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Abstract

This thesis considers the problem of global illumination: the modelling of light as

it travels through a scene interacting with the objects contained within the scene.

Starting with a description of the problem and a discussion of previous work, we

explore a new approach called light-driven global illumination that o�ers several

advantages over its predecessors: a lower asymptotic complexity, a wider range

of representable surface interaction phenomena, and an absence of the need for

\meshing" { object surface subdivision needed primarily to represent shadows.

Light-driven global illumination is intermediate between local and global

illumination. Representing light with wavelet basis functions, we are able to treat

both the interaction between two surfaces and the interaction of a surface with a

radiation �eld in a source-to-destination model that applies to whole surfaces, not

just small elements.

We have found this \wavelet radiative transfer" to be a valid way to generate

and store complex global light �eld data as four-dimensional textures for incorpora-

tion in local illumination solutions. Wavelets can considerably reduce the otherwise

substantial storage and reconstruction problems associated with doing this. We

include several examples of this.

We also discuss plausible illumination models, which are required to make
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light-driven global illumination work theoretically. Like wavelet radiative transfer,

these models have application in other areas of rendering besides global illumination.

Finally, we develop the theory behind light-driven global illumination and

apply it successfully to some simple examples. While we �nd the algorithm to be

quite slow compared to other well-known rendering algorithms, we analyze what is

needed to make it competitive.

In conclusion, we �nd that representing light with wavelets has a set of

advantages that are independent of the comparative ine�ciency of the light-driven

algorithm.
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Chapter 1

Introduction

Realistic images are images which are indistinguishable from images captured from

the physical world. The creation of such images is a fundamental goal in computer

graphics. Research in the modelling of shape, of properties of surfaces, and of the

interaction of light with matter is directed towards this goal, as evidenced in major

texts on the subject such as Glassner [24], Foley, et al. [18], and Watt [80].

For the past decade, some of the most realistic images in computer graphics

have been produced by global illumination techniques. These techniques are limited,

however, in the range of lighting and surface characteristics that they can represent.

This thesis presents a new technique in realistic image synthesis called \light-

driven global illumination" that allows a much wider range of characteristics to be

modelled. After this introduction, we will examine the basics of local and global

illumination in Chapter 2. Chapter 3 will present the new global illumination al-

gorithm itself. Chapter 4 will present an analysis of the \plausibility" of current

illumination models. (As we will see, energy-conserving illumination models, which

are a subset of physically plausible illumination models, are a theoretical prereq-

1



uisite for our technique.) Chapter 5 explains the approach we use to perform the

local solutions required by the global solution, a formulation of radiative transfer

and surface interaction that is based on wavelet techniques. Chapters 6 and 7 de-

scribes implementations of ideas from the preceding chapters. Chapter 8 describes

our conclusions.

1.1 Conventions

Table 1.1 lists symbols that will be commonly used throughout this thesis. Equations

taken from other sources will be modi�ed to use these symbols.

2



Table 1.1: Table of Commonly-Used Symbols. The \*" is a

wildcard matching character.

symbol de�nition

� angle between N and H

B blocked radiative transport operator

b� scaling constants for various illumination models

� specular \half-angle"

dA element of surface area

d!i sin �id�id�i, an element of incident solid angle

d!r sin �rd�rd�r, an element of reected solid angle

D� facet slope distribution functions

E irradiance

EN normal irradiance

F Fresnel factor

fr bidirectional reectance distribution function (BRDF)

F �
s specular shading functions

�i incident azimuthal angle

�r reected azimuthal angle

�L angle between incident and viewing directions

G global illumination operator

G geometrical attenuation factor

H bisector of source and viewing directions

I identity operator

continued on next page

3



Table 1.1: Table of Commonly-Used Symbols. The \*" is a

wildcard matching character.

continued from previous page

symbol de�nition

ka ambient reectance coe�cient

kd di�use reectance coe�cient

ks specular reectance coe�cient

k�� directional-hemispherical reectances

k� fraction of total energy reected specularly

La ambient radiance

Li incident radiance

Lr reected radiance

Lt transmitted radiance

M exitance

m RMS slope of the surface

N the surface normal

n�s specular exponents


+
N

the hemisphere surrounding N


�
N

the hemisphere surrounding �N
Rl reected incident direction

S surface interaction operator

S incident direction

T radiative transport operator

continued on next page
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Table 1.1: Table of Commonly-Used Symbols. The \*" is a

wildcard matching character.

continued from previous page

symbol de�nition

�i incident polar angle

�r reected polar angle

�t transmitted polar angle

V direction of viewer
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Physics Radiometry Radiometric Units (SI)

radiant energy joules [ J = kgm2s�2 ]

ux radiant power watts [ W = Js�1 ]

angular ux density radiance [ Wm�2sr�1 ]

incident ux density irradiance [ Wm�2 ]

emergent ux density radiosity (or exitance) [ Wm�2 ]

radiant intensity [ W sr�2 ]

Table 1.2: Light Measurement Terminology

We have attempted to be compatible with the ANSI/IES standard [36] wher-

ever possible. Table 1.2, taken from Cohen and Wallace [14] with minor alterations,

lists the equivalent terminology in the physics and radiometry (the science of the

physical measurement of electromagnetic energy) communities of the quantities we

will be discussing.

We will not be considering photometry (the psychophysical measurement of

the visual sensation produced by the electromagnetic spectrum), as determining

what viewers actually see when looking at a scene. This may be treated as an or-

thogonal postprocessing step after an accurate computation of the light that reaches

them. The latter is our goal.
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Chapter 2

Illumination

This chapter will describe the theory of illumination that underlies rendering and

then goes on to an overview of previous work in global illumination in computer

graphics.

2.1 What is Illumination?

The study of illumination is the study of light and how it interacts with matter to

produce visible scenes. Its principles are derived from those of physics. As we will

see in subsequent chapters, the equations describing illumination are relatively easy

to write down, but hard to solve in non-trivial cases.

2.2 Relation to Computer Graphics

Computer graphics is the use of computers to produce images. Frequently, it is

desirable that those images look realistic. \Realistic" in our context means that

viewers get the impression that what they are seeing when they look at a computer-
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generated (i.e., rendered) artifact (photograph, video screen, etc.) is an image of a

scene that exists in the physical world outside the computer.

It does not mean that they receive the same stimulus that they would in

a physical setting. After all, it is usually quite obvious when one is looking at a

photograph or a video image. What we want is for the artifact to be indistinguishable

from a photograph or video image of a scene in the physical world: to be realistic.

It is therefore productive to study illumination for this purpose.

2.3 Local and Global Illumination

There are two broad categories of problems that arise when attempting to solve for

illumination: local and global.

Local illumination problems are con�ned to small (often in�nitesimal) areas

or volumes. They usually involve a single light source (which we will refer to as a

luminaire), a surface or volume element, and a viewing direction. The basic question

of local illumination is: How does the element interact with the incident light to

produce the light leaving the element in the viewing direction?

Global illumination describes how light is distributed in a scene: a collection

of objects, including luminaires, immersed in a given medium. Figure 2.1 shows

a typical global illumination problem. Global illumination solutions must consider

multiple reections. Part of that solution may invoke local illumination solutions.

Fournier [22] describes their interrelation further.

The goal of a global illumination scheme may vary with the needs of the user.

In order of increasing scope, global illumination problems may require solution at...

� a small set of points. For example, the user may only need to know if there

8



objects

viewer

light source

directional light source

Figure 2.1: A Typical Global Illumination Problem

is su�cient light for people seated in a library to read by. (These sorts of

problems are more often found in illumination engineering than in computer

graphics.)

� all visible surfaces. Given a scene with non-participating media and a viewer

at a �xed location, compute the illumination of every surface that the viewer

sees. (This is the \viewer dependent" problem shown in Figure 2.1.)

� all surfaces. Like the previous class, but producing a solution that represents

the illumination on every surface, which, for example, allows the user to do

a \walkthrough" as a postprocessing step. (This is the \viewer independent"

problem.)

� all points. In the presence of participating media, it is in general necessary

to compute illumination not just at surfaces, but throughout the volume of a

scene.
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2.4 Radiative Transport Theory

This section will present the physical basis underlying global illumination as mod-

elled by computer graphics. It will start with a discussion of radiance and how it

relates to other physical quantities,

2.4.1 Radiance and the Transport Operator T

Let us �rst discuss some of the basics of how light is represented. The fundamental

quantity is radiance, which is de�ned in the ANSI/IES standard [36] to be the

amount of power passing in a given direction though a given surface per unit area

(perpendicular to the direction of travel) per unit solid angle. Radiance at a point

P in a direction S is usually represented by a function L(P;S).

We note, as the standard does, a distinction between \radiance" and \spec-

tral radiance". Spectral radiance adds additional units of inverse wavelength to

radiance to allow for a distribution of radiance over wavelength.

This thesis (like most of the rendering literature) takes radiance to be mo-

nochromatic and assumes one can construct a polychromatic image by combining

\channels" of independently computed monochromatic images. We assume further

that these channels are \independent": that they do not interact with each other,

as would be the case in the presence of phenomena like uorescence. Also like most

of the literature, we ignore polarization and assume time invariance.

One very useful property of radiance, or \scene radiance" as it is called, is its

proportionality to \image irradiance", the quantity detected by a camera viewing a

scene. This relationship is derived in Chapter 10 of Horn [34].

Radiance's most useful property for rendering, however, is its invariance:

In a non-participating medium and in the absence of di�raction phenomena (both
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of which we assume here), the radiance given o� at a point Po on a surface in a

direction S is constant until reaching another surface1.

We can express this as the action of a radiative2 transport operator T acting

on a source radiance Ls to produce a destination radiance Ld:

Ld(P;S) = T Ls = Ls(Po(P;S);S) (2.1)

Since we also assume that the radiation travels in a straight line3,

P = Po + St (2.2)

for some scalar t > 0. This principle underlies raytracing.

Technically, we should allow for the light travel time from source to des-

tination, but our assumption of time invariance makes this unnecessary. We can

therefore treat light travel as instantaneous.

It is evident from Equation (2.1) that for any scaling factor � and radiance

distribution L,

T �L = �T L: (2.3)

T is also linear in the following sense: given two sources A and B with radiances

LsA and LsB and LdA = T LsA and LdB = T LsB, then the resulting radiance Ld is

Ld(P;S) = T (LsA + LsB) = T LsA + T LsB = LdA + LdB (2.4)

if, from the point of view of P, neither A nor B obstructs the other.

1This is derived, for instance, in Siegel and Howell [68].
2For brevity, we may drop the \radiative" throughout this thesis, since we are only concerned

with radiative transport, as opposed to conductive, convective, or any other form of energy trans-
port.

3Note that we are not ruling out refraction, which takes place at a surface, not during propaga-

tion.
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Let us review the assumptions we have made about radiance and T . These
are all based on the way light behaves under what we consider \ordinary" rendering

circumstances:

� straight-line (ray) propagation

� linearity (in the absence of blocking)

� instantaneous transport

� energy conservation

� steady-state power transfer

� non-interacting monochromatic channels

� absence of di�raction phenomena

� absence of polarization phenomena

It is important to note that while all of these assumptions are compati-

ble with classical electromagnetic theory (under certain circumstances), it is these

empirically-based assumptions that drive our discussion, not the theory itself. Other

areas of investigation which make similar assumptions (e.g., neutron transport) may

�nd this work applicable.

2.4.2 The Blocking Operator B

We noted in Section 2.4.1 the complications that can arise in the presence of more

than one destination object. We can account for them by the incorporation of a

blocking operator B de�ned for an obstructing object O:

Lb(P;S) = BLs = b(P;S)Ls(P;S) (2.5)
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where b(P;S) is a geometric function which is 0 if a ray starting on the source object

at point P in direction S intersects O and 1 otherwise.

If we then have a source object S and a destination object D, and if O does

not lie \behind" D, we can express the resulting radiance Ld as

Ld = T BLs: (2.6)

2.4.3 Reection, Transmission, and the Surface Interaction Oper-

ator S

In this section, we will review the formulation of the fundamental equation describing

physically-based illumination modelling, presented below as Equation (2.11). Our

presentation follows those given in Cook and Torrance [15], Foley, et al. [18], and

Cohen and Wallace [14].

Figure 2.2 shows the (usual) geometry for two cases of local illumination. In

both of them, an in�nitesimal element of surface area dA is being illuminated by

an incident radiance Li coming from an in�nitesimal solid angle d!i surrounding

direction S. (All vectors presented here are are of unit magnitude.) An observer (or

measuring device) is located in direction V. N is the surface normal at dA.

On the left, the observer is above the \horizon" of dA in the hemisphere


+
N
, the hemisphere surrounding N. In this case, the observer receives radiation

reected from dA. On the right, the observer is below the horizon in the hemisphere


�
N
surrounding �N. In this case, the observer receives radiation transmitted by

dA.

As treatment of these two cases is very similar, let us consider the reection

case �rst. We assume all reected radiation passes unobstructed into 
+
N
.

We use N as the z-axis of a polar coordinate system so that we can specify
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Figure 2.2: Surface Geometry for Reection and Transmission

S by the usual incident polar and azimuthal angles �i and �i and V by the usual

reected polar and azimuthal angles �r and �r
4.

To consider an illumination model from the standpoint of power balance, we

start from the equation of power balance given in Siegel and Howell [68]:

dE = Li (N � S) d!i (2.7)

where dE is the irradiance resulting from the illumination of the patch in direction

S subtending the solid angle d!i. Using the de�nition of fr, the bidirectional re-

ectance distribution function (hereafter, BRDF), this irradiance gives rise to dLr,

the resulting radiance of the patch:

dLr = fr(S;V) dE (2.8)

4For the time being, we will assume �i and �r are measured from some locally-de�ned frame of

reference.
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In general, fr is a function of the incident direction (�i; �i) and the reected direction

(�r; �r)
5. For the sake of brevity, we will write it as fr(S;V).

As we have assumed an opaque, nonemissive surface, the only contributions

to Lr can come from 
+
N
. Therefore, we can integrate d!i over 


+
N
to get

Lr =

Z

+

N

fr(S;V)Li (N � S) d!i (2.9)

We allow for transmission, as shown on the right of Figure 2.2, by considering

that radiation can come from anywhere and can go in any direction. This means

that we need to generalize the limits of our directional integration to refer not to


+
N
and 
�

N
, but to 
R

N
, the hemisphere (either 
+

N
or 
�

N
) that contains V and 
T

N
,

the hemisphere opposite 
R
N
. We also need to allow for a transmitted component of

radiance using the BTDF ft. Equation (2.9) then becomes

Lt =

Z

T
N

ft(S;V)Li jN � Sj d!i (2.10)

In general, then, the total radiance for a non-emissive surface is L = Lr+Lt.

If the surface is emissive, we can add an additional surface emissivity term Le when

the observer is in 
+
N

6. To summarize, then, the total radiance given o� by dA is

Lr(V) = Le(V) +

Z

R
N

fr(S
+;V)Li(S

+)
��N � S+�� d!i

+

Z

T
N

ft(S
�;V)Li(S

�)
��N � S��� d!i (2.11)

where Lr is the total radiance given o� of a surface with normal N, Le is the surface

emissivity, Li is the incident radiance, 
R
N
is the reection hemisphere (contains

5fr may also vary over the surface, but that variation is usually treated as part of texturing
rather than illumination modelling, so we will ignore it here. As mentioned above, we are also

ignoring its possible dependence on wavelength.
6
�

N
is somewhat trickier, since if the surface is emissive, then the interior of the object is also

likely to be emissive, which would imply a volume emissivity rather than a surface emissivity. As

we are ignoring participating media in this section, we will therefore restrict ourselves to surface

emissivity only.
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N, the \viewing" direction V, and the \positive source" direction S+), 
T
N
is the

transmission hemisphere (opposite 
R
N
, containing the \negative source" direction

S�), fr is the BRDF, ft is the bidirectional transmittance distribution function

(BTDF), d!i is sin �id�id�i, �i is the incident polar angle, and �i is the incident

azimuthal angle.

A local illumination solution is entirely characterized by its BRDF and BTDF

functions. Note that we ignore the spatial variation of the radiances and distribution

functions, since it symbolically factors out of Equation (2.11),

We represent combined reection and transmission surface interaction by the

integral operator S:
Lr = Le + SLi (2.12)

2.5 Renderers

In computer graphics, a realistic rendering package (which we will refer to hereafter

as a renderer) is a (predominantly) software system used to create realistic images.

It usually does this by performing a simpli�ed solution of the equations describing

light and matter interaction.

It is useful to consider a rendering package as being composed of seven parts:

� a luminaire model: how light sources are represented

� a propagation model: how light travels from source to surface, surface to sur-

face, and surface to viewer

� an object model: how objects in the scene are represented

� an illumination model: how light interacts with the surface of an object
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� a surface model: how small-scale surface structure is represented

� a shading model: how light passing to the viewer is converted into an image

� a rendering technique: how all the models that constitute the package interact

to produce an image

All of these are necessary for a rendering package, although in some cases they can

be trivial.

In the remainder of this section, we will discuss each of these parts and how

they relate to each other.

2.5.1 Luminaire Models

Models of luminaires, or light sources, can range from the simple to the sophisticated.

In this section, we will cover several popular ones. The most important attribute of

a luminaire model is its dimensionality: 0 (a point luminaire), 1 (a linear luminaire),

or 2 (an area luminaire).

2.5.1.1 Point Luminaire

A point luminaire assumes that a �nite amount of light is coming from a single point.

If we take � as the amount of emissive power being given o� by the luminaire, the

radiance of a point luminaire is:

Le =
�

4�r2
�(S� S0) (2.13)

where r is the distance from the luminaire to the illuminated point and S0 is the

direction from the illuminated point to the luminaire. The Dirac delta function �(x)

is de�ned by Z 1

�1
f(x)�(x)dx = f(0) (2.14)
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for any function f(x).

2.5.1.2 Directional Luminaire

A directional luminaire is e�ectively a point luminaire at in�nity: every point on the

illuminated surface receives light from the same direction. Unlike a point luminaire,

however, a directional luminaire is not characterized by its power (which is in�nite)

and a position, but by its normal irradiance EN , the amount of power per unit area

transferred to a surface with normal incidence7 , and a �xed direction S0. We can

express the radiance of a directional luminaire as

Le = EN�(S� S0): (2.15)

2.5.1.3 Other Luminaires

Directional and point luminaires were the only ones available in early renderers (with

the exception of di�use area luminaires used in radiosity). Verbeck and Greenberg,

for example, describe in [77] how to construct approximation of linear and area light

sources from point light sources. They also describe how to model the e�ects of aps

and focussing.

In 1990, Poulin and Amanatides [59] were able to model linear luminaires

directly. The next year, Tanaka and Takahashi [74] did the same thing for area

luminaires. Both of these groups worked with sources that were isotropic in the

sense that the emitted radiance was constant with respect to direction for each

di�erential line or area element.

In 1992, Ashdown [2] drew on work from the illumination engineering com-

munity to incorporate measurements of real, non-isotropic luminaires using \near-

7EN is the value of irradiance E when the light is coming from the normal direction N .
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�eld photometry". More recently, Lalonde and Fournier [41] was able to e�ciently

represent an area luminaire using wavelets.

2.5.1.4 What Constitutes a Luminaire?

The distinction between a luminaire and any other object is somewhat arti�cial.

Light interacting with a surface produces reected and transmitted radiance distri-

butions which, as far as a renderer is concerned, should be indistinguishable from

emitted distributions. The technique we will present in this thesis will make no

(essential) distinctions between emitted, reected, and transmitted radiance distri-

butions.

2.5.2 Propagation Models

Light travels from surface to surface through a medium. The easiest medium to

represent is a non-participating medium { a medium that does not in any way

impede radiation travelling through it. A vacuum is one such medium.

The propagation model in such a medium is the one we used to describe the

invariance of radiance under the T operator in Equation (2.1): the radiance remains

constant along a ray from source to destination.

In the presence of a participating medium, propagation becomes more di�-

cult to represent. There are three phenomena which must be taken into account:

emission, absorption, and scattering.

We have already mentioned emission from surfaces, but it can also happen

from an incandescent gas such as a �re, a gaseous nebula, or the Sun. When the

model of emission cannot be con�ned to a two-dimensional manifold, it must be

treated as part of propagation.

19



Absorption removes energy from the beam entirely, converting it to a non-

visible form of energy such as heat. Smoke, for instance, can make a very absorptive

medium.

Scattering does not eliminate energy from the beam, but redirects it. It may

remove energy along the line-of-sight from source to destination (outscattering), but

it may also scatter energy into the line-of-sight from other sources (inscattering). So,

for instance, a street light in fog, a typical scattering medium, appears surrounded

by a halo of light that was redirected towards the viewer by the medium.

Allowing for participating media turns Equation (2.1) into an integro-di�erential

equation. Taking Glassner's [24] formulation of it and substituting our own notation,

we get:

S � rL(P;S) = j(P;S)

+

Z


�(P;S0 ! S)L(P;S0)d!0

� L(P;S)

�Z


�(P;S! S0)d!0 + �a(P;S)

�
(2.16)

where j is the volume emissivity, 
 is the directional sphere, � is the volume outscat-

tering or inscattering probability function, !a is absorption function.

Equation (2.16) is easy to interpret. The left hand side is the spatial variation

of radiance in direction S. On the right hand side, the �rst term is the volume

emissivity adding power (radiance per unit length, actually) to the beam. The

second is the amount of power scattered into the beam. The third is the sum of the

power scattered out of the beam and the amount of power absorbed by the medium.

A considerable amount of work has been done in the �elds of physics (e.g.

Chandrasekhar [10]), astronomy (e.g. Mihalas [51]), oceanography (e.g. Mobley

[53]), and elsewhere to understand participating media. Little, however, has been
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done in computer graphics. See Rushmeier [63] for an overview of these.

2.5.3 Object Models

The construction of object models is what is normally referred to as \modelling"

in computer graphics parlance. The principle role of object models is to de�ne

surfaces: places where radiance distributions change dramatically over an interval

of path length so small that it may be considered in�nitesimal. The surface of a

properly-de�ned object subdivides space into an \inside" and an \outside".

2.5.3.1 Polygons

Polygons, especially triangles, are by far the most common object modelling con-

struct. Each N -sided polygon is speci�ed by a list of N vertices. Three-dimensional

objects may be modeled with polyhedra, i.e., sets of polygons. Each polygon repre-

sents a \facet" of the object. By convention, the vertex list is speci�ed in counter-

clockwise order when the facet is viewed from \above".

Special care must be taken to ensure that the object that results from the

union of all the facets has a consistent inside and an outside, Otherwise, most

renderers produce a confusing result.

2.5.3.2 Parametric Surfaces

Parametric surfaces are made up of \patches": sets of points fPg de�ned by an

equation of the form

P = P(u; v) (2.17)

where 0 � u � 1 and 0 � v � 1.
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Although there have been attempts made to render patches directly, such as

Shantz and Lien [67] and Lane et al. [43], it typically proves e�cient to convert

each patch to a set of polygons.

One of the most widely-used algorithms for this is due to Lane et al. [43].

Given a patch, the algorithm tests it for planarity within a speci�ed tolerance. If

it is within the tolerance, the patch is replaced by a corresponding polygon. If

the tolerance is exceeded, the patch is subdivided using well-known subdivision

procedures and the algorithm is recursively applied.

2.5.3.3 Implicit Surfaces

An implicit surface is made up of the set of all points fPg which satisfy

f(P) = 0 (2.18)

for a function f . Like parametric surfaces, implicit surfaces are generally converted

to polygons for the purposes of rendering. One of the most widely-used approaches

is the \marching cubes" algorithm, developed independently by Wyvill, et al. in

1986 [86] and by Lorensen and Cline in 1987 [48]. This algorithm voxellizes object

space and then uses the value of f at each of the eight vertices of each voxel to

generate polygons that span the voxel.

One of the shortcomings of marching cubes and similar algorithms is a sensi-

tivity to sampling problems: Structures with spatial frequencies above the Nyquist

limit may not be polygonalized correctly. In particular, there is no guarantee of pre-

serving the topology of the polygonalized object. Recent work, however, by Stander

and Hart [73] shows promise of alleviating this problem.
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2.5.3.4 Constructive Solid Geometry

A notable extension of implicit surfaces is \constructive solid geometry" or CSG.

It extends the de�nition given in Equation (2.18) to use f to classify any point in

Euclidean 3-space as being inside (f < 0), on (f = 0) or outside (f > 0) an object.

It is thereby possible to de�ne composite objects in terms of set operations acting

on such primitives. A comprehensive treatment of CSG is the book by M�antyl�a [49].

CSG represents a convenient way to model objects in some but not all ap-

plication domains. In addition, CSG objects are easily rendered with a raytracer

(discussed in Section 2.5.7.3). Faster rendering can be achieved either by applying

the marching cubes algorithm to polygonalize CSG objects or by performing CSG on

polygonalized primitive objects, but just as with implicit surfaces, sampling prob-

lems can occur.

2.5.4 Illumination Models

We will review several illumination models in use in computer graphics. Space does

not permit us to consider some of the more elaborate ones (such as He, et al. [33]

or Oren and Nayar [57]), but as these are not yet in wide use, perhaps the reader

will forgive the omission.

Our discussion will center on reection models, as most renderers in computer

graphics pay little attention to transmission.

2.5.4.1 Phong Illumination Models

Phong illumination models are generally of the form (see, for example, Foley, et al.

[18], equation [16.15])

Lr = kaLa + [kd (N � S) + ks Fs(S;V)]EN (2.19)
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where ka is the \ambient" reection coe�cient, La is an ambient radiance uniformly

distributed over 
+
N

8, kd is the di�use reection coe�cient, ks is the specular re-

ection coe�cient, and EN is the normal irradiance parameterizing a directional

luminaire.

There are two popular choices for Fs. The original one given in Phong [58]

corresponds to

FP
s (S;V) =

8><
>:

(Rl �V)n
P
s if (Rl �V) > 0

0 otherwise

(2.20)

where Rl = 2N(N � S)� S is the \reected" source direction and nPs is the Phong

specular reection exponent.

The other popular choice for Fs comes from Blinn [6]:

FB
s (S;V) = (N �H)n

B
s (2.21)

where H = (S+V)= jS+Vj is the unit vector halfway between S and V and nBs is

the Blinn specular reection exponent.

Since we are not considering emissivity or transmission in this section, let us

see how these illumination models correspond to Equation (2.9).

Let the patch be illuminated by the combination of a directional source of

normal irradiance EN in direction S (i.e., �i = �S, �i = �S) on 
+
N
and a radiance

La constant over 
+
N
. Using Equation (2.15), we can model the resulting incident

radiance as

Li = La + EN �(cos �i � cos �S) �(�i � �S): (2.22)

If we substitute this into Equation (2.9), we get

Lr = La

Z

+

N

fr(S;V) (N � S) d!i + EN fr(S;V) (N � S) (2.23)

8For the sake of simplicity, we have assumed that dA has an unobstructed view of 
+

N
.
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Figure 2.3: Illumination Model Test Con�guration

Our goal is to make Equations (2.19) and (2.23) equivalent for all possible

La and EN . This means that the non-ambient terms of both equations must be

equal, so

fr(S;V) = kd + ks
Fs(S;V)

(N � S) (2.24)

This will allow us to convert a Phong illumination model into its correspond-

ing BRDF.

For the purposes of comparison of the various models, let us adopt the (com-

mon) test con�guration whose geometry is shown in Figure 2.3. A single directional

luminaire shines at a sphere. Viewed from the center of the sphere, the luminaire is

located at angle �L from the viewing direction.

Figure 2.4 shows a series of images generated with the test con�guration

with a Phong illumination model using FB
s . In this series, ks varies between 0 and

1 and kd is taken to be 1 � ks. The angular distribution of the specular peak is
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Figure 2.4: Sphere shaded with a Phong illumination model, using Blinn's FB
s , for an

assortment of incident angles with respect to the viewer (�L), specular coe�cients

(ks), and specular distribution half-angles (�).

qualitatively characterized9 by the specular half-angle �, de�ned by

FB
s =

1

2
= cosn

B
s � (2.25)

Hence, for a given �,

nBs = � ln 2

ln cos �
(2.26)

The ambient terms of Equations (2.19) and (2.23) must also be equal10. If

we equate these and notice that for  6= �1
Z

+

N

(N �V) d!r =
2�

 + 1
(2.27)

9Only in the case of Phong illumination modelling with FP
s does � have a direct and obvious

geometrical interpretation, but, as we will see (and Blinn [6] points out), it is qualitatively useful

in other cases.
10We can look at this as a consistency constraint: The same BRDF we use to shade a directional

luminaire must also shade an ambient light source.
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we get

ka = kd � + ks

Z

+

N

Fs(S;V)d!i (2.28)

So consistency demands that we have only two degrees of freedom in selecting

ka, kd, and ks. In what follows, we will take ka to be dependent upon kd and ks.

2.5.4.2 Torrance-Sparrow Illumination Models

The other major class of illumination models was �rst proposed in Torrance and

Sparrow [75] and applied to computer-generated imagery in Blinn [6]. We shall,

however, follow the development given in Cook [15].

Torrance-Sparrow illumination models can be formulated directly in terms

of their BRDF:

fr(S;V) =
FGD

� (N � S) (N �V)
(2.29)

where F is the Fresnel coe�cient, G is the geometrical attenuation factor, and D is

the facet slope distribution function.

The Fresnel coe�cient for unpolarized light and zero extinction ([15] ignores

extinction) is

F =
(g � c)2
2(g+ c)2

"
1 +

(c (g+ c)� 1)2

(c (g� c) + 1)2

#
(2.30)

where c = (V �H), g2 = n2 + c2 � 1, and n is the index of refraction.

The geometrical attenuation factor is

G = min

�
1;
2 (N �H) (N �V)

(V �H)
;
2 (N �H) (N � S)

(V �H)

�
(2.31)

There are several choices for the facet slope distribution function. Blinn [6]

suggests three of them. The �rst corresponds to a Phong illumination model:

D1 = b1 cos
c1 � (2.32)
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where cos� = (N �H). The second is the Gaussian one originally used in Torrance

and Sparrow [75]:

D2 = b2e
�(c2�)

2

(2.33)

The third is from [76]:

D3 = b3

"
c23

cos2 �(c23 � 1) + 1

#2
(2.34)

In all of these, the b's are arbitrary constants analogous to the k's in Phong illumi-

nation models. The c's (empirically) determine the width of the specular lobe. As

Blinn [6] observes, if we de�ne � to be the value of � at which a distribution drops

to half its peak value, we have

c1 = � ln 2

ln cos�

c2 =

p
ln 2

�

c3 =

s
cos2 � � 1

cos2 � �p2
Cook [15] considers an additional possibility originating with Beckmann and

Spizzichino [4], which we will include here as

D4 =
1

4m2 cos4 �
e
�

�
1�cos

2 �

m2 cos2 �

�
(2.35)

where m is the RMS slope of the surface. Unlike D1 - D3, there is no arbitrary b

constant for this distribution. The relationship of m to the corresponding value of

� is

m =
tan�p

ln 2� 4 ln cos�
(2.36)

2.5.4.3 Neumann-Neumann Illumination Models

In [55], Neumann and Neumann discuss \separable" illumination models (i.e., those

whose BRDF is of the form a(S) r(V) for some functions a and r) and how their use
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can speed up radiosity computation in non-di�use environments. As an example,

they describe a \lacquer model" of a purely di�use material covered by a semi-

transparent \lacquer" that absorbs but does not scatter light that passes through

it. The resulting BRDF they derive is

fr(S;V) = c exp

�
�s
�

1

(N � S) +
1

(N �V)

��
(2.37)

where c and s are constants that characterize the model. We can make this

comparable with Equations (2.24) and (2.29) by de�ning bN as the value of fr at

S = V =N. The equation then becomes

fr(S;V) = bN exp

�
�s
�

1

(N � S) +
1

(N �V)
� 2

��
(2.38)

As we did before, we can relate s to a more geometrically meaningful quantity

� that qualitatively measures the width of the specular peak. Keep the illumination

normal (S = N) and increase the angle between V and N until fr drops to half of

its maximum (i.e. V = N) value. We de�ne the resulting angle to be �. We can

relate s to �:

s = � ln 2

1 + cos�
(2.39)

Figure 2.5 shows what Neumann-Neumann illumination models (and the

subsequently-discussed Minnaert illumination models) look like when applied to

a sphere. Incident light for each illumination model is scaled to produce a peak

unsaturated radiance at normal incidence (�L = 0) and then held constant as �L

and � are varied.

Note that as �L increases, the image radiance decreases, unlike Phong illu-

mination models. Also notice that the limb of the sphere ((N �V) = 0) is always

dark.
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Figure 2.5: Sphere shaded with Neumann-Neumann and Minnaert illumination

models for an assortment of incident angles with respect to the viewer (�L) and

specular distribution half-angles (�).

10 o20 o30 o10 o20 o30 o10 o20 o30 o10 o20 o30

o

o

5

Neumann

o10 o15 o20β

Φ
Lmodel

illumination

Phong/Blinn

Neumann-

Figure 2.6: Comparison of a Square Shaded with a Neumann-Neumann Illumination

Model and with a Phong Shader Using Blinn's FB
s .

Neumann-Neumann illumination models exhibit peculiar behaviour when be-

ing applied to a specular surface. As Figure 2.5 shows, they do produce an acceptable

specular peak. Nevertheless, for a given incident angle the resulting radiance always

peaks when the viewer is looking in the normal direction. For a highly specular

surface, we should expect the radiance to peak somewhat closer to the reected

direction. Instead, the peak occurs where the exponent of Equation (2.38) is mini-

mized, which may not be the same direction.

Figure 2.6 illustrates this, comparing a Neumann-Neumann model with a

specular Phong model using Blinn's FB
s . To make sure the incident angle is constant,
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we have replaced the sphere used in the test con�guration of Figure 2.3 with a square

whose normal is pointing at the observer. As the �gure shows, increasing �L causes

the highlight to move to the right for the Phong model, as we would expect of a

specular surface, but not for the Neumann-Neumann one.

This is not to say that Neumann-Neumann models do not apply to real-world

phenomena, only that if they do, those phenomena do not resemble specularity.

2.5.4.4 Minnaert Illumination Models

In [52], Minnaert describes an illumination model derived from observations of the

Moon. His original model is

Lr = bM(N � S)k(N �V)k�1Li (2.40)

for some constants bM and k. This corresponds to the BRDF

fr(S;V) = bM((N � S) (N �V))k�1 (2.41)

We can relate k to an angle � de�ned as in the previous section:

k = 1� ln 2

ln cos �
(2.42)

Figure 2.5 contrasts Minnaert illumination models with Neumann-Neumann

illumination models. It is di�cult to tell them apart. Their numerical values in

these images di�er by no more than 2%. (As a computational aside, since Minnaert

illumination models are also separable, this suggests that a Minnaert illumination

model should be able to take the place of a Neumann-Neumann illumination model

with fewer arithmetic operations in most cases, especially if k is an integer.)

Minnaert illumination models exhibit the same peculiar behaviour as Neumann-

Neumann illumination models when applied to a specular surface: for a �xed in-
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cident angle, the resulting radiance peaks when the viewer looks in the normal

direction.

2.5.5 Surface Models

The standard presentation of BRDF given in Section 2.4.3 leaves out an important

fact: both of them may vary spatially, hence we should allow for11:

fr ! fr(P;S;V): (2.43)

We could deal with this somewhat by replacing the object being rendered

with a collection of smaller objects with spatially-invariant surface properties, but

this would cause the number of objects to increase considerably. Having to do this

for a mottled surface such as a brick or an orange peel would inate the number of

objects to be rendered considerably and undesirably.

One way conventional renderers deal with spatial variation of the BRDF is

by texture mapping, factoring it into spatial and directional components:

fr ! t(u(P); v(P))fr(S;V) (2.44)

where the function t represents the surface texture: the spatial variation of reective

properties on a scale smaller than that of the object. u(P) and v(P) map spatial

coordinates to texture coordinates. It is convenient to think of this as \wrapping"

the surface with paper printed with a pattern that represents the texture. While

this is a considerable reduction in exibility from Equation 2.43, it is often adequate

in practice.

11Even this is an oversimpli�cation, as it assumes that light encountering the surface at point

P is reected from the surface at the same point. A more thorough treatment takes into account
subsurface scattering and is treated by Hanrahan and Krueger [31] and Lalonde [41].
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Another way renderers represent spatial BRDF as well as geometric variation

is by allowing the surface normal used to compute fr to vary with texture coordi-

nates u(P) and v(P). This was �rst devised by Blinn [7] and is referred to as bump

mapping. As the name suggests, bump mapping is particularly e�ective at repre-

senting surfaces whose reective properties are the result of geometric variations

such as roughness or machining as opposed to variations in material composition.

Work continues in this vein. Poulin and Fournier [60] extend BRDF mod-

elling to include anisotropic reection phenomena, and Fournier [21] describes how

to model a given BRDF with a \normal distribution function".

2.5.6 Shading Models

There is a tendency to use the term \shading model" synonymously with \illumi-

nation model", but as Foley et al. [18] point out, a shading model may or may not

make use of an illumination model. An illumination model is a description of what is

actually happening in modelling or \world space". A shading model is a description

of what is to be shown in viewing or \screen space". A shading model is what actu-

ally generates pixels. It is possible for a shading model to use an illumination model

to generate a pixel, but it could also use a screen-oriented interpolation scheme to

do so.

For instance, the Goraud shading model typically uses an illumination model

to compute radiances at polygonal vertices, but then interpolates these in screen

space during scan conversion. On the other hand, the Phong shading model (not

to be confused with the Phong illumination model) computes normals at vertices,

interpolates the normals in screen space during scan conversion, and (typically)

applies an illumination model at each pixel.
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An essential part of a shading model is the number of samples of an illumi-

nation model required per pixel. If this number is greater than one, as in the case

of jittered or distribution raytracing, the samples must be �ltered. If this number

is less than one, the samples must be interpolated.

The use of a shading model is indicative of a perceived di�erence between

what is necessary to model physically what is going on in the scene and what is nec-

essary to generate an acceptable image. We will return to this idea in our discussion

of radiosity in Section 2.5.7.4.

2.5.7 Rendering Techniques

The most distinctive part of a renderer is the rendering technique it uses. In this

section, we will examine the predominant rendering techniques, ray tracing and

radiosity, along with a new and promising one, photon maps.

2.5.7.1 The Rendering Equation

In his landmark work [38], Kajiya showed the unity of rendering techniques by

connecting them to his form12 of Equation (2.11). We can do much the same thing

in the current context by noting that in Equation (2.12), in a state of thermodynamic

equilibrium, Li should be equal to T BLr. In other words, if we want a truly global

solution, there should only be a single radiance distribution L which should satisfy

L = Le + ST BL (2.45)

which we rewrite as

L = GLe (2.46)

12Like several other authors, Kajiya formulated Equation (2.11) in terms of \point-to-point"

transfers, while we have chosen a \direction-to-point-to-direction" approach. The two are entirely

equivalent.
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where we have de�ned the global illumination operator G to be

G = (I � ST B)�1 (2.47)

where I is the identity operator. We can expand G as Kajiya does:

G = I + ST B + (ST B)2 + � � � : (2.48)

He then points out an interesting physical interpretation of this series. The

�rst term represents light that is being given o� by the surface on which we are

computing L itself, the second term represents light from sources that directly illu-

minate the surface (a single \bounce" or surface interaction), and so on, so that the

nth term represents light after n� 1 \bounces". He also relates convergence of the

series to energy conservation13.

As Kajiya points out, rendering techniques approximate G in di�erent ways.

They also simplify the integral in Equation (2.11) (i.e., in S) di�erently. We will

discuss these distinctions in the following sections. Over time, these techniques have

undergone hybridization14 in order to improve their e�ciency or functionality as they

get incorporated into real renderers, but as we are more interested in their theoretical

distinctions here, we will deal with each rendering technique in its \classical" form.

Due to space constraints, we will con�ne our discussion to currently-popular

rendering techniques, omitting such work as that of Moravec [54], Weiler-Atherton

[81], Warnock [79], and Roberts [62], which are now mainly of historical interest.

13Mathematically, this is equivalent to requiring that the spectral radius of the operator ST B be
less than unity.

14That's the nice name for it.
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2.5.7.2 Depth-Bu�ering

By far the simplest rendering technique is depth bu�ering, also known as \z-bu�ering".

First developed by Catmull [9] in 1974, the algorithm requires a bu�er that contains

a scalar value for each pixel. This value is the \depth" { the distance from the

viewpoint to the nearest object that the pixel represents. Initially, all values in the

depth bu�er are (conceptually) in�nite.

While primitives are being scan converted, the algorithm computes some

measure of the distance from the object to the view plane for each pixel. In the case

of opaque objects, this distance is compared with the depth bu�er value. If (and

only if) the new distance is smaller than the previous distance, the colour bu�er is

set to the appropriate value for the new primitive and the new distance is stored in

the depth bu�er.

With some limitations, non-refractive transparency is possible with a depth

bu�er. Williams [84] presents a way to use depth bu�ers to generate (hard) shadows.

Since it places no constraints on the method used to compute the values that go into

the colour bu�er, depth bu�ering is compatible with all local illumination models.

Depth bu�ering can be implemented in hardware or software. The OpenGL

graphics library ([40] and [8]) includes built-in support for depth-bu�ered rendering.

Hardware depth bu�ering provides very fast rendering. OpenGL makes use of it if

it is present and simulates it in software if it is not.

2.5.7.3 Raytracing

Classical ray tracing simpli�es Equation (2.11) by setting fr and ft to be Dirac �-

functions (which we will describe below). This permits (mirror-like) reection and

refraction. The second way is by setting Li to include a �-function, which, as we will
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see in Sections 2.5.1.1 and 2.5.1.2, permits point and directional luminaires. These

are mutually exclusive since we cannot allow both the incident radiance and the

BRDF or BTDF to be �-functions.

Since each surface interaction involves samples of the BRDF and/or BTDF

and possibly casting additional reection/refraction rays, raytracing is compatible

with all illumination models.

2.5.7.4 Radiosity

Although radiosity methods had been present in the mechanical engineering commu-

nity for some time, they were �rst introduced to the computer graphics community

by Goral, et al. [25] in 1984. In its classic form radiosity takes L to be isotropic

and constant over a patch and therefore equal to B
�
, where B is the radiosity of the

patch. As derived in, for example, Cohen and Wallace [14], this leads to the classic

radiosity equation:

(I� �F)B = E (2.49)

where, given N patches, �F is an N �N matrix whose elements are �iFji, �i is the

(isotropic) reectivity of patch i, Fji is the purely geometric form factor: the amount

of energy leaving patch j that arrives at patch i, B is an N -element column vector

of radiosities, and E is an N -element column vector of patch emissive exitances.

Several conventional numerical linear algebra schemes have been applied to solve

Equation (2.49), including Gauss-Seidel [25], Southwell (also known as \progressive

re�nement") [26], and multigrid [46].

Classical radiosity is compatible only with di�use illumination models, but

more recent research has extended this to glossy reection. Immel et al. [35] devel-

oped a \global cube" algorithm that collected radiances instead of radiosity. This
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approach produced realistic images, but was costly in both time and memory, es-

pecially for highly specular surfaces. Rushmeier and Torrance [64] developed the

notion of \extended form factors" to deal with specular (including mirror) surfaces.

Sillion et al. [69] deal with glossy reection by representing both BRDFs and radi-

ances with spherical harmonics.

Even more recently, Fournier [19] has shown how to incorporate non-di�use

phenomena by the use of separable BRDFs.

An important consideration in viewing the results of radiosity and other

global illumination computations is the role of what Christensen, et al. [11] (citing

Reichert [61]) refer to as the \�nal gather" step.

It takes place after Equation 2.49 or its equivalent has computed radiance

distributions (or their equivalent) on all visible surfaces and amounts to a reevalu-

ation of Equation 2.11 at the point in the scene intersected by a ray through the

middle of each pixel. As Christensen, et al. [11] put it,

Formally, this �nal gather corresponds to changing to a piecewise-constant

basis, where the support of each basis function is the projection of a pixel

onto a surface in the scene. This basis is tailored to be visually pleasing.

The �nal gather smoothes the discontinuities in the wavelet representa-

tion and makes highlights, textures, and shadows crisper.

A �nal gather is e�ectively a local illumination calculation performed at the end of

a global computation. It is an implicit acknowledgement of the fact that the criteria

for physically-correct global illumination and a \visually pleasing" image are not

identical.
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2.5.7.5 Photon Maps

One of the most promising of recent rendering techniques are photon maps, devel-

oped by Jensen [37]. A photon map is a four-dimensional distribution of incident

photons collected on a surface.

The �rst step of photon map global illumination is the generation of two

photon maps built up by casting photons from all luminaires. The �rst photon

map is a high-resolution caustics photon map made up of photons cast only in the

direction of specular objects. The second photon map is made up of photons cast

towards all objects.

The second step is the rendering step. In it, the photon maps of incident

photons are combined with arbitrary BRDFs to produce reected radiances made

up of four terms: direct illumination, specular reection, caustics, and soft indirect

illumination. Each term is computed with appropriate photon maps and BRDF

specular and/or di�use components. As Jensen puts it:

The photon map is used to generate optimized sampling directions, to

reduce the number of shadow rays, to render caustics, and to limit the

number of reections traced as the scene is rendered with distribution

ray tracing.

Lucifer, the algorithm we will present in Chapter 3, is coeval with photon

maps. We will see that the two have much in common.

2.5.7.6 Comparison and Summary

This section will conclude with an analysis of the strengths and weaknesses of each

of these models.
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Chronological Order of Development !
Depth Ray Photon

E�ect Bu�er Tracing Radiosity Maps

di�use surfaces yes yes yes yes

specular highlights yes yes no yes

transparency yes yes no yes

mirror reection no yes no yes

refraction no yes no yes

sharp shadows yes yes no yes

soft shadows no no yes yes

di�use lighting yes no yes yes

colour bleeding no no yes yes

caustics no no no yes

Table 2.1: E�ects Available with Established Rendering Techniques

Table 2.1 lists a number of illumination e�ects and whether or not the vari-

ous established rendering techniques are capable of them. One word of caution: If

we evaluate this table for speci�c renderers, it becomes clear that it is an oversim-

pli�cation. Some renderers which refer to themselves as raytracers, for instance, are

capable of soft shadows. This is because those renderers have incorporated radiosity

or other methods in hybrid form and are not \pure" raytracers in that sense. For

this reason, Table 2.1 should not be taken to refer to speci�c renderers, only to

rendering techniques.

Indeed, ray tracing and radiosity techniques can be enhanced (often by Monte

Carlo methods) to produce a wider range of e�ects than Table 2.1 indicates. As in

many other areas in which they are applied, however, Monte Carlo techniques exhibit

slow convergence.

To be able to produce these and other e�ects, we will elaborate on a global

illumination technique that allows a wider range of local illumination models.
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Chapter 3

The Lucifer Algorithm

The algorithm we present here, which we refer to as the Lucifer1 algorithm, is

a sequential computational analogue of how energy distributes itself in a scene. It

combines the physical concepts of isolation and energy conservation with a re�neable

spatial partitioning scheme. This work is a outgrowth of work done by Fournier,

Fiume, Ouellette, and Chee [20] (hereafter referred to by its project name \FIAT").

3.1 Isolation

For possibly complex scenes, we can take a divide-and-conquer approach based on

the principle of isolation, illustrated in Figure 3.1 (right).

Isolation is a conceptual tool: we place any part of our scene (including the

viewer) within a volume V . Suppose then that somehow we can determine the

distribution of radiance on the surface @V of V . Isolation says that for the purposes

of solving for global illumination anywhere outside V , we can e�ectively replace the

1From the Latin for \light bearer".
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Figure 3.1: An Application of Isolation

contents of V with @V 's radiance distribution.

Isolation gives us a way to deal with complex scenes. If we cannot deal with

the whole scene, break it into volumes we can deal with as local illumination prob-

lems and transfer radiance distributions along the boundaries between the volumes.

3.2 Power Computation for Isolated Volumes

For any volume Vi, physics demands energy conservation. In the steady state, this

is equivalent to power conservation:

�in;i +�em;i = �out;i + �abs;i (3.1)

where

�in;i =

Z
@Vi

Z


+

N

Lin jN � Sjd!dA (3.2)

is the ux entering Vi,

�out;i =

Z
@Vi

Z

�

N

Lout jN � Sj d!dA (3.3)
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is the ux leaving Vi,

�em;i =

Z
Vi

Z


j d!dVi +

Z
Sem(Vi)

Z

+

N

Le jN � Sj d!dA (3.4)

is the ux generated within Vi,


+
N
and 
�

N
at any point on @V are the unit hemispheres entirely outside

and entirely inside V, respectively, Lin is the radiance coming into Vi from 
+
N
,

Lout is the radiance passing out of Vi from 
�
N
, 
 is the unit directional sphere,

j is the volume emissivity within V, Le is the surface emissivity on all emissive

surfaces Sem(Vi) within V, and �abs;i is the amount of radiant power absorbed and

not converted into radiant energy again (at least in Vi).

3.3 Solution Order and Convergence

As with raytracing and radiosity, we are constructing a sequential analogue of what

nature does in parallel. We need a sequential ordering. A reasonable way to proceed

is to maintain the volumes in a queue sorted in order of decreasing undistributed

power �in;i + �em;i and to always concentrate our e�orts on the volume Vi at the

front of the queue. Once the undistributed power in this volume is distributed,

the volume moves to the end of the queue. Note that, from Equations (3.3) and

(3.4), undistributed power is computed from radiances, emissivities, and geometrical

information about Vi.

If, during the distribution process, we ensure that no more energy leaves Vi

than was either incident upon or emitted within it, we can guarantee that the total

undistributed power in the scene (i.e., in the queue) is monotonically non-increasing,

since all the power distributed by Vi that does not get absorbed becomes incident

on another volume or leaves the scene entirely, possibly reaching the observer.
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One way to ensure that no excess energy is created is to require an energy-

conserving local illumination model. We will present some necessary constraints

for such a model in Section 4, where we will consider several illumination models

commonly in use in computer graphics from the aspects of both energy conservation

and Helmholtz reciprocity2.

3.4 Spatial Partitioning

We require a tessellation of the scene that can be easily re�ned as needed as the

solution progresses. Several data structures permit this, but the simplest one for

our purposes is the octree.

As shown in Figure 3.2, we take octrees to be composed of cubic cells. The

root cell contains the entire scene. Each cell is either a parent cell or a leaf cell.

A parent cell has eight child cells. A leaf cell has no child cells. Only leaf cells

are \volumes" in the sense of our previous discussion. Non-leaf cells are purely

structural. Each cell except the root cell has seven sibling cells.

We also choose a minimum size for an octree cell. Cells that we cannot deal

with that are this size will be solved trivially, but still conserving energy.

3.5 The Lucifer Algorithm

Figure 3.3 shows our rendering algorithm pseudocode. We start o� with a scene

s with a single cubic cell, rootCell(s). We then create a priority queue q with,

initially, a single element, rootCell(s). q is always maintained in decreasing order of

undistributed power.

2Note that Lucifer as presented here does not require reciprocity.
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Figure 3.2: Octree Cell Nomenclature

If q is empty or sumUndistPower(q), the sum of the undistributed powers of

all cells in the queue, is lower than some prespeci�ed powerTolerance, we consider

the scene rendered.

Otherwise, we remove the cell with the largest amount of undistributed

power, c, from the front of q. All further computation in the main loop is con-

cerned only with c. This is why we refer to our algorithm as \light-driven": it is

always concerned with the cell with the largest undistributed power.

We test c against the �rst of these cases that it matches:

� If it is empty, we call propagate() to transfer the radiance coming into c to its

neighbors.

� If it is a cell that we know how to pass power through, we call balance()
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render(scene s)
f

queue q ;
cell c;

q = createPriorityQueue(rootCell(s));
while (sumUndistPower(q) > powerTolerance) f

c = dequeue(q);
if (isEmptyCell(c))

propagate(c); 10

else if (canDealWith(c))
balance(c);

else if (size(c) > minimumSize)
subdivide(c, q);

else

trivialize(c);
g

g

Figure 3.3: The Lucifer Algorithm

to perform the redistribution of the reected and refracted radiance to c's

neighbors.

� If it is above a speci�ed minimum size, we call subdivide() to split c into eight

child cells and add these back to q in order.

If it meets none of these criteria, we call trivialize() to perform an ad hoc solu-

tion that may be some combination of the �rst two cases, but which in any case

guarantees that power balance is preserved.

propagate() is conceptually straightforward. It makes use of the invariance

of radiance in the direction of propagation. Radiance at a given point in a given

direction on an incoming cell wall de�nes a ray which may intersect an outgoing

cell wall at a new point and direction. (The direction is, of course, the same, but

may be expressed in a di�erent coordinate frame.) We may alternatively project

backwards from the outgoing cell wall to the incoming one.

46



balance() is somewhat more complicated. The ambiguity of the phrase \know

how to pass power through" at this level of description is intentional. Our current

interpretation of it is that the cell contains at most a single convex object. This

allows us to decompose the procedure into four subtasks:

1. Transport radiance from the incoming walls to the object (or that part of the

object which lies within the cell).

2. Interact the incoming radiance with the object's BRDF (and BTDF) to pro-

duce a reected radiance being given o� by the object.

3. Transport reected and emitted radiance from the surface of the object to the

outgoing walls.

4. Transport the unobstructed part of the incoming radiance to the outgoing

walls.

Subtasks 1 and 3 are variations on propagate(), allowing transport to and

from surfaces as well as cell walls. Subtask 2 requires surface interaction, as dictated

by Equation (2.11). Subtask 4 is another variation on propagate(), including a

geometric blocking function that inhibits propagation if the ray intersects the object

within the cell. We call this variation transblock().

3.6 Complexity

Let us compare the complexity of Lucifer and two rendering techniques that can

produce comparable e�ects: raytracing and radiosity. Our measure of complexity is

the mean time required per displayed pixel. We assume the scene has Nobj objects,

of which Nlum are (initially) luminaires.
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In classical raytracing, computing the intersection point of a ray and an

object in the scene requires O(Nobj) time per ray
3

If, to reduce aliasing e�ects, we oversample by a factor of Nray rays per pixel,

computing the primary (starting at the observer) intersections is O(NrayNobj). To

determine shadows, we must cast Nlum shadow rays to light sources. As Whitted

[83] �rst showed, we can treat reective, refractive, and transmissive phenomena by

constructing a tree at each intersection whose links correspond to reected, refracted,

and transmitted rays and whose nodes represent ray intersections with the scene. If

we let D be the mean number of nodes in this tree (minimum of one), then noting

that each ray, shadow or reected/refracted, costs Nobj, the e�ciency of classical

raytracing is O(NrayNobj(D+Nlum)). As summarized by Arvo and Kirk in [1], many

techniques have been devised to improve on this. With suitable restrictions on

such renderer components as illumination model, luminaire model, and the spatial

distribution of objects, considerable speedups are possible. Fujimoto et al. [23] cite

rendering times that are practically independent of the number of objects in the

scene (i.e., O(NrayD)) but this is quite optimistic.

In classical radiosity, the computation of form factors is O(N2
obj
) and while

the inversion of the transfer matrix is in principle as high as O(N3
obj
), it easily can

be made O(N2
obj
) by iterative and other means. Considerable speedups of radiosity

are possible with hierarchical radiosity, as presented by Hanrahan et al. in [32].

Smits et al. in [71] extended this work by introducing clustering. As reported there,

hierarchical radiosity has a complexity of O(N2
surf

+Npatch), where Nsurf is the number

of initial surfaces (proportional to Nobj) and Npatch is the �nal number of patches

(which is at least a linear function of Nsurf). Clustered radiosity, on the other hand,

3This is assuming a limiting depth { see Fiume [17] for additional details.
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has a complexity of O(Nsurf logNsurf+Npatch). The linear or superlinear dependence

of Npatch on Nsurf has given rise to a considerable amount of interest in optimal

meshing schemes. Obviously, a clever adversary can defeat these speed-up schemes,

but in practice the expected values apply.

In Lucifer, interactions are never between objects, but between a cell's walls

and either the walls of neighboring cells or the object contained within the cell.

Even though a particular cell may need to be balanced more than once, the number

of times that needs to happen is dependent on the scene geometry, not on Ncell.

If the proportion fback of power 	 that comes back to the cell is �xed, then in

order for the power to drop by a fractional tolerance �pwr, the cell must be balanced

Nbal times, where

fNbal
back

	 = �pwr	: (3.5)

Taking the log of both sides, we �nd that Nbal is proportional to the log of �pwr.

Hence, as may be inferred from Figure 3.3 the asymptotic e�ciency of Lucifer

is O(TcellNcell) where Tcell is the cost of operation within a cell (a function of the

maximum resolution used to express the radiance). Since our spatial partitioning

scheme guarantees the number of objects, Ncell is O(Nobj), Lucifer is intrinsically

O(Nobj) { asymptotically more e�cient than other global illumination schemes.

It is important to note that in these techniques visibility is an important

part (often the most important part) of the cost, and what makes it superlinear.

Lucifer in a real sense \clusters" visibility, since it is carried along with the radiance

representation from cell to cell. As an example, consider a light source blocked by

a large object.

Before it reaches the blocker, the light ux is represented normally, and small

shadows will be carried along as well. After it reaches the blocker, a large portion
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of the light ux will be zero, the small shadows included in it will be absorbed. Any

scheme capable of compressing the light ux data will take advantage of this, and

objects and cells in the shadow will not even interact with the resulting light front.

To illustrate the trade-o� consider the following scene. We have Nobj � 107

objects4.

Any approach that has to consider pairs (either for explicit light transfer or

for visibility) will have to deal with an order of 1014 such interactions.

To represent light uxes at an acceptable level of detail, assume that the

space is 10m by 10m by 3m, and we want about 1 cm accuracy. If we impose a

maximum cell size of 1m3, that means we have have 300 cells to balance.

For each cell wall, we then require a positional resolution of 100 by 100

elements. If we assume the same resolution for direction (1/100th of a radian is

approximately 0:57�), we need to represent 108 elements on each wall.

If we can use wavelet compression by 1000:1 (and we will see in Section 6.13

that this is not unreasonable), radiances on the walls can be represented with 105

coe�cients. Even assuming that at each step of the propagation we deal with O(N2)

interactions between elements (wall-to-object, wall-to-wall, and object-to-wall), that

means� 1010 such interactions. Multiplying by the number of cells, we get� 3�1012

interactions, which is a small fraction of the pairwise number, and this is not taking

into account the speedups possible due to the hierarchical nature of the wavelet

representation: If two coe�cients do not interact, neither do any of their children.

The actual number of such computations is a function of how many times and

at what level of detail we have to do this, but even at this level we have some hope of

winning. An important point here is that the Lucifer numbers do not signi�cantly

4We should note here that in the Lucifer context, the de�nition of the term \object" might be

more powerful than in some other contexts.
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Figure 3.4: \Balls" Model

increase as a function of the number of primitives in the scene.

3.7 Light Through a Window

Let us consider an example of what radiance L on a cell wall looks like. L is a

function of four variables (2 positional, 2 directional).

Figure 3.4 shows an instance of the \balls" model from Haines's Standard

Procedural Database of test models for raytracers (described in [29]) rendered by a

typical raytracing renderer. We have adapted this renderer to perform 4-dimensional

ray tracing after a \light through a window" model. In this, we imagine light from

a scene going through a unit square window. We further imagine sampling the

radiance over the incoming hemisphere of directions on a uniformly spaced grid of

positions. (In Lucifer, the \window" corresponds to a cell wall, but we'll discuss the
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Figure 3.5: Array of Fixed Direction Views

more general case here.)

Before proceeding further, let us transform our de�nition of direction from a

(�; �) parameterization to (�x; �y), where

�x = sin � cos� �y = sin � sin� (3.6)

This avoids discrepancies close to � = 0 and makes for a more uniform grid in

Cartesian 3-space. �2x + �2y = 1 de�nes the unit directional circle (hereafter, UDC).

All real directions must lie within this circle.

The modi�ed renderer permits us to create an array of images, each image

corresponding to a single direction (Figure 3.5) or a single position on the window
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Figure 3.6: Array of Fixed Position Views

(Figure 3.6). In the former case, the individual images are parallel projections and in

the latter case they are \�sheye" views. Note that, as in a perspective view, except

in the special case of an orthographic (parallel) projection, a parallel projection of

a sphere is not round.

From these examples, we can see that a 4-dimensional representation of ra-

diance exhibits the same combination of discontinuities and relatively smooth areas

we �nd in 2-dimensional images.
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3.8 Radiance Representation

Radiance on a cell wall is a potentially discontinuous, generally non-analytic function

of four variables (2 positional, 2 directional). We can represent radiance L at a point

P on a cell wall or a surface and in a direction (�x; �y) with a �nite element expansion

with Nf degrees of freedom:

L(P; �x; �y) =

NfX
i=1

aiBi(P; �x; �y) (3.7)

Even though the basis functions Bi may take on values for �2x + �2y � 1, we can

disregard their behaviour there, since we never evaluate them in that region.

Choices for Bi include: box discretization, Fourier, discrete cosine, orthog-

onal polynomials, \light �elds" (as described by Levoy and Hanrahan in [44]) and

wavelets.

3.8.1 Box Discretization

For box discretization, as done by FIAT, the Bi are constant within a quantized

direction for each quantized position.

Figure 3.7 shows the result of Lucifer using a box discretization on a simple

model consisting of three squares forming a corner of a (root) cell with two spheres

suspended within the cell. The square on the upper right is a di�use white emitter

and the other two squares are di�use red (bottom) and gray (upper left) reectors.

One sphere is a mirror and the other is a di�use green reector. This image illustrates

some of the e�ects possible with Lucifer { di�use surfaces, colour bleeding, soft

shadows, and mirror reection { all produced with the same rendering technique.

There are various ways to perform propagation and object interaction of

the discretized radiances. FIAT describes one possible way, equivalent to the one
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Figure 3.7: Box Discretization Example

we used for Figure 3.7. They have a common shortcoming, however: by quantizing

angles and positions, box discretization causes various rendering artifacts. These can

be reduced by increasing the number of quantized positions or directions, but this

causes memory requirements to increase dramatically, even with dynamic allocation

of memory.

In practice, the CPU time and memory required for box discretization is

limiting. Figure 3.7, for example, required about 9.3MB of memory and 3.2 CPU-

hours on an SGI Indigo 2 workstation.

3.8.2 Wavelets

Wavelets are a promising alternative to other basis functions. They were successfully

applied to radiosity solutions by Gortler, et al. [28] and Schr�oder, et al. [65].

Schr�oder and Hanrahan [66] and Christensen, et al. [12] extended this work from
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Figure 3.8: Original Image (left) and Its Reconstruction from 4-Dimensional Wavelet

Coe�cients (right)

radiosity to the representation of radiance itself. In this section, we will consider

the general applicability of such a wavelet representation of radiance to Lucifer.

Appendix A describes some of the properties of one-dimensional wavelets.

There are two properties of particular interest for radiance representation. First is

their ability to approximate L2 functions, even those with discontinuities, with a

relatively sparse set of coe�cients.

As an example of this, we apply wavelet compression to the 4-dimensional

data shown in Figure 3.5. On the left of Figure 3.8 is a magni�ed view of one image

from Figure 3.5 in a particular direction, on the right is a view in the same direction

that was reconstructed from a 4-dimensional wavelet transform of the original data

compressed by 96% { only the top 4% (in magnitude) of the original coe�cients were

retained. It is important to note that this compression was in all four dimensions
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of the data prior to reconstruction.

There is an in�nite number of base scaling functions �(x) and therefore an

in�nite number of possible wavelets. For the example above, we used the L = 2

\Coiet" wavelet described in [16], for these, but other wavelets gave qualitatively

similar results. Part of our work will be to �nd which wavelet basis works best for

radiance representation. Most importantly, we need to evaluate the tradeo� between

improving approximation by increasing Nv, the number of vanishing moments, and

minimizing operation count by reducing Wh, the size (\support") of fhmg, the set
of wavelet coe�cients.

Other considerations in selecting a wavelet include:

� Is �(x) symmetric about some value of x?

� Does �(x) need to have an analytical form? (This leads to biorthogonal

wavelets.)

� Does re�nement of the wavelet interpolate the coarser values?

� What is the tradeo� between reducing Wh and representing discontinuities

compactly?

The second property of wavelets relevant to Lucifer is their dyadic nature,

which corresponds well with our octree spatial subdivision scheme. Splitting a cell

whose walls represent radiance with with wavelets amounts to a partitioning of the

wavelet coe�cients.

We will consider these issues further in Chapter 5.
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Chapter 4

Making Illumination Models

More Physically Plausible

In our presentation of the Lucifer algorithm in Chapter 3, particularly in Section 3.3,

we described the need for illumination models that conserved energy. We will de-

scribe such models in this chapter. This work has been published separately in

reference [45] and (more accessibly) in reference [47].

Illumination modelling computation is an essential part of any rendering al-

gorithm. Getting an exact physical model of the interaction of light with a surface

is, for most surfaces occurring in the real world, a very di�cult problem. Conse-

quently, much e�ort has been expended on �nding approximations that are both

good-looking and quickly computed. An extensive, if somewhat dated, summary of

these illumination models is in Hall [30].

Looking good and being quickly computable are su�cient criteria for most

raytracing renderers (see Section 2.5.7.3). If one of these illumination models is used

in a radiosity computation, however, it is necessary to additionally ensure that, since
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radiosity is based on principles of energy conservation (see Kajiya [38], for example),

the illumination model itself conserves energy. The global illumination model we

present in Chapter 3 also requires energy conservation.

Another recent technique described in Larson (ne' Ward) [78] constructs

functions to �t actual BRDFs. Such �ts are likely to be more successful if the func-

tions themselves are, like the data they �t (as demonstrated empirically in Clarke

and Perry [13]), consistent with physics (at least within experimental uncertainty).

So a need has arisen for illumination models that are not only good-looking

and easy to compute, but are also \physically plausible". 1

In this chapter we will look at the correspondence between the fundamental

reectance equation (2.9) and traditional illumination models. Then we will look at

ways to modify those models to make them more physically plausible.

4.1 Energy Conservation

The �rst physical constraint we will examine with respect to illumination models

is that of energy conservation. Physically plausible illumination models must obey

energy conservation. In a steady-state scene, the input power and the rest of the

scene con�guration (objects and their positions, surface properties, etc.) are taken

not to vary with time. In such a situation, energy conservation is synonymous with

power conservation. The total amount of power reected, i.e., M dA, where M is

the exitance, must be less than or equal to the total power incident E dA, where E

1We use the term plausible here in contrast to that of feasible in Neumann and Neumann [55].

A \feasible" illumination model is one that we can imagine constructing physically. This is not
always possible. The weaker de�nition of a \plausible" illumination model is one whose existence

does not violate physics.
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is the irradiance. This must hold for all areas dA in our scene, hence

M � E (4.1)

From Siegel and Howell [68], we have an equation similar to Equation (2.7)

describing the exitance dM due to a reected radiance Lr radiated into an in�nites-

imal solid angle d!r around a direction V, so that

dM = (N �V)Lr d!r (4.2)

We substitute Equation (2.9) into this and integrate over 
+
N
to get

M =

Z

+

N

Z

+

N

fr(S;V)Li (N � S) (N �V) d!i d!r (4.3)

We can also integrate Equation (2.7) to get

E =

Z

+

N

Li (N � S) d!i (4.4)

So, if we make the trivial assumption that E > 0, we divide both sides of

Equation (4.1) by E to getR

+

N

R

+

N

fr(S;V)Li (N � S) (N �V) d!i d!rR

+

N

Li (N � S) d!i � 1 (4.5)

Energy conservation does not depend upon the particular Li distribution.

Given any Li, Equation (4.5) must hold, so, as we did with the Phong illumination

models in Section 2.5.4.1, let us use a directional light source of the form

Li = EN �(cos �i � cos �i) �(�i � �i) (4.6)

to represent a directional source of normal irradiance EN in a direction S. Accord-

ing to the ANSI/IES standard [36], M=E in this case becomes the \directional-

hemispherical reectance", which we will refer to as k�
2. Integrating the �-functions

2In Neumann and Neumann [55], this is referred to as \albedo", but that usage is imprecise as

the de�nition of that term does not require a unidirectional source. In addition, \albedo" is not

de�ned in the standard.
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Figure 4.2: Sphere shaded with an energy-conserving Phong illumination model,

using Blinn's FB
s , for an assortment of incident angles with respect to the viewer

(�L), specular fractions (k�), and specular distribution half-angles (�).

and cancelling out common factors, we get

k� =

Z


+

N

fr(S;V) (N �V) d!r � 1 (4.7)
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4.1.1 Making Phong Illumination Models Conserve Energy

Let us apply these results to a Phong illumination model to see what constraint(s)

energy conservation leads to. Recalling Equation (2.27), Equation (4.3) becomes

M = EN [kd � (N � S) + ksHs(S)] (4.8)

where we have de�ned

Hs(S) =

Z

+

N

Fs(S;V) (N �V)d!r (4.9)

Figure 4.1 shows Hs evaluated numerically using both Equations (2.20) and (2.21)

for a variety of specular exponents. Note that Hs is a function of the incident

direction and specular exponent only and that it can be thought of as an integral

operator acting on a given Fs.

As we might expect, Equation (4.4) becomes

E = EN (N � S) (4.10)

so that

k� = kd � + ks
Hs(S)

(N � S) (4.11)

To guarantee energy conservation regardless of reection geometry, it is nec-

essary to guarantee that k� � 1 for all incident directions. But there is a problem

here. Given the Fs's in Equations (2.20) and (2.21) and regardless of S, it is always

the case that Fs � 0 and, furthermore, there is always some non-vanishing region of


+
N
over which Fs > 0. That means that Hs is always > 0, as Figure 4.1 illustrates.

So that if ks > 0, it is always possible to choose �i close enough to 90o that k�

will be greater than one. We therefore conclude that the specular terms of Phong

illumination models do not conserve energy at su�ciently large incident angles.
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After Neumann and Neumann [55], let us consider a di�erent formulation

of an illumination model. Start from Equation (2.19), but suppose that, instead of

being constant, we allowed ks to vary with S in such a way that energy conservation

was maintained. (As Equation (4.11) shows, we are not getting any trouble from

the di�use term, so we will leave it alone.)

Let k� be the fraction of exitance that is reected specularly:

k� �
R

+

N

dMspec

M
=

�
1 +

kd � (N � S)
ksHs(S)

��1
(4.12)

We can solve Equations (4.11) and (4.12) for kd and ks to get

kd = ��1 k� (1� k�) (4.13)

ks =
k� k� (N � S)

Hs(S)

so we can rewrite the BRDF for the new illumination model as

fr(S;V) = k�

�
1� k�
�

+
k� Fs(S;V)

Hs(S)

�
(4.14)

We can also construct the analogue of Equation (2.19) to express this result

in terms of radiance:

Lr = k�La + k� (N � S)
�
1� k�
�

+
k� Fs(S;V)

Hs(S)

�
Ed (4.15)

where

k� = k�

"
1 + k�

 Z


+

N

(N � S)Fs(S;V)

Hs(S)
d!i � 1

!#
(4.16)

corresponds to Equation (2.28).

Figure 4.2 shows what such an illumination model looks like when applied

to a sphere with a single directional light source and no ambient radiance. For this
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�gure, we have used Blinn's FB
s . We have also taken k� = 1, since any other value

would just be a uniform reduction by a constant factor in image radiance. Notice

that, unlike Figures 2.4 and 2.5, the highly specular parts of the printed images are

necessarily clamped in order to show the di�use parts.

4.1.2 Do Torrance-Sparrow IlluminationModels Conserve Energy?

Figure 4.3 shows some numerical integrations of Equation (4.7), contrasting Phong

illumination models with Torrance-Sparrow illumination models. All Torrance-

Sparrow illumination models were computed with a Fresnel factor F = 1 (i. e.

a large index of refraction) to show the worst case.

One way to produce an energy-conserving Torrance-Sparrow illumination

model suggests itself: simply choose any value of bj such that

bj <
1�

k
Tj
�

bj

�
max

(4.17)

where

�
k
Tj
�

bj

�
max

is the maximum value as shown in Figure 4.3. (The Beckmann-

Spizzichino distribution is not a problem as long as its integral is always less than

unity, and it has no b-coe�cient to adjust anyway.)

Nevertheless, doing this would probably be a mistake. To see why, look

at the plot for kT1� =b1, the Torrance-Sparrow illumination model with the Phong

microfacet distribution. Notice that it does not diverge as �i ! 90o, even though

kP� =ks, the corresponding Phong illumination model with a Phong specular term,

does diverge. The same is true for kT2� =b2 compared to kB� =ks.

Why should this be? The answer lies in the geometrical attenuation factor

G. As �i ! 90o, G is guaranteed to be less than or equal to unity and, if (V �H) > 0

(i.e., V and S are not antiparallel), it will vanish in the limit.
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Figure 4.3: Directional-hemispherical reectances as functions of incident angle for

a Phong illumination model (kP� ), a Blinn illumination model (kB� ), and Torrance-

Sparrow illumination models with Phong (kT1� ), original Torrance-Sparrow (kT2� ),

Trowbridge (kT3� ), and Beckmann-Spizzichino (kT4� ), microfacet distributions.
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Figure 4.4: Directional-hemispherical reectances as functions of incident angle for

a Neumann-Neumann illumination model (kN� ) and a Minnaert illumination model

(kM� )

But what does this really mean? If we go back to the derivation of the geo-

metrical attenuation factor in Torrance and Sparrow [75], we see that G is designed

to compensate for the blocking of light that falls on a facet and the masking of light

that the facet reects. The blocking and masking agents are themselves other facets.

This leads to a critical question for Torrance-Sparrow illumination models

and energy conservation: What happens to the light that gets blocked or masked?

The illumination model does not treat secondary reection. Instead, it acts as

though the blocked or masked light were completely absorbed by the surface. This

is unlikely.

For this reason, while it may be reasonable to consider the use of Torrance-

Sparrow illumination models as ad hoc basis functions to �t empirical data, as

was done in Larson [78], we should do so realizing that it is not really \fair" to

use Torrance-Sparrow illumination models in an energy-conserving context. Basis

functions that properly account for blocked and masked light are needed, but we

will not attempt to derive them here.
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4.1.3 Making Neumann-Neumann and Minnaert

Illumination Models Conserve Energy

Figure 4.4 shows some numerical integrations of Equation (4.7) for Neumann-Neumann

and Minnaert illumination models. Contrast these with those of Figure 4.3.

Like the Torrance-Sparrow illumination models, k� is bounded in both cases,

so we can put a limit on bN or bM to assure energy conservation.

In the case of a Minnaert illumination model, we can go a bit further and

note that k� can be determined analytically (using Equation (2.27), as was done in

Woodham and Lee [85]). The resulting BRDF can be formulated directly in terms

of k�:

fr(S;V) = k�
(k + 1)

2�
((N � S) (N �V))k�1 (4.18)

where, as always, any value of k� between 0 and 1 will guarantee energy conservation.

4.2 Making Illumination Models Reciprocal

The second physical constraint we will examine with respect to illumination models

is that of Helmholtz reciprocity. A physically plausible illumination model ought to

obey Helmholtz reciprocity (see Siegel and Howell [68]). In terms of the BRDF, this

means that

fr(S;V) = fr(V;S) (4.19)

for all V and S in 
+
N
.

4.2.1 Are Phong Illumination Models Reciprocal?

Using the BRDF of a Phong illumination model given in Equation (2.20), and

expressing Fs in the functional form Fs(S;V), we see that such an illumination
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model will be reciprocal if

Fs(S;V)

(N �V)
=
Fs(V;S)

(N � S) (4.20)

Substitution of both FP
s from Equation (2.20) and FB

s from Equation (2.21)

reveals that neither of these illumination models is reciprocal3.

Is our energy-conserving modi�ed Phong illumination model reciprocal? Ap-

plying Equation (4.19) to Equation (4.14), we are asking if

Fs(S;V)

Hs(S)
=
Fs(V;S)

Hs(V)
(4.21)

Again, the answer is no for both Fs's.

4.2.2 Are Torrance-Sparrow Illumination Models Reciprocal?

By inspection, it is easy to see that the Torrance-Sparrow illumination models are

all reciprocal. This should come as no surprise, as the assumption of reciprocity was

part of their derivation in [75]. Unfortunately, the arguments made above about

their energy conservation still limits their plausibility.

4.2.3 Are Separable Illumination Models Reciprocal?

It is also easy to see by inspection that both Neumann-Neumann and Minnaert

illumination models are reciprocal. Again, this is because reciprocity was part of

their derivation.

As with Torrance-Sparrow illumination models, separable illumination mod-

els could be used as ad hoc basis functions. Care needs to be taken, though, to retain

reciprocity. Given two separable BRDFs fr1(S;V) = a1(S)r1(V) and fr2(S;V) =

a2(S)r2(V), a simple linear combination of the form fr(S;V) = c1fr1(S;V) +

c2fr2(S;V) for some constants c1 and c2 is not, in general, reciprocal.

3Even though FB
s (S;V) = FB

s (V;S). and FP
s (S;V) = FP

s (V;S).
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We can, however, generalize the work of Westin, et al. [82] and note that if

we can express the BRDF in a separable matrix product form

fr(S;V) = [Q(S)]T MQ(V) (4.22)

where Q(x) is some (possibly non-linear) vector function of x and M is a constant

matrix, then this BRDF is reciprocal for any symmetric M. This is how we could

combine multiple Neumann-Neumann, Minnaert, or other similar basis functions:

set them to be the elements of Q and �nd a symmetricM to �t our data, as Westin,

et al. did for spherical harmonics.

4.3 An Energy-Conserving, Reciprocal Illumination Model

Objections can be raised to all of the illumination models we are presented so far,

either on the grounds of implausibility (Phong) or of behaviour that, while plausible,

is unlikely to �t a real BRDF (Torrance-Sparrow, Neumann-Neumann, Minnaert).

Consider instead a Phong illumination model formulated like Equation (2.24),

but using Blinn's FB
s and omitting the (N � S) in the denominator of the specular

term, we �nd

fr(S;V) = kd + ksF
B
s (S;V) (4.23)

Obviously, since FB
s is reciprocal, this BRDF is reciprocal. (We could also have

done this with FP
s , since it is also reciprocal.)

Figure 4.5 shows the resulting k�. It is bounded, so we can always conserve

energy by limiting ks and kd. (Unfortunately, we cannot formulate the illumination

model in terms of k� and k� as we did above, since doing this makes the illumination

model non-reciprocal.)
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Figure 4.5: Directional-hemispherical reectance as a function of incident angle for

a reciprocal Phong illumination model, using Blinn's FB
s (kH� )

Plausibility

Conserves Other

Illumination Model Energy? Reciprocal? Objections

Phong no no

Energy-Conserving Phong yes no

Torrance-Sparrow yes yes no secondary reection

Neumann-Neumann yes yes non-specular behaviour

Minnaert yes yes non-specular behaviour

Reciprocal Phong-Blinn yes yes

Table 4.1: Summary of Plausibility Results

Figure 4.6 shows some images produced with a reciprocal Phong illumination

model. As in Figure 2.4, ks varies between 0 and 1 and kd is taken to be 1� ks.

While resembling Figure 2.4, the images for large �L are dimmer, as we might

expect from the absence of the (N � S) in the specular denominator. Nevertheless,

they are not as diminished as those of the separable illumination models in Figure 2.5

(which does not even bother showing �L > 60o).

70



10 o20 o30 o40 o50β

φk 45 45 135 135 45

o

s 135 4545o o o o ooooo 135o90 o90 o90 o90 90L

1.00

0.75

0.25

0.50

0.00

Figure 4.6: Sphere shaded with a reciprocal Phong illumination model for an assort-

ment of incident angles with respect to the viewer (�L), specular coe�cients (ks),

and specular distribution half-angles (�)

4.4 Summary of Plausibility Results

We have examined a number of illumination models commonly used in graphics,

looking at their plausibility in terms of energy conservation and reciprocity. Our

results are summarized in Table 4.1.

As originally de�ned, Phong illumination models fail on both counts. It is

possible to modify a Phong illumination model to conserve energy and even, as

shown in Equation (4.14), have an energy-based parameterization, but this rules

out satisfying reciprocity.

Torrance-Sparrow illumination models are reciprocal and appear to conserve

energy, but their underlying derivation fails to account for blocked and masked
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energy. They may still be useful, however, as ad hoc basis functions.

Neumann-Neumann and Minnaert illumination models are similar. Both are

plausible: they conserve energy and are reciprocal. Minnaert illumination models

have been used successfully to �t radiometric data. While it would be worth trying

one of them as a basis, we expect that they will prove less useful with highly specular

surfaces because both illumination models peak undesirably in the normal direction.

A di�erently-modi�ed Phong illumination model given in Equation (4.23) is

reciprocal and can be constrained to conserve energy.

72



Chapter 5

Wavelet Radiative Transport

and Surface Interaction

In Section 3.8.2, we discussed how wavelets show promise for the compact repre-

sentation of radiance needed by Lucifer. In this chapter, we will see that apart

from compression, representing radiance in terms of a wavelet basis with direction

expressed in \Nusselt coordinates" makes several calculations of relevance to illu-

mination computation easier.

In particular, we will show how to construct discrete representations of the

radiative transport operator T (de�ned in Section 2.4.1) and the surface interac-

tion operator S (de�ned in Section 2.4.3) in terms of inner products of smoothing

functions. The blocked propagation operator B (de�ned in Section 2.4.2) can be

constructed from the realization of T and will be presented in Chapter 7. Notice

that these all act directly on wavelet coe�cients themselves and do not require a

full inverse wavelet transform.
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Figure 5.1: Nusselt Coordinates

5.1 Radiance in Nusselt Coordinates

As we discussed in Section 2.4.1, radiance at a point P in a direction S is usually

represented by a function L(P;S). If we con�ne our discussion to surfaces, we can

assume a planar (possibly local) parameterization for P of (u; v). S is then typically

represented in polar and azimuthal coordinates (�; �) according to the local frame

of reference.

Consider the x, y, and z direction cosines corresponding to a direction (�; �):

�x = sin � cos� �y = sin � sin� �z = cos � (5.1)

We take (�x; �y) to be an alternative parameterization of direction.

It is convenient in what follows for all variables to vary between the extrema

of 0 and 1, so let us make a change of the directional variables from (�x; �y), which

we used in Section 3.7 to de�ne the UDC, to (�; �):

� =
�x + 1

2
� =

�y + 1

2
(5.2)

Figure 5.1 shows the relation between (�; �) and (�; �) graphically. It also shows
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the UDC.

To convert integration over (�; �) to integration over (�; �), the determinant

of the Jacobian is: ����@(�; �)@(�; �)

���� = 4

cos � sin �
(5.3)

so, assuming Li is zero for directions outside the directional limiting circle, Equa-

tion (2.11) becomes

L = Le + 4

Z 1

0

Z 1

0
fr(S

+;V)Li(S
+) + ft(S

�;V)Li(S
�) d�i d�i (5.4)

That the integral no longer contains trigonometric functions should come as

no surprise. We have simply used a di�erential form of the \Nusselt analog" ([56],

but see Cohen and Wallace [14] for a description in English): the amount of power

per unit area transferred from a di�erential solid angle d!i is proportional to d�i d�i,

the area of the surface that the projection of d!i on a unit sphere subtends. For

this reason, we refer to � and � as \Nusselt coordinates".

We also note that, since �2x + �2y + �2z = 1 and since each vector is de�ned

only over a hemisphere, not the whole directional sphere, we can express S+, S�,

and V all unambiguously in terms of their respective incident and reected �'s and

�'s. Simply put, it is always clear which sign to attach to the square root.

Other ways to parameterize the directional component of a radiance distri-

bution are possible. Light �elds (as in Levoy and Hanrahan [44]) and lumigraphs

(as in Gortler, et al. [27]), are very promising approaches for display purposes.

Christensen, et al. [12] use a combination of a gnomonic projection and \stretch"

to map directions to the unit square. None of these approaches, however, leads to

the simpli�cation of surface interaction that Equation (5.4) demonstrates.
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5.2 Radiance Representation

What are the characteristics of a four-dimensional radiance distribution L(x; y; �; �)?

The easiest way to visualize this is as \light through a window" where an observer

at position (x; y) on a window casts a ray in direction (�; �). For a �xed direction,

the resulting two-dimensional projection is a parallel projection1, as shown in the

individual cells of Figure 3.5. For a �xed position, the distribution in (�; �) would

be a \�sheye" view, as shown in the individual cells of Figure 3.6.

In both cases, the result is an image, so we can deal with those radiance

distributions as we deal with images.

Radiance at a point on a surface is a potentially discontinuous, generally

non-analytic function. We can approximate it with a �nite element expansion with

Nf degrees of freedom:

L(x; y; �; �) =

NfX
j=1

bjBj(x; y; �; �) (5.5)

Choices for the basis functions Bi include box discretization (a la FIAT), Fourier,

discrete cosine, spherical harmonics, orthogonal polynomials, and wavelets. We are

particularly interested in wavelets because, unlike the other bases listed, their basis

functions are of limited support and they can represent discontinuities compactly.

They are also capable of considerable compression.

5.3 Multidimensional Wavelets

Appendix A summarizes the properties of one-dimensional wavelets. In this section,

we will describe multidimensional wavelets with the intention of applying them to

radiative transport and surface interaction.

1The special case (�; �) = ( 1
2
; 1
2
) is an orthographic projection.
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For D-dimensional coordinates

q = (q1; q2; : : : ; qD); (5.6)

we can de�ne a set of multidimensional wavelet basis functions indexed by a standard

multiresolution index

j = (�j ; l
j
1; m

j
1; l

j
2; m

j
2; : : : ; l

j
D; m

j
D) (5.7)

where �j , which we call the \basis selector", determines the combination of one

dimensional smoothing and wavelet functions:

Bj(q) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
l
j

1
m
j

1

(q1)�lj
2
m
j

2

(q2) : : :�lj
D
m
j

D

(qD) �j = 0

 
l
j
1
m
j
1

(q1)�lj
2
m
j
2

(q2) : : :�lj
D
m
j

D

(qD) �j = 1

�
l
j

1
m
j

1

(q1) lj
2
m
j

2

(q2) : : :�lj
D
m
j

D

(qD) �j = 2

...

 
l
j
1
m
j
1

(q1) lj
2
m
j
2

(q2) : : : lj
D
m
j

D

(qD) �j = 2D � 1

(5.8)

We refer to the special case of �j = 0 as the \pure smoothing" component, as the

corresponding basis function is made up of only smoothing functions.

We can apply Equation (A.10) multi-dimensionally. If we have j as in Equa-

tion (5.7) and de�ne k as

k = (�k ; lk1; m
k
1; l

k
2; m

k
2; : : : ; l

k
D; m

k
D) (5.9)

then D
~Bj j Bk

E
q
= ��j�k

DY
d=1

�
l
j

d
lk
d

�
m
j

d
mk
d

(5.10)

(Note the use of the subscripted inner product described in Section A.3.) ~Bj is iden-

tical to Bj as de�ned in Equation (5.8), but with the primal wavelets and smoothing

functions replaced by their duals.
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This is the \standard" multidimensional Cartesian product basis. It is also

possible to constrain l
j
1 = l

j
2 = : : : = l

j
D � lj, resulting in the so-called \nonstandard"

basis. In general multidimensional (especially image-oriented) applications, as cited

in Daubechies [16] and in Schr�oder et al. [65], the nonstandard bases are preferred

because of their \square" support.

In this paper, we are considering 4-dimensional, nonstandard basis functions,

so let us enumerate the coordinates with the 4-vector

q = (u; v; �; �) (5.11)

and the basis functions with a nonstandard multiresolution index

j = (�; l;mu; mv; m�; m�): (5.12)

Using Equations (A.1), (A.3), (A.5), (A.6) and (5.8), all the basis functions

at level l of the pyramid can be written in terms of the � = 0 basis functions at level

l + 1:

B�lm(q) = 4

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

P
m hm0

u
hm0

v
hm0

�
hm0

�
B0(l+1)(2m+m0)(q) � = 0

P
m0 gm0

u
hm0

v
hm0

�
hm0

�
B0(l+1)(2m+m0)(q) � = 1

P
m0 hm0

u
gm0

v
hm0

�
hm0

�
B0(l+1)(2m+m0)(q) � = 2

...

P
m0 gm0

u
gm0

v
gm0

�
gm0

�
B0(l+1)(2m+m0)(q) � = 15

(5.13)

where m0 � (m0
u; m

0
v; m

0
�; m

0
�).

So for any function f ,

hf j B�lmiq =
X
m0

W�m0

D
f j B0(l+1)(2m+m0)

E
q

(5.14)

where W�m0 is (4 times) a product of smoothing and wavelet coe�cients.
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5.4 Irradiance

Irradiance is computed as

E(x; y) =

Z

R
N

Li(x; y; �; �) jN � Sj d!i: (5.15)

Again making use of Equation (5.3), we have

E(x; y) = 4

Z 1

0

Z 1

0
Li(x; y; �; �)d�id�i: (5.16)

The limits of the both integrations are 0 and 1, but if Li is zero outside the UDC

(see Figure 5.1), we can safely extend the integration limits to �1 and +1.

This allows us to say that if

Li(x; y; �; �) =
X
j

bjBj(x; y; �; �) (5.17)

then

E(x; y) = 4
X
j

bj hBj j 1i�;� (5.18)

is the wavelet representation of the irradiance.

The inner products on the right hand side are usually easy to compute in tab-

ular form, if not analytically, making particular use of Equation (A.4) to eliminate

many coe�cients.

5.5 Power Flux

The power ux passing through an area A is de�ned as

� =

Z
A

Z

R
N

Li(x; y; �; �) jN � Sj d!idA =

Z
A
E(x; y) dA (5.19)

If we have a spatial parameterization (u; v) $ (x; y) that maps the unit

square to A and back, then we have

� =

Z 1

0

Z 1

0
E(x(u; v); y(u; v))

����@(x; y)@(u; v)

����dudv: (5.20)
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If, as above, we take E(x; y) = 0 for (x; y) outside of A and if we extend Equa-

tion (5.17) to include this parameterization:

Li(x; y; �; �) =
X
j

bjBj(u(x; y); v(x; y); �; �); (5.21)

then we can incorporate Equation (5.18) to get the wavelet representation of ux:

� = 4
X
j

bj

�
Bj j

����@(x; y)@(u; v)

����
�
q

: (5.22)

5.6 Transport

We represent radiance as

L(q) =
X
k

bkBk(q) (5.23)

where

bk =
D
L j ~Bk

E
q

(5.24)

and k is de�ned as in Equation (5.9).

Radiance travels from a source point qs to a destination point qd. If we have

a mapping of qs ! qd, we can compute

Ld(qd) =
X
k

bdkBk(qd) (5.25)

where

bdk =
D
Ls(qs(�)) j ~Bk

E
qd

=
X
j

bsjTjk; (5.26)

j is de�ned as in Equation (5.7), and we de�ne geometry-dependent \transport

coe�cients"

Tjk �
D
Bj(qs(�)) j ~Bk

E
qd
: (5.27)
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Using the multidimensional re�nement shown in Equation (5.13), given T(0ljmj)k

on level lj , we can compute all coe�cients on the coarser level above it in the pyra-

mid:

T(�j(lj�1)mj)k =
X
m0

W�jm0T0lj(2mj+m
0)k (5.28)

and given Tj(0lkmk) on level lk, we can compute

Tj(�k(lk�1)mk) =
X
m00

W�km00Tj(0lk(2mk+m
00)) (5.29)

wheremj = (mj
u; m

j
v; m

j
�; m

j
�) andmk = (mk

u; m
k
v ; m

k
�; m

k
�). This means that we can

compute all transport coe�cients strictly in terms of pure smoothing components:

Tjk =
X
m0

X
m00

W�jm0W�km
00T(0lj(2mj+m0)(0lk(2mk+m00) (5.30)

5.7 Surface Interaction

Using Equation (5.8), let us de�ne a mixed primal-dual, four-dimensional, nonstan-

dard wavelet basis:

Fj(�s; �s; �r; �r) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

~�ljmi
�
(�s)~�ljmi

�
(�s)�ljmj

�
(�r)�ljmj

�

(�r) �j = 0

~ ljmi
�
(�s)~�ljmi

�
(�s)�ljmj

�
(�r)�ljmj

�

(�r) �j = 1

~�ljmi
�
(�s) ~ ljmi

�
(�s)�ljmj

�
(�r)�ljmj

�

(�r) �j = 2

...

~ ljmi
�
(�s) ~ ljmi

�
(�s) ljmj

�
(�r) ljmj

�

(�r) �j = 15

(5.31)

where

j = (�j ; lj; m
i
�; m

i
�; m

j
�; m

j
�) (5.32)

So Fj(�s; �s; �r; �r) is Bj(�s; �s; �r; �r) with dual scaling functions and wavelets

substituted for the primal scaling functions and wavelets in the incident directional

components only.
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If we then represent the BRDF in Nusselt coordinates with this basis:

fr(�s; �s; �r; �r) =
X
j

f rj Fj(�s; �s; �r; �r) (5.33)

and

Li(x; y; �s; �s) =
X
k

bkBk(x; y; �s; �s) (5.34)

where

k = (�k ; lk; m
k
u; m

k
v ; m

k
�; m

k
�) (5.35)

then, applying Equation (5.4) and again requiring either fr or Li (or both) to

vanish outside the UDC (thus allowing us to extend our integration to (�1::1)),

the reected radiance is

Lr = 4

Z 1

0

Z 1

0
fr(S

+;V)Li(S
+) d�s d�s

= 4
X
j

X
k

f rj bk hFj j Bki�s;�s (5.36)

We seek a wavelet representation of the post-interaction radiance:

Lr =
X
n

brnBn(x; y; �r; �r) (5.37)

Again using the basis representation of the reected radiance as in Equations 5.23

and 5.24, it follows that

brn =
D
Lr j ~Bn

E
x;y;�r ;�r

(5.38)

So, substituting Equation 5.36, we �nd

brn = 4
X
j

X
k

f rj bk

D
hFj j Bki�s;�s j ~Bn

E
x;y;�r ;�r

(5.39)

Let us now simplify notation. We can rewrite Fj and Bk compactly by

de�ning a function �
�
lm(x) that takes on the value of the smoothing function or the
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wavelet depending on a single binary value �:

�
�
lm(x) =

8><
>:
�lm(x) � = 0

 lm(x) � = 1

(5.40)

and similarly for a ~� with ~� and ~ in place of � and  , respectively.

We also take indexable (from 0 to 3) representations of the arguments to Fj

and Bk, respectively

p = (�s; �s; �r; �r) (5.41)

and

q = (u; v; �s; �s): (5.42)

If we now adopt the notation where ih�i refers to the �th bit of the binary

form of i (i.e. i2�� mod 2), we can express the innermost inner product of Equa-

tion 5.39 as

hFj j Bki�s;�s =
Z 1

0

Z 1

0

"
1Y

�=0

~�
�
j

h�i

ljm
j
�

(p�)�
�k
h�i

lkmk
�
(q�)

3Y
�=2

�
�
j

h�i

ljm
j
�
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and removing factors that do not depend on the variables of integration from the

integral, we have
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If we now de�ne a multiresolution delta tensor

���
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+
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we can rewrite Equation 5.44 as

hFj j Bki�s;�s = �02
jk�

13
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and we can continue to apply the � symbol to simplify the whole nested inner

product in Equation 5.39

D
hFj j Bki�s;�s j ~Bn

E
x;y;�r ;�r

= �02
jk�

13
jk �

00
kn�

11
kn�

22
jn�

33
jn: (5.47)

The �s are very much dependent upon our choice of wavelet, so we will defer

discussing their computation to Chapter 7.

We can do the same thing with a BTDF and so represent general surface

interactions: reection, refraction, and transmission.
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Chapter 6

Wavelet Radiative Transfer

Implementation and Practicum

In this chapter, we discuss the implementation of the WRT algorithm (hereafter,

\WRT"), along with a practicum (\a course of study ... that involves the super-

vised practical application ... of previously studied theory"). We apply some of

the concepts of Chapter 5 to a classic illumination problem: the transport of radi-

ation between two arbitrarily-oriented polygons. Before that, however, we describe

naming conventions, design decisions, and classes that apply to both WRT and the

Lucifer implementation we discuss in Chapter 7.

These implementations take up approximately 30,000 lines of C code. We

therefore emphasize that the classes and pseudocode we present here are in most

cases simpli�ed for clarity.
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Class Pre�x Meaning

Polygon pgn a 2D polygon with an arbitrary number of edges

Transform tf a conventional 4� 4 a�ne 3D transform

Transform2d tf2d a conventional 3� 3 a�ne 2D transform

TransportGeometry tg geometry for WRT

WaveletCoe�cientTree wct a WCT (sparse tree of wavelet coe�cients)

WaveletIndex wi indexes a wavelet coe�cient

WaveletNode wn a single node of a WCT

(16 float values per channel)

Table 6.1: Major WRT Classes and Their Abbreviations.

6.1 Naming Conventions

Throughout WRT and Lucifer implementations, we have followed certain program-

ming conventions that we feel have improved reliability and exibility and allowed

many of the bene�ts of object-oriented programming while developing in a highly

portable environment1. We describe those conventions here to enhance the read-

ability of what follows.

The most visible conventions are those we use to name objects (i.e., C data

structures) and their associated methods. They are an adapted form of what are

known as \Hungarian" conventions2, partly in deference to the nationality of their

chief developer, Charles Simonyi [70].

As implemented here, all classes have C typedefs associated with them.

Their names are mixed case. For example, three dimensional vectors have a typedef

\Vector". Each class also has a lower-case pre�x. Every instance of that class (i.e.,

object) has a name that begins with that abbreviation. The rest of the object

name describes the particular object in mixed case. An example of the \Vector"

1Indeed, the code moves between IBM AIX, SGI IRIX, and Intel (RedHat) Linux with fewer
than 50 system-dependent lines of code, mostly due to di�ering system header �les.

2See McConnell [50] for an additional discussion of Hungarian naming, particularly as practiced

at Microsoft.
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lmax 1 2 3 4 5 6 7 8

Number of Bits 9 14 18 23 27 31 35 40

lmax 9 10 11 12 13 14 15 16

Number of Bits 44 48 52 56 60 64 68 73

Table 6.2: Number of Bits Required to Store a Nonstandard Multiresolution Index

as a Function of the Maximum Resolution Level

class might be \vNormal". The pre�x, followed by a \ ", also prefaces the names

of (\member") functions that take a data structure (or a pointer to such a data

structure) as a �rst parameter. This allows us to represent the object-oriented

concept of a \method" in C. For instance, we have a function v mag() that returns

the magnitude of its �rst (and only) argument, a Vector. Table 6.1 lists the major

classes of WRT (and Lucifer) with their pre�xes.

6.2 Indexing Wavelets

Wavelet indices contain the six integer values referred to in Section 5.1:

� the basis selector � 2 f0 : : :15g, as used in Equation (5.8),

� the level l 2 f0 : : : lmaxg, where lmax is the maximum depth of resolution, and

� a vector of four o�set values m with each component mi 2
n
0 : : :2l � 1

o
(for

Haar).

Theoretically, the total number of bits required to represent a wavelet index

is 4 + dlog2(lmax+ 1)e + 4lmax. Table 6.2 shows this quantity for several possible

values of lmax. If we represented the coe�cients as single channel 32-bit oating
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typedef struct f
short int nu;
short int l ;
short int m[4];

g WaveletIndex ;

Figure 6.1: The WaveletIndex typedef

point values, then for any value of lmax > 6 we would use more storage for indices

than for coe�cients.

For speed of access, it is advantageous to use data that is at least 8-bit

byte-aligned.

6.3 The WaveletIndex Class

Figure 6.1 shows the wavelet index typedef we have adopted for our implementation.

The names and sequence of the components are consistent with Equation 5.12.

For the time being, we have implemented all of these �elds as short (16 bit)

unsigned integers. This allows us to go as far as level wi.l = 16 without overowing

the o�sets. Experience suggests that the maximum level we will use will be much less

than 16. We could achieve a minor reduction in memory usage by using unsigned

char variables for wi.nu3.

The implemented structure requires 96 bits, which is 19 bits (31 %) larger

than the theoretical minimum given in Table 6.2, but as we shall see in the next

section, it is possible to group coe�cients in such a way that the overhead of having

to store their indices is minimal.

3but not wi.l, since it needs to represent levels from 0 to the maximum level inclusively.
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6.4 Storing Wavelet Coe�cients

Because wavelet coe�cients are hierarchical in nature, we refer to the data structures

we devise here to store them as \wavelet coe�cient trees" (hereafter, \WCT"s).

Representing aWCTwith a maximum level of resolution lmax requires 16
lmax+1

possible wavelet coe�cients per channel. Clearly, compression is called for. In Sec-

tion A.7, we describe how wavelet properties provide an L2-optimal compression

strategy { thresholding low-magnitude coe�cients. In this case, the data was single-

channel and single dimensional (i.e., each wavelet coe�cient's support was unique),

but the results are independent of the wavelet dimensionality.

We not only want to guarantee a good approximation of the data with the

compressed coe�cients, but also e�cient use of storage and fast reconstruction. We

will give an example of wavelet compression in Section 6.13.

6.4.1 Hashing Coe�cients

Given a sparse set of wavelet radiance coe�cients fbkg, we need to store them in

a way that facilitates the mapping of the wavelet index k! bk needed to perform

the transport operation Equation (5.26). The obvious way to do this is with a hash

table. Not knowing the set of destination indices fkg in advance prohibits perfect

hashing, so it is necessary that the hashing scheme allows for collisions and that the

hash table entries contain k as well as bk values.

6.4.2 Multichannel Grouping

As we mentioned in Section 2.4.1, we have been treating data monochromatically

throughout this thesis. In practical applications, however, we must evaluate Equa-

tion (5.26) for all three (or however many) channels. Having assumed a non-
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participating medium, the transport coe�cients Tjk are achromatic. Evaluation

of Equation (5.26) simply means multiplying each element of a (now) 3-vector bsj by

the same value of Tjk and accumulating the result in another 3-vector bdk.

In the absence of the need for compression, it would be convenient to group

all channels of bsj into a single group, rather than create a separate representation

for each channel. In the presence of compression, however, each channel has its

own threshold. If one component is above its threshold but the other two are below

theirs, saving the latter is a waste of storage. This would be mitigated, however, if

there were a high degree of correlation between the magnitudes of the coe�cients.

Certainly, a wavelet representation of white light given o� by a luminaire displays

a high degree of correlation. When this light is reected o� a surface of varying

spectral reectivity, however, that correlation will be diminished. By how much

depends on the nature of the surface.

We have two choices here: to group or not to group multichannel data.

For the time being, we have chosen the former { believing that there is su�cient

correlation and advantage in retrieval speed in most situations to justify grouping.

This de�nitely requires further study.

6.4.3 Hashing Nodes Instead of Coe�cients

In one dimension, a node in the wavelet pyramid contains a single wavelet coe�cient.

In four dimensions, such a node has one pure wavelet (� = 15) coe�cient and

fourteen mixed wavelet/smoothing (� 2 f1 : : :14g) coe�cients. (Recall that the

pure smoothing (� = 0) coe�cient may be reconstructed from the node's ancestors,

if any, and only needs to be kept at the root node.) All coe�cients at a given node

correspond to basis functions with the same (Haar) or similar (other bases) support.
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typedef struct f
int iWnOfHash[int mxnIWnOfHash];
struct WaveletNode f

WaveletIndex wi ;
unsigned short mskChild ;
unsigned short mskNu;
int iWclFirst ;

g wnBase[int nWn];
struct WaveletCoe�cientList f

oat b[3]; 10

int iWclNext ;
g wclBase[int nWcl ];
double umrad ;

g WaveletCoe�cientTree;

Figure 6.2: The WaveletCoe�cientTree typedef

We might therefore expect to �nd a higher degree of correlation in magnitude

between coe�cients that belong to the same node and coe�cients that do not. This

suggests that we can reduce the index storage overhead by hashing entire nodes

rather than individual coe�cients.

6.5 The WaveletCoe�cientTree Class

Figure 6.2 shows the fundamental structure we use to represent wavelet coe�cients:

WaveletCoe�cientTree. Note that the code in the �gure is not legal C code: we have

combined several subsidiary classes and moved some component de�nitions around

to indicate dynamically-sized structures in an obvious (we hope) way.

Given aWaveletCoe�cientTree wct, wct.iWnOfHash[] is the hash table itself.

It is indexed by the hash of a (pure smoothing) wavelet index. Its entries are indices

into wct.wnBase[], the array of wavelet nodes. Note that the use of integer indices

rather than pointers allows the dynamic resizing of wct.wnBase[].

Each node contains the corresponding wavelet index. This is not only use-
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ful for hash collision detection, but by indexing wct.wnBase[], we can traverse all

nonzero entries in wct directly. wct.wnBase[i].mskChild is a 16-bit mask indicating

which of node i's 16 children are also present in wct. wct.wnBase[i].mskNu is a

16-bit mask indicating which basis selectors are present in wct for node i.

wct.wnBase[i].iWclFirst is the index of the �rst element of a list of wavelet

coe�cients in wct.wnBase[i].wclBase[]. The elements are ordered in increasing

basis selector value, which is derived from wct.wnBase[i].mskNu. Each element

wct.wnBase[i].wclBase[j] contains the index wct.wnBase[i].wclBase[j].iWclNext of

the next-higher set of multichannel coe�cients belonging to node i. (The last ele-

ment in the list has this index set to -1.)

6.6 Representing Transport Geometry

To establish the qs $ qd mapping we need in order to transport radiance from

source to destination, we must deal with several coordinate systems, as shown in

Figure 6.3: source parametric, source object, world, destination object, and desti-

nation parametric. Obviously, source object to destination object is best done with
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a conventional a�ne transform (with projection), but there are several choices pos-

sible for the parametric $ object mappings: rectilinear, perspective, and bilinear.

All of these are local to the sending or receiving surface.

6.6.1 Rectilinear

This is the simplest possible mapping:

2
64 x

y

3
75 =

2
64 W 0

0 H

3
75
2
64 u

v

3
75 (6.1)

W and H are the dimensions of a bounding rectangle. If the object is a

rectangle, an obvious strategy is to choose coordinates in which W is its width and

H is its height. This will ensure that the (inverse) transformed object completely

�lls the unit square. Otherwise, or in the more general case of an arbitrarily-sided

polygon, when computing Tjk we must clip the (square) support of Bj (source) or

Bk (destination) against the polygon when integrating.

A major advantage of the rectilinear mapping is the ease of computation of

the Jacobian determinant: ����@(x; y)@(u; v)

���� = WH (6.2)

which makes the power ux computation shown in Equation (5.22) very easy:

� = 4WH
X
j

bj hBj j 1iq : (6.3)

especially in the case of Haar wavelets:

� = 4WHb0: (6.4)
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6.6.2 Perspective

This mapping allows us to represent the more general quadrilaterals without the

need to clip: 2
666664
xw

yw

w

3
777775 =

2
666664
A11 A12 A13

A21 A22 A23

A31 A32 1

3
777775

2
666664
u

v

1

3
777775 (6.5)

where the Aij 's are easily-determined functions of the quadrilateral vertices.

A straight line in perspective parametric coordinates au + bv + c = 0 trans-

forms to a straight line a0x + b0y + c0 in object coordinates. This means that a

quadrilateral in object coordinates will map to a quadrilateral in parametric coor-

dinates and vice versa. This has favourable implications for transport coe�cient

computation that we will discuss below.

One drawback of a perspective mapping is that if the quadrilateral ap-

proaches degeneracy (a triangle, for instance), the appearance of a uniform grid

in parametric space becomes increasingly nonuniform.

The power ux computation of Equation (5.22) is not as easy as in the

rectilinear case, but may still be analytically done for basis functions Bj with closed-

form representations, such as splines.

6.6.3 Bilinear

As with 2-D perspective, this mapping also allows us to represent quadrilaterals

without clipping. If the quadrilateral is de�ned by four points fp0;p1;p2;p3g (in

CCW order), the customary bilinear mapping applies:

2
64 x

y

3
75 = �

1� v v

�264 p0 p1

p3 p2

3
75
2
64 1� u

u

3
75 (6.6)
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typedef struct f
Transform tfSobjWld ;
Transform tfDobjWld ;
Transform tfSobjDobj ;
Transform tfR;
Polygon �pgnSobj ;
Transform2d tf2dSparToSobj ;
Transform2d tf2dSobjToSpar ;
Polygon �pgnDobj ;
Transform2d tf2dDparToDobj ; 10

Transform2d tf2dDobjToDpar ;
g TransportGeometry ;

Figure 6.4: The TransportGeometry typedef

Unlike the perspective case, we can treat triangles as degenerate quadrilaterals, al-

beit with some irregular object space meshing. However, this mapping is not without

its own drawbacks. While the parametric-to-object mapping is straightforward, the

inverse object-to-parametric mapping is, in fact, double valued: a given (x; y) usu-

ally has two solutions (u; v), one of them inside the unit rectangle, one outside. In

order to distinguish the two cases, we must clip in object space before inversion.

A more serious drawback is that straight lines are not, in general, preserved.

The inverse projection of a straight line ax + by + c = 0 into parametric space

is, in general, a hyperbola. This also has implications for transport coe�cient

computation: it complicates determination of the limits of integration.

Again, while the still more complicated Jacobian of this transform makes the

power ux computation of Equation (5.22) more di�cult, it may still be done for

choices of Bj with closed-form representations, such as splines.

95



6.7 The TransportGeometry Class

The TransportGeometry typedef shown in Figure 6.4 contains all geometric informa-

tion necessary to compute wavelet radiative transfer between source and destination

polygonal objects. Given a TransportGeometry object tg, tg.tfSobjWld is the a�ne

3D transform from source object to world positional coordinates, tg.tfWldDobj is the

a�ne 3D transform from world to destination object positional coordinates, tg.tfR is

the orthogonal 3D rotational transform from source to destination directional coor-

dinates, tg.pgnSobj and tg.pgnDobj are the source and destination polygons (in object

coordinates), tg.tf2dSparToSobj is the a�ne 2D transform from source parametric

to source object coordinates, and tg.tf2dDobjToDpar is the a�ne 2D transform from

source parametric to source object coordinates. The implemented TransportGe-

ometry class contains inverses of most of these transforms as well, since some of

the integration schemes we use actually project destination points back into source

space.

6.8 Choice of Wavelet

Except where noted, our discussions in Appendix A and Chapter 5 did not depend

on any particular choice of wavelet. For implementation purposes, we have to choose

one. There are several good reasons for choosing Haar wavelets.

As we mentioned in Section A.6, the fast wavelet transform can be performed

in O(N) time, but if we allow for a varying dimensionality D and wavelet basis, it

is easy to see from Equation (5.13) that the complexity is actually O(WD
h N) where

Wh is the (varying) maximum width of the fhjg and f~hjg (and, consequently, fgjg
and f~gjg) coe�cient sets.
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For this reason, as the dimensionality increases, the rapidly-increasing opera-

tion count makes narrower �lters more and more desirable, even though wider �lters

generally have better approximation properties. Since Haar is the narrowest possi-

ble wavelet �lter (Wh = 2), it seems a wise strategy to make any multidimensional

e�orts �rst with Haar and move to wider bases later if Haar proves unsatisfactory.

An additional advantage of Haar wavelets over the others is the simpli�ca-

tion of the calculation of the transport coe�cients, irradiance and power ux. As

Equations (5.28) and (5.29) have shown, these coe�cients can be computed entirely

in terms of pure smoothing calculations. A four-dimensional Haar pure smoothing

basis is a function that is constant (= 4l) within a hypercube and zero outside of it.

The resulting transport coe�cients are volume integrals of the overlap between such

a hypercube in destination parametric space and the object which is a projection of

a hypercube in source parametric space into the destination space4.

6.9 Problems with Transport Coe�cient Computation

As the preceding subsection suggests, using Haar wavelets turns transport coe�cient

computation into volume integral evaluation. There are two practical problems that

complicate the computation of that volume.

6.9.1 Some Source Points Do Not Project Into Destination Space

The source hypercube de�nes a range of positional and directional coordinates qs.

Not all of these coordinates may map to points in the destination plane, much less

the destination quadrilateral. This complicates any attempt at direct evaluation of

4This may not be such a great simpli�cation. After all, any arbitrarily complex 3-dimensional
integral may be trivially turned into a 4-dimensional volume integral!
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the transport integrals.

6.9.2 The Projected Hypercube Has Curved Sides

Even if all points in the source hypercube map to the destination plane, the nature of

the resulting volume, is not trivial. Needless to say, the projection of a source para-

metric hypercube into destination parametric space is not a hypercube. If, however,

we could choose coordinate systems such that the source hypercube mapped to a

polytope in destination space, we could take advantage of computational geometric

techniques to �rst clip it against the destination hypercube and then compute the

volume of the resulting polytope. Unfortunately, this is not possible because the

source hypercube does not project to a polytope.

Consider the coordinate systems described in Section 6.6. Even if we choose

rectilinear parametric $ object mappings, the source object to destination object

transform involves a projection. Hence, at best, the qs ! qd mapping has a nonlinear

dependence on the directional components.

As a result, the projection of the source hypercube into destination para-

metric space has curved sides. Furthermore, the curvature is such that we cannot

guarantee that the convex hull of the polytope formed by projecting the 16 corners

of the source hypercube into destination space contains the hypervolume5.

6.10 Integration Techniques

For these reasons, we must resort to multidimensional numerical integration schemes.

Before considering candidate techniques, we �rst make an observation about the di-

5We have not fully pursued the possibility of an approximation of the projected hypercube by
its convex hull here.
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mensionality required for numerical integration.

6.10.1 Reducing the Dimensionality

As Equation (5.27) indicates, the computation of transport coe�cients is intrinsi-

cally four-dimensional: two directional integrals and two positional integrals. If we

take the two outermost integrals over direction and restrict our discussion to pure

Haar smoothing components (�j = �k = 0, as Equation (5.30) permits), it is then

evident that

Tjk = 4lj+lk
Z Z

Sk

Gj(�d; �d)Ajk(�d; �d) d�d d�d (6.7)

Sk is the (square) directional support of ~Bk. Gj(�d; �d) is a geometric function which

is equal to one if a ray from the destination plane projected backwards along the

(�d; �d) direction reaches the source plane and falls within the directional support

of Bj. Otherwise, it is zero. Ajk(�d; �d) is the area of the intersection of the spatial

support of Bk in destination parametric space with the projection (in the �d; �d

direction) to destination parametric space of the spatial support of Bj.

We are now in a position to evaluate the coordinate mappings given in Sec-

tion 6.6 to see which of them makes Ajk(�d; �d) easy to compute. All the mappings

transform lines of constant u or v to lines in object space, so any of them would

work for the source parametric to source object mapping. Only rectilinear and per-

spective mappings, however, transform arbitrary lines in object space to lines in

parametric space. If we choose either of them for our destination object to desti-

nation parametric mappings, computation of Ajk(�d; �d) amounts to clipping the

projected quadrilateral to the spatial support of Bk using a conventional polygon

clipping algorithm and computing the resulting area. This allows us to reduce the

dimensionality that we need to integrate numerically from four to two.
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6.10.2 Numerical Quadrature

Regardless of the number of dimensions, numerical integration techniques are all

based on some form of quadrature:

Z
f(x)dx �

NsampX
i=1

wif(xi) (6.8)

where Nsamp is the number of samples. Techniques di�er principally in their choices

of weights wi and sample points xi. Zwillinger [87] provides an extensive survey of

these. The ones we have chosen to evaluate are:

� trapezoidal: a regular grid approximating f linearly in each dimension

� Romberg: a multilevel (Richardson) extrapolation (in terms of the grid spac-

ing) of trapezoidal results

� Monte Carlo: xi's chosen from a (possibly strati�ed) pseudo-random sequence6

� Halton: similar to Monte Carlo, but using quasi-random numbers generated

according to number theoretical considerations

� Hammersley: an alternative quasi-random method

While pseudo-random and quasi-random techniques are generally preferred

for multidimensional quadrature, we include trapezoidal and Romberg techniques to

explore the two-dimensional case, where Monte Carlo has error of order O(N�1=2
samp

)7

and the trapezoidal rule has error of order O(N�3=2
samp

). We must be careful to use

these error estimates cautiously, however, since our integrand, G(�d; �d)Ajk(�d; �d)

contains discontinuities that error analyses do not account for.

6Glassner [24] is a good overview of pseudo- and quasi-random integration methods in image

synthesis.
7This is true regardless of the dimensionality of the problem and is one of the appeals of Monte

Carlo integration.
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6.10.3 Comparison

To evaluate the accuracies of the various methods, we have applied them to a test

problem: computing the set of all Tjk for a given j and geometry. To analyze the

results we can treat this set as a vector in a K-dimensional space, where K =

16lmax+1 and lmax is the maximum level we have coe�cients for. (I.e., we have K

values of k.)

To compare results against a reference, we create a reference vector T ref

jk using

an extremely long (25 CPU-minutes) integration time and then adopt two metrics.

The �rst, which we call the relative Euclidean distance (hereafter, RED) is the
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Euclidean distance (L2 norm) of Tjk from T ref

jk divided by the magnitude of T ref

jk :rP
k

�
Tjk � T ref

jk

�2
rP

k

�
T ref

jk

�2 : (6.9)

Figure 6.5 shows how the RED varies with integration time8 and Nsamp for the

various techniques. Note that we allow the degree of extrapolation for Romberg

integration to vary from linear to quadratic to cubic. The times shown are for an

IBM Model RS/6000 POWERserver 560 workstation.

8Rather than Nsamp, time is the appropriate abscissa here. Since the time required to evaluate

the integrand varies with dimensionality, fewer samples do not necessarily imply faster computation.
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The second metric, which we call relative maximum departure (hereafter,

RMD), is more conservative. It is the maximum absolute di�erence between Tjk

and T ref

jk (L1 norm) divided by the maximum absolute value of T ref

jk :

maxk

���Tjk � T ref

jk

���
maxk

���T ref

jk

��� : (6.10)

Figure 6.6 shows how the RMD varies for the same parameters as Figure 6.5.

From these plots, we can draw several conclusions:

� The two �gures are qualitatively similar: a method that does well by one

metric generally does well by the other. This gives us some con�dence that

these metrics are valid.

� Strati�cation improves Monte Carlo results. (This comes as no surprise.)

� The time required for Monte Carlo methods being linear in Nsamp, they all

approximate the expected O(N�1=2
samp

) behaviour.

� For a given integration time, the 4D trapezoidal method does generally worse

than the other methods.

� Increasing the degree of extrapolation for Romberg (2D) integration generally

makes matters worse. This is presumably a result of the discontinuities in the

integrand we discussed above.

� Quasi-random methods give similar and comparatively good results. This

reinforces the �ndings of Keller [39].

The most surprising observation, however, is how well the straightforward 2D trape-

zoidal rule does. For the RED metric, it is comparable with the best of the other
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Figure 6.7: Simpli�ed Functional Decomposition for Wavelet Radiative Transfer

methods, quasi-random, and for the RMD metric it does noticeably better for short

integration times.

6.11 Functional Decomposition of WRT

Figure 6.7 shows a simpli�ed functional decomposition for WRT. In this section,

we will discuss each block individually and describe how it implements the ideas

presented in Chapter 5. We will proceed in a bottom-up sequence.

6.11.1 tg oracle()

This function is a geometric query function. Given a TransportGeometry and source

and destination WaveletIndices, it performs several fast query functions.

� If either source or destination wavelet directional supports lie entirely outside

the UDC, they cannot interact.

� Projecting the 16 vertices of the destination support hypercube project onto
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the plane that contains the source, the vertices can be classi�ed by the \fast

reject" part of a four-dimensional version of the Cohen-Sutherland line clipping

algorithm (see Foley, et al. [18], for example).

� If all 16 destination vertices map into points contained within the source sup-

port, we assume that the entirely of the destination support does, so an exact

computation of the inner product (which is then proportional to the volume

of the destination support hypercube) is possible.

The latter two items require an assumption that the projected destination

support vertices de�ne a convex hull for the entire projected support. As we noted

in Section 6.9.2, this is not in general the case. Nevertheless, by disabling this

oracle and comparing results, we have found empirically that it is a reasonable

approximation, at least for oracular purposes.

6.11.2 tc integrate()

This function is responsible for performing the actual integration. It is capable of

using any of the schemes described in Section 6.10.

6.11.3 wn pull() and wn push()

These functions act on individual nodes of a WCT to perform, respectively, a single-

level, four-dimensional (i.e. 16 value), Haar analysis (i.e., forward transform or

\pull"9) or synthesis (i.e., inverse transform or \push").

9The useful \pull" and \push" terminology is from Hanrahan, et al. [32].
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tc propagate(WaveletIndex wiS, double bS [ ], WaveletIndex wiD,
TransportGeometry tgSD, WaveletCoe�cientTree wctD)

if wiD.l == maximum wavelet level + 1
return tc eval(wiS, wiD, tgSD)

else if tg oracle(wiS, wiD, tgSD) gives exact result

return it

else

for each child wiDChild of wiD

tc[wiDChild ] = tc propagate(wiS, bS, wiDChild, tgSD, wctD)
for each channel chan 10

for each child wiDChild of wiD

wn[chan][wiDChild ] = bS [chan] � tc[wiDChild ]
wn pull(wn)
if wiD.l is not the top destination level

wn[chan][wiD.nu = 0] = 0
wctD [wiD ] = wn

Figure 6.8: tc propagate() Pseudocode

6.11.4 tc eval()

Given source and destination wavelet indices, this function computes a single trans-

port coe�cient. It will call itself recursively if either source or destination basis

selectors are nonzero, although as it is currently used in WRT, tc eval() is only

called to evaluate pure smoothing coe�cients10. At the user's request, it will call

tg oracle() to attempt to �nd an alternative to numerical quadrature. Otherwise, it

will call tg integrate() to perform that quadrature.

6.11.5 tc propagate()

This function propagates a single source wavelet coe�cient to a destination wavelet

coe�cient tree wctD. Figure 6.8 shows its pseudocode. Like tc eval(), it will work

with a nonzero source basis selector, but in the context of WRT is only called upon

with pure source smoothing coe�cients. It is important to note that wctD will

10The ability to work with non-zero basis selectors is used in self-test mode.
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contain no pure smoothing coe�cients except at a speci�ed top level. The source

pure smoothing coe�cients corresponding to wiS are passed to the function as b0[].

There are three alternatives:

� If the destination wavelet is one more than the maximum wavelet level, it

returns the smoothing coe�cient it gets from tc eval().

� If tg oracle() gives an exact result (often zero), it returns that result. Note

that wctD does not need to be updated in this case, since the exact result is

either zero or a pure smoothing result below the top level, neither of which

requires storage.

� Otherwise (and most importantly) the function applies itself recursively to

the 16 child indices of wiD, collecting the 16 returned smoothing coe�cients.

For each channel, it then multiplies each coe�cient by the source coe�cient

for that channel, and uses wn pull() to apply a \pull" to convert the result

to wavelet coe�cients. If wiD.l is not the top destination level, the pure

smoothing coe�cient is redundant and is set to zero. The result is then ready

to be stored in wctD.

6.11.6 wct transport()

Figure 6.9 shows the pseudocode for this function, which transports an entire source

wavelet coe�cient tree wctS to a destination wavelet coe�cient tree wctD.

The function �rst uses tg oracle() to reject impossible interactions. If there is

a node wn, indexed by wiS in wctS, it will call itself recursively to descend the tree.

First, though, to the pure smoothing coe�cients of wn, it adds bS0[] (which is zero

when this function is initially called before recursion). It then invokes wn push() to
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wct transport(WaveletIndex wiS, double bS0 [ ], WaveletCoe�cientTree wctS,
TransportGeometry tgSD, WaveletIndex wiDTop,
WaveletCoe�cientTree wctD):

if tg oracle(wiS, tgSD, wiDTop) says an interaction is not possible

return

wn = wctS [wiS ]
if wn exists,

for each channel chan,
wn[chan][0] = wn[chan][0] + bS0 [chan]
wn push(wn) 10

for each child wiSChild of wiS

wct transport(wiSChild, wn[�][wiSChild ], wctS, tgSD, wiDTop, wctD)
else

tc propagate(wiS, bS0, wiDTop, tgSD, wctD)

Figure 6.9: wct transport() Pseudocode

convert the wavelet coe�cients to �ner pure smoothing coe�cients at the level of

the children of wiS. wct transport() then applies itself recursively to each of these

children, passing the elements of wn as new values of bS0[].

If wn does not exist in wctS, there are no nodes in wctS at or below wiS,

so the only thing that needs to be propagated is the pure smoothing value bS0[].

wct transport() calls tc propagate() to do this. The change of pre�x is an indication

that below this call level, we are no longer concerned with a source WCT, but with

individual pure smoothing (multichannel) coe�cient vectors.

6.12 Example of Transport

For a test con�guration, we imagine light shining through the square stained glass

window shown in Figure 6.11.

As illustrated in Figure 6.10, the incident light shines down with a distribu-

tion peaking at an angle of 45� from the horizontal, di�used by the glass according

to a distribution proportional to the 4th power of the cosine of the angle between
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Figure 6.10: Geometry Used for Example of Transport

the propagation direction and the peak direction. The light is transported to the

oor and is collected there.

Figure 6.12 shows the complete, inversely-transformed 4D results. Each of

the small images represents the spatial variation of radiance in the �xed direction

given by the image's position in the matrix.

Figure 6.13 is a detailed view of the brightest part of Figure 6.12. This com-

putation of 32�32�32�32 coe�cients (in red, green, and blue channels) compressed
by 95% required 12.4 hours of CPU time on an IBM RS/6000 POWERserver 560

workstation.

Needless to say, this is impractical for a single frame, but the result is

reusable.

Figure 6.14 shows several frames generated with an otherwise conventional

raytracer modi�ed to treat a wavelet radiance distribution as a \4-D texture". Each

frame is generated from a di�erent camera position. Given the di�use nature of
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Figure 6.11: A Stained Glass Window. This is the spatial component of radiance

for the test con�guration.

the problem, the resulting images look adequate and contain none of the \noise"

common to the usual Monte Carlo approach to this sort of problem.

6.13 Example of Radiance Compression

We can use the test scene to illustrate the e�ects of compression discussed in Sec-

tion 6.4. Figure 6.15 shows the e�ect of compressing nodes of the wavelet represen-

tation of the radiance by di�ering ratios prior to transport in the above example. It

is evident that considerable compression is possible. Although beyond the scope of

this thesis, more sophisticated reconstruction techniques could be applied to remove

the artifacts visible for high compression.
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Figure 6.12: Four-Dimensional Results of Wavelet Radiative Transport
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Figure 6.13: Detailed View of the Brightest Part of Figure 6.12

Figure 6.14: Example of Wavelet Transport. The resulting wavelet representation

of radiance shown in Figure 6.12 can be sampled from di�erent directions.
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Figure 6.15: E�ect of Compressing the Wavelet Radiance Distribution by (left-to-

right and top-to-bottom) 2:1, 20:1, 200:1, 1000:1, 2000:1, and 10000:1
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Chapter 7

Lucifer Implementation and

Practicum

This chapter describes the implementation of the Lucifer algorithm, which we de-

scribed in Chapter 3. This brings together all previous threads of discussion. It uses

both the theory of WRT described in Chapter 5 and its implementation, described

in Chapter 6. In addition, as we discussed in Chapter 3, in order for Lucifer to con-

verge (theoretically), it is necessary to make use of the energy-conserving shaders

described in Chapter 4.

As mentioned in Chapter 6, Lucifer makes use of all the classes that WRT

uses. In this section, we will describe those classes that are unique to Lucifer.

We will then describe the implementation choices we've made, cover a functional

decomposition of it, and conclude with an example.

7.1 The Cell Class

Figure 7.1 shows the typedef we use to represent cells.
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typedef struct Cell f
BoundingBox bx ;
struct Cell �parent ;
int lvl ;
int priority ;
WaveletCoe�cientTree �wct [6];
bool isLeaf ;
union f

struct f
int nObj ; 10

Object ��obj ;
bool isEmShot ;

g leaf ;
struct f

struct Cell �child [8];
g nonleaf ;

g u is;
g Cell ;

Figure 7.1: The Cell typedef

If cl is an instance of Cell, cl.bx is its bounding box, cl.parent is its parent cell

(or NULL if it is the root cell), cl.lvl is the cell level (0 for the root cell), cl.priority

is the cell's priority used for the priority queue described in Section 3.5, cl.wct[] is

an array of six WCTs, one for each wall of the cell, cl.isLeaf is TRUE if the cell is

a leaf cell and FALSE if it is not.

If cl is a leaf cell, cl.u is.leaf.nObj is the number of objects it contains and

cl.u is.leaf.obj is an array of (pointers to) those objects. A ag cl.u is.leaf.isEmShot

is set depending on whether or not emissive objects within the leaf cell have had

their emissivities transferred to the cell walls (i.e. "shot"). Notice that this ag is

associated with an cell rather than an object. This allows emissive objects to span

cells. As we shall see below, it is the responsibility of wct transport() to assure that

only that part of an object's emissivity contained within the cell being balanced gets

transferred to the walls.
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If cl is not a leaf cell, cl.u is.nonleaf.child is an array of (pointers to) its

children.

7.2 Bidirectional Reectance and Transmittance Distri-

bution Functions

Like a WCT, the wavelet representation of a BRDF or BTDF is a nonstandard

multiresolution 4-tensor. After the work of Lalonde and Fournier [42], we can use

the same object as described in Section 6.4 with a slight reinterpretation of the

meaning of the components of the wavelet indices (see Section 6.2).

To represent a BRDF or BTDF, we take the �rst two dimensions of the

wavelet index (i.e., the ones referred to as wi.m[0] and wi.m[1]) to refer to the

incident directional components of the distribution and the last two dimensions

(wi.m[2] and wi.m[3]) to refer to the reected or transmitted directional components.

As some time in the future, we may wish to allow for positional variation of

BRDFs and BTDFs by using a multiresolution 6-tensor that adds the two additional

surface positional components. It is even possible to allow for such phenomena as

subsurface scattering (cf. Hanrahan and Krueger [31]) by using (in its most general

form) a multiresolution 8-tensor.

7.3 Implementation Choices

For reasons given in Section 6.8, we have chosen to use Haar wavelets both forWRT

and for Lucifer. In this section, we will discuss the other choices we've made for

the Lucifer renderer in the context of Section 2.5.
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7.3.1 Integration Scheme

Considering the results for WRT found in Section 6.10, it is tempting to favour use

of the 2D trapezoidal method in transport coe�cient computation.

However, doing so for Lucifer revealed a lack of robustness. Accuracy dropped

considerably when the geometry departed from the simple parallel unit square ge-

ometry used for the above results. Monte Carlo and quasirandom methods did not

exhibit this problem.

For this reason, we chose a quasirandom integration method in Lucifer. It

remains to be seen, however, if other methods are possible which might be more

suitable for an integrand with such discontinuities as we have.

7.3.2 Storing Transport Coe�cients

Chapter 6, which considered radiative transport between two polygons, did not

require the storage of transport coe�cients. In other situations, however, storing

them may be desirable. In this section we will outline the considerations to be made

in deciding whether or not they should be stored, and if so, how?

Like form factors in radiosity, the transport coe�cients are dependent only

upon geometry. If the same geometry occurs in several di�erent instances, precom-

puting the transport coe�cients means they only have to be computed once.

Counterbalancing the argument for storing coe�cients is the observation

that, assuming wavelet compressibility, bsj is sparse. This means that only those

elements of Tjk for which we have nonzero bsj values need to be computed.

If we decide to store transport coe�cients, we face another problem: Tjk is

large. If lmax is the maximum level of resolution on the source surface, there are

16lmax+1 possible values of j (for Haar). Assuming the same resolution is required

117



for the destination surface, Tjk would require 256lmax+1 elements. If represented as

a conventional array, lmax = 3 would exhaust a 32-bit address space!

Fortunately, Tjk is also sparse in this sense: for a given j, the number of

destination basis functions Bk that it a�ects is much smaller than the number of

possible values of k. If we do decide to put Tjk in a lookup table, that table will

have to be sparse, in which case the nodal compression strategies we discussed in

Section 6.4.3 would also apply to stored transport coe�cients.

7.3.3 Luminaire Model

The most natural luminaires to implement in Lucifer are area light sources, the

reason being that since we are collecting, interacting, and re-radiating WCTs on

surfaces, it is simple to add an emissive WCT prior to re-radiation. Because they

are represented by WCTs, these area light sources are much more exible than the

usual area light sources. In fact, they are equivalent in functionality to Levoy and

Hanrahan's [44] \light �elds": Any light distribution within the limit of resolution

can be represented. This is truly \light though a window".

It would not be di�cult to add point and directional light sources to Lucifer.

A point light source would be treated like an object. When a cell contained a single

point light source, its light could be discretized and wavelet compressed on the cell

walls. Thereafter, it would be indistinguishable from any other light source. Linear

luminaires could be treated similarly, with segmentation done when they spanned

multiple cells, as could directional luminaires coming from within the root cell (as

from a collimated source).

Directional light sources coming from in�nity (approximating sunlight, for

instance) could be treated as light incident on the root cell, with the light discretized
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and wavelet compressed on the root cell's walls. The fact that a directional light

source is of uniform radiance in a single direction would lead to a very compact

representation.

7.3.4 Object Model

Our initial object models in Lucifer are polygonal. Other parametric forms are

possible, but the di�culty of transport coe�cient computation (see Equation 5.27)

dictates that the geometry for this initial e�ort be as simple as possible.

7.3.5 Illumination Model

Lucifer's illumination model is very exible: any BRDF or BTDF that can be

represented as in Equation 5.33. The easy way to do this is to sample any BRDF or

BTDF in four-dimensional Nusselt coordinates at any desired resolution, perform

a (four-dimensional) Haar transform on the samples, and (for e�ciency) threshold

the result before storing. This only has to be done once for each distinct material

and may be done prior to rendering.

7.3.6 Shading Model

It is possible to create an image from Lucifer using WRT directly. We can collect

light on a surfaceWCT placed anywhere in the scene. This would have the advantage

of being usable as a light �eld for additional rendering. The drawback, of course,

is that it would not be a very good looking image, primarily because it would not

be practical to render such an image at a high enough resolution to be \visually

pleasing". Just as we noted in Section 2.5.7.4, the criteria for an acceptable image

di�er from those for physically-correct global illumination.
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For this reason, as part of our \�nal gather" (see Section 2.5.7.4) we will

make use of FIAT's \light update bu�er" . This is a conventional raytraced image

bu�er whose pixel values are determined by casting primary rays onto the emissive

input and Lucifer-generated WCTs attached to objects in the scene. Whenever a

cell is updated, all pixels whose primary rays intersect objects within that cell have

their radiances incremented.

7.3.7 Surface Model

In this implementation of Lucifer, we assume that reective properties of objects do

not vary with position: i.e., that texturing is constant. This means that our BRDFs

and BTDFs are functions only of incident and reected or transmitted directions.

At some point in the future, it would be a natural extension to allow two additional

positional degrees of freedom, but our need to reduce storage requirements demands

that we defer a full treatment of texturing.

7.4 Surface Interaction with Haar Wavelets

In Section 6.8, we described the bene�ts of Haar wavelets for WRT. In this sec-

tion, we will demonstrate an additional bene�t that pertains to Lucifer: the fast

computation of surface interaction.

Recall from Equation 5.47 that we can compute surface interaction directly

from wavelet representations of the incident radiance and the BRDF or BTDF if we

can compute the multiresolution delta tensors ���
jk . For most wavelets, these tensors

need to be computed numerically, since they rely upon such things as the inner

product of a smoothing function and its dual of di�ering level. As we will shortly see,

orthogonality helps somewhat, but not completely because of the multidimensional
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nature of the inner products.

���
jk tensors for Haar wavelets, on the other hand, do have a closed form

representation:
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jk = Q� 1
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where Q � 2jlj�lk j. Of the seven cases here, the fourth, �fth, and seventh would be

true for any wavelet, not just Haar.

Equations 5.47 and 7.1 tell us how to evaluate the inner products for a given

j, k, and n, but that is not what is required algorithmically. We start with sparse

sets of coe�cients
n
f rj

o
and fbkg and want to generate a new set fbng. We need to

organize our implementation of Equation 5.47 in particular so that it performs the

mapping (j;k)! fn; bng using 7.1 to eliminate as much as possible the generation of
n values which do not contribute. The pseudocode for this is lengthy and therefore

included as Appendix B.

Future work should consider the application of these techniques to the general

problem of multidimensional inner products:

f(x;y) = hg(x; �) j h(y; �)iz : (7.2)
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Figure 7.2: Simpli�ed Functional Decomposition for Lucifer

Convolution is a special case of this, although we expect it to be more useful in

other cases such as spatially-variant �ltering.

7.5 Functional Decomposition of Lucifer

Figure 7.2 shows a simpli�ed functional decomposition for Lucifer. In this section,

we will describe these building blocks individually. As in Section 6.11, we proceed

in a bottom-up order.

7.5.1 wct transportCon�ned()

This is the same as wct transport(), with one enhancement: the ability for the user

to con�ne all transport computations to the bounding box of a given cell. This

allows Lucifer to deal with objects that span cell boundaries, the need for which

was described in Section 7.1.
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Figure 7.3: Unblocked, Partially Blocked, and Completely Blocked Propagation.

The source wavelet support is red, the destination wavelet support is green, and the

blocking rectangle is blue.

7.5.2 wct transportRestricted()

This is another modi�cation of wct transport() which allows the caller to restrict

both source and destination WCTs to subtrees of speci�ed wavelet indices. Since it

is always used for wall-to-wall transport, the con�nement to a cell's bounding box

is implicit.

7.5.3 wi blocking()

This function determines the degree to which an object is capable of blocking the

transfer of radiance from the support of one Haar wavelet coe�cient (and its chil-

dren) to another (and its children). Figure 7.3 illustrates how blocking is determined.

Given a source coe�cient (on the vertical wall), and a destination coe�cient (on the

horizontal wall), the function constructs the \blocking hull": the polyhedron which

is the convex hull bounded by their (square) spatial supports, which we may refer

to as the \end caps".

Once the hull is constructed, wi blocking() determines the nature of the in-
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tersection of the hull and the object. If the object lies entirely outside the blocking

hull, every point in the source coe�cient support can \see" every point in the des-

tination support, so the function returns NONE. If the object \slices" the blocking

hull into two regions, each of which wholly contains a single end cap, no point in

the source support can \see" a point in the destination support, so wi blocking()

returns FULL. Otherwise, at least one source point can see at least one destination

point, so blockingType() returns PARTIAL.

This query does not take into account the directional components of the

supports: that is left for the actual transport computation done by wct transport()

and its variants.

7.5.4 cl cfcTransblock()

Given source and destination cell walls, this function, the pseudocode for which is in

Figure 7.5, is responsible for transporting that part of the source wall's WCT that

is not obstructed by the objects contained within the cell to the destination wall.

For each object in the cell, it calls wi blocking(). If any single object totally

blocks transport, no transport takes place, so it returns. If no object blocks transport

at all, it calls wct transportRestricted() to perform the actual transport and returns.

Otherwise, there is partial blocking, so cl cfcTransblock() acts recursively.

If either the source or destination wavelet indices are above the maximum wavelet

level, it re�nes the coarser of them and invokes itself on the children. If the source

index is the coarser one, it also needs to push the source WCT before recurring.

If the source and destination wavelet coe�cients are at the maximum wavelet

level, it assumes total blocking and does nothing. This rationale deserves justi�ca-

tion. If there is a single object inside the cell, the choice is arbitrary as we are at the
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cl cfcTransblock(Cell cl, WaveletCoe�cientTree wctSWall,
TransportGeometry tgSD, WaveletCoe�cientTree wctDWall,
WaveletIndex wiS, WaveletIndex wiD):

blocking = NONE

for each object obj in cl,
switch (wi blocking(wiS, obj, wiD))

case NONE

case PARTIAL 10

if blocking = NONE

blocking = PARTIAL

case TOTAL

return == no transport

switch (blocking)

case NONE

wct transportRestricted(wiS, wctSWall, tgSD, wiD, wctDWall, cl�>bx ) 20

case PARTIAL

if wiS.l and wiD.l are the maximum wavelet level

== assume total blocking

else if wiS.l < wiD.l
wn = wctS [wiS ]
delete wctS [wiS ]
wn push(wn)
for each child wiSChild of wiS,

wctS [wiSChild ][wiSChild.nu = 0] = wn[wiSChild ] 30

cl cfcTransblock(cl, wctSWall, tgSD, wctDWall, wiSChild, wiD)
else

for each child wiDChild of wiD,
cl cfcTransblock(cl, wctSWall, tgSD, wctDWall, wiS, wiDChild)

Figure 7.4: cl cfcTransblock() Pseudocode

maximum resolution and expect sampling e�ects to show up at this level in any case.

If there is more than one object in the cell, that means that the cell itself is also at

maximum resolution. The most likely circumstance in this case is that the objects

are joined as, for example, polyhedral facets. In this case, allowing transport to

take place would permit \holes" in the polyhedron, which would be an undesirable
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wct transportWallToObj (WaveletCoe�cientTable wctSWall, Cell cl)
for each object obj contained within cl,

if obj has a BRDF or BTDF on its upper side,
wct transportCon�ned(cl.wiTop, wctSWall, tgSD, obj.wiTop,

obj.wctIncomingAbove, cl.bx )
if obj has a BRDF or BTDF on its lower side,

wct transportCon�ned(cl.wiTop, wctSWall, tgSD, obj.wiTop,
obj.wctIncomineBelow, cl.bx )

Figure 7.5: wct transportWallToObj() Pseudocode

artifact. We therefore assume total blocking in this case.

7.5.5 wct transportWallToObj()

Given a cell wall, this function, the pseudocode for which is in Figure 7.5, calls

wct transportCon�ned() for each object contained within the cell, restricting trans-

port to the bounding box of the cell in case an object extends outside the cell. Since

Lucifer allows objects to have distinct BRDFs and BTDFs on both sides of their

surfaces, we need to collect incoming radiance on both sides as well.

Notice that this function does not allow for blocking of one object by another.

Inter-object blocking is addressed in Lucifer by choosing a maximum cell division

level such that the maximum number of objects in a cell is approximately one.

7.5.6 wct addInteraction()

This is an implementation of Haar wavelet surface interaction as discussed in Sec-

tion 7.4. Pseudocode for this is in Appendix B.
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wct transportObjToWall(Cell cl, TransportGeometry tgSD,
WaveletCoe�cientTree wctDWall):

for each object obj contained within cl,
wct transportCon�ned(obj.wiTop, obj.wctOutgoingAbove, tgSD, cl.wiTop,

wctDWall, cl.bx )
wct transportCon�ned(obj.wiTop, obj.wctOutgoingBelow, tgSD, cl.wiTop,

wctDWall, cl.bx )

Figure 7.6: wct transportObjToWall() Pseudocode

cl transport(Cell cl):
for each channel chan,

bS0 [chan] = 0
wiRoot = f 0, 0, 0, 0, 0, 0 g
for each incoming wall wS of cl,

for each outgoing wall wD of cl,
tgSD = tg init(cl, wS, wD)
wct transport(wiRoot, bS0, cl.wctWall [wS ], tgSD, wiRoot,

cl.wctWall [wD ])

Figure 7.7: cl transport() Pseudocode

7.5.7 wct transportObjToWall()

As with wct transportWallToObj() (see Section 7.5.5), this function, whose pseu-

docode is shown in Figure 7.6, calls wct transportCon�ned() for each object con-

tained within the cell, restricting transport to the bounding box of the cell in case

an object extends outside the cell. In the case of radiance that has been collected

on the object surfaces by wct transportWallToObj(), this restriction is redundant,

but it is necessary in the case of emissive objects, whose emissive WCTs may extend

outside the cell walls.

Also like wct transportWallToObj(), this function allows from transport from

both surfaces of the object.
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cl transblock(Cell cl):
for each incoming wall wS,

for each outgoing wall wD != wS,
tg = tg init(cl, wS, wD)
cl cfcTransblock(cl, cl.wctWall [wS ], tgSD, cl.wctWall [wD ],

wiRoot, wiRoot)
for each incoming wall wS,

wct transportWallToObj (cl.wctWall [wS ], cl)
for each object obj in cl,

obj.wctOutgoingAbove = wct interact(obj.wctIncidAbove, obj.above.BRDF ) 10

+ wct interact(obj.wctIncidBelow, obj.below.BTDF )
obj.wctOutgoingBelow = wct interact(obj.wctIncidAbove, obj.above.BTDF )

+ wct interact(obj.wctIncidBelow, obj.below.BRDF )
for each outgoing wall wD,

wct transportObjToWall(cl, cl.wctWall [wD ])

Figure 7.8: cl transblock() Pseudocode

7.5.8 cl transport()

Figure 7.7 shows the pseudocode for this function. It is quite straightforward: for

every distinct pair of source and destination walls, invoke wct transport(). Note

that since the source and destination WCTs are by de�nition contained within cl,

it is not necessary to check for con�nement, so wct transport() can be used directly

instead of wct transportCon�ned().

7.5.9 cl transblock()

Wavelets provide us with the ability to selectively re�ne a light representation so

that we can realize the transblock() function described in Chapter 3. Figure 7.8 is

the pseudocode for cl transblock().

One of two things happens to light that enters a cell containing an object:

either it passes through the cell unimpeded from incoming cell wall to outgoing cell

wall or it impinges on the surface of an object and is (possibly) re-radiated to an
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cl balance(Cell cl):
if cl contains no objects,

cl transport(cl)
else

cl transblock(cl)

Figure 7.9: cl balance() Pseudocode

outgoing cell wall.

To deal with the �rst case, this function calls cl cfcTransblock() for each

distinct pair of cell walls.

To deal with the second case, it �rst uses wct transportWallToObj() to trans-

fer the radiance of all walls to all objects in the cell. Then it invokes wct interact()

to compute the outgoing object surface WCTs, allowing for two-sided objects if

speci�ed. Finally, it uses wct transportObjToWall() to transfer the object surface

WCTs to the outgoing walls.

7.5.10 cl balance()

Figure 7.9 shows the pseudocode for this function, which is quite simple: To balance

a cell, call cl transport() if the cell is empty and cl transblock() if it is not.

7.6 Results

To demonstrate Lucifer, we will use a simple example: a source emissive square

illuminating a destination triangle with an optional blocking triangle between them,

as shown in Figure 7.10. Directionally, the emissivity of the square is a cosine

lobe similar to 6.12, but positionally, it is uniform over the square, giving the light

distribution the character of a spotlight.
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source

destination

blocker

front view side view

Figure 7.10: Con�guration for Lucifer Example

Several discretionary variables determine how long Lucifer takes to run, how

much memory it requires, and the visual quality of its output. They are:

� lcell
max

, the maximum subdivision level of the cell walls.

� whether or not the blocker is in place. This allows us to test the e�ciency of

our blocking algorithm.

� lsurf
max

, the maximum subdivision level of light source and surface BRDFs. We

could, in principle, select a di�erent lmax for each surface and light source, but

we will set them all to the same value in this example to keep the number

of test cases manageable. In general, it makes sense to restrict lsurf
max

� lcell
max

.

Otherwise, the higher resolution is lost during transfer.

� whether or not the oracle is used at the lowest level as an alternative to

numerical quadrature (as described in Section 6.11.4).

We have constructed several tests cases that vary these parameters, as shown
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Uses Low-Level

Case Blocker? lsurf
max

Oracle?

1 yes 2 no

2 yes 3 no

3 yes 3 yes

4 yes 4 no

5 no 2 no

6 no 3 yes

7 no 3 no

Table 7.1: Lucifer Test Cases

in Table 7.1. As it is likely to have the greatest inuence on the results, we will take

lcell
max

as the principal independent variable for each test case. We run each case until

the unbalanced energy remaining in the scene is approximately 2% of the original

luminaire energy.

Integration in each case was done using the Halton quasirandom integration

method (see Section 6.10.2) with 16 samples. We used a four-dimensional scheme

instead of the two-dimensional approach discussed in Section 6.10.1. Since the

need to be able to restrict transport as required by wct transportCon�ned() requires

additional clipping to guarantee that the destination or projected source support

rectangles lie within the cell, this increased the cost of the two-dimensional approach.

In four dimensions, con�ning the integration requires a simple bounding box test of

each point. As we will discuss below, however, the choices for integration scheme

turn out not to be critical performance factors.

Lucifer allows the user to save as a sequence of frames the intermediate

contents of the light update bu�er while the algorithm runs. Figure 7.11 shows

these for Case 4 (lcell
max

= lsurf
max

= 4, blocker in place, no low-level oracle). In this

�gure, we have omitted frames that show no visible change, such as cell splits or

transport through empty cells.
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Figure 7.11: Lucifer Sequence. Each frame represents a non-trivial step in the

progress of the Lucifer algorithm. This is Case 4 with lcell
max

= 4.
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Figure 7.12: Lucifer Example

Figure 7.12 is an enlarged view of the �nal frame: the end result of Lucifer.

There are obvious visual artifacts, but these are comparable to those produced by

radiosity and other global illumination schemes in the absence of �nal gather (cf.

Figure 4, Color Plate 7(d) in Christensen, et al. [11]).

Figures 7.13 and 7.14 show the timing and peak memory usage for all test

cases examined. These were collected on a Micron Paradigm XLI workstation with

a 200MHz Intel Pentium Pro CPU and 256MB of memory. Each plot shows a

comparison line which is proportional to 16l
cell
max, which would be the space complexity

in the absence of wavelet compression.
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Figure 7.13: Lucifer CPU Time vs. lcell
max

. (see Table 7.1 for test case con�gurations)

7.7 Analysis

In order to explain the excessive resource requirements of Lucifer, we instrumented

the program and made several pro�ling runs with various sets of parameters. We

made two important discoveries.

First of all, Lucifer spends a considerable amount of time using the oracle,

even when the low-level oracle is turned o�. As lcell
max

and lsurf
max

increase, the mean

depth of a source coe�cient increases, and since the oracle must be consulted on

each level, the amount of oracular work required per source coe�cient goes up.

Within the oracle, most of the time is spent projecting points from one surface to
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Figure 7.14: Lucifer Peak Memory Usage vs. lcell
max

. (see Table 7.1 for test case

con�gurations)

the other. Recall that each invocation of the oracle requires the projection of 16

points (the corners of the destination support hypercube).

After we made this observation, we tried to minimize the number of pro-

jections required by caching destination-to-source projections1. Unfortunately, the

destination coe�cient space prior to compression is not sparse, and the cache, even

for lcell
max

= 4 used an exorbitant amount of memory.

The second discovery we made is that when dealing with the largest cell,

fewer than 2% of the integrations produced a non-zero result. Recall that in order

1Recall that integration is being done in destination space, so most projections start from there.
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for an integration to be made (always at the �nest pure smoothing level, lcell
max

+ 1

or lsurf
max

+ 1, depending on the destination), the oracle on all coarser levels must

indicate that the two coe�cients can interact. This low level of accuracy could in

part be due to the choice of integration scheme, but since we have observed the

same phenomenon with several such schemes (particularly varying the number of

samples) it is much more likely due to the nature of our oracle. Attempts to devise

a more accurate one have so far been unrewarding.

As to Lucifer's space requirements, as we noted above, the advantage of

wavelet compression is only available after we have collected destination smoothing

coe�cients. We cannot compress a WCT while it is being accumulated.

There is another aspect in which compression doesn't help. Consider a

wavelet source node, which can contain up to 16 wavelet coe�cients (perhaps includ-

ing a pure smoothing component from the node's parent). Recall from Section 6.11.6

that to transport the contents of the node, wct transport() pushes the node contents

and then invokes tc propagate() on the resulting pure smoothing coe�cients. As

long as the node contains one non-pure smoothing coe�cient, the amount of time

required to transport the contents of the node is the same. While it reduces space re-

quirements, compression only helps time requirements when it removes entire nodes,

not individual coe�cients.
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Chapter 8

Conclusions and Future Work

While we have shown light-driven global illumination with wavelets to work in prin-

ciple, extrapolating the Lucifer performance results in Section 7.6 to what would be

considered a typical rendered scene (Nobj � 1000 and lcell
max

� 6) makes it clear that

the current implementation still has a long way to go to compete with other ren-

dering techniques such as photon maps in time e�ciency, space e�ciency, or visual

quality (although the last might not be so bad with an appropriate �nal gather such

as Lalonde and Fournier [42]).

Nevertheless, in implementing Lucifer we have learned much about the wavelet

representation of radiance and have made several discoveries along the way that are

worthy of note:

� We have examined the physical plausibility of several illumination models and

suggested some useful new ones.

� We have shown how a wavelet representation of radiance in Nusselt coordinates

leads to the simpli�ed computation of radiative transport and other physical

quantities.
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� We have presented a scheme for computing transport coe�cients that uses a

combined geometric and numerical algorithm.

� We have investigated compression strategies for radiance and transport coef-

�cients.

� We have developed a way to compute surface interaction that acts directly on

the wavelet-transformed coe�cients of an incident radiance and a BRDF or

BTDF. The algorithm used for this shows promise of having applicability in

more general numerical inner product computations.

� We have shown that the representation of radiance on a wall leads directly to

an e�cient representation of light �elds.

We have spent a considerable amount of time trying to improve the speed of

Lucifer. While we have gotten speedups of better than an order of magnitude (not

including faster hardware) as a result, there is clearly still much room for improve-

ment. Even using the oracle, the program spends far too much time generating null

smoothing coe�cients and (partly as a result of the oracle itself) makes too many

source-to-destination (or vice-versa) projections per coe�cient.

To make Lucifer viable, we believe the most promising direction for further

study would be to move from a numerical/geometrical integration scheme to one

that was entirely geometrical. The goal of this work would be to �nd an algorithm

to determine the four-dimensional volume of the intersection of the projection of

a source hypercube into destination space with a destination hypercube. Such an

algorithm would speed up Lucifer dramatically.

The \spin-o�" work mentioned above done that resulted from Lucifer explo-

ration has its own set of future directions.
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8.1 Fitting Plausible Shaders to Physical Data

Now that we are able to classify shaders as to their plausibility, there is a need to

�t them to some real reectance data as Larson [78] did with his own illumination

model.

8.2 Fitting Plausible Shaders to Physical Data

Since Lucifer deals with four-dimensional radiance representations of light intrinsi-

cally, it should be possible to incorporate Levoy and Hanrahan [44] light �elds or

Gortler, et al. [27] lumigraphs directly into it, both as inputs and outputs.

8.3 Curved Surfaces

In this thesis, for reasons of simplicity we have considered only planar surfaces. With

appropriate extensions of the parametric-to-object mappings, resulting complication

of the transport computations1, and some way to treat self-shadowing, it should

be possible to use WRT to transport light from one curved parametric surface to

another.

8.4 Importance

In much the same way that importance can be incorporated into other global illu-

minations schemes (cf. Smits, et al. [72] and Aupperle and Hanrahan [3], it would

�t well into the Lucifer approach. We would take the observer to be an emissive

1To do this, we would probably have to give up on geometric integration schemes and fall back

on entirely numerical ones.

139



source of importance (probably a point source con�ned to the viewing frustrum) and

propagate it through cells separately from, but in the same manner as, radiance.

We would modify the algorithm of Chapter 3 so that the selection of cell to

be balanced would take into account not just the cells' undistributed power, but

also their (integrated) importances.

8.5 Unifying Illumination Modelling and Surface Mod-

elling

The parameterization of BRDFs and BTDFs we have used here was four-dimensional.

It is possible to incorporate the spatial variation of reectance properties (i.e., tex-

turing) by adding two additional dimensions to these distribution functions. This

would represent the uni�cation of illumination and surface modelling.

Adding two more positional dimensions to represent an incident-point-to-

emergent-point o�set could incorporate subsurface scattering. Extending our fast

inner product algorithm to work in this case would be trivial.

We could even use Lucifer itself to generate such positional BRDFs and

BTDFs on detailed microstructural models for later incorporation in larger-scale

image synthesis.
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Appendix A

One-Dimensional Wavelet

Properties

In this appendix, we will review some of the properties of wavelets that make them

particularly suitable for the representation of radiance. The standard reference on

wavelets is Daubechies [16], from which much of this appendix is derived. We will

con�ne ourselves here to one-dimensional wavelets. Section 5.3 will extend these

properties to multiple dimensions.

A.1 Scaling Functions and Wavelets

Wavelets are built from scaling functions, which we de�ne by enumerated dilations

and translations of a base scaling function �(x) of the form:

�lm(x) = 2l=2�(2lx�m) (A.1)
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Figure A.1: Haar Wavelet and Smoothing Functions. Haar wavelets are the simplest

possible wavelet and are the most commonly used wavelets in graphics. They have

only one vanishing moment.

each level l corresponds to a function space Vl, which is part of a nested sequence

of subspaces : : :� V�1 � V0 � V1 � V2 : : :
1.

Scaling functions have the property that

Z +1

�1
�(x)dx 6= 0 (A.2)

We de�ne a wavelet function space Wl as composed of those functions that need to

be added to a given space Vl to span the next �ner space Vl+1: Vl+1 = Vl�Wl. The

basis functions for Wl are then dilations and translations of a mother wavelet  (x):

 lm(x) = 2l=2 (2lx�m) (A.3)

Wavelets have the property Z +1

�1
 (x)dx = 0 (A.4)

Figures A.1-A.3 show some commonly-used wavelets and their corresponding

smoothing functions.

1This notation is a departure from that of Daubechies [16] that is more suitable for discrete

data: an increasing subscript of V corresponds to an increasing number of samples.
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Figure A.2: Daubechies-4 Wavelet and Smoothing Functions. Daubechies wavelets

were the �rst compact orthogonal wavelets discovered. This particular wavelet has

two vanishing moments.

primal
dual

primal
dual

Figure A.3: Linear Spline Wavelet And Smoothing Functions. These wavelets

are biorthogonal and have two vanishing moments. Unfortunately, while the dual

wavelets and smoothing functions have a simple closed form, this is not true for the

primals.

A.2 Multiresolution Re�nement Equations

Since �(x) 2 V0 and V0 � V1, we can write �(x) as a linear combination of the basis

functions �(2x� j) for V1:

�(x) =
p
2
X
j

hj�(2x� j) (A.5)

This also holds for  :

 (x) =
p
2
X
j

gj�(2x� j) (A.6)

These are the dilation or re�nement equations. Wavelet bases di�er princi-
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pally in their choices of fhjg (which determines fgjg).
Using the enumerated bases:

�lm(x) =
p
2
X
j

hj�l+1;2m+j(x)

 lm(x) =
p
2
X
j

gj�l+1;2m+j(x) (A.7)

A.3 Orthogonal Wavelets

We de�ne the inner product of two functions f and g with respect to a x:

hf j gix �
Z +1

�1
f(x)g(x)dx (A.8)

(Using x as a subscript is non-traditional, but will become useful when we consider

multidimensional wavelets.)

Some wavelets are orthogonal:

h lm j  l0m0ix = �ll0�mm0 (A.9)

But these have undesirable features: except for Haar, they are not symmetric

and they do not include useful functions like splines.

A.4 Biorthogonal Wavelets

We can construct biorthogonal bases by using four functions instead of two: wavelets

�lm and ~�lm and smoothing functions  lm and ~ lm. These are de�ned de�ned,

respectively, by four sets of coe�cients: fhjg, f~hjg, fgjg, and f~gjg. fhjg determines
f~gjg and f~hjg determines fgjg. If done consistently, the primal and dual components
are entirely interchangeable.
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For these, D
 lm j ~ l0m0

E
x
= �ll0�mm0 (A.10)

In the rest of this section, we'll assume the more general biorthogonality, since

we can always treat orthogonal wavelets as a special case of biorthogonal wavelets.

A.5 Wavelet Projections and Approximation

Let us discuss the ability of a wavelet representation to approximate an arbitrary

function f . Let Plf be the projection of a function f 2 L2 into the subspace Vl:

Plf(x) =
X
m

D
f j ~�lm

E
x
�lm(x) (A.11)

It can be shown

k f �Plf k2� C2�lNv

sX
n

k f (n) k2 (A.12)

where Nv is the number of vanishing moments of the wavelets, i. e. for

n = 0; : : : ; Nv � 1 Z
xn ~ (x)dx =

D
xn j ~ 00

E
x
= 0 (A.13)

What Equation (A.12) means is that we can always decrease the L2 error of

a wavelet approximation by increasing the number of levels l or by choosing wavelets

with a higher number of vanishing moments.

A.6 The Fast Wavelet Transform

The fast wavelet transform, �rst developed by Beylkin, et al. [5], starts with a

set of data slm; m = 0 : : :N � 1, where N = 2l. We treat these as coe�cients of

�lm and can compute a wavelet transform in O(N) operations. Figure A.4 shows
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Figure A.4: The Fast Wavelet Transform

this schematically: starting on the right, each step operates on half the data of the

previous step and there are l steps. This is another advantage of wavelet methods

over Fourier techniques, which typically require O(N logN) operations.

The transform leaves us with 2l � 1 wavelet coe�cients (dark gray in Fig-

ure A.4) and 1 smoothing coe�cient (light gray). The hierarchical arrangement of

these coe�cients is sometimes referred to as the \wavelet pyramid".

A.7 Wavelet Compression

Even with the wavelet pyramid, we are still dealing with N coe�cients. We have

not saved any storage (yet).

It can be shown that if f is of the form

f(x) =
X
l;m

wlm lm(x) (A.14)
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and we approximate it by

F (x) =
X

wlm2 ~W

wlm lm(x) (A.15)

where the ~W is a subset of the set of coe�cients fwlmg, that

k f � F k2=
X

wlm 62 ~W

jwlmj2 (A.16)

This gives us a convenient error metric. It also tells us that the optimal compres-

sion scheme discards the coe�cients with smaller magnitudes �rst { a thresholding

process.
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Appendix B

Pseudocode for Haar Surface

Interaction

Figures B.1-B.7 show the pseudocode for surface interaction with Haar wavelets.

This implements Equations 5.47 and 7.1 with several optimizations, particularly

\short circuiting": if one of the factors in Equation 5.47 is zero, the remaining

factors are not computed.
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# computing bR[N ] = sum(J,K ) f [J ] bS [K ] < < F [J ] j B [K ] > j B [N ] >

# This attempt takes advantage of the sparsity of both f [ ] and bS [ ].

compute bR:
for all N

bR[N ] = 0
for all J such that f [J ] != 0

for all K such that bS [K ] != 0
Delta ks(f [J ] � bS [K ], J, K ) 10

Figure B.1: Pseudocode for Surface Interaction I: top level

Delta ks(s, J, K ):
if J.nu<0> == 0 && K.nu<2> == 0

if K.l > J.l
Q = 2^(K.l � J.l)
if Q � J.m[0] <= K.m[2] < Q � (J.m[0] + 1)

Delta ls(s = sqrt(Q), J, K )
else

Q = 2^(J.l � K.l)
if Q � K.m[2] <= J.m[0] < Q � (K.m[2] + 1)

Delta ls(s = sqrt(Q), J, K ) 10

else if J.nu<0> == 0 && K.nu<2> == 1
if J.l > K.l

Q = 2^(J.l � K.l)
Qh = Q = 2
if 0 <= J.m[0] � Q � K.m[2] < Qh

Delta ls(s = sqrt(Q), J, K )
else if Qh <= J.m[0] � Q � K.m[2] < Q

Delta ls(�s = sqrt(Q), J, K )
else if J.nu<0> == 1 && K.nu<2> == 0

if J.l < K.l 20

Q = 2^(K.l � J.l)
Qh = Q = 2
if 0 <= K.m[0] � Q � J.m[2] < Qh

Delta ls(s = sqrt(Q), J, K )
else if Qh <= K.m[0] � Q � J.m[2] < Q

Delta ls(�s = sqrt(Q), J, K )
else if J.l == K.l && K.m[2] == J.m[0]

Delta ls(s, J, K )

Figure B.2: Pseudocode for Surface Interaction II: Delta ks
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Delta ls(s, J, K ):
if J.nu<1> == 0 && K.nu<3> == 0

if K.l > J.l
Q = 2^(K.l � J.l)
if 0 <= K.m[3] � Q � J.m[1] < Q

Delta kr(s = sqrt(Q), J, K )
else

Q = 2^(J.l � K.l)
if 0 <= J.m[1] � Q � K.m[3] < Q

Delta kr(s = sqrt(Q), J, K ) 10

else if J.nu<1> == 0 && K.nu<3> == 1
if J.l > K.l

Q = 2^(J.l � K.l)
Qh = Q = 2
if 0 <= J.m[1] � Q � K.m[3] < Qh

Delta kr(s = sqrt(Q), J, K )
else if Qh <= J.m[1] � Q � K.m[3] < Q

Delta kr(�s = sqrt(Q), J, K )
else if J.nu<1> == 1 && K.nu<3> == 0

if J.l < K.l 20

Q = 2^(K.l � J.l)
Qh = Q = 2
if 0 <= J.m[1] � Q � K.m[3] < Qh

Delta kr(s = sqrt(Q), J, K )
else if Qh <= J.m[1] � Q � K.m[3] < Q

Delta kr(�s = sqrt(Q), J, K )
else if K.l == J.l && K.m[3] == J.m[1]

Delta kr(s, J, K )

Figure B.3: Pseudocode for Surface Interaction III: Delta ls
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Delta kr(s, J, K ):
for N.nu = 0 to 15

if J.nu<2> == 0 && N.nu<2> == 0
lNmax = ( N.nu == 0 ? 0 : maximum possible level )
for N.l = 0 to lNmax

if N.l > J.l
Q = 2^(N.l � J.l)
for delM = 0 to Q � 1

N.m[2] = Q � J.m[2] + delM

Delta lr(s = sqrt(Q), J, K, N.nu, N.l, N.m[2]) 10

else

Q = 2^(J.l � N.l)
N.m[2] = oor(J.m[2] = Q)
Delta lr(s = sqrt(Q), J, K, N.nu, N.l, N.m[2])

else if J.nu<2> == 0 && N.nu<2> == 1
lNmax = ( N.nu == 0 ? 0 : J.l � 1 )
for N.l = 0 to lNmax

Q = 2^(J.l � N.l)
Qh = Q = 2
N.m[2] = oor(J.m[2] = Q) 20

if 0 <= J.m[2] � Q � N.m[2] < Qh

Delta lr(s = sqrt(Q), J, K, N.nu, N.l, N.m[2])
else

Delta lr(�s = sqrt(Q), J, K, N.nu, N.l, N.m[2])
else if J.nu<2> == 1 && N.nu<2> == 0

lNmax = ( N.nu == 0 ? 0 : maximum possible level )
for N.l = J.l + 1 to lNmax

Q = 2^(J.l � N.l)
Qh = Q = 2
for delM = 0 to Qh � 1 30

N.m[2] = Q � J.m[2] + delM

Delta lr(s = sqrt(Q), J, K, N.nu, N.l, N.m[2])
for delM = Qh to Q � 1

N.m[2] = Q � J.m[2] + delM

Delta lr(�s = sqrt(Q), J, K, N.nu, N.l, N.m[2])
else if N.nu != 0 j j J.l == 0

N.l = J.l
N.m[2] = J.m[2]
Delta lr(s, J, K, N.nu, N.l, N.m[2])

Figure B.4: Pseudocode for Surface Interaction IV: Delta kr
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Delta lr(s, J, K, N.nu, N.l, N.m[2]):
if J.nu<3> == 0 && N.nu<3> == 0

if N.l > J.l
Q = 2^(N.l � J.l)
for delM = 0 to Q � 1

N.m[3] = Q � J.m[3] + delM

Delta x (s = sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3])
else

Q = 2^(J.l � N.l)
N.m[3] = oor(J.m[3] = Q) 10

Delta x (s = sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3])
else if J.nu<3> == 0 && N.nu<3> == 1

if J.l > N.l
Q = 2^(J.l � N.l)
Qh = Q = 2
N.m[3] = oor(J.m[3] = Q)
if 0 <= J.m[3] � Q � N.m[3] < Qh

Delta x (s = sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3])
else

Delta x (�s = sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 20

else if J.nu<3> == 1 && N.nu<3> == 0
if J.l < N.l

Q = 2^(N.l � J.l)
Qh = Q = 2
for delM = 0 to Qh � 1

N.m[3] = Q � J.m[3] + delM

Delta x (s = sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3])
for delM = Qh to Q � 1

N.m[3] = Q � J.m[3] + delM

Delta x (�s = sqrt(Q), J, K, N.nu, N.l, N.m[2], N.m[3]) 30

else if N.l == J.l
N.m[3] = J.m[3]
Delta x (s, J, K, N.nu, N.l, N.m[2], N.m[3])

Figure B.5: Pseudocode for Surface Interaction V: Delta lr
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Delta x (s, J, K, N.nu, N.l, N.m[2]):
if K.nu<0> == 0 && N.nu<0> == 0

if N.l > K.l
Q = 2^(N.l � K.l)
for delM = 0 to Q � 1

N.m[0] = Q � K.m[0] + delM

Delta y(s = sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3])
else

Q = 2^(K.l � N.l)
N.m[0] = oor(K.m[0] = Q) 10

Delta y(s = sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3])
else if K.nu<0> == 0 && N.nu<0> == 1

if K.l > N.l
Q = 2^(K.l � N.l)
Qh = Q = 2
N.m[0] = oor(K.m[0] = Q)
if 0 <= K.m[0] � Q � N.m[0] < Qh

Delta y(s = sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3])
else

Delta y(�s = sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]) 20

else if K.nu<0> == 1 && N.nu<0> == 0
if K.l < N.l

Q = 2^(N.l � K.l)
Qh = Q = 2
for delM = 0 to Qh � 1

N.m[0] = Q � K.m[0] + delM

Delta y(s = sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3])
for delM = Qh to Q � 1

N.m[0] = Q � K.m[0] + delM

Delta y(s = sqrt(Q), J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]) 30

else if K.l == N.l
N.m[0] = K.m[0]
Delta y(s, J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3])

Figure B.6: Pseudocode for Surface Interaction VI: Delta x
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Delta y(s, J, K, N.nu, N.l, N.m[0], N.m[2], N.m[3]):
if K.nu<1> == 0 && N.nu<1> == 0

if N.l > K.l
Q = 2^(N.l � K.l)
for delM = 0 to Q � 1

N.m[1] = Q � K.m[1] + delM

bR[N ] = bR[N ] + s = sqrt(Q)
else

Q = 2^(K.l � N.l)
N.m[1] = oor(K.m[1] = Q) 10

bR[N ] = bR[N ] + s = sqrt(Q)
else if K.nu<1> == 0 && N.nu<1> == 1

if K.l > N.l
Q = 2^(K.l � N.l)
Qh = Q = 2
N.m[1] = oor(K.m[1] = Q)
if 0 <= K.m[1] � Q � N.m[1] < Qh

bR[N ] = bR[N ] + s = sqrt(Q)
else

bR[N ] = bR[N ] � s = sqrt(Q) 20

else if K.nu<1> == 1 && N.nu<1> == 0
if K.l < N.l

Q = 2^(N.l � K.l)
Qh = Q = 2
for delM = 0 to Qh � 1

N.m[1] = Q � K.m[1] + delM

bR[N ] = bR[N ] + s = sqrt(Q)
for delM = Qh to Q � 1

N.m[1] = Q � K.m[1] + delM

bR[N ] = bR[N ] � s = sqrt(Q) 30

else if K.l == N.l
N.m[1] = K.m[1]
bR[N ] = bR[N ] + s

Figure B.7: Pseudocode for Surface Interaction VII: Delta y
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Index

ANSI/IES, 6, 10, 60

bidirectional reectance distribution func-

tion (BRDF), 5, 14, 16, 25{

28, 31{33, 37{39, 47, 59, 63,

67{69, 82, 116, 119, 120, 126,

137

bidirectional transmittance distribution

function (BTDF), 5, 15, 16,

37, 47, 84, 116, 119, 120, 126,

137

BRDF, see bidirectional reectance dis-

tribution function

BTDF, see bidirectional transmittance

distribution function

FIAT, 41, 54, 55, 76, 120

�nal gather, 38, 120

illumination

global, 1, 8, 35, 38{41

local, 8, 13, 16, 36, 38, 40, 44

model, 17, 23{33, 36, 37, 40

illumination model, 14, 44, 48, 58{72,

119

index

multiresolution, 77, 78

wavelet, see wavelet indices

Lucifer (algorithm), 39, 41{57

Lucifer (implementation), 85{87, 114{

136

Nusselt coordinates, 74{75, 82, 119,

137

shading model, 17, 33{34, 119{120

subsurface scattering, 32, 116

surface

interaction, 5, 16, 35, 37, 47, 58,

75, 76, 81{84, 120{122, 126,

137, 148

model, 17, 32{33, 120

UDC, see unit directional circle
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unit directional circle, 52, 74, 79, 82,

104

wavelet

basis, 54

coe�cient trees (WCTs), 89{92,

115, 118, 119, 123, 124, 127{

129

compression, 50, 117, 118

indices, 86{89, 91, 116, 123, 124

luminaires, 19

radiance, 55{57

radiative transport (WRT), 73{86

radiosity, 38

re�nement, 128

wavelets

Haar, 116, 120{123, 126, 148

one-dimensional, 141{147

WCT, see wavelet coe�cient trees

WRT (algorithm), see wavelet radia-

tive transport

WRT (implementation), 85{110, 116,

117, 120
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