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Abstract

Many animations depict two or more objects interacting and potentially col-

liding. Collision response is a complex process if the objects are intended to respond

like soft bodies and to exhibit the properties of real objects. Physically-based models

calculate contact forces to incorporate into the calculation of velocities and positions

of the control mesh. Some physically-based models, for example those that model

cloth, strive for visually realistic results. Until recently the magnitude of the calcula-

tions required for physically-based modeling have precluded real-time interaction. A

complaint with physically-based models is the correlation between the parameters,

such as forces and torques, and the resulting 'look' of the response are sometimes

di�cult for the user to understand.

The work presented in this thesis does not strive for the simulation of real

object properties. Instead it tries to remove the interpenetration between two ob-

jects while providing a set of controls for the animator to adjust the 'look' of the

collision response. A set of data points within the interpentration region of the two

colliding objects is determined by the algorithm and each object interpolates those

data points to remove the interpenetration. The position of the data points is a

function of the relative rigidity of the two objects. Locality or globality of the re-

sponse is achieved by allowing the user to specify the amount of response absorbed

by di�erent levels of a hierarchical B-spline modeling primitive. Combinations of

deformational, translational and rotational collision response mechanisms give more
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options for the look of the response. Empirical results suggest the algorithm's com-

putation time is small enough to allow for a fast preview of the animation, even for

moderately complex geometry.
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Chapter 1

Introduction

1.1 Motivation

The main goal of computer animation is to achieve a desired e�ect such as laughter,

enthralment or sorrow on the viewer. An animator approaches the task of creating

the animation with a set of ideas in his or her mind or on paper. The ease or

realizing those ideas is heavily in
uenced by the capabilities of the available tools.

Physically-based modeling systems generate responses to collisions by calcu-

lating the contact forces during a collision and then incorporating these forces into

the position and velocity calculations of each object's control mesh. Although some

animations of physically-based models are very visually appealing, the complexities

of creating such a model and manipulating the model's parameters to achieve a spe-

ci�c look are sometimes daunting. Most animators still rely on manually adjusting

the parameters that directly control an object's shape to resolve the interpenetra-

tion of two objects. While the control over the resulting shape is excellent, the e�ort

and time required to resolve the interpenetration over many frames is considerable.

Resolving collisions in this manner is a tedious task and the motivation for this work

is the desire to relieve this tedium through the development of a better tool for basic

collision response.
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1.2 Problem Statement

By basic collision response we mean the removal of the interpenetration between the

objects, or at least enough of the interpenetration so that only a small amount of

post-processing `clean-up' removes the remainder. How real objects change shape

during a collision is based on many factors including rigidity and structure. The

di�culty of providing a collision response algorithm that simulates real objects is

apparent when one considers the vast variety of deformations exhibited by real

objects.

This work describes a tool that provides a variety of controls for the animator

to adjust the look of a basic collision response. One of its goals is to generate the

responses fast enough so that the animator can quickly preview the animation. It

is believed that a quick preview of the collision response will give the animator a

sense of motion 
ow and allow for iterative adjustment of the collision response

parameters.

1.3 Thesis Overview

The next chapter presents a description of previous work in this �eld, an animator's

perspective on the collision response problem and a summary of the goals of the

collision response algorithm. The fundamentals of parametric curves, surfaces and

hierarchical B-spline surfaces in Chapter 3 provide a common basis for the collision

response algorithm described in Chapter 4. Much like the animator's process, the

collision response algorithm moves surface control vertices to resolve the interpene-

tration of two objects. Chapter 4 describes how the control vertices will be moved,

the controls over the `look' of the response. Some results, both empirical and visual

are presented in Chapter 5 and an overall summary is given in Chapter 6.
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Chapter 2

Previous Work

Animating complex deformable objects is tedious work for the animator because

the traditional method of choice is to manipulate surface shape parameters at each

frame. A large variety of schemes have been proposed to aid in the animation of

deformable objects. Some schemes try to simulate speci�c objects such as cloth

or simulate material properties such as plasticity or wrinkling. The driving force

behind the research in this area today is for algorithms that are fast, 
exible, easy

to control and/or produce visually realistic results.

This chapter will describe three di�erent areas of research that try to tackle

the problem of animating deformable objects. A section summarizing an interview

with a group of animators and their speci�cations for a deformation algorithm fol-

lows. Finishing the chapter is a description of the automatic collision response

algorithm's (ACRA) goals.

2.1 Physically-Based Modeling

By physically-based modeling we mean any system that uses some laws of physics

to iteratively calculate the positions, velocities, forces or other properties of the

objects. Using a physically-based model to simulate the motion or shape of objects
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has many advantages and is the foundation for much of the work done in robotics and

simulation. Two of the main bene�ts of animations using physically-based models

is the visual realism and automatic object motion. The speci�cation of key-framed

motion is not needed, provided the parameters of the system are set up correctly.

There is a double-edge to physically-based models in the sense that exaggerated or

unrealistic e�ects are di�cult to create and the a�ect of changing system parameters

can be di�cult to predict.

Much work has been invested for developing schemes to animate rigid bodies

[3] [4] [27]. The animation of non-rigid bodies opened a new realm of animation

problems, speci�cally the deformation of a non-rigid body such as cloth [37] [28] [21]

[30] [36] [5] during and after a collision. Most cloth models approximate cloth with a

deformable surface composed of a uniform grid of point masses. A typical point mass

is connected to its neighbors by springs. External forces act on the point masses

to deform the surface while the internal elastic forces from the springs maintain

cohesion. The change in velocity and position of a point mass due to internal

and external forces is calculated using numerical methods to solve the di�erential

equation speci�ed by Newton's law. A numerical method calculates the change

in position or velocity during a discrete time step. The position or velocity is

incremented by the calculated changed and used as the initial value for the next

time step. The size of the time step and the numerical method chosen impacts the

behavior of the dynamics1 system since a large time step could cause the numerical

solution to be inaccurate or unstable whereas a small time step increases the number

of calculations. Bara� and Witkin [5] have shown that the use of implicit methods

and adaptive time steps can decrease the system's calculation time.

Several physically-based models have been introduced speci�cally for the

purposes of simulating properties or visual e�ects such as elasticity, inelasticity,

garment wrinkle formation [22], garment crumpling[33] and dressing a virtual human

1

Dynamics refers to the application of Newton's laws to a system to calculate positions and

velocities.
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[12] [39]. Terzopoulos and Fleischer [32] simulate three di�erent inelastic behaviors,

viscoelasticity, plasticity and fracture. An object that exhibits elastic properties will

return fully to its original shape when all external forces are removed. If an object

returns to its original shape slowly or only partially then the object is said to be

inelastic. Inelastic deformations may depend on the history of the applied forces. A

material whose behavior includes the characteristics of a viscous 
uid together with

elasticity exhibits viscoelastic properties (e.g. Silly Putty 
ows under sustained force

but also bounces elastically when subjected to bursts of force). The amount that

a material sustains permanent deformations is a rating of its plasticity. Fracture

occurs when a material deforms beyond a certain limit. Cracks develop according

to internal force or deformation distributions and their propagation is a�ected by

local variations in material properties. Terzopoulos and Fleischer's physically-based

model is similar to a cloth model in that the object is a grid (possibly 3D) of points

connected by combinations of units. The three units described are an elastic unit

that acts like a spring, a viscous unit whose rate of deformation is proportional to

the force, and a plastic unit that does not respond to a force until a certain threshold

is reached. For example, the simulation of viscoelasticity is achieved by modeling

the connection in the grid by a combination of an elastic unit and a viscous unit,

since this combination simulates internal forces that depend on the deformation

magnitude and rate.

Several researchers have developed models with the speci�c purpose of gener-

ating a visual e�ect. Kunii and Gotoda [22] presented a cloth model that generates

wrinkles as it deforms. Their cloth model is a mass/spring mesh including diagonal

springs between point masses. They claim that certain characteristic points on the

cloth will describe the shape of the wrinkles while moving and manipulating these

points animates the wrinkles. By perturbing the position of a point mass the energy

of the system will change and any perturbation that lowers the overall energy is

retained. Perturbing multiple point masses will form wrinkles in the cloth as the
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system reaches a lower energy state.

Wu et. al [38] investigated a variant of the wrinkle formation problem for

the purposes of generating facial wrinkles. Their physically-based skin model has

a muscle layer, a fat tissue layer and a skin mesh. The skin mesh is connected to

the muscle layer through springs which represent connective fat tissue. Revolution

surfaces, such as cylinders or ellipsoids, represent muscles. Movement of the muscles

causes the skin to deform which in turn causes wrinkles to form. As a person gets

older the skin's elasticity decreases while the plasticity increases. Their model also

takes into account a plastic-visco-elastic process that changes the skin's rest position

to simulates wrinkling as a person ages.

Proponents of physically-based modeling claim that models based on physical

laws can generate motion and deformation from a set of initial conditions and a set of

applied forces over time. While physically-based modeling systems have generated

some exceptionally realistic animations, animators have indicated that specifying

the forces, constraints and parameters for a particular motion is often nonintuitive.

2.2 Free Form Deformations

Free form deformations were �rst introduced by Sederberg and Parry [31] as a

method for deforming a complex model within a parallelepiped region of space. In

short, any object within the B�ezier solid that de�nes the parallelepiped can calculate

new positions for its vertices such that the object deforms as the parallelepiped

deforms. The deformation process (adapted from [34]) is:

� Impose a local coordinate system within the parallelepiped. Any point P

within the parallelepiped can be speci�ed by,

P = O+ u~u + v~v + w~w (2.1)
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where O is the origin. The (u,v,w) coordinates, given in Equation 2.2, are the

parametric coordinates of P in the parallelepiped.

u =
(~v � ~w) � (P�O)

(~v � ~w) � ~u

v =
(~u� ~w) � (P�O)

(~u� ~w) � ~v

w =
(~u� ~v) � (P�O)

(~u� ~v) � ~w
(2.2)

� De�ne a three dimensional lattice of control points within the parallelepiped.

Fi;j;k : 0 � i � l; 0 � j � m; 0 � k � n (2.3)

where

Fi;j;k = O+
i

l
~u+

j

m
~v +

k

n
~w: (2.4)

� Deform the lattice of control points to new points F0

i;j;k.

� Calculate the deformed points P0 from the deformed lattice and the trivariate

B�ezier function using the same parametric coordinates from Equation 2.2.

P0 =
lX

i=0

mX
j=0

nX
k=0

F0

i;j;kB
l
i(u)B

m
j (v)B

n
k (w) (2.5)

A character animation system developed by Chadwick et. al [13] uses free

form deformations to animate secondary features like muscle bulging. Their char-

acter model has four layers, a motion speci�cation layer, a skeleton, a muscle layer

and a skin and clothing layer. The animator controls the motion of the character

by kinematically specifying joint angles and constraints on the skeleton layer. In-

teraction between the layers is speci�ed by parameters and constraints set by the

animator. Because each layer uses the speci�ed constraints to drive the motion of

the next layer the computer can relieve the animator of the burden of managing

the interaction between the layers. Additional work required to create the char-

acter model and specify the constraints between the layers is recovered by easier
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speci�cation of the animation. A muscle primitive is represented as a pair of ad-

joining free form deformations. The skin layer, which is the actual geometric layer

that is rendered, is contained within the muscle layer and it deforms as the muscle

undergoes a free form deformation. Squash and stretch behavior in the form of

bulging and bending muscles is automatically calculated from the kinematic state

of the articulated skeleton. Soft body structures such as 
esh or fatty tissue are

simulated through free form deformations controlled by dynamics. The lattice of

the free form deformation surrounding the soft body structure is mapped to point

masses. A dynamic simulation is applied to the point masses and their resultant

motion is mapped back to the free form deformation to drive the muscle deforma-

tions. Unfortunately the real-time interactivity of the free form deformations and

usability of the system are not commented on so the applicability of the algorithms

for general object deformation is in unknown.

The work by Zheng et. al [40] provides some tools for easily modifying the

shape of free form curves. User de�ned sculpting tools are pushed into the free form

curve to alter its shape. For �ner control the region of the curve that is deformed can

be limited to a user de�ned span. Sculpting tools to deform a curve is an intuitive

and appealing interface but would not be applicable for ACRA since an extension of

the method to surfaces is not presented and the burden of adjusting surface shape

at each animation frame remains.

Free form deformations provide a way to calculate the deformation of an

object inside a deformed parallelepiped with the deformation of the parallelepiped

depending either on a dynamics system or animator manipulation.

2.3 Displacement Schemes

Displacement schemes are a new approach to modeling deformations without the use

of a physical model or dynamics. They strive for visually convincing deformations,

not the simulation of physically realistic deformation. Several ideas from the three
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projects presented in this section are incorporated into ACRA.

Gascuel and Desbrun [10] [11] generate object deformation through an im-

plicit surface layer that coats an internal model that is either a mass/spring network,

an articulated structure composed of one or more rigid objects, or a particle system.

Their scheme has three main bene�ts: the implicit surface provides e�cient collision

detection, an exact contact between colliding objects is found and the object volume

is preserved. During a collision a negative �eld term, which models compression,

is added to the portion of the surface within the interpenetration region. A prop-

agation region is de�ned around the interpenetration region that gains a positive

�eld term to simulate the transverse propagation of the deformations (i.e. bulging).

The key di�erence between this technique and the ones mentioned in the previous

sections is that the deformation itself is not generated through dynamics but the

resultant deformation can be used to calculate a response force. One drawback of

their method is the inherently rounded or blobby look of implicit surfaces.

Palazzi [29] adapts the idea of displacement constraints from Gascuel [18]

to animate deformable objects. Deformable objects are modeled with rigid line

segments connected at their end points to form a grid. The system streamlines the

dynamic computations by treating each rigid line segment independently without

imposing cohesion constraints. External forces acting on each rigid line segment are

found and used to calculate the new positions and orientations of the line segments.

A second step re-links the line segments by enforcing the constraints acting on

the grid. Palazzi introduced a multilevel approach to distribute the external forces

across the object. His deformable object is a hierarchy of grids where di�erent levels

of the hierarchy are assigned portions of the external force to generate a spectrum

of local to global behavior.

Harrison [20] used a piecewise linear multi-resolution surface to model de-

formable objects. His deformations are kinematically driven in the sense that dis-

placements, calculated from the interpenetration of two objects, move speci�c sur-
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face points towards speci�c goal points at a certain rate. Di�erent amounts of the

displacement are absorbed by di�erent levels in the hierarchy to generate a spectrum

of local to global deformations. His method is fast and easy to control but lacks the

smoothness of a spline surface.

2.4 Collision Response and Animators

Four animators [1] were interviewed to survey their opinions about animating de-

formable objects and the features they would �nd useful. Unanimously the most

prevalent concern was maintaining control over the animation. Any system that

imposed movements or deformations on the objects without a mechanism for over-

riding the movements was considered unusable. When speci�cally questioned about

physically-based models and dynamics systems they indicated such features would

be useful provided the parameters were easy to specify and the results from the

dynamics system could be overridden if desired. Furthermore, the animators al-

ready have a plan for how the objects will be moved and react before they begin

the animation process so a system that calculates motion is neither needed nor de-

sired. Bene�cial features are a fast preview of the response, controls that provide

a spectrum of deformations and a database of default con�gurations that could be

adjusted for customized behavior.

2.5 ACRA's Goals

Traditionally, animators manipulate the control vertices of the deforming objects

at each frame or employ morphing techniques. These techniques provide a large

amount of control over the progression of the deformation but require the animator

to generate all motions of the animation by hand.

The automatic collision response algorithm (ACRA) is a prototype that is

designed to try and remove the interpenetration between two objects as opposed

10



to simulating real object responses. It falls in with the other displacement schemes

of Section 2.3 to provide a middle ground between physically-based systems and

control point manipulation done by hand. The following goals were chosen to make

ACRA a fast and 
exible tool that an animator could use for basic collision response

which can later be enhanced by hand if desired.

� Unintrusive. The key-framed motion or position of objects should not be

altered by the algorithm. If the animator wants an object to change position or

velocity after the collision then it is the animator's responsibility to key frame

such motion. Consequently, any non-rigid object can deform inde�nitely since

the system does not generate fractures. If two non-rigid objects interact, the

one with the highest rigidity will deform less. This provides the animator with

a tool capable of generating unrealistic deformations.

� Fast previews. The algorithm should try to minimize the computation time

so that the animator only waits a small amount of time (� 1 second/frame)

to preview the animation. ACRA uses two strategies to minimize its compu-

tation time. First, the algorithm does not need to maintain the state of the

system so it is only executed at the time of the collision and possibly after-

wards if the algorithm is extended to return the object back to tits rest shape.

Second, ACRA narrows its collision response to the portion of the object that

is interpenetrating with the other object.

� Broad spectrum of responses. A multi-resolution, smooth surface is a

good choice for the modeling primitive used by ACRA. The multi-resolution

aspect of the surface can be exploited to generate a spectrum of local to global

responses.

� Animator Override. If the broad spectrum of responses still does not pro-

duce the desired look then the surface shape should be adjustable by the

animator.
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Chapter 3

Parametric Curve and Surface

Fundamentals

Several excellent textbooks have been written on the subject of parametric curves

and surfaces [7, 8, 14, 15] thus this chapter will only overview the fundamentals

of the topic and establish a common notation. First, properties of general cubic

parametric curves are described and some common types of curves are mentioned.

Since the modeling primitive used by ACRA is based on B-splines the properties of

B-spline curves and the extension to surfaces are covered. To lead into the chapter

on ACRA, the last section describes hierarchical splines and previews their utility

for collision response.

Although the algorithm in Chapter 4 describes how a collision response can

be achieved if the modeling primitive is a hierarchical B-spline surface, the under-

lying ideas could be applied to other primitives such as B�ezier surfaces or piecewise

linear surfaces. In fact, much of this work is an exploration of the speci�c bene�ts of

using hierarchical B-spline surfaces for collision response since Harrison [20] has al-

ready shown how to model deformable objects with piecewise linear multi-resolution

surfaces.
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3.1 Parametric Curve Overview

The most basic of modeling primitives are points and lines. A piecewise linear

approximation is a series of line segments that approximates the shape of other

primitives such as curves. A curve can also be approximated by a piecewise poly-

nomial representation where each segment Q(t) is given by three functions x(t),

y(t) and z(t) and the parameter t varies over the interval [0; 1]. This is known as a

parametric representation because any point on the curve is represented by a single

parameter. Cubic polynomials are often used for the three functions ofQ(t) because

they are the lowest order polynomial that can interpolate two endpoints and specify

tangents at each endpoint. Higher order polynomials require more conditions to

control both the shape and the additional in
ection points that can cause undesir-

able artifacts or \wiggles". ACRA uses a modeling primitive based on cubic splines

so the remainder of the chapter will be restricted to splines of degree 3.

A cubic curve segment Q(t) = [x(t) y(t) z(t)] is de�ned by the following

cubic polynomials,

x(t) = axt
3 + bxt

2 + cxt + dx;

y(t) = ayt
3 + byt

2 + cyt + dy ;

z(t) = azt
3 + bzt

2 + czt+ dz; 0 � t � 1: (3.1)

A succinct matrix form for the curve segment is,

Q(t) = [x(t) y(t) z(t)] = T �C (3.2)

where

T =
h
t3 t2 t 1

i

C =

2
6666664

ax ay az

bx by bz

cx cy cz

dx dy dz

3
7777775

(3.3)
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Figure 3.1: A two-dimensional curve with two segments. The di�erence in segment
shape is shown when the join point has C0, C1 and C2 continuity. [Source: [15], p.
481]

The parametric tangent vector of the curve is the derivative of Q(t) with

respect to the parameter t. If the tangent vectors at the join point of two adjacent

curve segments are equal in both direction and magnitude then the curve is C1

continuous. In general, if each derivative dn=dtn[Q(t)] through to the nth derivative

is equal in magnitude and direction at the join point then the curve is Cn continuous.

Figure 3.1 shows two curve segments where the join point exhibits C0, C1 or C2

continuity.

There are several methods for specifying the four constraints on curve shape:

Hermite curves de�ne two endpoints and two endpoint tangent vectors, B�ezier curves

de�ne two endpoints and two additional points to control the endpoint tangent

vectors and B-splines de�ne four control points which the curve does not necessarily

pass through.

3.2 B-Spline Curves

Maintaining C0, C1 and C2 continuity is easier with a B-spline than Hermite and

B�ezier curves since a B-spline segment shares control points with adjacent segments.

A B-spline curve with m + 1 control vertices, V0;V1; : : : ;Vm; m � 3, has m � 2
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Figure 3.2: A B-spline curve with 7 segments. [Source: [15], p. 492]

segments, Q3;Q4; : : : ;Qm. The parameter range for a segment Qi is ti � t < ti+1,

for 3 � i � m. A knot is a join point between Qi�1 and Qi and has a parameter

value, or knot value, of ti. The endpoints of the curve segment have knot values

of t3 and tm+1 and are also called knots. A diagram of a two-dimensional B-spline

curve illustrating the knots and control points is shown in Figure 3.2.

The coe�cient matrix of equation 3.3 is usually rewritten as C = M � G,

where M is a 4 � 4 basis matrix and G is a 4 � 1 geometry vector. A segment

is a weighted sum of the elements in the geometry vector where the weights are

cubic polynomials of t. These cubic polynomials, known as blending functions or

B-spline basis functions, have a matrix form B = T �M . It is important to recognize

that the elements of the geometry vector are the four variables that control the

curve's shape. During an a�ne transformation only the geometry vector needs to

be transformed since the curve is generated from the vector. Equation 3.4 shows the

B-spline geometry vector GBSi
for a segment Qi with four control vertices de�ning
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the segment.

GBSi
=

2
6666664

Vi

Vi+1

Vi+2

Vi+3

3
7777775
; 0 � i � m� 3: (3.4)

With the B-spline basis matrix MBS
given by Equation 3.5 a curve segment

Qi(t) is calculated in Equation 3.6.

MBS
=

1

6

2
6666664

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
7777775
: (3.5)

Qi(t) = T �MBS
�GBSi

;

=
(1� t)3

6
Vi +

3t3 � 6t2 + 4

6
Vi+1 +

�3t3 + 3t2 + 3t + 1

6
Vi+2

+
t3

6
Vi+3; 0 � t < 1 (3.6)

The B-spline blending functions BBS
are easily picked out from Equation 3.6.

BBS
= [B0 B1 B2 B3]

=

�
(1� t)3

6

3t3 � 6t2 + 4

6

�3t3 + 3t2 + 3t+ 1

6

t3

6

�
; 0 � t < 1 (3.7)

As shown in Figure 3.3, the B-spline blending functions exhibit the important

property of being everywhere nonnegative and summing to 1. These conditions

indicate each segment is contained within the convex hull of its four control points.

Detecting collisions between two curves is simpli�ed because non-colliding curves

are quickly eliminated by testing the intersection of their convex hulls.

Subdivision is a key concept when dealing with hierarchical surfaces so the

topic will be introduced here. Simply put, a segment is subdivided into two segments
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Figure 3.3: The B-spline blending functions. Notice only B3 is zero at t = 0 and
B0 is zero at t = 1. This indicates the segment before t = 0 will be in
uenced by
Vi;Vi+1;Vi+2 but not Vi+3. Similarly the segment after t = 1 will be in
uenced
by Vi+1;Vi+2;Vi+3 but not Vi.

for the purposes of adding control vertices and gaining a �ner control over the curve's

shape. For example, a B�ezier segment can be subdivided into two segments, both

of which are coincident on the original segment and share only one end point. As

shown in Figure 3.4, the original segment has control vertices Vi; 0 � i � 3 and

the two new segments have control vertices Li and Ri respectively. A total of �ve

new control vertices (since V0 = L0; V3 = R3 and the endpoints L3 and R0 are

shared) replace the two old vertices V1 and V2. For B-splines a similar scheme is

derived in [15] where the four control points of the original segment are replaced

by �ve new control points. Unfortunately the segments adjacent to the one being

subdivided are still de�ned by some of the original control points so changing the

position of any of the �ve new control points or the four old control points will

cause a crack in the spline, as shown in Figure 3.5. The Oslo algorithm [7] adds

knots to the knot sequence and �nds a new set of control vertices that represents

the same curve. This takes us out of the realm of uniform B-splines since the

di�erence between knot values is not necessarily constant. Section 3.4 will show
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Figure 3.4: A single B�ezier curve segment is subdivided into two segments.
[Source [15], p.508]

that hierarchical splines retain a uniform knot di�erence by creating a new level of

the hierarchy when they are subdivided.

3.3 B-Spline Surfaces

The representation of a parametric surface is similar to a curve except the elements

of the geometry vector are not constants but instead are themselves parametric

cubic curves. Two parameters, u and v, represent a point on the surface. If one of

the parameters is �xed then varying the other over the interval [0; 1] maps out a

parametric cubic curve (Figure 3.6). In matrix form a parametric bicubic surface is

represented as,

Q(u;v) = U �M �

2
6666664

G1(v)

G2(v)

G3(v)

G4(v)

3
7777775

(3.8)

where Gi(v) is a parametric cubic curve given by

Gi(v) = V �M � [Vi1 Vi2 Vi3 Vi4]
T

= [Vi1 Vi2 Vi3 Vi4] �M
T
� V T : (3.9)
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Figure 3.5: (a) Three B-spline curve segments with the middle segment subdivided
into two segments. The middle segment is de�ned by �ve new control vertices
(L0; L1 = R0; L2 = R1; L3 = R2; R3). (b) Control vertex V2 from the original curve
is moved and cracks form.

A variable Vi;j; 0 � i; j � 3, is a control vertex and V denotes the 1 � 4

vector [v3 v2 v 1]. The surface representation of Equation 3.8 is rewritten as,

Q(u;v) = U �M �G �MT
� V T ; 0 � u; v � 1 (3.10)

Q(u;v) = U �M �

2
6666664

V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44

3
7777775
�MT

� V T (3.11)

For a B-spline patch the surface equation is given in Equation 3.12 where

the 4� 4 geometry matrix GBS
is the 16 control vertices of the patch.

Q(u;v) = U �MBS
�GBS

�MT
BS
� V T ; 0 � u; v � 1 (3.12)

= BBS
(u) �GBS

�BBS
(v)T

=
3X

i=0

3X
j=0

Vi;jBi(u)Bj(v)

To maintain C0 continuity at an edge between two patches the edge curve of

each patch must be identical, which means the control vertices must be identical.
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Figure 3.6: A bicubic parametric surface patch showing some parametric curves
with constant u.

Just as with curves, C1 continuity across two patches requires C0 continuity and the

edge tangents have equal direction and magnitude. Higher orders of continuity are

found by enforcing the equality of higher order partial di�erential equations with

respect to the non-constant parameter. A B-spline surface automatically maintains

C0, C1 and C2 continuity across patches because adjacent patches share control

points and basis functions.

One �nal important note before turning attention to hierarchical spline sur-

faces involves the B-spline blending functions. In the same manner that the B-spline

blending function indicates a control vertex of a cubic B-spline curve in
uences four

segments, a control vertex of a bicubic B-spline surface in
uences 16 patches.

3.4 Hierarchical B-Spline Surfaces

The Oslo algorithm [7] mentioned in Section 3.2 describes a method for re�ning a

bicubic B-spline surface by inserting additional knots into the knot sequence and

replacing the original control vertices by a new set of vertices. When applied to a
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bicubic B-spline the entire row and column that the patch is a member of has its

control vertices replaced. Both the editing complexity and the memory requirements

increase with so many additional, potentially unneeded, control vertices. Forsey [17]

[16] introduces hierarchical B-spline surfaces that have the advantageous property

of local re�nement by adding only those control vertices needed for local editing of

the patch. As the name suggests, hierarchical B-splines are a hierarchy of B-spline

surfaces where a �ner level k in the hierarchy contains the re�ned control vertices

of a coarser level k � 1. If a level k of the surface Q[k](u;v) with an a� b array of

control vertices V
[k]

i;j
and basis functions B

[k]

i (u) and B
[k]

j (v) is given by,

Q[k](u;v) =
aX

i=0

bX
j=0

V
[k]

i;j
B

[k]

i (u)B[k]

j (v) (3.13)

then the surface at level k + 1 is written as,

Q[k+1](u;v) =
cX

i=0

dX
j=0

V
[k+1]

i;j
B

[k+1]

i (u)B[k+1]

j (v): (3.14)

The basis functions on level k + 1 are the re�ned basis functions from level

k with some additional knots (�u and �v) in the u and v direction.

B
[k+1]

i (u) =
a+�uX
r=0

�i(r)B
[k]
r (u)

B
[k+1]

j (v) =
b+�vX
s=0

�j(s)B
[k]
s (v) (3.15)

The � coe�cients give a relationship between the control vertices on level k

and level k + 1.

V
[k+1]
r;s =

cX
i=0

dX
j=0

�i(r)�j(s)V
[k]

i;j
(3.16)

A set of four B-spline patches and the local re�nement process is shown in

Figure 3.7. Hollow circles denote original control vertices and �lled circles show new

control vertices on the �ner level.
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(a) (b)

Figure 3.7: (a) Four B-spline patches and their control vertices. (b) Local re�nement
of the top left patch. The four corner vertices of the original patch still exist in the
data structure but have been removed from the diagram for clarity.

To maintain C2 continuity only those control vertices whose basis functions

are zero at the boundary to the coarser level are allowed to move. For example, in

Figure 3.8 the re�nement of several patches and the additional control vertices at

each step that are free to move are shown. In Chapter 4 an algorithm is described to

interpolate a patch through a point in space. This algorithm calculates the displace-

ment of each patch control vertex such that the patch interpolates the point. To

execute the interpolation algorithm ACRA must �rst ensure all the control vertices

of the patch are moveable which may mean patches neighboring the interpolating

patch need re�nement.

The vector indicating the position of a level k + 1 control vertex before it

has been displaced from its position after the re�nement is called the derived vector.

When a level k+ 1 control vertex is displaced, an o�set vector, relative to the local

frame of reference on level k, is stored. The vector addition of the derived vector and

the o�set vector1 gives the position of the control vertex as shown in Figure 3.9. This

technique is more 
exible than displacement mapping since displacement mapping

1The o�set vector must be transformed into the derived vector's space before the vector addition

is performed.
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Figure 3.8: Local re�nement of adjacent patches. The common corner control vertex
of the four adjacent patches that are being re�ned is shown with the arrow. The
black dots indicate which control vertices on the �ner level are free to move without
breaking C2 continuity at the boundary to the coarser level. [Source [16], p.67]

only displaces a surface point along the surface normal as de�ned by a pattern or

map.

An important e�ect of storing a derived and an o�set vector is the automatic

�ner level displacements when a coarser level control vertex moves (Figure 3.10).

Typically control vertices at �ner levels have a more localized control over the sur-

face shape whereas coarser level vertices have in
uence over a larger portion of the

surface2. The next chapter describes how ACRA makes use of this behavior to

provide a spectrum of local to global collision responses.

2It is possible to model an object where a �ner level control vertex can in
uence a larger portion

of the object than a coarser level control vertex. In this case the animator must take care when

specifying the amount of collision response each level of the hierarchy is responsible for.
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Figure 3.9: (a) A 2D representation of a derived and o�set vector for a pair of
vertices on level k+1. (b) Moving a vertex on level k causes the shape on level k+1
to follow along.

(a) (b)

Figure 3.10: A 3D example of the displacement of a coarser level vertex.
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Chapter 4

Collision Response Algorithm

This chapter details the collision response algorithm and the mechanisms for con-

trolling the response. The evolution of an interpolation algorithm, from a basic

curve interpolation to a hierarchical surface interpolation, is described. Hierarchical

surface interpolation is used to change an object's shape in response to a collision. A

description of the controls for specifying the locality of the collision response and two

additional collision response mechanisms, namely a translational and a rotational

response �nish the chapter.

4.1 Multi-Resolution Interpolation

The interpolation method proposed by Bartels and Beatty [6] serves as a basis

for the extension of the method to hierarchical surfaces. Interpolation of multiple

data points by a multilevel B-spline is presented in [23]. Independently, Archer [2]

used a multipoint surface interpolation algorithm for the purposes of craniofacial

reconstruction. This chapter will show surface interpolation is also applicable for

object deformation.
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4.1.1 Curve Interpolation

Bartels and Beatty's algorithm [6] solves the problem of interpolating any point on

a parametric curve through an arbitrary data point. Control vertices of the curve

segment containing the point are displaced such that the curve changes shape and

interpolates the data point. A bene�t of the technique is the ability to control the

locality of the curve deformation simply by controlling the number of control vertices

that are displaced.

As seen in Chapter 3, the equation for any point on a cubic B-spline segment

is given by

Q(u) = B0(u)V0 + B1(u)V1 + B2(u)V2 +B3(u)V3 (4.1)

where u, the parametric value for the curve, is de�ned on the interval [0; 1].

The points V0, V1, V2, and V3 are the control vertices for the segment and the

functions B0(u), B1(u), B2(u), B3(u) are the B-spline basis functions. If the point

Q(u) is to interpolate a new point Q0(u) while maintaining a constant parametric

value then the equation for Q0(u) is written as

Q0(u) = B0(u)V
0

0 + B1(u)V
0

1 + B2(u)V
0

2 + B3(u)V
0

3 (4.2)

The displacement, �Q(u), between Q(u) and Q0(u) is found by subtracting

Equation 4.1 from Equation 4.2.

�Q(u) = B0(u)�V0 + B1(u)�V1 + B2(u)�V2 + B3(u)�V3 (4.3)

Each of the �Vi's represents the displacement of the control vertex neces-

sary for Q(u) to interpolate Q0(u). The displacement �Q(u) can be thought of as a

vector describing the direction and magnitude of the interpolation. Setting each of

the �Vi's to �Q(u) would satisfy Equation 4.3 because the B-spline basis functions

sum to one. The curve segment would be translated and the shape would remain
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Figure 4.1: Interpolation of a single data point. The cross is the data point that
Q(u) (the box) should interpolate. Notice only the four control vertices de�ning
Q(u)'s segment are displaced from the original position shown in red.

constant. To a�ect a minimum distance shape change1 Bartels and Beatty [6] pro-

pose that the displacement be a weighted displacement of �Q2. The weights are

chosen such that Equation 4.3 is satis�ed.

�Vi(u) = �Q(u) �wi(u) = �Q(u)
Bi(u)

B2

0
(u) + B2

1
(u) +B2

2
(u) + B2

3
(u)

(4.4)

Equation 4.4 suggests the amount each control vertex is displaced is propor-

tional to its proximity to the moving point. Figure 4.1 shows the displacement of

each of the control vertices as the spline interpolates a data point.

Modifying the interpolation algorithm to allow the interpolation of multiple

data points allows for a greater range of resultant shapes. If di�erent segments of

the spline are involved in the interpolation then more of the spline will be deformed.

To interpolate the k = 0; : : : ; n data points, p = 0; : : : ; m control vertices need to be

moved. The displacement of each data point is written as

�Q(uk) = �V0B0(uk) + �V1B1(uk) + �V2B2(uk) + �V3B3(uk): (4.5)

A control vertex, Vp, will have multiple non-zero displacements if it in
u-

ences segments from two of more data points. Equation 4.4 is modi�ed to calculate

1The minimum distance shape change is the change in curve shape such that the curve point

Q(u) interpolates Q0(u) but the control vertices undergo a minimal displacement.
2For a theoretical justi�cation of the weights in Equation 4.4 the interested reader is referred to

[6].
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the displacement of each control vertex for each data point.

�Vp(uk) = �Q(uk) � wi(uk)

= �Q(uk)
Bi(uk)

B2

0
(uk) + B2

1
(uk) + B2

2
(uk) +B2

3
(uk)

(4.6)

The index i; 0 � i � 3; is the index of Vp in the segment containing Q(uk).

The overall displacement for Vp is a weighted sum of all the �Vp(uk).

�Vp =
nX

k=0

Wp(uk)�Vp(uk) (4.7)

Using a weighted displacement suggests the curve will not interpolate the

multiple data points perfectly. The actual displacement of each curve point is

�eQ(uk) = �V0B0(uk) + �V1B1(uk) + �V2B2(uk) + �V3B3(uk) (4.8)

The weights Wp(uk) should be chosen such that the di�erence between the

desired displacement �Q(uk) and the actual displacement �eQ(uk) is a minimum.
The method of least squares [25] is used to �nd appropriate weights.

s =
nX

k=0

(�Q(uk)��eQ(uk))2
@s

@Wp(uk)
= 0

Wp(uk) =
B2

i (uk)
nP

k=0

B2

i (uk)
(4.9)

To reduce the errors between the desired and the actual displacements the

curve interpolation can be iterated. Figure 4.2 shows a curve with 8 control vertices

interpolating 4 data points. In Figure 4.2(b) the curve has been re-interpolated 5

times to achieve an excellent �t of the data points.

4.1.2 Surface Interpolation

Thus far the presented method has applied to B-spline curves. Objects in animation

are usually represented as surfaces so the method must be adapted for a surface

interpolating a set of data points.
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(a) (b)

Figure 4.2: Interpolation of multiple data points. The original curve is shown in
red, the data points are crosses and the control vertices are dots. (a) After one
interpolation. (b) After �ve interpolations.

A set of control vertices Vp where p = 0; � � � ; m will be displaced for the

surface to interpolate the k = 0; � � � ; n data points. The displacement of a control

vertex due to data point k is given by

�Vp(uk;vk) = �Q(uk;vk) � wi;j(uk; vk)

= �Q(uk;vk)
Bi(uk)Bj(vk)

3P
l=0

3P
m=0

(Bl(uk)Bm(vk))2
: (4.10)

The overall displacement of each control vertex is a weighted sum of all the

individual displacements due to the k data points. As in section 4.1.1 the weights

are found with the method of least squares.

�Vp =
nX

k=0

Wp(uk; vk)�Vp(uk;vk)

Wp(uk; vk) =
(Bi(uk)Bj(vk))

2

nP
k=0

(Bi(uk)Bj(vk))2
(4.11)
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(a) (b)

(c) (d)

Figure 4.3: Interpolation of multiple data points. (a) Initial con�guration. (b) After
one iteration. (c) After 5 iterations. (d) Shaded surface.

Again, due to the weighted displacement of the control vertices the interpola-

tion of a surface will not be perfect and the method can be iterated. Figure 4.3 shows

a surface with 11� 11 control vertices and 3 data points. Notice in Figures 4.3(b)

and (c) how the patch with one surface point converges to the data point with fewer

iterations than the patch with multiple surface points.

4.1.3 Hierarchical Surface Interpolation

As described in Chapter 3, a hierarchical surface has a hierarchy of levels where

each level is a subdivision of the previous level. The idea that a broader spectrum

of surface shapes is available if the interpolation algorithm is applied to various

levels in the hierarchy is adopted from Palazzi [29] and Harrison [20]. If a coarse
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(a) (b)

(c)

Figure 4.4: Hierarchical interpolation of multiple data points. (a) Coarsest level
absorbs all the interpolation (5 iterations). (b) In between level absorbs all the
interpolation (5 iterations). (c) Finest level absorbs all the interpolation (5 itera-
tions).

level of the hierarchy interpolates the data points then a larger region of the surface

will change shape. Conversely, a localized shaped change occurs if the �nest level

interpolates the data points. This is the core mechanism used by the collision

response algorithm to provide control over the locality of the object deformations.

Figure 4.4 shows the same surface as Figure 4.3 but the interpolation is done by

the coarsest level (Figure 4.4(a)), an in between level (Figure 4.4(b)), and the �nest

level (Figure 4.4(c)).

Blending the interpolation from various levels is known as multi-resolution

interpolation. If some of the interpolation is achieved or `absorbed' by a coarse
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Figure 4.5: Multi-resolution interpolation of multiple data points. The coarsest level
absorbs 30% of the interpolation and the �nest level absorbs 70%.

level and another portion absorbed by a �ne level then the overall shape would be

gradual. Each level, l, where l = 0 is the coarsest and l = m is the �nest, can absorb

a percentage of the interpolation a[l]. The displacement of a data point k on l will

be

�Q[l](uk;vk) = a[l] ��Q(uk;vk) (4.12)

where

mX
l=0

a[l] = 1; a[l] � 0 (4.13)

Before any interpolation is performed �Q(uk;vk) is calculated as the dis-

placement between the kth data point and the surface point Q(uk;vk) . Each level,

starting with l = 0, �rst determines the points Q[l](uk;vk) and then interpolates

the level through the data points,

Q
0[l](uk;vk) = Q[l](uk;vk) + a[l] ��Q(uk;vk) (4.14)

Figure 4.5 shows the surface from Figure 4.3 with 30% of the interpolation

absorbed by level 0 and 70% absorbed by level m.

Hierarchical B-spline surfaces allow for local re�nement, thus a surface point

Q(uk;vk) may be in a region where the subdivision level is less than the �nest
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level that absorbs some of the interpolation. Thus, interpolating a data point on

level q, where q is not the �nest level m, may not remove all the interpenetration

if
Pm

l=q+1
a[l] > 0. ACRA incorporates two solutions for handling such data points.

The �rst alternative re�nes the patch containing the data point until that patch

is at the �nest level that absorbs any of the interpolation. A second alternative

retains the re�nement level of the surface and obeys the absorption amounts by

only interpolating up to the level the surface point is on. In the �rst case the

surface is re�ned and the response will be more local while the second case will still

maintain a global response but some of the interpenetration may remain.

4.2 Using Multi-Resolution Interpolation for Collision

Response

During a collision an interpenetration will occur between the two objects if no re-

sponse is applied. Any non-rigid object involved in the collision will need to deform

to resolve the interpenetration. The collision response algorithm �nds appropriate

surface points and data points for an object such that the object will be deformed

and no longer interpenetrate the other object after the data points are interpolated.

A method for �nding appropriate surface points and data points is described in this

section.

4.2.1 Rigidity

ACRA is only concerned with the response of an object after a collision is detected,

another module needs to be used to detect the collisions. The collision response

algorithm requires two pieces of information; the point on each surface where the

two objects initially made contact and the boundary of the interpenetration region

on each surface. If we were to rewind the collision to the instant when surface S1 and

surface S2 touched, P1 and P2 are the contact points on each surface respectively.
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On the line between P1 and P2 the point P0 is de�ned as a data point that

each surface will interpolate. The position of P0 is determined by the relative rigidity

of the two objects. As predicted by Equation 4.15, if S1 is more rigid than S2 then

P0 will be closer to P1 than P2.

P0 = RP1 + (1� R)P2 (4.15)

R =
R1

R1 +R2

The rigidity, R1 and R2, of S1 and S2 respectively is in the range [1; 100].

Interpolating P1 through P0, for example, will only move the patch contain-

ing P1, on a given level. The absorptions a[l] may be set such that some other

parts of S1 will still remain within the interpenetration region after the interpola-

tion (see Figure 4.6). The solution is to move all of the patches that are completely

or partially contained in the interpenetration region. To do so requires a surface

point and a corresponding data point for each patch. Following the example shown

in Figure 4.7, k = 0; : : : ; n additional surface points are found at the parametric

middle of the patch or the parametric middle of the portion of the patch inside the

interpenetration region. By extending a vector from each A1;k in the direction of

���!
P1P2 a corresponding surface point is found on S2. The data points, A0

1;k, shown

in Figure 4.7(c) are found with Equation 4.16. Figure 4.7(d) and (e) shows a similar

process for surface 2.

A0

1;k = RA1;k + (1� R)B1;k (4.16)

R =
R1

R1 +R2

4.2.2 Deformation, Translation and Rotation

ACRA provides three types of collision response, deformational as described in sec-

tion 4.1, translational and rotational as described in section 4.3. The user is able to
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Figure 4.6: Movement of a single patch may not eliminate all the interpenetration.
A simpli�ed 2D version of the surfaces is shown to clarify the error.

control both the amount of collision response that is absorbed on each level a[l] and

the combination of a deformational d[l], translational t[l] and rotational r[l] response

on each level.

d[l] + t[l] + r[l] = 1 (4.17)

where

d[l] � 0

t[l] � 0

r[l] � 0

The user controls the amount of collision response absorbed on each level

with percentage sliders as shown in Figure 4.8. The sum of all the active sliders

is 100%. Slider controls for deformational, translational and rotational percentages

per level are also available.
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Figure 4.7: Steps for �nding additional data points for all patches or portions of
patches within the interpenetration region. (a) The ticks on the surfaces indicate
patch boundaries. (b) A vector is extended from each additional surface point to
the other surface. (c) Data points to be interpolated by surface 1 are indicated by
A0

1;j. (d) and (e) show the same process for surface 2. (f) After the interpolation.
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Figure 4.8: Controls for setting the absorption per level. Greyed out sliders indicate
the surface has not been re�ned to that level.

4.2.3 Deformational Response

The points P
[l]

i
andA

[l]

i;j
on level l are the points that have the same (u; v) coordinates

as Pi and Ai;j. The displacement that the entire level should absorb is

�P
[l]

i
= a[l] � (P0

�Pi) (4.18)

�A
[l]

i;j = a[l] � (A0

i;j �Ai;j) (4.19)

The portion of the displacement that the deformational response is respon-

sible for is

�P
[l]

i
deform

= d[l] ��P
[l]

i

�A
[l]

i;j
deform

= d[l] ��A
[l]

i;j
:

The data points that the interpolation algorithm will interpolate are

P
0
[l]

deform
= P

[l]

i
+ �P

[l]

i
deform

A
0
[l]

i;j
deform

= A
[l]

i;j
+�A

[l]

i;j
deform

:
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Figure 4.9: Collision response when a surface is speci�ed to (b) deform, (c) translate
or (d) rotate.

4.3 Translational and Rotational Response

Two additional methods for collision response are provided to model objects that

do not undergo pure deformational collision response. The interpolation algorithm

generates a deformational response in the sense that it tends to give a dented ap-

pearance to the object. Some objects may prefer to retain their shape and respond

to the collision by translating to another position while others may translate on a

�ner level to retain surface details but dent inwards on a global scale. The option to

allow a retention of details on a level during collision response is called translational

response. Similarly, rotational response simulates an object being pushed or rolled

during a collision. Figure 4.9 shows how an object may respond when the main

response mechanism is a deformation, a translation and a rotation on a �ne level.
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P

i

angle of

[l]
i

P
[l-1]

[l]

rotate
P’

rotation

Figure 4.10: The three smaller �gures show the system before the collision, during
the collision and the resulting rotational response. The bottom object undergoes
a rotational response where the axis of rotation is into the page and the angle of

rotation is taken from the triangle P
[l�1]

i
;P[l];P

0
[l]

rotate
.

4.3.1 Translational Response

A translational response on level l simply translates all the control vertices of the

patches containing P
[l]

i
and A

[l]

i;j
by �P

[l]

i
translate

and �A
[l]

i;j
translate

in the direction
����!

P
0
[l]P

[l]

i
and

�����!

A
0
[l]

i;jA
[l]

i;j. The equations for the displacements are,

�P
[l]

i
translate

= t[l] ��P
[l]

i

�A
[l]

i;j
translate

= t[l] ��A
[l]

i;j
:

4.3.2 Rotational Response

As shown in Figure 4.9(d) a rotational response moves the features on a level by

what appears as a rotation. The initial contact point P
[l]

i
is used to calculate the
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interpolation point P
0
[l]

rotate
in the same manner as the deformational response case.

�P
[l]

irotate
= r[l] ��P

[l]

i

�A
[l]

i;jrotate
= r[l] ��A

[l]

i;j

P
0
[l]

rotate
= P

[l]

i
+ �P

[l]

irotate

A
0
[l]

i;jrotate
= A

[l]

i;j +�A
[l]

i;jrotate
:

A plane is de�ned by the three points P
[l�1]

i
;P

[l]

i
;P

0[l]

rotate
(see Figure 4.10).

The normal of that plane will be the axis of rotation and the angle of rotation is the

angle between
������!

P
[l�1]

i
P

[l]

i
and

��������!

P
[l�1]

i
P

0
[l]

rotate
. A quaternion, composed of the axis of

rotation and the angle, is applied to the o�set of each control vertex in
uencing the

patch containing P
[l]

i
. An identical process is used to determine the angle of rotation

and axis of rotation for each A
[l]

i;j;A
0
[l]

i;jrotate
pair. If a control vertex is in
uenced by

more than one quaternion then a spherical linear interpolation of the quaternions is

performed.

4.3.3 Restriction

The numerical multi-grid method [9] [26] originally inspired the idea for using multi-

ple levels in a surface to simulate local or global behavior. For interpolating a surface

through a set of data points a coarse interpolation using the coarser levels of the

hierarchy will give the system a better starting point for a �ner level interpolation.

Coordinating behavior within the hierarchical surface requires a restriction and pro-

longation operator. A restriction operator passes information from a �ner level to

a coarser level. After a collision is detected the initial contact point, the additional

points and the data points are determined for the �nest level. The displacements,

�Pi and �Ai;j, are calculated for object i. The restriction operator passes the dis-

placements and the (u; v) coordinates of the initial point and the additional points

to each coarser level.
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In a future version of ACRA the restriction operator could propagate a neg-

ative displacement outside of the interpenetration region to the coarser levels. A

negative displacement could simulate volume conservation through a bulging e�ect.

4.3.4 Prolongation

Starting at the coarsest level the algorithm performs the following steps where the

prolongation operator is the last step to pass information from a coarser level to a

�ner level.

� Calculate the initial contact point and additional points on this level, l, from

the (u; v) coordinates provided by the restriction operator.

� Using Equation 4.18 and Equation 4.19, �nd the amount of displacement the

initial point and additional points on this level will absorb.

� Carry out the deformational response.

� Recalculate the initial contact point and the additional points on this level.

This step is necessary because the previous step has altered the shape of the

surface.

� Carry out the translational response.

� Recalculate the initial contact point and the additional points on this level.

� Carry out the rotational response.

� Prolongate the new surface con�guration to level l+ 1.

In future versions of ACRA, the prolongation operator would also be re-

sponsible for ensuring no additional collisions occur due to a negative displacement

restricted to level l. Surface fairing [24] on a global or local scale could occur if the

prolongation operator applied a fairness function.
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Each of the three methods for collision response may introduce further col-

lisions to the objects. An iterative loop of collision detection followed by collision

response may be necessary to reduce the interpenetration to the point where post-

processing 'clean-up' removes the remainder.

4.4 Summary

The interpolation algorithm described in this chapter describes a method for altering

the shape of a surface. Locality or globality of the collision response is controlled

by altering the amount of interpolation each level absorbs. Three types of collision

response are available and the user can choose a combination of the types on each

level. Iterative calculations at each frame or time step are not needed because

control vertex displacements are only calculated when a collision is detected. Some

results and the boundaries of the problem set where ACRA is applicable is the topic

of the next chapter.
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Chapter 5

Results and Future Work

This chapter will address the issue of ACRA's e�ectiveness in terms of real-time

execution speed, range of responses and the scope of models ACRA is suitable for.

First some empirical results from an animation of a large model colliding with a

small model are presented. Frames from various animations with changes in relative

rigidity, locality of collision response and di�erent types of response are presented to

show the e�ect of the response controls. ACRA's goals from Section 2.5 are brie
y

revisited and some some ideas for avenues of future work and extensions to this

foundational algorithm are discussed.

5.1 Implementation and Empirical Results

To collect data about ACRA's execution speed and to compare execution speeds for

models of varying size, an animation of a large model colliding with a smaller model

was generated. The animation has a total of 30 frames (one of which is shown

in Figure 5.1), and 4 frames required a collision response. Although this thesis

only deals with the issue of collision response, collision detection is an important

predecessor to the collision response process. A library called RAPID [19] [35] is

used for collision detection but the output from RAPID and the inputs required for
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Figure 5.1: Animation frame. The large model of a dog head has 7 hierarchy levels
and a total of 2085 control vertices while the small model of a spike has 3 levels and
90 control vertices.

ACRA were not entirely compatible. In fact a rather signi�cant amount of code is

needed to convert the outputs from RAPID to the inputs needed for ACRA. To give

some idea of the relative importance of these three components, execution speeds

were gathered for each component and tabulated in Figure 5.2.

RAPID, like many collision detection schemes, has two phases: an initial

setup and the actual collision detection. It stores the geometry of the model in

its local space and the translation and rotation in global space, thus if the object

undergoes a translation or rotation only those matrices need updating. If local

geometry changes, RAPID needs to execute its initial setup phase again. Each frame

in the animation requires a query to RAPID's collision detection phase but only

those frames that have a collision require the conversion of the collision detection

outputs to ACRA's inputs, a collision response and a new initial setup for RAPID.

5.2 Goals Revisited

� Unintrusive. Key-framed motion of the object is obeyed by ACRA since the

algorithm only changes the shape of an object, not the object's position.

� Fast previews. The performance results of Figure 5.2 indicate a collision
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Number of frames Wall-clock time (ms)
requiring process

RAPID 5 Large model - 3919
(initial setup) Small model - 12

RAPID 30 16
(collision detection)

Conversion to collision 4 358
response inputs

Collision response 4 Large model - 590
Small model - 14

Figure 5.2: Performance results for collision detection and response from a 30 frame
animation rendered on a Pentium 150MHz with 64MB RAM. The numbers given
are averages over the frames.

response requires less than a second of real time even for the large model,

suggesting ACRA can provide fast preview for moderately complex geometry.

� Broad spectrum of responses. Using a multi-resolution surface such as a

hierarchical B-spline surface allows a spectrum of local to global responses by

adjusting the absorption amount on various levels of the hierarchy. Adjusting

the three di�erent response types on each level of the hierarchy gives the user

the capability to generate denting, translating and rotating e�ects.

� Animator Override. Since the algorithm does not need to track the system's

state, the animator is free to manipulate the surface by hand. If, in the future,

the algorithm is extended to relax the surface back to a rest shape then care

needs to be taken to specify how ACRA will behave when both the animator

and ACRA want to adjust the position of the same control vertex.

5.3 E�ectiveness of the Algorithm

Several frames from four animations of two key-framed objects colliding are shown

in Figures 5.3-5.6. In the �rst animation the bottom object is much more rigid than
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(a) (b)

(c) (d)

Figure 5.3: Frames 10, 15, 20 and 25 from an animation where the bottom object is
highly rigid and the top object undergoes a deformational collision response at the
�nest two levels of its hierarchy. Both objects have 5 levels in their hierarchy.

46



(a) (b)

(c) (d)

Figure 5.4: Similar to Figure 5.3 except the top object is more rigid than the bottom
object. For clarity, the top object wasn't rendered in b and c.

47



(a) (b)

(c) (d)

Figure 5.5: Similar to Figure 5.4 except the bottom object distributes the deforma-
tion absorption equally levels 1-3. For clarity, the top object wasn't rendered in b
and c.
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(a) (b)

(c) (d)

Figure 5.6: Similar to Figure 5.4 levels 1 and 2 of the bottom object absorb all the
deformation.
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the top object, the collision response is purely deformational and the �ner levels

were set to absorb the deformation. The top object was made much more rigid than

the bottom object in the second animation (Figure 5.4). Figures 5.5 and 5.6 show

how adjusting the absorption of the deformation to di�erent levels of the hierarchy

give various responses. Levels 1-3 of the bottom object are set to absorb the same

amount of deformation in Figure 5.5 whereas levels 1 and 2 of the hierarchy absorb

the deformation in Figure 5.6.

The impact of changing the response type from a deformational to transla-

tional is shown in Figures 5.7- 5.9. In both cases all of the response is absorbed by

the �nest level of the hierarchy and the plane pushing down on the spike is totally

rigid. To show more clearly how the bottom object responds the top object is not

rendered in the last three frames but the side view gives information about the

relative positions of the two objects.

A rotational response is shown in the bottom object of Figure 5.10 where the

bottom object absorbs all of the response on level 2 (since that is the level where the

control vertices were o�set to create the bump). Notice how the bump eventually

rotates far enough to allow the top surface to slide past. To show a combination of

a rotational and deformational response the bottom object of Figure 5.11 was set

to absorb half of the response on level 1, as a deformational response, and the other

half of the response on level 2, as a rotational response.

ACRA is not suitable for every animation that involves collisions since there

will be some complex deformations that are di�cult or even impossible to generate

within the boundaries of ACRA's controls. For example, objects that are prone to

self-intersection will not exhibit appropriate collision response. Some techniques for

rendering an animation preview use only a sample of the complete set of frames.

ACRA does not behave well in this scenario since the algorithm only uses the current

state of the system. Thus if there are large changes in state, which is likely when

there is a sampling of frames, then ACRA will generate an equally large response.
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(a) (b)

(c) (d)

Figure 5.7: Deformational response side view.
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(a) (b)

(c) (d)

Figure 5.8: Deformational response.
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(a) (b)

(c) (d)

Figure 5.9: Translational response.
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(a) (b)

(c) (d)

Figure 5.10: Rotational response.
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(a) (b)

(c) (d)

Figure 5.11: Rotational and deformational response.
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Other preview techniques use a coarse representation of the object but this may not

be a desirable strategy for previewing collision responses since it is di�cult to collide

objects whose geometry is ill de�ned. The user should also be aware that ACRA

does not guarantee all the interpenetration between two objects will be resolved

since no proof has been given that iterating the interpolation algorithm will cause the

interpolation error to converge to zero. ACRA was designed, and has proven suitable

for quickly removing interpenetrations between objects and providing controls to

specify a variety of responses.

5.4 Future Work

One step to convincing animators and members of the graphics community of

ACRA's utility is to devise a more robust mechanism for removing the interpen-

etration between two objects. A contact surface in the interpenetration region that

both objects are constrained to would guarantee a resolution of the interpenetra-

tion. Gascuel and Desbrun [10] have found contact surfaces when the modeling

primitive is implicit surfaces but some investigation needs to be done to determine

the applicability of their method to other surface types.

Real objects continue to deform after the collision has �nished by relaxing

back to a rest shape. Using the methodology outlined by Harrison [20], ACRA

could be extended to allow the animator to set the rest shape for an object. Any

deformation of the object due to a collision requires a displacement of the control

vertices. This displacement could be stored as an o�set and, after the collision,

reversed to bring the object back to its rest shape. If multiple collisions occur then

the o�sets for each collision could be stored in a LIFO stack and processing each

element of the stack will return the object's rest shape.

Some objects, like plastercine, retain all the deformation applied to them

while other objects, like an in
ated balloon, will return to the shape they had

before the collision. Plasticity is a rating of the amount of deformation an object
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permanently retains. The animator could set the plasticity for an object via a

percentage slider to indicate that ACRA should only restore a fraction of the stored

o�set. When the object attempts to return to its rest shape by reversing the stored

o�set it will only return part way. If a control vertex is o�set by �V and the

plasticity for object i is pi on the interval [0; 1] then the stored o�set for that control

vertex is (1� pi)�V.

A real object with high viscosity will take longer to return to its rest shape

than an object with low viscosity. Furthermore, an object may return to its rest

shape quickly in a global sense but more slowly in a local sense. To simulate a

multi-resolution relaxation rate a set of animation curves can be used where each

curve describes the relaxation rate of a level.

All objects, provided they don't loose or gain any mass, conserve volume

during a deformation and some objects, such as cloth and paper, conserve area

(within an epsilon). Providing an option to preserve volume or area during the

collision response would be bene�cial, especially if the (u; v) parameterization could

be adjusted to deform texture maps naturally. Currently, e�cient techniques for

area and volume conservation are not available so the running time of the algorithm

would su�er.
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Chapter 6

Summary

Simulating the collision response of real objects is a complex process and research

spanning several decades has been devoted to �nding algorithms to aid in the ani-

mation of collision response for both rigid and non-rigid bodies. Some research work

has been targeted to speci�c collision response e�ects, such as wrinkling, while oth-

ers attempt to simulate material properties, such as plasticity or inelasticity. Yet,

animators still rely on the manual manipulation of data points to model soft body

deformations suggesting more work needs to be done to create usable tools.

ACRA provides a tool for generating collision response that is not focused on

simulating real object responses but instead attempts to remove the interpenetration

between two objects. It strives to be as unintrusive as possible to the animator's

work
ow by both providing the animator with a variety of controls to alter the `look'

of the collision response and not altering the key-framed motion of the system. The

hierarchical B-spline modeling primitive provides a local or global collision response

by allowing the animator to specify the amount of response each level of the hierarchy

absorbs. Three response types, deformational, translational and rotational, give the

animator a greater range of responses.

ACRA can be expanded to allow for other useful e�ects like volume conser-

vation, plasticity controls and the relaxation of the surface to a rest shape. In all,
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ACRA is a working prototype for a �rst step towards a tool for generating quick,

basic collision responses.
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Glossary

Basic collision response: The removal of the interpenetration between two or

more objects, or at least enough of the interpenetration so that only a small

amount of post-processing 'clean-up' removes the remainder.

Blending functions (also basis functions): The weights applied to the elements

of the geometry vector when calculating the parametric curve.

Collision response: Any reaction, whether as a rigid body or a non-rigid body,

to a collision such that the interpenetration due to the collision is removed.

Derived vector: Used by a hierarchical B-spline surface to specify the position of

a control vertex, before it has been displaced, in the object's local reference

frame.

Elastic: A property of an object. An object that returns fully to its original shape

when all external forces are removed is said to be elastic.

Fracture: The cracking or tearing of a material when it deforms beyond a certain

limit. Cracks develop according to internal force or deformation distributions

and their propagation is a�ected by local variations in material properties.

Free form deformations: Amethod for deforming a model within a parallelepiped

region of space. An object within the B�ezier solid that de�nes the paral-

lelepiped can calculate new positions for its vertices such that the object de-

forms as the parallelepiped deforms.

Geometry vector: A column vector of geometric constraints. The geometric con-

straints are the conditions, such as endpoints or tangent vectors, that de�ne

the parametric curve.

Inelastic: A property of an object. Inelastic objects return to their original shape

slowly or only partially when all external forces are removed.
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Knot: A join point between two adjacent B-spline segments that has a knot value

associated with it.

Local re�nement: A technique used by hierarchical B-spline surfaces of adding

only those control vertices needed for editing purposes while retaining the

unedited portion of the surface in its original de�nition.

Minimum distance shape change: The minimum distance shape change of a

curve is the change in curve shape such that the curve pointQ(u) interpolates a

speci�ed point in space but the control vertices of the curve segment containing

Q(u) undergo a minimal displacement.

O�set vector: The displacement of a control vertex from its position indicated by

the derived vector. The o�set vector is speci�ed in the local frame of reference

at the position indicated by the derived vector.

Physically-based modeling: Any system that uses some laws of physics to it-

eratively calculate the positions, velocities, forces or other properties of an

object.

Piecewise linear: Refers to a series of line segments that approximates the shape

of other primitives such as curves or surfaces.

Piecewise polynomial: Refers to the approximation of a curve or surface by a

series of polynomial segments. Cubic polynomials are used most often because

they are the lowest order polynomial that can interpolate two endpoints and

specify tangents at each endpoint.

Plasticity: A rating of the amount of deformation an object permanently retains.

Prolongation operator: An operator that passes information from a coarser level

to a �ner level of a multi-resolution surface.

Restriction operator: An operator that �lters information from a �ner level to a

coarser level of a multi-resolution surface.

Viscoelastic: A property of an object. A viscoelastic object's behavior includes

the characteristics of a viscous 
uid together with elasticity.

Viscosity: The property of a 
uid that resists the forces tending to cause 
ow.
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Index

additional points, 34

animation preview, 2, 50

B-spline

basis matrix, 15

blending functions, 14{16, 20, 26

geometry vector, 14{16, 18

knot, 15, 20

knot value, 15

B-spline basis functions, see B-spline

blending functions

clean-up, see post-processing

cloth, 4

collision detection, see RAPID

conservation

area, 57

volume, 57

contact points, 33

continuity, 14, 19, 22

control mesh, 1, 4

curve

B-spline, 14{18, 26

B�ezier, 14, 17

Hermite, 14

parametric, 13{14

dynamics, 4

elasticity, 4{6

fracture, 4{5, 11

free form deformation, 6{8

grid, see control mesh

H-spline

derived vector, 22{23

o�set vector, 22{23, 56

inelasticity, 4{5

local re�nement, 21, 22, 32

multi-resolution interpolation, 31

numerical methods, 4

physically-based modeling, 1, 3{6

springs, 4, 5

using FFD, 8

plasticity, 4{6, 56

point masses, see control mesh

post-processing, 2, 42

preview, see animation preview

properties

elasticity, 4{6

fracture, 4{5, 11

inelasticity, 4{5

plasticity, 4{6, 56

viscoelasticity, 4{5

RAPID, 43{44

relaxation rate, 57

response

deformational, 34{37, 50

rotational, 34{35, 39{40, 50

translational, 34{35, 38{39, 50
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rest shape, 56

rigidity, 2, 11, 33{34

spring mesh, see control mesh

subdivision

B-spline, 16{18, 20

B�ezier, 16{18

H-spline, 32

surface

B-spline, 18{20

B�ezier, 12

implicit, 9, 56

piecewise linear, 9, 12

time step, 4

viscoelasticity, 4{5

weights

curve interpolation, 27{28

surface interpolation, 29{30

wrinkle

cloth, 5{6

facial, 6
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