. For example, if monthly, quarterly,

and yearly financial data are all available to a system then the user could be allowed

to zoom in and out of this level of data aggregation. Such a change in data scale

might also affect the semantic zoom level that the system uses to visually encode

the data. In our QuestVis system, although our encoding remains consistent, our

interface allows the user to change the data aggregation level during exploration.

15

Chapter 3

QuestVis

Most people have a vision of the future they desire. A desired future might have

low unemployment, or less traffic, or clean air, or maybe all of the above. However,

people are often unaware of how the interplay between regional policy choices made

in the present could either bring about or prevent desired aspects of these futures.

Future modelling tools such as QuestVis, the system I present here, and Quest [19],

its predecessor, enable people to become more informed about the effect that present-

day regional policy choices will have on possible future scenarios. Although these

tools are often used by novice users, the computational models that support these

systems are informed by expert understanding of ecological, social and economic

systems. The complexity of the computational models that underlie these tools,

combined with the lack of experience of the user, makes comprehension and usability

a major concern when implementing these tools. Our research task for the QuestVis

design study was to improve the comprehensibility of the Quest future scenario

modelling tool and its data.

16

3.1 Future Scenario Modelling

Future scenario modelling refers to the process of computing future values for var-

ious sustainability indicators, such as carbon monoxide emissions, given inputs for

present-day regional policy decisions. The ability to provide a look into possible en-

vironmental future scenarios can support regional planning policy decision making.

More specifically, future modelling tools are used to improve community input into

regional planning decisions by allowing the community to view the impact of various

policies on the environment. In a case study conducted on Bowen Island, members

of the community that used decision support tools such as Quest increased their

understanding about issues such as the interplay between water supply and land

use [17]. Future scenario modelling may also be beneficial in an educational en-

vironment as evidence suggests that interactive decision tools can be pedagogically

effective [32]. Using Quest, students can learn about environmental sustainability

through exploration of policy decision consequences.

3.2 The Quest Usage Model

In a session with Quest, the predecessor of our QuestVis system, users work through

three sequential steps: the input stage (regional policy decision making), the model

computation stage, and the output stage (future scenario analysis). The input stage

involves the selection of a sequence of up to 49 input decisions. For example, when

users are faced with their policy on waste reduction, they can choose one of five levels

of waste reduction. The choices fall between a maximum of “significant reduction” to

the minimum of “same as now.” The users respond to a sequence of such decisions

with the help of a facilitator who informs the users of the consequences of their

decision making. Once all input decisions are made, Quest computes the models.

This computation takes approximately two minutes to complete and once the models

17

are computed, Quest presents the users with an overview radial chart intended to

simplify the 294 output indicators of the chosen future. Curious users can then select

any of the other 88 more detailed views of the outputs to further investigate their

chosen future scenario. Figure 3.1 shows Quest in action during the input decision

stage and Figure 3.2 shows the various output views that are used to analyze the

chosen future scenario. The process of choosing the input decisions, computing the

future, and analyzing a single chosen future scenario typically takes over an hour

and requires the aid of an expert facilitator. After selecting and analyzing a future

scenario, users can repeat the process to chose a different future scenario. In its

most recent version the Quest models allow 49 input choices and produce values for

294 sustainability outputs.

3.3 QuestVis Design

This section describes the QuestVis design process. I begin by describing the limi-

tations of the Quest system, follow with the goals that these limitations motivated,

and finish by describing the components of the QuestVis system in detail.

3.3.1 Quest Limitations

Our research began with a detailed problem analysis of the Quest system in which

several limitations emerged, summarized in Table 3.1. The lack of responsiveness

of the system was our foremost concern. It was our belief that the amount of time

and navigation required between the input decision stage and the future scenario

analysis detracted from users’ ability to comprehend input decision consequences.

Quest’s lack of responsiveness is further confounded by its cumbersome input

capabilities. The input panel on the left lists all of the categories of the input choices

but requires the user navigate to the specialized windows for each menu choice

18

Figure 3.1: The Quest input stage. Users select choices related to one of many
input categories. Quest presents all of the input categories within the input menu
on the left and before the inputs choices are presented the user must select one of
the menu items. This particular example presents the input choices related to urban
development. Users can select one of many detailed inputs seen on the right or they
can select one of the green preset buttons in the centre.

in order to make input choices. Furthermore, the inputs are not closely coupled

with the output indicators. When presenting outputs, Quest does display the input

choices that affect each output indicator, but the user is unable to change the inputs,

see Figure 3.2. We argue that the users’ ability to comprehend the consequences of

the input choices is severely limited because the the lack of connectedness between

the inputs and outputs.

Similarly to the method of presentation of the input choices, the output

values for the sustainability indicators are spread over multiple windows. This

19

Figure 3.2: The Quest output stage. Users must navigate through many outputs
windows when attempting to comprehend the selected future scenario. The two
windows shown present the “Population by Density” output indicators (Top) and
the “Economic Activity by Sector” output indicators (Bottom), two of the many
output windows. Note that, although the the related input choices are shown to the
right of the output values, these inputs cannot be altered at this point.

20

approach impacts comprehension because full understanding of a scenario requires

the navigation and memorization of the sparse information presented over multiple

windows. The summary visualization, shown in Figure 3.3, attempts to overcome

this obstacle by providing the users with an overview of the selected future scenario

on a single window. However, this summarization is limited in that it provides a

small sample of output indicators. If the user is specifically interested in alternative

indicators not included in the summary then the overview is not useful.

Figure 3.3: The Quest output overview. Quest provides the user an overview
of a chosen future scenario by presenting a subset of 9 of the 294 output indicators
using a radial chart.

Finally, after a future scenario is chosen, the user is not given a proper context

in which to evaluate this scenario. Users have no understanding of the quantity or

the quality of alternative future scenarios. Users do not know if their chosen future

21

scenario is better than other possible future scenarios with respect to the indicators

that they are interested in. For example, when analyzing a future scenario, users

may want to know if other futures have better values for the air quality indicators.

Quest has no method for offering this information. Quest also has no method to

compare future scenarios side-by-side. This lack of context limits the users’ ability

to comprehend whether their chosen futures are actually desirable.

Limitation Goal

• sparse information density of in-
put and output windows

• inputs presented but not active

• output summary is sampled not
aggregated

• cumbersome navigation

• improve the comprehension of
the outputs from a single future
scenario

• no method of comparing mul-
tiple chosen futures with each
other

• improve the comparison be-
tween several scenarios

• no context to understand the
space of possible future scenar-
ios

• improve the exploration and
comprehension of the space of all
scenarios

Table 3.1: Limitations of the Quest environment and the corresponding goals.

3.3.2 QuestVis Design Goals

As outlined in Table 3.1, we were able to summarize the limitations to motivate

three general goals. First, we needed to improve the comprehension of the outputs

22

from a single scenario. Second, we needed to improve the comparison between

several scenarios. Finally, we needed to improve the exploration and comprehension

of the space of all future scenarios.

Our extensive analysis of Quest led to envisioning and implementing a more

effective tool. I begin by outlining the architecture of the system and then describe

each of the components in detail. The chapter concludes with a description of the

QuestVis user model.

3.3.3 Database Architecture

In Quest, the slow and non-engaging experience is a consequence of the model

computation stage that detaches the input stage from the output stage. We felt

that a more responsive usage model would both improve the engagement of the

users and help us attain our design goals. As such, we turned the model around by

immediately providing a future scenario to the users and allowing them to adapt

the future scenario to their desires with real-time response, that is, without having

to await a computation stage. To enable immediate response, we chose to adapt

the system architecture to include a database of pre-computed scenarios. With

the inclusion of the database, the model computation stage is removed, the set of

inputs is now simply used as a key into the database of future scenarios. After

we identified the need for the database, it was created by our research partners at

Envision Sustainability Tools by running the model computations in batch mode,

while systematically adjusting the input values to cover all possible combinations.

The database architecture was not feasible with the full set of Quest’s input

choices. With all 49 input decisions offering at least four choices, the total number

of future scenarios would be in the order of 1030. We identified the need to reduce

the number of input decisions to enable this new database architecture. Based on

a deep knowledge of the models, our research partners at SDRI and Envision were

23

able to provide a list of 11 of the most influential input decisions that should be

included in the database computations. Ten of these inputs allowed three possible

choices and one input with two choices. This resulted in a total of 118098 (310 ∗ 21)

future scenarios, a manageable size.

By reducing the input choices and pre-computing the future scenarios, QuestVis

provides real-time interaction speeds even with 118098 available future scenarios.

However, the number of sustainability indicators, the dimensionality, was also an

issue when trying to convey the results to users. It was unreasonable to expect

an inexperienced user to attempt to discern 294 sustainability measures for each

future scenario chosen. To enable more simplified views of the sustainability data,

we identified the need to further restructure the data to support multiple levels of

aggregation. It was our intention that the aggregated levels of the data would be

used to provide a comprehensible summary of the future scenarios. Further consul-

tations with the model designers at SDRI and Envision resulted in the production of

a fully hierarchical set of sustainability dimensions. The next section describes how

this structure is exploited in the output visualization of chosen future scenarios.

3.4 Multiscale Dimension Vizualizer (MDV)

The Multiscale Dimension Visualizer (MDV) presents all of the output indicators

for the currently chosen future scenario on the screen simultaneously. The following

describes the features of the MDV.

3.4.1 Colour Encoding

As mentioned above, one of the three goals of our study was to improve compre-

hensibility of the chosen future scenario. In Quest, the user must navigate through

many pages of output graphs to view all of the outputs, see Figure 3.2. To compre-

24

Figure 3.4: Multiscale Dimension Visualizer (MDV). All 294 dimensions of
the currently selected future scenario can be viewed simultaneously. The normalized
value for each dimension is encoded using colour to enable a compact representation
that provides an overview of all of the dimensions and allows for direct comparison
between dimensions. In this example the saturated blue in most of the “Population”
variables suggests a dramatic increase population for this future scenario whereas
the saturated green in the Cost of Living variables suggests that “Cost of Living”
will be reduced in this future scenario. The numbers presented within each cell
simply identify the indicator number and are for development purposes only.

hend the relationships between the highly interdependent output indicators the user

is forced to commit to memory the various output windows. For example, does an

attempt to improve water quality always result in a loss of some level of economic

success? Questions such as this cannot be easily answered when the results are

presented on multiple windows. We handled this difficulty in two ways. In order to

assist the user in comprehending the 294 output indicators of each future scenario,

we designed a visualization that displayed all indicators simultaneously, see Figure

3.4. Simultaneous presentation in a compact display was enabled by color encoding

the values of the indicators. Specifically, we implemented a diverging colour scale

where blue represents an increase in value relative to the present-day value and a

green represents a decrease in value relative to the present-day value. The level of

saturation of the colour represents the size of the increase or decrease where the

size is normalized relative to the minimum and maximum possible values for that

25

particular indicator across all future scenarios. For example, a fully saturated blue

would represent the maximum increase for a value across all pre-computed future

scenarios in the database, whereas the colour white represents a value equal to the

present-day value and a fully saturated green represents the maximum decrease in

value. This colour encoding scheme offers the user a quick overview impression of

the future scenario that is easy to understand and allows for comparisons between

values within a scenario as well as between multiple future scenarios. Since most

users do not have a concept of what range of values are to be expected, the nor-

malization to the present-day scenario also gives the user a context in which to

understand the significance of the value.

3.4.2 Aggregation

Presenting all of the indicators simultaneously using colour encoding allows the

user to get both a quick overview of the future scenario by scanning the colours of

the MDV, and to compare specific indicators within one scenario. However, even

with this encoding strategy, showing all 294 indicators on the window may still

be overwhelming. Moreover, since the full sized MDV is too large to allow the

display of more than one future scenario at a time, it cannot be used to compare

multiple future scenarios simultaneously. To simplify and reduce the spatial extent

of the presentation of the output indicators, we exploited the hierarchy of output

indicators, see Section 3.3.3. We extended the representation by applying the same

colour encoding strategy to display indicators at any level of the hierarchy. Users

can now select any level of detail they desire, see Figure 3.5. The most aggregated

view provides a simple, small overview of the future scenario, whereas the detailed

view displays all 294 output indicators. More specifically, rather than viewing colour

encodings for all 29 Energy output indicators, the most simplified view represents all

of these in one aggregate “Energy” indicator. See Figure 3.5 for the various levels

26

of aggregation available in the current implementation. The smaller footprint

Figure 3.5: Multiscale views of chosen environmental futures. The three
levels of aggregation offered by the current implementation of the interface. The
user can choose the simplified representation for an quick overview representation
or, if interested, drill down to see the details for particular output indicators.

Figure 3.6: Comparing future scenarios. Using the more simplified view, the
user can compare multiple scenarios side-by-side. In this example, the user is com-
paring three different future scenarios. Note that the “Cost Of Living” aggregate
indicator is different for each future scenario.

27

of the simplified view of a future scenario enables the simultaneous display and

comparison of multiple future scenarios. The most aggregated level presents all of

the high level category values, such as economy, transportation, or water, for each

future scenario in a single column enabling a side-by-side comparison between each

future scenario for each category. Figure 3.6 illustrates a comparison between three

future scenarios. Notice, in this figure, when comparing across the three future

scenarios, the differences in the values for the “Cost of Living” and “Footprint”

indicators are apparent.

3.4.3 Detailed Output

The compact representation of output indicators in the MDV allows the user to

explore multiple future scenarios in seconds, with the choice of various levels of

summarization. Although colour encoding easily allows users to perceive an increase

or decrease in value, colour encoding is neither precise nor accurate enough for users

if they want to drill-down to see the actual values for specific output indicators.

To enable a comprehensive analysis of a particular future scenario, we provide a

detailed bar-graph component that presents the value information for specifically

selected output indicators. Figure 3.7 shows the detailed output for the population

indicators. It is this view that allows users to attain comprehensive understanding

of the future that they selected.

3.5 Input Choices

The Quest interface presents the menu with all of the input choices on the left hand

side of the screen during the input stage, see Figures 3.1. To make an input choice,

users select an item from the list to navigate to the screen that presents the input

choices. The choices are also shown during the future scenario analysis stage but

28

Figure 3.7: Detailed output. The user has drilled down to get the details of the
“Population by Age” indicator.

they are not active; that is, they cannot be adjusted, see Figure 3.2. If the users want

to make alternative choices they must go back to the input stage and start again. In

QuestVis, we implemented an input choice component that displays all of the input

choices on the screen simultaneously, see Figures 3.8 and 3.12. Users are able to

view the choices throughout the exploration of multiple future scenarios; Moreover,

the choices are active; at any point during exploration, users can adjust the values

and see the impact immediately on the colours of the MDV output indicators.

3.5.1 Coupling Input Choices with Output Indicators

The real-time response improves exploration significantly since users can now view

the effects of policy decisions in seconds. However, understanding the impact of

policy decisions on sustainability indicators is a complex problem. In Quest, users

need guidance from a facilitator to explain the environmental consequences of their

29

input choices. As an alternative to using a facilitator, we investigated the possibility

of using visual cues to help the user understand the consequences of input choices.

We implemented linked highlighting to connect input choices and output indicators.

Figure 3.8 shows how the QuestVis interface highlights the input decisions that

may affect the currently selected output. Conversely, the interface highlights the

output indicators that could change by highlighting the input slider that the user is

currently hovered over.

Figure 3.8: Input choices. Input choices (left) are coupled with output choices
(right) using two-way linked highlighting. When an input slider is hovered over, the
corresponding output indicators that could be affected by this choice are highlighted
with a red underline. Conversely, if an output indicator is selected, the input slider
is highlighted in blue.

With both linked highlighting and real-time response implemented, the user

can view within seconds the impact of changing many policy choices. The small

cost of changing an input decision motivates the user to explore the impact of many

30

individual policy changes on the various dimensions of sustainability modelled in

QuestVis.

3.6 Scenario Space Explorer (SSE)

In the original Quest implementation, chosen future scenarios are presented with-

out context; that is, users cannot comprehend how their choice in a future scenario

compares to other alternative future scenarios. Users may want to see if they can

find a similar future scenario that is better for employment, or air quality, or other

factors. As noted in Section 3.4.2, the aggregated view for the outputs enabled

direct comparison with other selected future scenarios; however, we wanted to add

further context by providing the users with a visualization of the space of all fu-

ture scenarios so that any chosen future scenarios are shown in the context of all

other possible alternatives. A second benefit for such a visualization is the added

possibility for navigation through the space to select future scenarios. Rather than

limiting users to exploring possible future scenarios using the policy input choices, we

developed the scenario space explorer (SSE) that allows users to find the future sce-

narios they are interested in by directly navigating through the space of all available

future scenarios. Since each future scenario consists of 294 dimensions of sustain-

ability indicators the high dimensionality becomes an impediment when attempting

to visualize the scenario space. Various approaches have been used when visualizing

high-dimensional datasets, see Section 2.1. Because of its ability to give an overview

representation of the full dataset in lower dimensions, we chose dimensionality re-

duction to view the scenario space in QuestVis. Specifically, we applied the MDS

approach from Morrison and Chalmers [34] to compute the low-dimensional layout

as it was the only available system that computed the two-dimensional layout of the

120000 point 294 dimensional dataset in less than three hours. The layout is not

31

Figure 3.9: Scenario Space Explorer (SSE). The scenario space is coloured using
the value of “Time in Car”. The overlaid rectangle represents the currently viewed
future scenario.

computed in QuestVis. We pre-computed the layout once and saved the location

values in the database.

The review of relevant literature on dimensionality reduction, as discussed

in Section 2.1.1, led us to develop the MDSteer technique and system described in

Chapter 4. MDSteer is a steerable dimensionality reduction technique that is ideal

for investigating large high-dimensional datasets.

Points in the reduced two-dimensional layout are placed so that the distances

between the points attempt to best represent the distance between the points in the

full dimensional space. In QuestVis, the points represent possible future scenarios.

If two points are close together then the result indicator values for these two future

scenarios are similar, whereas if two points are distant from each other in the layout

32

then they have dissimilar values. As shown in Figure 3.9 the points in the scenario

space layout are fairly evenly distributed in the shape of an oval.

3.6.1 Colourization

The user determines the colourization of the points in the SSE by selecting dimen-

sions in the MDV. That is, the data points in the layout are colourized by the

normalized colour value of each future scenario for the currently selected result in-

dicator. For example, Figure 3.9 shows the scenario space where the colour of each

of the 120 000 future scenarios is determined by the value of the “Industrial Energy

Use” indicator. This technique places the users’ selected future scenario within the

context of other available future scenarios. Moreover, it allows the user to colourize

the context with any of the output dimensions. This enables the user to system-

atically choose alternative future scenarios based on the presently selected output

dimension. For example, during an exploration with QuestVis, users may search for

an alternative future that has a greater water supply by selecting a water supply

indicator. By noting the future scenarios that are coloured blue in the SSE, users

can find all alternative futures that have an increase in water supply.

3.6.2 Trail

Since the new interface design offers the ability to select hundreds of different future

scenarios within minutes, techniques were also required to allow the user to keep

track of previously viewed scenarios. To this end, we provided visual markers that

identify the previously viewed future scenarios on the scenario space layout, see

Figure 3.10. The large rectangle in the path represents the currently viewed future

scenario and the other dots in the trail represents the previously viewed future

scenarios. The trail of selected future scenarios is connected using gray lines that

gradually get lighter as the trail gets further from the most recently selected future

33

scenario, thus providing a visual cue as to the recency of the previously selected

future scenarios.

Figure 3.10: Trail of selected future scenarios. The scenario space is coloured
using the value of “Industrial Energy Use”. The overlaid trail figure represents the
trail of previously viewed future scenarios.

3.6.3 Filtering

Although presenting all 120 000 future scenarios offers a valuable overview of the

output parameter space, the concern arose that there are too many points to offer

any local detail. Moreover, since screen real-estate is limited, many points occlude

other points that are in nearby or identical screen coordinates. In an attempt to

overcome the difficulty in presenting the overwhelming number of future scenarios

in the scenario space representation we implemented a dynamic query technique, as

described in Section 2.2, that allows users to filter the number of points shown in the

34

scenario space. Specifically, the user can manipulate sliders to limit the number of

future scenarios shown based on the value of the currently selected output dimension.

Figure 3.11 shows the results of such a dynamic query on the scenario space. In this

example, the user selected the “Georgia Basin Domestic Water Use” indicator and

then set the sliders to show only the future scenarios that have the most increase in

water use.

Figure 3.11: Filtering the scenario space. The scenario space is coloured using
the value of “Georgia Basin Water Use” and filtered only to show the future scenarios
with the greatest increase in water use.

3.7 The QuestVis Usage Model

With the above described components in place, the usage model of QuestVis dra-

matically changes from that of Quest. Users of QuestVis are immediately and si-

multaneously presented both inputs and outputs for a default future scenario using

35

Figure 3.12: The three components of QuestVis. The input choices are always
present and active on the left; the SSE presents the overview and offers an alternative
method of exploration; the MDV presents the details of the currently chosen future
scenario.

three linked components: the Multiscale Dimension Viewer (MDV), the Scenario

Space Explorer (SSE), and the list of input choices, see Figure 3.12. The MDV

presents all 294 output indicators for the chosen future scenario. The SSE repre-

36

sents the space of all available future scenarios and highlights the history of future

scenarios that have been selected during the current session. The active display of

input choices shows the choices that led to the presently chosen future scenario and

can be used to interactively adjust any of the choices. All of these components are

tightly linked and interactive so that changes in one component are represented in

the others. With these tools at hand, users may now alter input choices one at

a time and immediately see the consequences of these decisions in the MDV and

SSE. Furthermore, since the SSE places each chosen future scenario on a map of

the space of all scenarios, users are given a context to compare the quality of the

chosen scenario against other possibilities. When interested in one particular future

scenario the user can drill down to view a detailed graph specific output indicators.

3.8 Implementaion

QuestVis was developed using the Java2 SDK 1.4.2 and can run on any platform

containing the Java2 Runtime Environment 1.4.2. The database of pre-computed fu-

tures is stored and served to QuestVis using the MySQL 4.0.15 open source database.

The MySQL Connector/J implementation of the Sun’s JDBC 3.0 API was used to

access the database from within QuestVis. The JFreeChart library of graphing and

charting classes was used to create the MDV’s detailed bar graphs.

37

Chapter 4

MDSteer

Dimensionality reduction techniques allow a dataset of high-dimensional points to be

explored by projection into low-dimensional spaces such as the 2D plane or 3D space.

Multidimensional scaling, or MDS, has been one of the most popular approaches to

reducing dimensionality since its introduction by Torgerson into the psychological

literature fifty years ago [48] as a way to represent perceived similarities between

a pair of stimuli. MDS is a technique where the ratio of differences between inter-

point distances in the original high-dimensional space and in the projected low-

dimensional space are minimized.

Dimensionality reduction techniques have been published in many fields:

psychology [29, 48], cartography [27], machine learning [42, 47], and information

visualization [4, 20, 33, 34, 35]. Error minimization requires many computationally

expensive high-dimensional distance or matrix computations, and the challenge is

reducing the cost and number of these calculations. Torgerson’s early approach had

a cost of O(n3), where n is the number of points in the dataset [48]. Methods with an

O(n2) cost that can handle thousands of points have become common [4, 20, 29, 30].

Recently, a subquadratic algorithm was proposed by Morrison that could lay out

thousands of points in minutes [33, 34, 35].

38

Despite the extensive previous work, there is a gap in the literature: no cur-

rently available algorithm or system allows interactive exploration of high-dimensional

datasets with both a large number of dimensions and a large number of points. Al-

though Morrison does handle hundreds of thousands of points in minutes [33, 34],

that is only true when the number of dimensions is low. On our real-world dataset

of 120,000 nodes and 294 dimensions, the HIVE system [41] took over two hours to

compute the layout.

We present MDSteer, a steerable system that allows the user to progressively

guide the MDS layout process so that exploration of huge datasets can begin im-

mediately after startup. The user can interactively select local regions of interest,

and then most of the available computational resources are spent on refining this

selected area of interest. Users can immediately begin exploring datasets of over one

million nodes. The overall dataset structure is apparent in a few seconds, providing

an overview that helps users find potentially interesting areas in the projection. Af-

ter interactive drill-down to a small local area, computational resources are steered

to that location to quickly fill in that area. Again, even for datasets of over one

million points, these small local areas can be fully populated within minutes. Our

system handles datasets with dimensionality of several hundred and cardinality of

over one million.

The ability to immediately explore and steer computational resources to

regions of interest allows investigation of datasets an order of magnitude larger than

previous work.

4.1 Steerable, Progressive MDS

The two techniques we use to introduce steerability into MDS are progressive lay-

out of points and hierarchical binning. Steering allows computational power to be

39

focused where it is needed to support exploration in parallel with continuing the

layout process.

4.1.1 Algorithm

The MDSteer algorithm alternates layout with binning computation. At each layout

step, we add
√

n/k new points to the computation, find an initial position for each

of these new points, and run MDS iterations on the active set of points until the

layout stops improving. Every k layout steps, we rebin all of the points. Algorithm 1

presents the details in pseudocode and Figure 4.1 illustrates the progression of the

MDSteer algorithm.

Algorithm 1 MDSteer algorithm

sampleSize =
√

n/k;
while allSelectedBins.hasUnplacedPoints do

for all b ∈ selectedBins do
for [1, sampleSize / allSelectedBins.size] do

p = b.getRandomPoint();
activePointSet.add(p);
p.startLocation=b.nearestPlacedPoint.location;

end for
end for
while stressIsShrinking() do

for [1 ,
√

sampleSize] do
for all p ∈ activePointSet do

for all q ∈ p.comparisonSet do
doMDSAdjustment(p,q);

end for
end for
stressCalculate(activePointSet, placedPointSet);

end for
end while
growBinHierarchyOneLevelDeeper();
rebinAllPoints();

end while

40

Figure 4.1: The MDSteer progression. (a) We begin by laying out a random
subset of the dataset in a single selected bin. (b) The bin is divided into two bins
and all points are placed into one of the two new bins. Using the high-dimensional
distance to the representative points, all remaining unplaced points in the dataset
are also assigned to one of the two bins. (c) A new random subset of points is
placed into the layout. (d) Using mouse selection the user has indicated that she
is interested in the bin on the right, thereby focusing future layouts and placements
in that region. (e) A new random subset of points is placed. The subset is selected
from the unplaced points in the selected bins only. (f) The user has further focused
the computation to the single bin in the bottom right corner. The subdivision and
placement process is continued until all points in the selected bins are placed.

4.1.2 Bins

We subdivide the low-dimensional plane into a hierarchical decomposition of rectan-

gular screen-space regions that we call bins. Bins are drawn onscreen as wireframe

boxes, which are highlighted when selected by the user. Selecting one or many of

41

these regions causes the available computational resources to be focused on “filling

in” those bins; that is, laying out the higher-dimensional points that are likely to

be projected to that region of the lower-dimensional plane. The hierarchy of bins

guides the MDS layout at several levels. First, we restrict the amount of work we do

at each MDS iteration by allowing only the selected bins to have active points that

move around. Second, the set of new points to activate is chosen only from selected

bins. Third, bin membership is used to efficiently find starting positions for those

new points that have just become active.

We start the computation with only a single bin which contains all the points.

That initial bin is both the root of the bin hierarchy and the singleton leaf. At

every rebinning pass, we increase the maximum depth of the bin hierarchy by one,

subdividing each current leaf bin into two new child bins, so that the former leaf is

now an interior node and the new children are now the leaves. The leaf subdivision

is subject to a validity constraint that we explain below. After subdivision, the new

bins subtend a smaller region of the plane.

Steering With Bins Bins serve as a mechanism for the user to select a subset

of the data as the target of the available computational resources. Every point in

the dataset is assigned to some bin. We categorize points into one of three states:

unplaced, active, and placed. Unplaced points are not drawn, nor do they affect any

MDS iteration, and all points are unplaced at the beginning of the computation. At

each layout step we convert a set of s new points from unplaced to active, where

s =
√

n/k, n is the total number of points in the dataset and k is a tuneable

parameter. We draw our samples evenly from all active bins.

When we activate unplaced points, we need to find their initial locations

in the plane before placements can be iteratively refined. We use the positions of

the placed points as initial locations in the plane for the new points. Using these

42

existing placements allows the new points to benefit from the previous computation.

We can find the initial placement efficiently by using the binning to narrow down

the possibilities: we check the distance from our target point to all placed or active

points in the bin, and pick the closest high-dimensional neighbour in the bin.

The heart of the layout computation is the inner loop where multiple iter-

ations of the spring-force MDS algorithm [20] are run, and only active points are

the targets of this computation. Thus, they are the only points that visibly move

around as their projection onto the plane changes. We check every
√

sampleSize

iterations to see if the layout is still improving, and terminate the layout step when

progress is no longer being made. The inner loop termination criteria are discussed

in more detail in Section 4.1.3.

When a bin is unselected, all the active points are placed; their positions are

fixed and do not move around during successive MDS iterations. However, these

placed points can affect movement of other active points during the MDS iterations

because they are potential candidates for the random sample set. Both placed and

active points are always visible to the user.

Increasing Bin Hierarchy Depth After k layout steps where a total of
√

n new

points have been laid out, we need to increase the bin hierarchy depth by one, then

rebin all points. We first describe how to grow the hierarchy.

We do not store points at any interior node of the bin tree, only the leaves.

Projected points may move outside the spatial boundary of their previous leaf bin

during layout. We need to reassign these points so that they belong to the bins in

which they lie before subdividing the current set of leaf bins to create the next layer

of the bin hierarchy. We check the active set of points to see if any are out of bounds.

For each such point that we find, we traverse upwards in the tree to find the first

ancestor node that can spatially contain it. When we perform a top-down traversal

43

of the tree in order to subdivide bins, then we also push these out-of-bounds points

back down to the correct bin at the leaves.

We do not always subdivide a leaf bin. For subdivision to occur, a bin

must have some minimum number of active points, and it must contain at least one

unplaced point. We use the minimum threshold of 10, which we found empirically.

We alternate subdividing bins in the vertical and horizontal directions at

each rebinning pass. To subdivide a bin, we find the placed or active points with

minimum and maximum values in whichever direction we are currently using, and

place the new dividing line halfway between these to create two new child bins. The

minimum and maximum points we just found are each attached to the child bin in

which they now fall, and we call these points the representative points and use

them for the high-dimensional distance computations described below for rebinning

points. These representative points can change from pass to pass, which gives rise

to the irregular subdivision we see in Figure 4.6. The average number of items per

bin decreases over the course of the progressive layout: after r rebinning passes, the

average binsize is (r ∗
√

n)/2r.

When a selected bin is subdivided, both of its new child bins are selected.

When the program starts, the single existing bin is selected. If the user never makes

a steering choice by explicitly changing the selection state, then the computational

resources are equally divided between all areas of the screen and our algorithm would

simply do a progressive layout.

Rebinning Points Rebinning points is done immediately after subdividing a par-

ent bin into two child bins, so for each point currently assigned to the parent bin

the only choice to make is which of the two child bins to pick. The decision is easy

for active and placed points because they already have projected 2D coordinates

in the plane. We need only check a single coordinate, whichever direction is the

44

current active one, to find on which side of the dividing line the point currently lies.

Assigning the unplaced points requires more computation. For each unplaced point,

we compute the high-dimensional distances between it and the representative point

for each child bin. We assign the point to the bin that has the closer representative.

The cost of each rebinning step is linear: 2 ∗C ∗n, where C is the high-dimensional

distance computation cost and n is the total number of points in the dataset. This

computation takes only a small fraction of the total time budget for a pass, but it

is a cost that increases with the dimensionality of the dataset.

4.1.3 Termination Conditions

The inner loop of our system does the actual multi-dimensional scaling computations

where we attempt to minimize the error, or stress. We use the popular Kruskal

Stress-1 stress function [29]:

Stress =

∑
i<j(dij − pij)

2

∑
i<j p2

ij

where dij is the Euclidean distance between two points in high-dimensional

space, and pij is the distance in the low dimensional projection.

In MDSteer, the termination condition that deems the points to be well laid-

out is based on stress measurements. We only measure the stress for the active

point set, not all placed points. If the number of active points is greater than 100,

then the measure is computed from a random sample of 100 of those active points.

If s objects are currently active, we measure the stress every
√

s iterations

of the spring model force calculations. When this value decreases, progress is being

made. When this value fails to shrink for two consecutive calculations, we terminate

the inner iteration loop.

Our current termination criterion is one of many possibilities. We could sim-

ply run the computation for a globally fixed number of iterations, or use the active

45

point set size to set the number of iterations. The benefit of the change would be to

eliminate the overhead of stress computation, but then we risk either undershooting

the amount of work and ending up with more total error, or overshooting and adding

overhead by doing many iterations that do not improve the layout. We could also

use a value that is calculated as part of the MDS iterations, such as velocity [34].

4.2 Results

MDSteer was implemented in Java and is based on the open-source HIVE spring-

model MDS software infrastructure distributed by Ross and Chalmers [41]. We

analyze both the running time and the layout error, known as stress, for our method.

All performance figures are for a dual processor, 3.0GHz Xeon with hyperthreading,

4.0GB of main memory, and an nVidia Quadro4 980 XGL graphics card. We used

the Windows XP Professional operating system and Java 1.4.2-b28 (HotSpot) with

a 1.5GB heap.

We show two datasets of differing cardinality and dimensionality. We use

the standard dimensionality 3 S-shaped synthetic benchmark sampled at different

densities: our benchmarks are performed on cardinalities of 2,000; 5,000; 50,000;

200,000 and 1,000,000 points. Figure 4.6 shows the S at cardinality 200,000. The

second dataset, with dimensionality 294 is a real dataset from our collaborators, as

described in Chapter 3. In fact, the work presented here was motivated by the desire

to explore this dataset and the lack of tools with which to do so. In this dataset,

each point represents a modelled scenario of a possible future, where each dimension

is a particular measure of environmental sustainability. For instance, dimensions

include water quality, air quality as measured by carbon dioxide emissions, solid

waste generated per capita, and so on. We show the 40,000 point cardinality version

46

of this dataset in Figure 4.6, and benchmark comparisons for the 5000, 40 000, and

120 000 point versions.

In all cases, MDSteer provided a reasonable overview of what would become

the final layout within a few seconds of startup, so that users could make informed

decisions about how to steer the system and focus future computation time. The

overview can always be generated quickly because only a small number of points

need to be laid out. In fact, this overview is exactly what would also be generated

by the Morrison algorithm, because our initial layout step corresponds to its first

stage. For all subsequent layout steps, our system provides unprecedented power to

users.

4.2.1 Timing

The time to place all points in the input dataset is not the right metric for judging

a steerable system. The steering controls for MDSteer allow users to select which

planar regions to fill in, so a measure of interest is the time required for it to fully

populate one of those regions. Specifically, these timings show the result of steadily

selecting a single new child bin soon after every subdivision. We show average times

over three runs. Figure 4.2 shows the benefits of steerability, where we compare the

time required to place the points that fall into a region with the time required to

place all points in the whole dataset.

In a typical interactive exploration session the usage pattern would be much

more dynamic and fluid, with frequent changes of selected bins. Users would often

change selections before placement was complete in a region, and they might also

select a larger number of bins than the single bin we use in this computation. The

timing numbers here are intended to give an impression of how steerability opens up

new possibilities for exploring huge datasets, and also to show that the overhead of

47

progressive layout and rebinning is completely acceptable compared to the benefits

of progressive exploration.

We compare times for MDSteer to complete a partial layout against run-

ning the whole dataset with the nonsteerable approach most similar to ours that is

publicly distributed, namely Morrison’s 2002 subquadratic algorithm [34] as imple-

mented in the HIVE software distribution [41]. Also, we built MDSteer on top of

HIVE, so the infrastructure time and memory costs match.

Unsurprisingly, the need for steerability is most apparent as either the di-

mensionality or the cardinality of the datasets increase. The most important aspect

of these timing numbers is that we can load and immediately begin exploring these

huge datasets that overwhelm conventional nonsteerable systems. A video of the

system in action is available at http://www.cs.ubc.ca/˜tmm/papers/mdsteer/.

4.2.2 Stress

Our steerable progressive algorithm calculates the final position of a point doing

significantly fewer high-dimensional distance calculations than required for previous

methods. We need to verify that we are still capturing the important aspects of

the dataset structure in our projection; that is, verifying that the error between

projected locations and the high-dimensional locations is sufficiently small. We can

do so quantitatively by measuring the stress of the system, as defined in Section

4.1.3. Figure 4.3 compares the stress of MDSteer to the Morrison approach. Again,

each result is the average value over three software runs. We can run the same

test as for timing, where we instrument the software to report stress measurements.

The comparison is somewhat unfair because completing a region requires layout of

far fewer points than does completing the entire dataset. We thus also show the

per-item stress graphs, which show that the stress is roughly comparable.

48

Figure 4.2: Results: time. Time to complete the layout of a spatial subregion of
the dataset for our steerable method compared to the full layout of non-steerable
Morrison [34]method. The MDSteer timings are for a subset of the total points
because we are steering to a spatial subregion. For example, MDSteer placed an av-
erage of 3900 points for the one million point sized S-dataset. (Left) We compare the
times across a range of dataset sizes of a synthetic three-dimensional S-shaped bench-
mark dataset. (Right) We compare the times across a range of a 294-dimensional
real dataset of environmental sustainability measures.

4.2.3 Visual Quality

Finally, we compare the layout quality of MDSteer against the Morrison subquadratic

algorithm, to ensure that the rough match of stress measurements translates into a

rough match with subjective visual inspection.

Figure 4.4 shows that both methods are able to reproduce the S shape in the

plane. Figure 4.5 shows that both methods also produce similar structures for the

real environmental dataset.

MDSteer was able to produce a discernable two-dimensional dimensional S

immediately with the 50,000 node dataset, and within a few seconds for the one

million node S dataset. Figure 4.6 shows that the layout maintains the global shape

49

Figure 4.3: Results: layout stress. (Top Left) We compare the stress across
a range of dataset sizes of a synthetic three-dimensional S-Shaped dataset. (Top
Right) We compare the stress across a range of a 294-dimensional real dataset of
environmental sustainability measures. (Bottom Left, Bottom Right) We plot the
layout stress for the actual number of points placed, rather than the dataset size.
These two quantities are disjoint with our scalable methods.

50

of the projection while filling in the different regions of the place that were selected

by the user.

Figure 4.4: Visual Quality: S dataset. (Left) We show the 50,000 point S-
shaped benchmark dataset laid out with the Morrison [34] algorithm, taken after a
full layout computation that takes 150 seconds. (Right) We show a partially placed
version of the same dataset after steering with MDSteer for roughly 20 seconds. We
see the same large-scale structure, and the local region on the lower right where we
have focused computational resources is completely filled in.

51

Figure 4.5: Visual quality: environmental dataset. (Left) We show the 40,000
point real environmental dataset laid out with the Morrison [34] algorithm, taken
after a full layout computation that takes 16 minutes. (Right) We show a partially
placed version of the same environmental dataset after steering with MDSteer for
roughly two minutes. Again, we see the same large-scale structure.

52

Figure 4.6: Steerable Progressive Layout. We show the progression of steered
layouts. The onscreen regions outlined in bold red are user-selected bins. Black out-
lines identify bins that contain no more unplaced points. (Left Column) S bench-
mark data with dimensionality 3 and cardinality 200,000. (Right Column) Real
environmental data with dimensionality 294 and cardinality 40,000.

53

Chapter 5

Discussion and Future Work

5.1 QuestVis

The QuestVis interface was guided by information visualization principles and our

original three design goals: improved comprehension of chosen future scenarios,

improved ability to compare across multiple future scenarios, and improved ability

to comprehend and explore the space of all future scenarios. Below, we evaluate the

new interface in relation to our design goals.

Goal: Improved Comprehension of Chosen Future Scenario

Each future scenario contains 294 output indicators that are interrelated. In the

previous version of Quest, these indicators are presented in detail over multiple

screens of information which makes it difficult to get an overview understanding

of the data. Presenting the data across multiple screens also makes it difficult

to analyze the relationship between indicators of the same scenario. The MDV

component we developed to present the chosen future scenario supports this goal

as it presents all 294 results simultaneously. The simultaneous presentation of all

the result indicators using colour provides the user an immediate impression of

the chosen future scenario. For example, if the the majority of the indicators have

54

decreased relative to the present-day values, then the MDV presentation will appear

blue at first glance, and alternatively, if the majority of the indicators have increased,

then the MDV will appear green.

After the first iteration of the development of this future scenario visualiza-

tion it was realized that presenting all result indicators simultaneously may, at times,

provide too much detail. In certain circumstances, users may prefer overview indica-

tors that represent an aggregate value for a group of similar indicators. For example,

all air quality indicators could be represented by a single aggregate “air quality” in-

dicator. The hierarchical categorization of inputs and the roll-up and drill-down

mechanisms were implemented to enable overview representations of each future.

By allowing users to select the level of aggregation, we provide the overview+details

framework that is advocated by many infovis researchers [43]. This representation

allows users the ability to explore using the aggregated overview indicators while

still offering the ability to drill-down to the details of the future scenarios that are

of most interest.

Goal: Improved Comparison of Multiple Scenarios

When making policy decisions it is imperative that users understand how changes in

policy affect the future. Two qualities of the previous Quest interface made such an

understanding virtually impossible. The first is that the decision making stage and

the analysis stage were separated, thereby not allowing users to change the policy

decisions on the fly. The second is the lack of the ability to present result indicators

for more than one future scenario at one time. Our interface tackles both of these

issues by presenting, on screen, the policy choices and the result indicators for up

to ten future scenarios at a time. Moreover, the results for the same indicators are

presented in the same row to enable ease of comparison.

55

Goal: Improved Exploration of the Space of All Scenarios

When using Quest to choose a future, the novice user does not know what futures

are possible and does not know how the values of result indicators might compare

to the present day or to the maximum possible values. We wanted to provide the

users with visualizations that would guide their interactions. The scenario space

visualization provides a representation of all available scenarios that are linked to

the chosen future scenario visualization. This improves the users’ ability to explore

the scenario space as it shows how the currently viewed scenario sits in relation to

all other available scenarios. The choice of colour encoding of the result indicators

also helps provide context. Specifically, all result indicator values are presented

in relation to the present-day value and normalized in relation to the minimum

and maximum value in all available scenarios. With this representation the user is

quickly able to gain a sense of how the future value compares with the present-day

value and how it sits in relation to other available scenarios.

Exploration was also improved through the tight coupling of inputs with

outputs. The relationships between the input choices and output indicators are

overwhelming and can lead novice users to make uninformed and, or ineffective

choices. Using linked highlighting, as described in Section 3.5.1, QuestVis informs

the user of the relationships between the inputs and the outputs before choices are

made. The visual connection between inputs and outputs serves to both educate

the user and to improve the efficiency of the interaction.

5.1.1 Future Work

There are several directions we would like to continue our research with QuestVis,

most of which focus on the scenario space visualization. Labelling the scenario

space is our highest priority, as it should provide a better context for the user,

56

and should make the visualization more self explanatory. Specifically, we would

like to label a set of particularly interesting points distributed throughout the SSE

that can be used to represent particular areas of the layout. A mock-up of the a

labelled layout is shown in Figure 5.1. For example, the future scenario that best

represents the environmentalist’s perspective can be labelled along with the future

scenario that best represents the economist’s perspective. During navigation of the

dimensionality reduced layout, users could compare the similarity between these

representative points and their chosen future scenarios.

Figure 5.1: Labelling of the scenario space. Mock-up of the SSE labelled with
representative points which add further context for the users to evaluate chosen
future scenarios.

57

Navigation through the available futures can also be improved with an added

history of viewed futures and the ability for the user to label and to save chosen

futures. We would also like to offer additional mechanisms to navigate through, or

alter, the scenario space layout. After the user has explored a number of futures with

standard features such as pan, and zoom, we would like QuestVis to provide statistics

that summarized the previously chosen future scenarios. For example, it would be

useful to be able to compare all of the previously chosen future scenarios along a

particular indicators like “Carbon Monoxide Emmisions” or “Time in Traffic.”

We would like to see if we can employ user interaction information to guide

future MDS layouts. Such modification of the MDS layout may now be possible

using MDSteer, our steerable MDS technique, see Chapter 4. Since previous tech-

niques focused on laying out the full dataset, laying out large datasets such as the

Quest dataset would take hours before alternative layouts could be completed. Our

MDSteer can layout sections of interest in the dataset in seconds and may provide

the answer to offering the user the ability to adapt the MDS layout.

We would like to investigate the possibility of using the diverging colour

scheme to represent the positive or negative impact on sustainability, or the good-

ness, of the indicator value, versus that of the current implementation that uses

colour to represent the positive or negative sign of the normalized value. Such an

approach would be beneficial to users during exploration because the colour of the

overview would provide an immediate impression of the goodness of the future sce-

nario; however, there is no universally accepted way to evaluate the goodness of the

sustainability indicator values and it is important for the tool to remain objective.

In other words, there is a tension between providing users an impression of the good-

ness of indicator values and not being overly judgemental. One possible solution is

to allow the user to subjectively tune the system to judge the goodness of the values.

58

Finally, an empirical evaluation of our interface would support the claims of

increased comprehension and more effective iteraction made within this thesis. This

evaluation should include a comparison of our interface with other alternatives on its

ability to impart both low-level information such as future sustainability indicator

values, such as carbon monoxide level, as well as higher-level information such as

an improved understanding of environmental sustainability.

5.2 MDSteer

MDSteer is the first steerable dimensinality reduction technique. Steerability sup-

ports exploration of huge datasets. Often users do not need to see the placement

of every point in order to carry out tasks of interest. Currently, people do not even

attempt to carry out dimensionality reduction on huge datasets because the time it

would take to lay out one million points is a huge barrier to exploration. By allow-

ing users to immediately begin looking at the data, and to direct the computational

resources to interactively-discovered areas that look promising, they may be able to

answer their questions about the data long before all points have been placed. The

ability to quickly see that a dataset is not promising would allow a user to aban-

don an unproductive direction, and immediately move on to check another that has

the potential to be more informative. Without steerability, those judgements might

require a turnaround time of hours or days rather than minutes. Another possible

advantage is that the user spends the time while waiting for the system to finish

layout engaged in productive exploration rather than waiting impatiently to start

work.

The standard argument for computational steering is that human insight

can help with many tasks where automatic algorithms are inadequate to fully solve

59

the problem [39]. Visualization systems are deployed in those exact circumstances;

where humans do need to have insight into the structure of a complex dataset.

We emphasize again that the critical contribution of our work is bringing

steerability to MDS. Our algorithm does not complete a full layout using less time

or memory than with previous approaches. In fact, our algorithm is based on, and

takes time comparable to, the original Chalmers approach [20] that is notably slower

than the more recent algorithms offered by Morrison [33, 34]. Rather, the benefit

of our approach is that it enables the interactive investigation of datasets with both

high cardinality and high dimensionality. We also do not claim to reduce the amount

of memory required to do the computation.

We also distinguish steerability from visible change. Many MDS systems

allow users to see the projected points move around the plane as the layout is

refined, for instance the TreeComp system of Amenta and Klingner [4]. Although

users may both enjoy and benefit from seeing this real-time motion that shows

them the progress of the algorithm, the only control they have is whether to stop or

continue the system. The ability to control the allocation of computational resources

through true steering provides far more power to users.

5.2.1 Future Work

In future work we would like to take more advantage of the interactive nature of our

algorithm. We believe that the user-selected regions can be used as a cue to highlight

local structure. It may be possible to use the selections to modify the weight that is

given to specific points during computations. For example, we would like to explore

whether giving weight, in the MDS computations, to user selected points will give a

more intuitive layouts. Similarly, we would like to explore weighting the dimensions

that have a high variance in the user selected points. We conjecture that giving

60

weight to points and dimensions that the user finds interesting should, as a result,

emphasize the structure in the dataset that the user is most concerned with.

Currently when the system places all points in the selected bins, it falls idle

until the user changes the selection. We would like to add an “auto-run” mode, so

that the system would automatically change the selection to start work on a nearby

area if there is no more work to do in the current bins. If left unattended such a

system would eventually place the entire dataset.

We would like to implement Morrison’s 2003 nearest neighbour finding tech-

nique [33] to improve the efficiency of our starting location algorithm. It would

be interesting to explore further whether we could provide faster or more accurate

layout by changing the selection criteria for the neighbourhood and random sample

sets used in the inner loop of MDS iteration, exploiting the known structure of our

hierarchical bins instead of using purely random selection.

We are also intrigued by the challenge of creating a fully progressive algo-

rithm. In the present implementation, rebinning is a global pass, which is acceptable

because its cost is still overshadowed by the MDS iteration cost. However, this sort

of global computation will eventually form a limit to scaling datasets of large car-

dinality or dimensionality, so progressive binning would be a good match with the

current progressive layout. We would then have an approach limited only by system

memory constraints, and that might scale far past our current million-node limit.

Finally, other MDS extensions [42, 47] have been shown to find more intuitive

layouts by seeking out low-dimensional manifolds in high-dimensional data. All

implementations of manifold-finding techniques that we have discovered use the

eigensolving approach rather than the iterative spring model approach. We would

like to develop a scalable, iterative, manifold-finding algorithm.

61

5.3 Conclusions

We developed QuestVis, a visual interface for exploring modelled future scenarios.

By developing and applying various infovis techniques, we provided the inexperi-

enced user with data-driven visualizations that help inform and guide the user in

her exploration with the tool. Each future is organized hierarchically, so that the

user can view a simple aggregated output and can drill down to receive the most

detailed information offered by the dataset. By using the dimensionality reduction

technique known as spring model MDS, we developed the SSE component that pro-

vides the user an overview of the space of all futures which not only informs the

user of the possibilities, but also provides a context for effective exploration. The

MDV component allows the user to examine both the overview and the details of

the chosen future scenarios through effective colour encoding.

Our literature review of dimensionality reduction techniques found a lack of

systems and techniques that scaled to the size of dataset we were interested in for

our QuestVis project. To fill this gap, we developed MDSteer, a system for steerable

and progressive multidimensional scaling that allows users to interactively explore

huge datasets. Steering allows computational power to be focused where it is needed

to support exploration in parallel with continuing the layout process. We subdivide

the low-dimensional plane where our high-dimensional points are projected into a

hierarchical decomposition of rectangular screen-space regions. The user can in-

teractively select regions of interest, and then most of the available computational

resources are spent on refining this region. These small local areas can quickly be

fully populated with the dataset points that project to the selected region of the

plane. Our system handles datasets with a dimensionality of up to several hundred,

and cardinalities of over one million.

62

Bibliography

[1] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight coupling

of dynamic query filters with starfield displays. In Proc. of ACM Conference

on Human Factors in Computing Systems, pages 313–317. ACM Press, 1994.

[2] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for in-

formation exploration: an implementation and evaluation. In Proc. SIGCHI

Conference on Human Factors in Computing Systems, pages 619–626, 1992.

[3] C. Ahlberg and E. Wistrand. IVEE: an information visualization and explo-

ration environment. In Proc. IEEE Symposium on Information Visualization,

pages 66–73. IEEE Computer Society, 1995.

[4] N. Amenta and J. Klingner. Visualizing sets of evolutionary trees. In Proc.

IEEE Symposium on Information Visualization, pages 71–74, 2002.

[5] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for using

multiple views in information visualization. In Advanced Visual Interfaces,

pages 110–119, 2000.

[6] W. Basalaj. Incremental multidimensional scaling method for database visual-

ization. In Proc. Visual Data Exploration and Analysis VI, SPIE, volume 3643,

pages 149–158, 1999.

63

[7] W. Basalaj. Proximity visualization of abstract data. Technical Report 509,

University of Cambridge Computer Laboratory, January 2001.

[8] R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technometrics,

29(2):127–142, 1987.

[9] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and control

of trellis display. Journal of Computational and Graphical Statistics, 5(2):123–

155, 1996.

[10] B. Bederson, J. Meyer, and L. Good. Jazz: An extensible zoomable user in-

terface graphics toolkit in Java. In Proc. ACM Symposium on User Interface

Software and Technology, pages 171–180. ACM Press, 2000.

[11] B. B. Bederson and J. D. Hollan. Pad++: A zooming graphical interface for ex-

ploring alternate interface physics. In Proc. User Interface Software Technology

(UIST 1994), pages 17–26, 1994.

[12] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Computation, 15(6):1373–1396, 2003.

[13] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Uni-

versity Press, New Jersey, 1961.

[14] I. Borg and P. J. F. Groenen. Modern Multidimensional Scaling Theory and

Applications. Springer-Verlag, New York, 1997.

[15] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and P. Hanrahan. Rivet:

A flexible environment for computer systems visualization. Computer Graphics,

34(1):68–73, 2000.

[16] C. A. Brewer. Color use guidelines for data representation. In Proc. Section on

Statistical Graphics, American Statistical Association, pages 55–60, 1999.

64

[17] D. C. Campbell and J. Salter. The digital workshop: Exploring the effec-

tiveness of interactive visualisations and real-time data analysis in enhancing

participation in planning processes. Report submitted to Forestry Innovation

Investment Forestry Research Programme, Deliverable #5. Collaborative for

Advanced Landscape Planning, University of British Columbia, 2004.

[18] S. K. Card and J. Mackinlay. The structure of the information visualization

design space. In Proc. IEEE Symposium on Information Visualization, pages

92–99, 1997.

[19] J. Carmichael, J. Tansey, and J Robinson. An integrated assessment modeling

tool: Georgia basin quest. Global Environmental Change, 14(2):171–183, 2004.

[20] M. Chalmers. A linear iteration time layout algorithm for visualising high

dimensional data. In Proc. IEEE Visualization, pages 127–132, 1996.

[21] W. S. Cleveland. The Elements of Graphing Data. Wadsworth Publishing

Company, 1985.

[22] Y. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarchical parallel coordinates

for exploration of large datasets. In Proc. IEEE Visualization, pages 43–50.

IEEE Computer Society Press, 1999.

[23] D. C. Glaser, R. Tan, J. Canny, and E. Y. Do. Developing architectural lighting

representations. In Proc. IEEE Symposium on Information Visualization, pages

227–232, 2002.

[24] A. Goel, C. Baker, C. A. Shaffer, B. Grossman, R. T. Haftka, W. H. Mason,

and L. T. Watson. VizCraft: A multidimensional visualization tool for air-

craft configuration design. In Proc. IEEE Visualization, pages 425–428, San

Francisco, 1999.

65

[25] A. Inselberg and B. Dimsdale. Parallel Coordinates: A tool for visualizing

multi-dimensional geometry. In Proc. IEEE Visualization, pages 361–378. IEEE

Computer Society Press, 1990.

[26] T. Kohonen. The Self-Organizing Map. In Proc. IEEE, pages 1464–1480, 1990.

[27] T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1995.

[28] T. Kohonen, S. Kaski, K. Lagus, J. Salojrvi, J. Honkela, V. Paatero, and

A. Saarela. Self organization of a massive document collection. IEEE Transac-

tions on Neural Networks, Special Issue on Neural Networks for Data Mining

and Knowledge Discovery, 11(3):574–585, 2000.

[29] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[30] J. X. Li. Visualization of high dimensional data with relational perspective

map. Information Visualization, 3(1):49–59, 2004.

[31] J. Mackinlay. Automating the design of graphical presentations of relational

information. ACM Transactions on Graphics, 5(2):110–141, 1986.

[32] R. Moreno, R. E. Mayer, H. A. Spires, and J. C. Lester. The case for social

agency in computer-based teaching: do students learn more deeply when they

interact with animated pedagogical agents? Cognition and Instruction, 19:177–

213, 2001.

[33] A. Morrison and M. Chalmers. Improving hybrid MDS with pivot-based search-

ing. In Proc. IEEE Symposium on Information Visualization, pages 85–90,

2003.

66

[34] A. Morrison, G. Ross, and M. Chalmers. A hybrid layout algorithm for sub-

quadratic multidimensional scaling. In Proc. IEEE Symposium on Information

Visualization, pages 152–158, 2002.

[35] A. Morrison, G. Ross, and M. Chalmers. Fast multidimensional scaling through

sampling, springs and interpolation. Information Visualization, 2(1):68–77,

2003.

[36] T. Munzner. Interactive Visualization of Large Graphs and Networks. PhD

thesis, 2000.

[37] T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou. TreeJuxta-

poser: Scalable tree comparison using focus+context with guaranteed visibility.

Transactions on Graphics (SIGGRAPH 2003), 22(3):453–462, July 2003.

[38] C. North and B. Shneiderman. Snap-together Visualization: A user interface

for coordinating visualizations via relational schemata. In Proc. Working Con-

ference on Advanced Visual Interfaces, pages 128–135. ACM Press, 2000.

[39] S.G. Parker and C.R. Johnson. SCIRun: A scientific programming environment

for computational steering. In Proc. Supercomputing, pages 1419–1439.

[40] K. Perlin and D. Fox. Pad: An alternative approach to the computer interface.

In Proc. Computer Graphics and Interactive Techniques (SIGGRAPH 1993),

pages 57–64. ACM Press, 1993.

[41] G. Ross and M. Chalmers. A visual workspace for hybrid multidimensional

scaling algorithms. In Proc. IEEE Symposium on Information Visualization,

pages 91–96, 2003.

[42] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290, Dec 22 2000.

67

[43] B. Shneiderman. The eyes have it: A task by data type taxonomy for infor-

mation visualizations. In Proc. IEEE Symposium on Visual Languages, pages

336–343. IEEE Computer Society, 1996.

[44] C. Stolte, D. Tang, and P. Hanrahan. Multiscale visualization using data cubes.

In Proc. IEEE Symposium on Information Visualization, pages 7–15, 2002.

[45] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,

and visualization of multidimensional relational databases. IEEE Transactions

on Visualization and Computer Graphics, 8(1):52–65, 2002.

[46] D. Swayne and D. Cook. Xgobi: Interactive dynamic data visualization in the

X window system. Journal of Computational and Graphical Statistics, pages

113–130, 1998.

[47] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,

Dec 22 2000.

[48] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychome-

trika, 17:401–419, 1952.

[49] F. van Ham. Using multilevel call matrices in large software projects. In Proc.

IEEE Symposium on Information Visualization, pages 227–232, 2002.

[50] M. O. Ward. XmdvTool: Integrating multiple methods for visualizing multi-

variate data. In Proc. IEEE Visualization, pages 326–333, 1994.

[51] M. Williams and T. Munzner. MDSteer: Steerable, progressive multidimen-

sional scaling. In Proc. IEEE Symposium on Information Visualization, 2004.

To appear.

68

[52] G. Wills. Visual Exploration of Large Structured Datasets. New Techniques and

Trends in Statistics. IOS Press, USA, 1995.

[53] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spald-

ing, and M. Stonebraker. DataSplash: A direct manipulation environment for

programming semantic zoom visualizations of tabular data. Journal of Visual

Languages and Computing, 12(5):551–571, 2001.

69

