
A Fault-Tolerant

Collaborative Tools Development System

by

Miranda W.S. Ko

B.Sc. (Hons), The University of British Columbia, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia

August 1998

c Miranda W.S. Ko, 1998

Abstract

Collaborative tools (multi-user applications) are very popular. It is desirable to have

an application-independent system which provides the basic elements that are necessary for

developing any kind of collaborative tools. This thesis presents a system named Collabora-

tive Tools Development System (CTDS) for developing these tools. It not only facilitates

the building of collaborative software from stand-alone (single-user) software, but it also

eases the development of collaborative software from scratch. CTDS provides the commu-

nication and coordination services which are used by collaborative software. CTDS offers

fault-tolerant collaboration. Failures of key components in CTDS do not have any impact

on collaboration. CTDS also offers many other features for more effective and efficient col-

laboration.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements ix

Dedication x

1 Introduction 1

2 Model 6

2.1 Terminologies . 6

2.2 System Architecture . 8

2.2.1 Server . 8

2.2.2 Client . 9

2.3 Communication . 10

iii

2.3.1 Communication Between Application Server and Application Pro-

gram . 11

2.3.2 Communication Between Application Program and Arbiter 12

2.4 Data Flow . 13

2.5 Other Models . 14

2.5.1 Sequencer-based Model . 14

2.5.2 PSEUDO Server Architecture . 18

3 Implementation 21

3.1 Session . 21

3.1.1 Session Initiation . 21

3.1.2 Session Joining . 23

3.1.3 Session Leaving . 25

3.1.4 Session Termination . 27

3.2 Arbiter . 27

3.2.1 State . 27

3.2.2 Flushing . 31

3.2.3 Processing Priority . 33

3.2.4 Transaction List Full . 33

3.2.5 Failure or Leaving of Clients . 34

3.2.6 Recovery of State . 36

4 CTDS Features 39

4.1 Multiple Masters . 39

4.2 Multiple Resources . 41

4.2.1 Example Application - Robot . 44

iv

4.3 Fault-Tolerance . 47

4.3.1 Algorithm . 48

4.3.2 Implementation . 51

4.4 Interactive Applications Enhanced . 59

5 Related Work 65

6 Conclusions and Future Work 69

Bibliography 73

Appendix A CTDS User Guide 76

A.1 Header Files . 76

A.2 Modules . 77

A.2.1 Xsaction types . 77

A.2.2 event dispatcher . 79

A.2.3 app Xsaction . 81

A.3 The Application . 85

A.3.1 Setting Up a Session . 86

A.3.2 Communications with Application Server and Arbiter 86

A.3.3 Multiple Resources . 87

A.3.4 Transaction Accumulation/Combination 87

v

List of Tables

2.1 Information on Communication Channels Required in Sequencer-based and

CTDS . 17

2.2 Percentage of Unused Channels in Sequencer-based architecture 17

4.1 Processing of Recovery List in Recovery Process 57

vi

List of Figures

2.1 The Client-Server Architecture in CTDS 8

2.2 Application Server . 10

2.3 Communications Between Each Process in CTDS 11

2.4 Data Flow Diagram of One Transaction in CTDS 13

2.5 Sequencer-based Distributed Application Architecture 15

2.6 Number of Communication Channels Required in Traditional vs. CTDS . . 16

2.7 PSEUDO Server Architecture . 18

3.1 Initiator’s Application Server . 23

3.2 Join Notice Message Box . 24

3.3 Transfer and Resume Dialog Box . 25

3.4 Application Server Before and After New Participant Joins 26

3.5 Failure in Joining Message Box . 27

3.6 Transaction list Structure . 30

3.7 Transaction list in the arbiter . 30

3.8 (a) Flushing Flow Chart and (b) Flushing Mechanism 32

3.9 (a) Transaction List Full Message Box and (b) Handling of Transaction List

Full Flow Chart . 35

vii

3.10 Handling of Client’s Failure or Leaving Flow Chart 37

4.1 Processing of Status Change Request Flow Chart 42

4.2 Robot Application . 44

4.3 Snapshot of the Robot Application with Active and Pickable Body Parts . . 45

4.4 No Pickable Body Part in Robot . 47

4.5 Notification of Failure of Arbiter Message Box 49

4.6 Restart of Arbiter Flow Chart . 50

4.7 (a) Bufferprocessed and (b) Bufferunprocessed 53

4.8 Two Round-trip Time as a Result of Using 2-phase Commit Protocol 59

4.9 Adverse Effect on Response Time If Generated Transactions are sent Imme-

diately . 60

4.10 An Example of Combining Transactions in Bufferunprocessed 63

A.1 Structure of a Transaction in CTDS . 78

A.2 Structure of a Combination-rule-storage Record 88

viii

Acknowledgements

Many thanks to Dr. Peter Cahoon and Dr. Norm Hutchinson for supervising this thesis.

Their suggestions and comments led to many improvements in this project. Thanks to Dr.

Dave Forsey for his advice on different aspects of this project. I would also like to thank

Roger Tam for his help and his input to this project. Lastly, thanks to Jean-Luc Duprat for

his valuable input on the design of the system in this project. This research was supported

by the Natural Sciences and Engineering Research Council.

MIRANDA W.S. KO

The University of British Columbia

August 1998

ix

This thesis is dedicated to Charles, my daddy, and Lisa, my mommy.

x

Chapter 1

Introduction

In the past few years, white board software has become popular. It allows widely separate

users to collaborate on documents, to participate in presentations, etc. However, the shar-

ing is not real-time; sharing is limited to static images or screen snapshots from programs’

output. This kind of sharing is unacceptable in some situations. Consider the sharing of

a morphing process from an ape to a human being. Apparently, one can understand better

how an ape morphs to a human being by looking at the entire animation as compared to look-

ing at snapshots of the animation. This is due to information lost in-between the snapshots.

This inadequacy of white board software leads to the development of “application sharing”

software. Application sharing software allows two or more users running the same appli-

cation to work collaboratively and simultaneously on the shared model/data. The meaning

of the shared model/data is application-dependent. For instance, the shared model/data is

a document if the shared application is a document editor. On the other hand, the shared

model/data is a 3-D object in a 3-D application sharing environment. Application sharing

software offers real-time sharing. Application sharing software, which allows multi-user

collaboration, is also called collaborative tools. In most cases, collaborative tools are de-

1

veloped from stand-alone (single-user) applications. Users of collaborative tools are called

participants. Participants are said to be participating in a session. Collaborative tools are

useful in many different fields. In the field of medicine, it opens up the possibility to per-

form a surgery without the presence of the necessary specialists in the operating room. By

sharing the patient’s model in an appropriate application, specialists can give advice to the

surgeons. Specialists can also give instructions to the surgeons by manipulating the patient’s

model. Collaborative tools also make interactive distance learning possible in the field of

education. With a shared model between the instructor and the students, together with video

conferencing software, a virtual classroom is formed. The instructor can explain the lecture

material clearly to the students by referring to the relevant model and through verbal and

visual communication. Students can also clarify their questions by manipulating the corre-

sponding model. One last example of collaborative tools is Internet games. Internet games

allow users from different parts of the world to play a single game session on the Internet.

Evidently, collaborative applications need to communicate with other instances of

themselves. For example, changes made to the shared model by any of the participants must

be seen by other participants. In addition, a coordination mechanism must exist to ensure

state consistency among all participants. State consistency among participants is guaran-

teed only if all participants execute the same set of changes to the shared model in exactly

the same order (total atomic ordering). In the field of distributed systems, many techniques

have been developed to handle problems encountered in designing collaborative tools. For

instance, there are techniques to ensure replica consistency and techniques to preserve or-

dering of requests from different clients. Most of the collaborative tools that have been de-

veloped build the code for communication and ordering into the applications themselves. In

fact, every kind of collaborative tool requires similar communication and ordering mecha-

nisms. Thus, it is desirable to build an application-independent system which provides the

2

communication and coordination services. This not only allows reuse of code, but also fa-

cilitates conversion of a stand-alone application into a collaborative one. The collaborative

version of an application can be built by reusing existing application code with any modi-

fications required by the system. Such a system for developing collaborative tools can be

classified into two main categories:

1. view-level sharing systems

2. model-level sharing systems

View-level sharing systems require no modification to the application code in con-

verting a stand-alone application to a collaborative one. It offers collaboration by exchanges

of window events, e.g. XEvents. XEvents that are generated as a result of changes to shared

models are sent to all participants to achieve application sharing. The application is said to

be collaboration-unaware since the same piece of code is used for running the application in

stand-alone mode and collaborative mode. On the contrary, model-level sharing systems

require application code to be modified in building a collaborative version of a stand-alone

application. However, model-level sharing systems provide sharing at a higher level of se-

mantics. In model-level sharing systems, sharing is achieved by exchanging information

of the shared model, e.g. rotations to the shared model. A good model-level sharing sys-

tem should require as little change to the application code as possible. Collaboration-aware

software is produced by model-level sharing systems.

It is also important that collaborative tools provide fault-tolerant services. There are

two aspects of fault-tolerance in application sharing. The first one is the isolation of fail-

ures of participants. Failure of any of the application instances must not affect the others

from functioning correctly. The other aspect of fault-tolerance is the recoverability of a ses-

sion. The meaning of the recoverability of a session depends on the design of the system that

3

provides the communication and coordination services. In general, a system that provides

the communication and coordination services consists of a certain number of components or

processes. A session is recoverable if failure of any component in the system does not affect

the continuity of the session. The implementation of fault-tolerant services differs from sys-

tem to system, depending on the design of the system. If a system fulfills the fault-tolerance

requirements in the two aspects discussed, there should be no failure at all from the point of

view of a participant. This is because the application instance that a participant is running

dies only if the participant quits or terminates his/her own application instance.

To summarize, a system for developing collaborative tools should provide the com-

munication and coordination services, which are necessary in application sharing. More-

over, it should provide fault-tolerant application sharing. Failures of any of the participants

or any of the components in the system should have no effect on the continuity of a session.

Lastly, a model-level sharing system should require as little code change to the original ap-

plication code as possible.

This thesis presents a fault-tolerant approach in implementing a system for devel-

oping collaborative tools. The system developed offers model-level sharing. It allows any

number of users sharing the same application at geographically dispersed locations. The sys-

tem developed is called the Collaborative Tools Development System (CTDS). The design

and implementation of this system targets the three major requirements of a system for devel-

oping collaborative tools. It employs a client-server architecture. The application instances

together with session management processes provided by the system form the clients. The

server is a separate process provided by the system to give the communication and coordi-

nation services. The server is also called arbiter because of its important role in the system.

CTDS requires the arbiter running on a computer with inetd (Internet Daemon) running.

Code of a stand-alone application is modified by adding necessary function calls to commu-

4

nicate with the arbiter and the session management process, and by adding state information

which is collaboration-specific. Application sharing is then achieved by having each of the

participants running the modified application on his/her machine. Fault tolerance is achieved

by automatic recovery of the arbiter.

Chapter 2 of this thesis presents the model of CTDS. Each of the components in the

system is described briefly. A dataflow diagram is also presented to illustrate the process

to commit a transaction/request. Some important terminologies are also introduced in this

chapter. This chapter also presents other models which are commonly used in building col-

laborative tools development systems. Comparisons and contrasts are done between CTDS

model and these models.

Chapter 3 talks about the implementation of the system. It gives a detailed descrip-

tion of the implementation of session initiation and session termination. In addition, the al-

gorithm of joining a session and that of leaving a session are also discussed. Some internal

details of the core component in CTDS – the arbiter – are also uncovered.

Chapter 4 presents the main features of CTDS. It introduces each of the key features,

followed by an in-depth discussion of its implementation.

Chapter 5 discusses related work. Research work which employs models similar

to that used by CTDS as well as research work which uses the other models introduced in

Chapter 2 are presented.

Chapter 6 presents the conclusions and some ideas on enhancing the system.

5

Chapter 2

Model

This chapter presents the model used in developing the system (CTDS) that we have imple-

mented in this project. Each of the components in the system is described in detail, along

with a discussion on its functionality. Moreover, interactions between the system compo-

nents are also discussed. This chapter then gives an overview on how application sharing

is achieved in CTDS. Lastly, two other models, which are used in building collaborative

tools development systems in the research field are presented. Comparisons and contrasts

between these models and the CTDS model are also given.

2.1 Terminologies

Before presenting the model used in developing CTDS, it is crucial to know the definitions

of some terms that are used throughout this document. Some of the terms are introduced

previously. We will repeat them here for the completeness of this section.

� session

- the environment formed by multiple shared instances of a single application. All

6

interactions occurring in any of the shared instances are seen by all other instances.

� arbiter

- server in CTDS which provides the communication and coordination services to sup-

port collaboration. There is one arbiter per session.

� participant

- the user of a shared application instance. The user is said to be participating in a

session.

� shared model

- a generic term used to describe all the objects shared by the participants in a session.

� client

- the shared application instance and the session management process associated with

that shared application instance run by a participant. (Since CTDS offers model-level

sharing, the application instance is a modified one.)

Note: participant and client are used interchangeably in this document based

on the justification that an application instance is run by a single participant.

� master

- a participant/client who has permission to perform interactions on the shared model

in a session. Subject to the capability and limitations of a system, the number of mas-

ters in a session can be greater than one.

� slave

- a participant/client who does not have permission to perform interactions on the

shared model in a session. Obviously, there is no limit on the number of slaves in

a session.

7

Arbiter

Server

ClientClient

Modified
Application

Application
Server

Modified
Application

Application
Server

Client

Modified
Application

Application
Server

- Communication point

- Process

Figure 2.1: The Client-Server Architecture in CTDS

� initiator

- the participant/client which initiates a session. In other words, the initiator is the first

client in a session.

2.2 System Architecture

Figure 2.1 shows the client-server architecture used in developing CTDS.

2.2.1 Server

The server is called the arbiter. It is part of CTDS. It provides the communication and co-

ordination services to clients in a session. The arbiter provides total ordering by assigning

sequence numbers to transactions on the shared model. In other words, the sequencing and

ordering job is done by the arbiter. The arbiter works with any application. It is started

8

automatically when the initiator starts a session, and it runs on a initiator-specified machine.

2.2.2 Client

The client consists of two processes, the modified application program and an application

server associated with it. Both processes run on the same machine, which can be different

from the arbiter’s machine.

Modified Application

Since CTDS provides model-level sharing, the application code has to be modified to work

with CTDS. Connection-establishment procedures have to be added to the application code

for the application program to communicate with other components in CTDS. In addition,

communication procedures have to be added to the application code at appropriate places to

achieve application sharing. All the modifications are made based on a library of functions

provided to any applications by CTDS. Refer to Appendix A for details on the integration of

CTDS into an application. The user interface to the stand-alone version of the application is

preserved even after integration with CTDS. Thus, participants will not have any difficulty

in using the collaborative version of the software.

Note: In the rest of this document, the modified application will be referred

to as the application.

Application Server

The application server is part of CTDS. It provides the additional user interface for control-

ling collaboration-specific parameters, and thus, preserving the interface of the original ap-

plication. It also handles all interactions with participants which result from collaboration.

The application server always comes with the application program. It is started automati-

9

Names of participants in
the session

Hosts and port at which the participant is

Status of the participant: Master or Slave

Buttons to change status
of this participant

Status of this
participant

Figure 2.2: Application Server

cally when the modified application is run. The application server allows a participant to

switch between master and slave. In addition, it shows a list consisting of the information

of all participants in the corresponding session. The information of a participant includes

his/her name, the host and the port number on which the participant’s application is, and the

status (master/slave) of the participant. Figure 2.2 shows the user interface provided by the

application server, along with an annotation for each piece of information.

2.3 Communication

Figure 2.3 shows the types of communication used between each process in CTDS. Note

that communication only exists between the arbiter and clients. Clients do not communicate

10

Arbiter

Modified
Application

Application
Server

socket

socket

TCP/IP

IPC

2 unidrectional
pipes

Figure 2.3: Communications Between Each Process in CTDS

with each other.

2.3.1 Communication Between Application Server and Application Program

Any kind of IPC (Interprocess Communication) can be used for the communication between

the application server and the application program. In CTDS, two pipes are used for this

purpose. Since pipes provide one-way flow of data, two pipes are used to provide the bi-

directional communication desired. For a detailed discussion on pipes, refer to [Ste90].

The communication between the application server and the application program is

necessary upon situations in which the information displayed by the application server has to

be updated or the application server has to provide collaboration-specific interactions. These

situations include joining of new participants and leaving of existing participants. When a

new participant joins, the arbiter will notify the application program, which in turn notifies

the corresponding application server of the joining. Upon notification of the joining, the ap-

plication server updates the list of participants. The application server also handles all inter-

actions in the joining process (Section 3.1.2). Similarly, when an existing participant leaves,

the arbiter will notify the application program, which in turn notifies the application server

11

of the leaving. Again, the application server will update the participant list. Moreover, the

application server also needs to communicate with the application program when a partici-

pant switches status (master/slave) using the buttons provided. If a participant switches sta-

tus, the application server informs the application program of the request to change status.

The application program then consults the arbiter, which determines whether the partici-

pant can make the status change. The rule for determining the validity of status change is

discussed in Section 4.1. After consulting the arbiter, the application program will reply to

the application server saying whether the request is approved or not. The application server

will then update the status if the requested status change is approved.

The communication between the application server and the application program is

indispensable in many other situations which will be discussed in the presentation of the

implementation of the arbiter and in the discussion of the main features of CTDS.

2.3.2 Communication Between Application Program and Arbiter

Since the arbiter does not necessarily run on the same machine as any of the clients, some

kind of network communication is necessitated between the application programs and the

arbiter. In CTDS, TCP/IP communication is used for this purpose. TCP/IP is chosen for

simplifying the implementation of total ordering since it guarantees in-order delivery of data

packets.

The communication channel between an application program and an arbiter not only

makes the communications necessitated from the scenarios described in the previous section

(joining or leaving of participants, requests and approvals of status changes) feasible, but it

also plays a very important role in achieving application sharing. In fact, the communication

channel is mainly used for transmitting transactions, which are changes to the shared model

and transaction-related requests and replies, in either direction. Details of data flow in CTDS

12

1. Master sends a new transaction A, which is state information of the shared model or update to the state
 of the shared model, to the arbiter.
2. Arbiter assigns a sequenece number to transaction A => transaction A w/ seq. # a. Then, arbiter
 multicasts the sequenced transaction to all clients.
3. Client replies "ready to commit" sequence number a, i.e. transaction A.
4. Arbiter, upon receiving "ready to commit" from all clients, sends "commit seq. # a" to all clients.

Arbiter

app.
app.

server

Master Client

app.
app.

server

Master Client

app.
app.

server

Slave Client

1

2
2 2 2

3
33

4 4 4

app.
app.

server

Slave Client

3
4

Figure 2.4: Data Flow Diagram of One Transaction in CTDS

are discussed in the following section.

2.4 Data Flow

In CTDS, application sharing is achieved by multicasting changes to the shared model to

all participants. Application programmers have control over which changes should be mul-

ticasted and which should not. Atomic ordering provided by a 2-phase commit protocol

[CDT94], working with the total ordering provided by TCP/IP and the arbiter, ensures state

consistency among all clients. Masters send changes to the shared model as a transaction to

the arbiter. The arbiter then assigns unique sequence number to this transaction and mul-

ticasts it to all clients, including the originator of the transaction. The multicasting is done

by point-to-point TCP/IP communication to every client. Upon the receipt of a transaction,

13

a client checks whether it is “ready-to-commit” the transaction by comparing the sequence

number of the received transaction and the sequence number of the transaction it just com-

mitted. If the difference between the sequence number of the transaction just committed

and that of the received transaction is greater than 1, the received transaction is not ready to

be committed. If the transaction received is ready to be committed, the client replies to the

arbiter. Otherwise, it stores the transaction and waits until it is “ready-to-commit” the trans-

action before replying to the arbiter. When the arbiter receives replies from all clients for a

particular transaction, it will inform all clients to commit the transaction by sending “com-

mit” to them. For details on the algorithm of 2-phase commit protocol, refer to [CDT94].

Figure 2.4 summarizes the data flow of a single transaction in CTDS.

2.5 Other Models

In addition to the architecture used in building CTDS, there are two other main architectures

for implementing collaborative tools development systems which are commonly used in the

research field. We will introduce both of them. Some comparisons and contrasts between

them and the CTDS model will also be presented.

2.5.1 Sequencer-based Model

The first model we are going to introduce is what we described as the sequencer-based dis-

tributed applicationarchitecture. In this architecture, one of the application instances, which

is called the sequencer, will do the sequencing and ordering job. Masters send transactions

to the sequencer. Acting like the arbiter in CTDS, the sequencer will carry out the 2-phase

commit protocol for the transactions after assigning sequence numbers to them. Figure 2.5

shows the sequencer-based distributed application architecture.

Apparently, the application code has to be modified in order to communicate with

14

Application
(sequencer)

Application

Application Application

Client Client

Client Client

Figure 2.5: Sequencer-based Distributed Application Architecture

other application instances, as well as to perform the sequencing and ordering job. Note

that not only the sequencer, but also all application instances in the session need to have the

sequencing and ordering procedures incorporated. This is because the provision of fault-

tolerant service requires that every application instance be willing to become the sequencer.

If the current sequencer dies or the corresponding participant quits, an election has to be

called to elect a new sequencer for the session to continue. This is done by some kind of

election algorithm, which are well-developed in the field of distributed systems. Since any

of the application instances can become the sequencer, communication channels have to be

established between each pair of application instances despite of the fact that application

instances only communicate with the sequencer.

The architecture employed in building CTDS has advantages over the sequencer-

based distributed architecture in several aspects. Firstly, less communication channels are

required to be established in the CTDS architecture. The number of communication chan-

nels in the CTDS architecture increases linearly with the number of participants, whereas

the number of communication channels in the sequencer-based architecture increases with

15

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

CTDS architecture
traditional arhcitecture

Figure 2.6: Number of Communication Channels Required in Traditional vs. CTDS

the square of the number of participants. Figure 2.6 gives the numbers of communication

channels required for some chosen numbers of participants in both architectures. The larger

the number of participants, the bigger the difference between the number of communication

channels required to be established (Table 2.1).

Worst of all, most of the communication channels established in the sequencer-based

architecture are not active. Application instances do not need to communication with each

other, except with the sequencer. Consider the session shown in Figure 2.5, only three of

the six communication channels established are actually used. On the contrary, all the es-

tablished communication channels are utilized in CTDS. Thus, the sequencer-based archi-

tecture is wasting computer resources in some sense. Table 2.2 shows the percentage of

unused communication channels in the sequencer-based architecture.

Secondly, in the CDTS architecture, the collaboration has less impact on the interac-

16

Number of Communication Channels Required Communication Channels
Participants Traditional CTDS Difference

2 1 2 -1
3 3 3 0
4 6 4 2
5 10 5 5
6 15 6 9
7 21 7 14
8 28 8 20
9 36 9 27

10 45 10 35

Table 2.1: Information on Communication Channels Required in Sequencer-based and
CTDS

Number of Participants Percentage of Unused Communication Channels

2 0%
3 33.3%
4 50.0%
5 60.0%
6 66.7%
7 71.4%
8 75.0%
9 77.8%
10 80.0%

Table 2.2: Percentage of Unused Channels in Sequencer-based architecture

tivity of the application instances. In the sequencer-based architecture, the sequencer, which

is one of the application instances, has to do the sequencing job in addition to handling the

normal application interactions. This not only deteriorates the interactivity of the sequencer,

but also makes the 2-phase commit protocol carried out by the sequencer not as effective as

that carried out by the arbiter in CTDS. As a result, the performance of the entire session is

affected. Thirdly, the CTDS architecture requires no election algorithm since it is always the

arbiter which does the sequencing job. Even though election algorithms are well-developed

in the area of distributed systems, they are usually hard to implement. CTDS uses a clean,

simple method to take care of the failure of the arbiter. The method is described later in the

17

X Server 1

X Server 2

PSEUDO
Server

 Application

Application

X Client 2

X Client 1

X requests

replies

translated
replies for

each X Client

translated
requests for

each X Server

requests
and

replies

* PSEUDO Server can be replicated on multiple machines

Figure 2.7: PSEUDO Server Architecture

discussion of the fault-tolerant feature of CTDS (Section 4.3). Lastly, and most importantly,

the sequencing code is totally separate from the application code in the CTDS architecture.

In CTDS, the sequencing code is located in the arbiter. As discussed before, the sequencing

code is completely application independent. Thus, CTDS allows the sequencing code to be

written only once for the arbiter but works for all applications.

2.5.2 PSEUDO Server Architecture

PSEUDO server architecture is a popular architecture used in providing application sharing.

Figure 2.7 shows the basics of the PSEUDO server architecture. There are many variants of

the PSEUDO server architecture. All the variants provide application sharing based on ex-

changes of some kind of window events, mostly XEvents. In the rest of this discussion, we

will assume an X window environment, and hence, XEvents are exchanged to provide appli-

cation sharing. This section serves as an overview on how the PSEUDO server architecture

provides application sharing. Details can be found in many papers discussed in Chapter 5.

In the PSEUDO server architecture, a PSEUDO server is introduced in between the

18

X Clients, which are the applications in a session, and the corresponding X Servers. This

PSEUDO server assumes the role of a X Server when interacting with X Clients and the

role of a X Client when interacting with X Servers. Its main responsibility is the transla-

tions and modifications of X requests and replies in order to make them meaningful to a

particular X Server or X Client. The translations and modifications are necessary because

different resources with different identifiers are associated with each X Server and X Client

connection. When a X Client generates a X request, it is sent to the PSEUDO server. The

PSEUDO server forwards the request to the local X Server, as well as translating and modi-

fying the request for X Servers associated with other X Clients in the session. The PSEUDO

server then sends the translated request to the X Servers of all other participants. Variants

of the PSEUDO server architecture include replicated or centralized PSEUDO servers, and

replicated or centralized storage of application data, replicated or centralized applications.

The PSEUDO server architecture give rise to collaboration-unaware software. It

provides view-level sharing. Thus, it requires no modification to the application. However,

as mentioned before, it results in a lost of semantics. This is due to the exchanges of XEvents,

in contrast to exchanges of model-level events, between application instances. View-level

events are not as meaningful as model-level events to human users. The PSEUDO server

architecture also introduces complications into providing fault-tolerant application sharing

since there are more points of failures as compared to CTDS. For instance, in a replicated

PSEUDO server architecture, mechanisms have to be defined to take care of the failure

of any of the PSEUDO servers. This may include having some of the X Clients connect

to another PSEUDO server when failure of the corresponding PSEUDO server happens.

Moreover, systems using PSEUDO server architecture are limited to a particular window

environment. This results from the sharing of window events. And the PSEUDO server is

also hard-coded to perform the translations and modifications of window-system-dependent

19

events. CTDS, on the other hand, does not have any restriction on the underlying window

environment. In CTDS, only the application server has a user interface. Tcl/Tk, a program-

ming system which consists of a basic programming language (Tcl) and a toolkit of widgets

(Tk), is used to implement the application server so that the application server can run on

the two main window environments: Windows, and X Window. In addition, implementing

the request translation algorithm in PSEUDO servers requires thorough understanding of the

window environment of interest. On the contrary, CTDS does not require any knowledge of

the underlying window environment. Lastly, the PSEUDO server architecture only allows

sharing of graphics calls which are directed to X Servers. This causes difficulty in some 3-D

X Windows applications that utilize direct hardware access which bypasses X Servers.

20

Chapter 3

Implementation

This chapter discusses the implementation details of CTDS. It presents the details on the

initiation and termination of a session. Implementations of joining a session and leaving a

session are also discussed. CTDS consists of the application server and the arbiter. Arbiter

is the core component in CTDS. The application server, which is the other component, is

mainly for provision of a user interface for session management resulted from collaboration.

Thus, only the arbiter is discussed in detail in this chapter. Internal details of the arbiter are

presented.

3.1 Session

3.1.1 Session Initiation

A session is started by having the initiator running the application program. There are sev-

eral parameters associated with a session in CTDS. All of them are required for initiating a

session:

21

1. Server Host

- the host name of the machine on which the arbiter is going to run.

2. Server Port

- the port number (communication point) on the server host through which the arbiter

is going to communicate with clients.

3. Session Number

- an unique identifier to identify a session. This is indispensable in identifying a ses-

sion if there are more than one arbiter running on the same machine.

4. Maximum Number of Masters

- the maximum number of masters allowed in the session.

In addition to these parameters, every participant has to give his/her own name to

start the application. The name is part of the participant information displayed in the appli-

cation server.

As mentioned earlier, the arbiter is started automatically when a session is initiated.

This is done by registering the arbiter as a new service provided by inetd (Internet Dae-

mon). inetd is a daemon process running on a typical UNIX server machine which listens

for all kinds of requests and invokes the appropriate server to handle the request based on the

type of the request received. For details on inetd, refer to [Ste90]. This means that the ar-

biter has to run on a machine with inetd running. When the initiator’s application is started,

it will talk to inetd on the given server host. Inetd will then spawn off an arbiter as requested

by the initiator’sapplication. The arbiter then binds to the given server port. Failure in bind-

ing to the server port results in immediate termination of the session initiation process. The

initiator has to pick another server port and try to establish the session again. Finally, the

initiator’s application establishes a connection with the arbiter on the server port. Mean-

22

Figure 3.1: Initiator’s Application Server

while, the application server will also be invoked and it will show the initiator as the only

participant in the session. The initiator is always a master unless an explicit status change is

requested through the application server after the session is successfully established. Figure

3.1 shows the application server of the initiator right after a session is started.

3.1.2 Session Joining

To join a session, a participant is required to specify three of the four parameters that are

mandatory in initiating a session. These three parameters are used to correctly identify the

desired session. They are:

1. Server Host

2. Server Port

3. Session Number

Every time an application is started, it will talk to inetd on the server host. As in the

initiator’s case, inetd will spawn off an arbiter as requested. However, this arbiter will fail

in binding to the given server port since the initiator has already started an arbiter on the

given server port for the specified session. This arbiter will inform the application of the

23

Figure 3.2: Join Notice Message Box

failure in binding. Upon receiving the notice of the failure, the application will establish a

connection directly with the existing arbiter started by the initiator.

All participants currently in the session will be informed of the joining by the arbiter.

The information is in the form of a message box as illustrated in Figure 3.2. Interactions

on the shared model will be suspended until the new participant successfully joins or dies in

the joining process.

The suspension of interactions is enforced to ensure that the shared model is in a

consistent state for retrieval by the new participant. After suspending interactivity, all out-

standing transactions, which have not completed 2-phase commit protocol, will be processed

as usual, bringing the shared model to a final state. To complete the joining process, all par-

ticipants currently in the session will be prompted to transfer the shared model to the new

participant (Figure 3.3).

Any of the participants can push the “Resume” button after transferring the shared

model to the new participant. Since only one of the participants will do the transfer, the

dialog box shown in Figure 3.3 at all other participants’ sites will disappear once the “Re-

sume” button is pushed by the participant who does the transfer. The new participant not

only needs the shared model, but also needs the information of all the existing participants.

24

Figure 3.3: Transfer and Resume Dialog Box

After the “Resume” button is pushed by one of the participants, the arbiter transfers infor-

mation of all existing participants to the new participant. Then, interactivity is resumed and

the session continues. Application servers of all the old clients will reflect the joining of the

new participant while the application server of the new participant shows a complete list of

all the participants currently in the session, including himself/herself. Figure 3.4 presents

the application server before and after the joining of a new participant. If, anytime during

the joining process, the new participant dies, all the current participants will be informed

by an appropriate message box (Figure 3.5). Interactivity will be resumed automatically

afterwards.

3.1.3 Session Leaving

A participant can leave anytime during a session. Leaving under special circumstances, in-

cluding recovery of arbiter (Section 4.3), the process of joining of a new participant, the

process of requesting to join, are supported. A participant leaves a session by either closing

the application server or by quitting the application program.

25

Application Server before a new participant joins

Application Server after the new participant with name "New participant"joins

Figure 3.4: Application Server Before and After New Participant Joins

26

Figure 3.5: Failure in Joining Message Box

3.1.4 Session Termination

A session is terminated automatically when all participants leave. If there are no participants

left, the corresponding arbiter will be terminated.

3.2 Arbiter

This section uncovers the state information stored in the arbiter as well as the implementa-

tion details on several aspects of the arbiter’s functioning.

3.2.1 State

Section 2.4 outlines how the arbiter provides coordination and communication services to

collaborative applications. In order to support these two services, the arbiter has to keep

different kinds of information. The information that the arbiter has to keep is described as

the state of the arbiter. The state of the arbiter consists of two main components:

1. Information of all participants in the session

27

2. Sequenced transactions received from all clients, along with a 2-phase commit proto-

col status for each of the participants for every transaction

Information of all participants includes the participants’ names, the addresses of the

hosts and the port numbers at which the clients are, the clients’ status (master/slave). In-

formation of the participants is kept for providing multicast as well as for validating status

change requests.

Different participants can be at different stages in the 2-phase commit protocol. For

instance, participants at slower machines may still be processing transactions which were

received earlier when a new transaction is sent to them by the arbiter. Hence, those par-

ticipants are not “ready-to-commit” the new transaction yet. On the contrary, participants

at faster machines, who have processed all earlier transactions, are “ready-to-commit” the

new transaction. And they will send “ready-to-commit” to the arbiter for the new trans-

action. Besides, some participants may have received a particular transaction while some

others have not. This is due to the usage of multiple point-to-point communications in im-

plementing multicast. Thus, for every transaction, the arbiter has to store a 2-phase commit

protocol status for each participant. The arbiter also stores the sequence numbers of transac-

tions. As discussed in Section 2.4, the 2-phase commit protocol uses sequence numbers of

transactions and 2-phase commit protocol status of each participant to provide atomic order-

ing. Therefore, the storage of transactions’ sequence numbers and 2-phase commit protocol

status is essential for proper implementation of 2-phase commit protocol. For every trans-

action, there are four possible 2-phase commit protocol status:

1. NONE

- The initial status for every participant. When the arbiter is in the process of multi-

casting a transaction and a participant has not been sent the transaction yet, the status

for that participant is NONE.

28

2. MULTICASTED

- The transaction has been sent to the corresponding participant.

3. READY TO COMMIT

- “ready-to-commit” has been received from the corresponding participant.

4. COMMIT

- “commit” has been sent to the corresponding participant. This status only appears

after all participants have replied “ready-to-commit”.

Transactions with 2-phase commit protocol status being COMMIT for all partici-

pants are said to be committed from the point of view of the arbiter. Indeed, the arbiter

has no way to tell whether or not a transaction is actually committed by clients based on the

2-phase commit protocol status it stores. Clients may fail to perform the transaction which

the arbiter asks all clients to commit. As a result, there are two interpretations of “commit-

ted transactions”. The first interpretation results from the point of view of the arbiter. And

the second one results from the point of view of a client. In order to distinguish between the

two interpretations, committedarbiter is used to describe the committed transactions from the

point of view of the arbiter and committedclient is used to describe the committed transac-

tions from the point of view of clients.

The sequence number of a transaction, the transaction, and the corresponding set of

2-phase commit protocol status are stored in a fixed-size list. This list is named a transaction

list (Figure 3.6).

There are two important pointers to the list:

1. current

- pointer to the first empty slot in the list. The next transaction received will be stored

29

.Transaction #
Seq. Seq.

status for each participant
2-phase commit protocol

...Transaction #

Figure 3.6: Transaction list Structure

in the slot being pointed to. This pointer will be incremented to point to the next slot

every time a new transaction is received and stored.

2. start

- pointer to the first transaction stored in the list.

n slots for a maximum
of n transactions

0 n - 1

start current

Occupied

Figure 3.7: Transaction list in the arbiter

Transaction list is actually a circular list. The start pointer can point to any slot in

the list (Figure 3.7). If all slots from start to n-1 are occupied, the next transaction received

will be stored in slot 0. Slots in the list are recycled by a flushing mechanism discussed in

30

Section 3.2.2.

3.2.2 Flushing

Due to the limited number of slots in the transaction list, a mechanism to free slots has to be

established to avoid overflow in the list. The mechanism used in CTDS is known as flushing.

Only slots containing committedclient transactions can be recycled.

The flushing mechanism composes of a periodic polling of all clients for the largest

sequence number they have committed so far, finding a minimum from all these sequence

numbers, and a recycling of slots in the transaction list up to and including the transac-

tion with the minimum sequence number found. Every certain period of time (can be cus-

tomized), the arbiter requests a sequence number from all clients. Every client, upon receipt

of this request (requestflushing), replies to the arbiter with the sequence number of the last

committed transaction. After the arbiter collects replies from all clients, it finds the mini-

mum of the sequence numbers in the replies. This sequence number gives the latest trans-

actions that are committedclient to all clients. Thus, every transaction up to and including

this transaction stored in the transaction list can be removed safely as no more clients need

them. Figure 3.8(a) presents the flow chart for the flushing mechanism.

An example: Suppose the transaction with the minimum sequence number found is

stored in slot x. The arbiter recycles the slots starting from start to x by moving the start

pointer to slot x+1. In other words, slots start to x are appended to the end of the transac-

tion list for reuse. Figure 3.8(b) illustrates a flushing with the transaction of the minimum

sequence number found stored in slot x.

31

time to request for sequence
numbers from all clients flushing

Send request

All clients replied?

Continue normal
processing until receive

reply from any client

No Store reply

Yes

Find minimum sequence
number in replies

Find slot for the
transaction with the

miniumum sequence
number => slot x

Move pointer to slot
x+1

start

(a)

0

start current

Transaction list after flushing

xold start

start current

Transaction list before flushing

x

Occupied

Occupied

0

n - 1

n - 1

(b)

Figure 3.8: (a) Flushing Flow Chart and (b) Flushing Mechanism

32

3.2.3 Processing Priority

Priority of processing comes into place when an arbiter receives transactions from more than

one client at the same time.

Every time the arbiter is ready to read requests, it forms a priority list by first assign-

ing the highest priority to joining requests from new participants. The arbiter then scans the

transaction list for the first non-committedarbiter transaction. For every transaction starting

from the first non-committedarbiter transaction, the arbiter checks which clients have not

replied “ready-to-commit” and the arbiter will assign the next highest priority to these par-

ticipants if they have not been assigned a priority yet. The underlying theory of this is that

we want to recycle the slots at the beginning of the transaction list as soon as possible. And

by having “ready-to-commit” for all participants, the arbiter can send “commit” immedi-

ately to all clients, which will make the clients commit the transaction. Lastly, the clients

without priority assigned after the scanning process will be assigned equal priority.

Whenever there are multiple inputs to the arbiter, the arbiter will process the inputs

according to the priority list generated at that time. The priority list will be re-generated

everytime when the arbiter reads input.

3.2.4 Transaction List Full

Despite of the flushing mechanism, there is a possibility of overflowing the transaction list,

especially with interactive client applications. This is because interactive applications are

transaction-intensive. Thus, the arbiter has to be able to deal with overflow in the transac-

tion list.

In CTDS, the arbiter raises a warning if the number of empty slots in the transac-

tion list drops below a certain threshold. The warning forces the arbiter to assign the highest

priority to the clients who have not replied requestflushing. This is because flushing frees

33

slots in the transaction list. If the transaction list does become full, the arbiter will inform

all clients to stop sending new transactions. In other words, interactivity of clients will be

temporarily suspended until the number of empty slots in the transaction list becomes rea-

sonable again. Figure 3.9(a) shows the message box used to inform clients of a transaction

list overflow. Unprocessed transactions being sent to the arbiter before the issue of the list

full notice will be stored in a temporary list. After suspending interactivity, the arbiter con-

tinues carrying out 2-phase commit protocol for the transactions in the transaction list and

continues flushing the transaction list. When the number of empty slots in the list, in view of

the number of unprocessed transactions stored temporarily, becomes acceptable again, the

arbiter will process the unprocessed transactions. The arbiter assigns sequence numbers to

these unprocessed transactions and carries out 2-phase commit protocol on them. Then, the

arbiter resumes interactivity of all clients.

3.2.5 Failure or Leaving of Clients

This is one of the fault-tolerance requirements discussed earlier. In order to satisfy this re-

quirement, the failure or leaving of clients should not affect the continuity of a session. In

CTDS, leaving or failure of clients are handled in the same fashion. In CTDS, the arbiter

monitors all clients. Whenever the arbiter detects failure of a client, it immediately updates

its own state by removing the information of that client. The arbiter then checks whether

there is any clients left in the session. If there are none, the arbiter quits to terminate the

session. Otherwise, the arbiter informs all other clients of the leaving of that client so that

the corresponding application server can update the participant list accordingly. In updating

the state, the arbiter not only has to delete the information of the dead client, it also has to

remove the 2-phase commit protocol status of that client for every transaction in the transac-

tion list and to remove the reply to requestflushing from that dead client. Immediate update

34

(a)

State Full

transaction list

Suspend interactivity of
all clients

Store all unprocessed
transactions

Flushing

Yes

Process unprocessed
transactions

Resume interactivity of
clients

of empty slots is
acceptable?

Continue processing
transacitons in

No

transaction list

(b)

Figure 3.9: (a) Transaction List Full Message Box and (b) Handling of Transaction List Full
Flow Chart

35

of the arbiter’s state is crucial to ensure that the arbiter does not send latter transactions to

the dead client, which may cause unexpected results, including termination of the arbiter.

Nested client failures may occur when the arbiter informs other clients of the failure of a

particular client. In this case, failures encountered later are ignored until handling of the

current failure is completed.

Since the update of the arbiter’s state affects the 2-phase commit protocol status

stored, which may make the first non-committedarbiter transaction in the transaction list

“ready-to-commit”, the arbiter has to check against the first non-committedarbiter transac-

tion after updating its state. If, after the failure or leaving of a client, the 2-phase com-

mit protocol status of all remaining clients for the first non-committedarbiter transaction are

“ready-to-commit”, the arbiter has to inform all clients to commit that transaction. More-

over, the arbiter also has to check whether, after the failure or leaving of a client, all the

remaining clients have replied to the requestflushing sent if any. If the arbiter finds replies

to requestflushing for all remaining clients, it carries out flushing described in Section 3.2.2.

Note: Either the failure of an application program or the failure of the corre-

sponding application server results in a failure of a client in CTDS.

Figure 3.10 summarizes the handling of a client’s failure or leaving.

3.2.6 Recovery of State

In addition to handling clients’ failure, the other fault-tolerance requirement states that the

failure of the arbiter should have no impact on the continuity of a session. In order to sat-

isfy this requirement, a new arbiter has to be started after the previous one dies. However,

restarting an arbiter is by no means sufficient to continue a session. The new arbiter has to

have the same state of the previous arbiter in order to continue providing services to clients.

Thus, we need to recover the state of the previous arbiter. In other words, everytime an ar-

36

arbiter

Remove client x's
information

Yes

Inform clients 1.. x-1 and
clients x+1 .. N of the

leaving of client x

Remove client x's 2-
phase commit protocol

status for every
transaciton

1st non-
committed

transaction " ready to
commit" ?

Yes
Inform all clients to

commit the transaction

Remove client x's reply to
request

flushing

No

Have all
 clients replied to

?

request
flushing

Carry out

flushing
Yes

Clients 1 to N in session
and client x dies

of clients > 0? No
End

session

Figure 3.10: Handling of Client’s Failure or Leaving Flow Chart

37

biter is started, it has to figure out whether it is a replacement of a dead arbiter or it is the

first arbiter of a session. If it is a replacement of a dead arbiter, it has to recover the state

of the dead arbiter before entering normal service mode. Details on recovering the state of

the previous arbiter are given in Section 4.3.

38

Chapter 4

CTDS Features

This chapter presents the key features of CTDS. It gives detailed descriptions of the features

and the motivations behind them. Implementation of the features are also discussed.

4.1 Multiple Masters

CTDS supports more than one master in a session. A session with a single participant being

a master and all others being slave is often called a presentation. In a presentation, only the

presenter, who is the master, is allowed to perform interactions on the shared model. All

participants take turn to be the presenter. A single-master session makes implementation of

the underlying collaborative tool development system easier since transactions only come

from a single source. As a result, no ordering of transactions is necessary. In a multiple-

master environment, the underlying collaborative tool development system not only has to

order transactions originating from different masters, but it also has to take into account the

possible conflicting actions performed by different masters. In most systems which support

multiple masters, either multiple resources are introduced or a “soft protocol” is required to

avoid conflicting actions. “Soft protocol” refers to the human coordination between differ-

39

ent masters in order to avoid conflicting actions. Because every master is allowed to interact

with every part of the shared model, there is a possibility that more than one master is trying

to change the shared model at the same time. These simultaneous actions may lead to con-

flicts. For instance, in a two-master session with a dragon as the shared model, both master

A and master B intend to move the tail of the dragon. Master A wants to move the tail to

the left hand side, whereas master B wants to move the tail to the right hand side. Masters A

and B do the changes at about the same time before they see each other’s action. The result

of this scenario depends on the amounts of movement performed by masters A and B. The

actions of masters A and B can completely cancel out each other, resulting in no movement

of the tail. Other possible outcomes include a movement of the tail to the left if the amount

of A’s movement is bigger than that of B’s, and a movement to the right if the amount of B’s

movement is bigger than that of A’s. Unfortunately, none of the three outcomes is desired by

either A or B. Therefore, a “soft protocol” is desired. The implementation of a “soft proto-

col” requires some kind of human communication between the masters. The communication

can be done by means of video conferencing or telephone conferencing.

Another way to avoid possible conflicting actions in a multiple-master session is

the introduction of multiple collaborative resources into a session. In a multiple-resource

and multiple-master session, the shared model is partitioned into several parts. Each part is

called a resource. Each resource is “owned” by a single master. That is, only a designated

master is allowed to interact with a resource. Thus, no conflicting actions will happen with

the provision of multiple-master support. CTDS supports multiple-master and multiple-

resource sessions. Details on the multiple-resource aspect of a session in CTDS are given

in the next section.

In CTDS, there is a limit on the maximum number of masters in a session. The max-

imum number of masters is specified by the initiator of a session as discussed in Section

40

3.1.1. The maximum number of masters is in effect anytime during a session. The applica-

tion server shows the status of each of the participants so that a participant knows the current

number of masters in a session. Switching of status is done using the buttons provided by

the application server (Figure 2.2). A participant can request to be a master anytime dur-

ing a session. The request is sent to the arbiter for approval. The approval is necessary to

ensure the limit on the maximum number of masters is honored. Upon receiving a request

to be a master, the arbiter checks the current number of masters against the maximum al-

lowable number of masters. If the current number of masters has not reached the limit yet,

the arbiter grants permission to the originator of the request by informing all participants of

his/her status change. Otherwise, the request is declined and the arbiter continues servic-

ing as if it has not received such a request. Requests to be slaves can also be made anytime

during a session. Requests to be slaves are sent to the arbiter. The arbiter always approves

requests to be slaves. Upon receiving a request to be a slave, the arbiter immediately informs

all participants, including the originator of the request, of the status change of the originator.

All application servers will update their displays afterwards to reflect the new status of the

originator of the request. If every participant requests to be a slave, there will be no master

in the session. This is allowed in CTDS. And we say that all the control is at the arbiter in

such scenario. Participants can claim control from the arbiter anytime afterwards. Figure

4.1 summarizes the processing of a request of status change.

4.2 Multiple Resources

CTDS supports multiple resources. Resources make up the shared model in a session. In

other words, a resource is part of the shared model. Some systems simply divide the workspace

in which the shared model sits into a number of fixed-size 2-D squares or 3-D cubes and

make these squares or cubes as resources. However, this method of generating resources

41

status change request Yes
Is originator
currently a

slave ?

No

Inform all participants of
the status change

No

Is originator
currently a
master ?

No

Current # of
masters < maximum

allowed masters
?

Yes

Inform all participants of
the status change

Increment current # of
masters by 1

request to be slave ?

Figure 4.1: Processing of Status Change Request Flow Chart

may not be appropriate in some applications. Consider the example used before in which

the shared model is a 3-D dragon. In this case, if we follow the method we just described

in generating resources, we partition the 3-D workspace into a number of cubes. And each

cube can be owned by a master. However, a cube may not mean anything to the correspond-

ing master since the cube may contain part of the tail and part of the dragon’s body. Some of

the cubes may even contain part of a foot of the dragon but nothing else! Because different

applications have different numbers of resources and different ways of partitioning shared

models into sensible multiple resources, CTDS requires application programmers to define

resources on their own. The definition of resources is done by assigning each part of the

shared model a resource ID. CTDS keeps track of which resource is owned by which mas-

ter and which resource is not owned by any of the masters. Each resource is owned by one

42

master. CTDS provides the flexibility to application programmers to determine whether or

not a master is allowed to own more than one resource. By supporting multiple resources and

enforcing one master per resource, collaboration becomes more effective from the point of

view of participants. This is because masters can work on different parts of the shared model

simultaneously without worrying about interfering with others’ work.

After a participant becomes a master, he/she can start claiming ownership of avail-

able resources. Claiming or releasing resources and checking availability of resources are

easy and simple in CTDS. CTDS offers three functions to client applications for doing so:

1. release resource(resource ID)

- releases the resource of resource ID

2. grab resource(resource ID)

- claims ownership of the resource of resource ID if available

3. resource available(resource ID)

- checks the availability of resource of resource ID

release resource/grab resource both notify the arbiter of the release/taking of a re-

source. The arbiter then informs all participants of the change of ownership of the resource

of interest. grab resource also checks the availability of the resource of interest before no-

tifying the arbiter in order to save communication costs. resource available is provided to

application programmers for implementing some other application-specific features. For in-

stance, the example application presented in the next section utilizes resource available for

coloring different resources depending on their status. Resources owned by a master are au-

tomatically released when the master switches to be a slave or the master dies. Ownership

of these resources are given back to the arbiter.

43

4.2.1 Example Application - Robot

The Robot application is an interactive graphical application that allows a participant to

manipulate a robot, which is the shared model. The robot is partitioned into six different

resources: body, head, left arm, right arm, left leg, and right leg (Figure 4.2).

LEFT ARM

RIGHT ARM

HEAD

BODY

LEFT LEG
RIGHT LEG

Figure 4.2: Robot Application

The original Robot application is a stand-alone application. It allows the user to

pick any of the body parts and manipulate it. Picking is done by clicking the mouse over the

desired body part. There can only be one active body part (picked body part) at any time.

After picking a body part, the user can manipulate it by moving the mouse while holding

any of the mouse buttons. The name of the current active body part is shown at the lower

left hand corner of the application window. The lower right hand corner of the application

window also displays the name of a body part. This name belongs to the body part which is

currently pickable by the mouse at its current position. For instance, if the mouse cursor is

positioned over the left arm with the body being the current active body part, the lower left

44

hand corner shows “BODY” and the lower right hand corner shows “LEFT ARM”. Release

of a body part is done by clicking the mouse over the same or another body part. The former

results in no current active body part while the latter results in a new active body part. Robot

employs a coloring scheme to color body parts differently basing on their status. The current

active body part is colored red, the pickable body part is colored yellow, and all other body

parts are colored light blue.

Active Body Part
(colored RED)

Pickable Body Part
(Colored YELLOW)

Mouse cursor

Figure 4.3: Snapshot of the Robot Application with Active and Pickable Body Parts

In order to run Robot in collaborative mode using CTDS, several changes have to

be made in the implementations of the picking/releasing of resources and in that of the col-

45

oring scheme. Similar to the stand-alone version, the collaborative Robot only allows one

resource per master. However, picking in the collaborative version is more complicated than

that in the stand-alone version. Whenever a participant picks a body part, the resource is not

picked right away. That is, the body part will not be colored red immediately, which is not the

case in the stand-alone version. Instead, the application program calls grab resource with

the ID of the body part as the argument and waits for a reply from the arbiter. The reply is

used for ensuring that all participants are aware of the change of ownership of the resource.

After receiving the reply from the arbiter, the corresponding resource can be colored red.

Similar procedures are carried out in releasing a resource. The application program does

not color the body part light blue immediately upon a releasing action. Instead, the applica-

tion program calls release resource with the ID of the resource as the argument and waits

for a reply from the arbiter. After getting the reply from the arbiter, the application program

colors the corresponding body part appropriately. Changes also have to be made to the col-

oring scheme employed by the stand-alone version. A new color is required in coloring the

body parts owned by other masters so that a master knows what resources are available to

be picked. Moreover, resources owned by other masters must not be shown as pickable. In

the collaborative Robot implemented in this project, only a single color is used to color all

resources owned by other masters. Therefore, one cannot tell a resource is owned by which

master if there are more than two masters in a session. The new color that collaborative

Robot uses is dark blue. With the addition of a couple of tests, the rendering procedures

used in the stand-alone Robot are modified to suit the needs of the collaborative version.

Before rendering a resource, a test is performed to check the availability of the resource us-

ing resource available. If the result returned is negative, the resource is colored dark blue.

An additional test is also introduced into the coloring of the pickable body part. In coloring

the pickable body part, the application program ensures that the body part is not owned by

46

other masters utilizing resource available again. Figure 4.4 shows the scenario in which

the pickable body part is owned by another master.

Mouse Cursor

Pickable Body Part is
not colored yellow. It
remains dark blue since
it is owned by another
master

Active Body Part
(Colored RED)

The Body Part over
which the mouse cursor
is positioned

Figure 4.4: No Pickable Body Part in Robot

4.3 Fault-Tolerance

CTDS is a fault-tolerant system. The arbiter is recoverable. In other words, a session can

continue after the corresponding arbiter recovers from failure. The ability to sustain the

failure of a server is one of the fault-tolerance requirements discussed earlier. The recovery

of an arbiter refers to the starting of a new arbiter as a replacement of the dead one, and the

recovering of the state of the dead arbiter in the new arbiter.

47

4.3.1 Algorithm

The fundamental question is: who or which process is responsible for starting a new arbiter

as a replacement of the dead one. One simple solution is a manual restart of the arbiter. This

solution is not desired due to two main reasons. Firstly, this solution implies that at least one

of the participants must monitor the arbiter all the time during a session in order to catch any

failure of the arbiter and to restart it as soon as possible. As a result, the system is not auto-

matic. Secondly, none of the participants may have the authority to start a new process on the

server host. CTDS automates the restart of an arbiter. The automatic restart of an arbiter

is done by the first client which notices the failure of the arbiter. Similar to the detection of

clients’ failure, the failure of an arbiter is detected by having all clients in a session moni-

toring the arbiter. The rationale behind this method of restarting an arbiter is that an arbiter

does not have to be restarted if there is no client left in a session. This is because the session

should have been terminated if there is no client left. Thus, there is always a client which

detects the failure of the arbiter whenever the arbiter has to be restarted. Upon detection

of the failure of the arbiter, the application server notifies the participant of the temporary

service interruption by a message box (Figure 4.5). Interactivity is temporarily suspended

until the recovery of the arbiter completes. Depending on whether it is the first client which

detects the failure, the client then carries out procedures similar to those in session initiation

(Section 3.1.1) or to those in session joining (Section 3.1.2) to start a new arbiter. The for-

mer ones being carried out by the first client which detects the failure while the latter ones

being carried out by all other clients which detect the failure. Once a client detects the failure

of the arbiter, it increments the server port by a certain number. The client then requests the

arbiter service from inetd on the server host. A new arbiter will be spawned by inetd. This

new arbiter binds to the incremented server port. Finally, the client establishes a connection

with the new arbiter. As in session initiation and session joining, only the first client which

48

Figure 4.5: Notification of Failure of Arbiter Message Box

talks to inetd will succeed in creating a new arbiter at the incremented server port. Upon

receiving the notice of the new arbiter’s failure in binding to the incremented server port,

the client connects directly to the existing arbiter. The existing arbiter is the new arbiter

spawned off by the first client which detects the failure of the previous arbiter. Figure 4.6

illustrates the process of restarting a new arbiter. The purpose of incrementing the server

port is to ensure that failure of binding to the server port is a result of an existing arbiter,

and it is not a result of the hold time imposed on a port. If the new arbiter tries to bind to

the same server port as the dead one did, it may fail since the port is not released yet due to

the hold time.

The new arbiter has to have the same state as the dead arbiter in order to continue

servicing clients in the session. The recovery process requires total recovery of the state

of the dead arbiter. The state of the dead arbiter includes information of all clients, and the

transaction list. Information of all clients (names of clients, hosts and ports of clients, status

of clients) can be acquired through the establishments of connections with clients. However,

the new arbiter still lacks the data stored in the transaction list of the dead arbiter. Because

there exists only two kinds of processes in a session: client and arbiter and, as discussed

earlier, no recovery of an arbiter is needed if there is no client left in a session, the content

49

Client detects
failure of arbiter

arbiter

arbiter

Arbiter
upon

started

arbiter

Replacement
 of a dead
 ?arbiter

Service clients by provide
communication and

coordination services

No

Yes

Recover state of the dead

arbiter

Increment by
x

server port

Talk to on

for service

inetd
server host

arbiter

Ask the spawned
 to bind to

incremented

arbiter

server port

Failure in binding ?

Yes

No
Initiator:

Connect to the spawned

arbiter

Joining :
Directly connect to

exsiting
arbiter

Figure 4.6: Restart of Arbiter Flow Chart

of the transaction list can be recovered from all clients in CTDS. The recovery process is

successful only after the transaction list of the dead arbiter is totally recovered and all pro-

cessing on the recovered transaction list are completed. Recovery of the transaction list is

discussed in details in later sections. When an arbiter is in the process of recovering state,

it is said to be in recovery mode. After the recovery process, the message box in Figure 4.5

will disappear and interactivity will be resumed.

Every time an arbiter is started, every connected client will send a message to it.

This message is for telling the arbiter whether it is a replacement of a dead one or it is a

server of a new session. If the arbiter realizes that it is a server of a new session, it begins

servicing clients immediately. Otherwise, the arbiter recovers the state of the dead arbiter

before entering service mode. Figure 4.6 shows the procedures that an arbiter follows when

50

it is first started.

When an arbiter dies during recovery, a nest failure occurs. CTDS handles nest fail-

ure and also any occurrences of nest failures within a nest failure. Nest failures are handled

by having the clients to go through the procedures of starting a new arbiter again. The mon-

itoring of an arbiter by clients starts immediately after connections are established with the

arbiter. During a recovery process, if failure of the arbiter is detected, a client will carry out

exactly the same procedures of starting a new arbiter as in the non-nest failure case. In other

words, regardless of the mode of an arbiter (service/recovery), the same set of procedures

(Figure 4.6) is followed by a client upon the detection of the failure of the arbiter. In the

case of nest failure, the recovery process involves the recovery of the state of the last “func-

tional” arbiter instead of the dead arbiter. A “functional” arbiter is defined as an arbiter

which is in service mode.

Failure of clients during recovery will not affect the recovery process. The informa-

tion of the dead client as well as the transaction list information sent to the arbiter by that

client will be erased at once.

4.3.2 Implementation

Client

The recovery of the transaction list of an arbiter relies on clients. Recall that the transac-

tion list of an arbiter is an array of sequence numbers of transactions, the transactions, along

with a set of 2-phase commit protocol status associated with every transaction. In order to

recover the transaction list of an arbiter, clients need to store the transactions received from

the arbiter. The data structure used to store the transactions is very similar to the transac-

tion list of the arbiter. The only difference is that the client’s data structure only stores the

client’s own 2-phase commit protocol status for each of the transactions received from the

51

arbiter, instead of an array of 2-phase commit protocol status for every participant as on the

arbiter side. During recovery of the transaction list, the new arbiter recovers the 2-phase

commit protocol status of all clients by having all clients send to it their own status with se-

quence numbers attached to them. The client’s data structure is named Bufferprocessed (Fig-

ure 4.7(a)) since this data structure stores information of all transactions that are processed

(being assigned sequence numbers) by the arbiter. The 2-phase commit protocol status used

on the client side are slightly different from those used on the arbiter side (Section 3.2.1).

This is due to different meanings of a 2-phase commit protocol stage resulted from the two

points of view of a sender and a recipient: when an arbiter sends, a client receives. For every

transaction, there are three possible 2-phase commit protocol status on the client side:

1. RECEIVED

- The multicast of the transaction is received. This status corresponds to the status

MULTICASTED used on the arbiter side.

2. RCOMMIT

- The transaction is ready to commit. In other words, “ready-to-commit” has been sent

to the arbiter. This status corresponds to the status READY TO COMMIT used on the

arbiter side.

3. COMMITTED

- The transaction is committedclient. This status only appears after receiving “commit”

from the arbiter. This status corresponds to the status COMMIT used on the arbiter

side.

In fact, clients need to store another type of data to ensure no data is lost due to the

failure of an arbiter. This type of data consists of the transactions that are generated by

clients but have not been processed by the arbiter. These transactions have already been

52

2-phase commit
protocol status

seq. # transaction
2-phase commit
protocol statusseq. # transaction

(a)

Oldest Transaction Latest Transaction

(b)

Figure 4.7: (a) Bufferprocessed and (b) Bufferunprocessed

sent to the arbiter but they may be sitting in the arbiter’s socket buffer or they haven’t ar-

rived at the arbiter yet when the arbiter dies. If clients do not store these transactions, none

of the clients or the new arbiter will have the information of the transactions after the old

arbiter dies. As a result, these transactions will simply disappear in the recovered session,

resulting in a data lose. These unprocessed transactions do not have sequence numbers. And

they do not exist in the transaction list of the dead arbiter. The data structure used in stor-

ing these transactions in clients is named Bufferunprocessed (Figure 4.7(b)). Every time a

client generates a transaction, the transaction is first stored in Bufferunprocessed. Then, the

transaction is sent to the arbiter for assignment of a sequence number and for notifying other

clients of this transaction. The transaction is kept in Bufferunprocessed until the multicast of

the transaction is received from the arbiter. After receiving the multicast, the transaction

is moved to Bufferprocessed with the sequence number assigned by the arbiter and with a

2-phase commit protocol status RECEIVED.

During the recovery process, clients not only have to send data in Bufferprocessed

for recovering the transaction list of the dead arbiter, but they also have to send data in

Bufferunprocessed for precluding data lose. Since transactions in Bufferunprocessed do not

53

have sequence numbers, clients have to adopt a mechanism to preserve the order in which the

transactions are generated so that the arbiter knows which comes first upon receiving them

in the recovery process. Clients use “fake sequence numbers” to ensure the ordering of the

transactions in Bufferunprocessed is honoured by the arbiter. “Fake sequence numbers” are

similar to the sequence numbers used by the arbiter. However, “fake sequence numbers”

are negative integers. They run from -1 to the maximum allowable negative integer. The

oldest transaction in Bufferunprocessed will be assigned -1, the next one will be assigned -2,

so on so forth. As a result, the ordering of the transactions in a client’s Bufferunprocessed

is preserved. There is no ordering relationship between transactions in Bufferunprocessed of

different clients. If there exists an ordering relationship between two transactions A and B,

which are generated by different clients, and both of them are not processed by the arbiter

yet, only the earlier one will appear in Bufferunprocessed of one of the clients. Suppose trans-

action A from client A is generated earlier than transaction B from client B. By assumption,

transaction A has not been processed by the arbiter yet. Thus, it has not been multicasted to

client B. In other words, client B has not committed transaction A yet. Hence, transaction

B, which should occur after transaction A, cannot be generated by client B and be put into

Bufferunprocessed of client B.

Recovery Process

The recovery process includes collecting recovery information (data in Bufferprocessed and

Bufferunprocessed) from all clients, reorganizing the recovery information collected, as well

as completing the 2-phase commit protocol for all transactions received. Completing the

2-phase commit protocol for all received transactions prepares a clean new arbiter for the

recovered session.

As discussed before, clients send data in Bufferprocessed as well as data in Bufferunprocessed

54

after establishing connections with the new arbiter. Upon receiving a transaction, the new

arbiter stores it into the recovery list. The recovery list has identical data structure as the

transaction list (Figure 3.6). It can be viewed as the transaction list used in recovery mode.

The 2-phase commit protocol status used in the recovery list are exactly the same as those

used on the client side with the additional of 2 new statuses:

1. NA

- the default status.

2. SENT

- the status for transactions from Bufferunprocessed.

In storing a transaction with a sequence number (from Bufferprocessed) into the re-

covery list, the arbiter first checks for the existence of that transaction in the list. A record for

that transaction may have already been created by another client. If no record for the transac-

tion is found, the arbiter stores the sequence number as well as the 2-phase commit protocol

status sent by the client into a new record and appends the record to the end of the recovery

list. Otherwise, the arbiter extracts the 2-phase commit protocol status in the data received

and stores it into the status field corresponding to the sender of the data in the record found.

Transactions without sequence numbers (from Bufferunprocessed) from clients are also stored

in the recovery list. However, no searching of records is required before storing these into

the recovery list. This is because the sender of a transaction in Bufferunprocessed is the only

client which carries information of that transaction. Thus, a record is always created for a

transaction without sequence number. And the record will be appended to the recovery list.

The arbiter will assign SENT as the 2-phase commit protocol status for transactions received

without sequence numbers.

After getting recovery information from all clients, the arbiter starts organizing and

55

processing the information received. It organizes the information by sorting the recovery list

in ascending order of sequence number. Then, the arbiter starts processing transactions with

positive sequence numbers in ascending order of sequence number, followed by processing

those with negative sequence numbers in descending order of sequence number. Processing

of transactions mainly involves carrying out 2-phase commit protocol for the transactions.

Transactions in the recovery list are processed sequentially during recovery. That is, unlike

in normal service mode, the arbiter does not start processing the next transaction in the re-

covery list until it finishes the entire 2-phase commit protocol for the current one. The way

that the arbiter processes a transaction in the recovery list is based on the combination of

the 2-phase commit protocol status of all clients. Table 4.1 presents all possible combina-

tions of the 2-phase commit protocol status of clients, the causes of the combinations, and

the ways the arbiter processes the transactions.

56

Table 4.1: Processing of Recovery List in Recovery Process
Case Characteristics Cause of Arbiter’s Processing

of Combination Combination

1 1 SENT, Arbiter dies before Assign a sequence number
all other NAs receiving the transaction. to the transaction. If

The transaction has a this is the first transaction
negative sequence number. with negative sequence number,

the sequence number to be
assigned is the sequence
number of the last processed
positive-sequence-number
transaction + 1. Otherwise,
the sequence number to be
assigned is the sequence
number of the last processed
transaction + 1. Then,
carry out 2-phase commit
protocol for the transaction
by first multicasting the
transaction to all clients.

2 >= 1 RECEIVED, Arbiter dies in the Send the transaction to
all other NAs middle of multicasting the NA clients and continue

transaction. The originator with 2-phase commit protocol
and some other clients has (wait for “ready-to-commit”
been sent the multicast. from all clients).

3 >= 1 RCOMMIT, Arbiter dies in the Send the transaction to
all other NAs middle of multicasting the NA clients and continue

transaction and the clients with 2-phase commit protocol
which has been sent the (wait for “ready-to-commit”
multicast are already from NA clients).
“ready-to-commit” the
transaction.

4 1 SENT, Arbiter dies in the Send the transaction to SENT
>= 1 RECEIVED, middle of multicasting the and NA clients and continue
all other NAs. transaction. And originator of with 2-phase commit protocol

the transaction has not (wait for “ready-to-commit”
been sent the multicast. from all client).

5 1 SENT, Arbiter dies in the Send the transaction to SENT
>= 0 RECEIVED, middle of multicasting the and NA clients and continue
>= 1 RCOMMIT, transaction. The originator of the with 2-phase commit protocol
all other NAs. transaction has not (wait for “ready-to-commit”

been sent the multicast. from NA, SENT, RECEIVED
And some clients which . clients).
have been sent the multicast
are “ready-to-commit”
the transaction.

57

Case Characteristics Cause of Processing
of Combination Combination

6 >= 1 RECEIVED, Arbiter dies in the Send the transaction to NA
>= 1 RCOMMIT, middle of multicasting the clients and continue with
all other NAs. transaction. Originator and some 2-phase commit protocol

other clients have been (wait for “ready-to-commit”
sent the multicast. Some from NA, RECEIVED,
of these clients are clients).
“ready-to-commit” the transaction.

7 >= 1 RCOMMIT, Arbiter dies in the Send “commit” for the
>= 1 COMMITTED. middle of multicasting corresponding transaction

“commit”. Some clients which to RCOMMIT clients.
have been sent “commit”
have already committed the
transaction.

8 All COMMITTED. The transaction is Proceed to process
committed by all clients. next transaction in
However, the transaction the recovery list.
has not been flushed yet.

After sending data in Bufferprocessed and in Bufferunprocessed to a new arbiter, a client

waits for data from the arbiter to complete the recovery process. As seen from Table 4.1,

data from the arbiter is the data used in carrying out 2-phase commit protocol. Thus, the

client behaves normally as if the new arbiter is already in service mode. The client sends

appropriate 2-phase commit protocol responses to the arbiter upon receipt of data from the

arbiter. The only difference between clients’ processing in recovery mode and that in ser-

vice mode is that the clients are not generating new transactions in recovery mode since in-

teractivity is temporarily suspended. Clients only receive new transactions from the arbiter

if any exist.

The recovery process is completed after the arbiter, with the cooperation of clients,

finishes 2-phase commit protocol for every transaction in the sorted recovery list. Interac-

tivity of clients will be resumed after the completion of the recovery process, and the arbiter

will begin servicing clients.

58

4.4 Interactive Applications Enhanced

Interactive applications demand quick response time. The response time of a transaction

refers to the time required for the effect of the transaction to take place after the transac-

tion is generated. In CTDS, the time spent on communications between the arbiter and the

clients introduced by 2-phase commit protocol lengthens the response time of a transaction

significantly. Because of the 2-phase commit protocol, a transaction experiences a total of

two round-trip time before it is committed (Figure 4.8).

Client

Transaction generated Assign sequence number and all
other processing

transaction

multicast

"ready-to-
commit"

"commit"

1

2

3

4

Client Arbiter

Figure 4.8: Two Round-trip Time as a Result of Using 2-phase Commit Protocol

Unfortunately, there is no way to reduce the additional response time introduced by

the 2-phase commit protocol since the communications are necessary to implement the 2-

phase commit protocol, and the 2-phase commit protocol is required to ensure atomic or-

dering. On the contrary, the way that clients send transactions to the arbiter, which can ad-

versely affect the response time of client applications, is improvable. Suppose a client sends

transactions to the arbiter immediately after they are generated. Figure 4.9 illustrates the

adverse effect on transactions’ response time if clients send transactions to arbiter right after

they are generated.

59

Client Arbiter

t1

t2

t3

.

.

.

.
tx

Transaction

.

.

.

.

multicast of t1

Transactions
generated
when t1 is
on its way to
the arbiter

"ready-to-commit" t1

multicast of t2

multicast of t3

.

.

.

."ready-to-commit" t2

"ready-to-commit" t3

.

.

.

"ready-to-commit" tx

multicast of tx

"commit" t1

"commit" t2

"commit" t3

"commit" tx

.

.

.

.

.

Transaction 1 is
committed

Transaction 2 is
committed

Arbiter receives "ready-to-
commit" for t1 only after
multicasting all t2 to tx.

"ready-to-commit" t1
Arbiter receives "ready-to-
commit" for t1 here if t2 to
tx are not sent to the arbiter

"commit" t1
Client receives "commit"
for t1 here if t2 to tx are
not sent to the arbiter

response time of t1

response time of t2

response time of
t1 if t2 to tx are not
sent to the arbiter

Figure 4.9: Adverse Effect on Response Time If Generated Transactions are sent Immedi-
ately

60

Because the communication time required for data to be exchanged between a client

and the arbiter is significantly larger than that required to generate a transaction, many trans-

actions can be generated (t2 to tx) and be sent to the arbiter before the arbiter receives

the first transaction (t1). Upon receiving t1, the arbiter multicasts t1 to all clients af-

ter assigning a sequence number to it. Assuming all clients have committed all previous

transactions, clients respond “ready-to-commit”t1 right after receiving the multicast. How-

ever, the clients do not receive “commit” t1 as the next piece of data from the arbiter even

all clients have sent “ready-to-commit” t1 to the arbiter. This is because the “ready-to-

commit” t1 responses from all clients are not processed by the arbiter until the arbiter has

finished multicastingt2 totx. After multicastingt2 totx, the arbiter will multicast “com-

mit” for t1. Then, t1 can be committed by all clients. On the contrary, if transactions t2

to tx were not sent to the arbiter yet, t1 will be committed earlier since the time for the

arbiter to multicast t2 to tx is saved (Figure 4.9 shows this scenario in gray). This kind of

scenario happens very frequently in interactive applications since transactions are generated

at a high rate.

In CTDS, this adverse effect on response time is reduced by synchronizing the rate

at which transactions are generated and are sent to the arbiter with the rate at which transac-

tions are committed on the client side. Recall that everytime a transaction is generated, it is

stored into Bufferunprocessed. Instead of sending transactions to the arbiter right after storing

them into Bufferunprocessed, transactions generated are simply stored into Bufferunprocessed

without being sent to the arbiter until the previous transaction is committedclient. When a

transaction is committed by the client application, the oldest transaction in Bufferunprocessed

will be sent to the arbiter. Thus, the response time of transaction t1 will not be affected by

the transactions t2 to tx, which are generated while t1 is being sent to the arbiter.

To further improve transactions’ response time, CTDS combines adjacent transac-

61

tions of the same kind in Bufferunprocessed into a single transaction. Application program-

mers define rules to combine transactions. For each piece of data in every kind of transac-

tions, application programmers define a way to combine it with the same piece of data in an

adjacent transaction of the same kind. Currently, two ways of combining data are supported

by CTDS:

1. Overwrite

- Data is combined by replacing the data in the older transaction with that in the later

one.

2. Add

- Data is combined by adding the data in the older transaction and that in the later one.

Currently, only additions of real numbers are supported.

Application programmers also specify whether a particular type of transaction is

combinable or not. If a type of transaction is combinable, the corresponding combining rule

will be applied to that type of transaction. Otherwise, adjacent transactions of that type in

Bufferunprocessed will not be combined into one transaction. Figure 4.10 gives an example

on combining transactions in Bufferunprocessed in the Robot application.

Due to the combination of the first, the second, and the third Body Rotation transac-

tions, response time of the second and the third transactions is improved. This is because the

effects of these two transactions now happen earlier after being integrated with the first trans-

action. The combinationof transactions also lowers the probabilityof overflowing Bufferunprocessed

on the client side and that of overflowing the transaction list on the arbiter side. The only

disadvantage of the combination of transactions is that large state changes may happen to the

shared model. For instance, the combination of Body Rotation transactions in Figure 4.10

can result in a jaggy rotation of the robot. This is because rotations of the robot suddenly

62

Transaction
Type

Body Rotation

X
Rotation

Y
Rotation

Z
Rotation

overwrite add add

Transaction
Type

Head
Rotation

X
Rotation

Y
Rotation

combinable combinable

Transaction
Type

Arm Rotation

Y
Rotation

Z
Rotation

overwrite overwrite

non-combinable

Buffer
unprocessed :

Body Rotation

10 2 2

Body Rotation

14 3 5

Body Rotation

10 2 2

Combine the two transactions :

Body Rotation

14 5 7

replace 10 by 14 add 2 and 3 add 2 and 5

Body Rotation

14 5 7

Body Rotation

18 2 1

Combine the two transactions :

Body Rotation

18 7 8

replace 14 by 18 add 5 and 2 add 7 and 1

Body Rotation

18 7 8

Body Rotation

18 7 8

Body Rotation

20 3 4

Body Rotation

18 7 8

Body Rotation

20 3 4

Arm Rotation

5 7

Body Rotation

18 7 8

Body Rotation

20 3 4

Arm Rotation

5 7

Arm Rotation

3 2

A Body Rotation transaction is generated :

A Body Rotation transaction is generated :

A Head Rotation transaction is generated :

A Body Rotation transaction is generated :

A Arm Rotation transaction is generated :

A Arm Rotation transaction is generated :

Head Rotation

20 30

Head Rotation

20 30

Head Rotation

20 30

Head Rotation

20 30

Figure 4.10: An Example of Combining Transactions in Bufferunprocessed

63

jump from (2,2) to (7,8) in the Y, Z directions.

64

Chapter 5

Related Work

This chapter presents a number of projects developed to provide application-sharing envi-

ronments. Some of the projects handle fault-tolerance. However, they are not as robust as

CTDS in the fault-tolerant aspects. Most of the systems built only allow one master per ap-

plication. Some systems provide more generic application sharing environments in which

more than one application can be shared.

As discussed in Section 2.5.2, the usage of a PSEUDO server architecture is an easy

way to provide application sharing without requiring modifications to stand-alone applica-

tions. Most of the researches done in the field use PSEUDO server architecture for sharing X

applications. XTV by Abdel-Wahab et al. [AWF91], COMIX by Babadi [Bab93], and Share

by Greenberg [Gre90] are systems based on the PSEUDO server architecture for sharing X

applications. The PSEUDO servers in these three systems are made up of several processes.

In XTV, some of these processes run both locally and remotely, whereas others run only re-

motely. All processes in COMIX and Share only have one running instance. Nevertheless,

the processes making up the PSEUDO server in the corresponding systems provide similar

functionality. Each of the processes making up the PSEUDO server has its own responsi-

65

bility in the system. For instance, the packet translator process in XTV, the comix server in

COMIX, and the view manager in Share all handle the X requests and replies translations;

the token manager in XTV, the comix-control process in COMIX, and the chair manager in

Share regulate access to applications. All three systems allow only one master per appli-

cation. However, XTV supports more than one application in a session. It is unclear as to

whether COMIX and Share support multiple applications in a session. Abdel-Wahab et al.

go into details of the translation of X resources IDs, X client requests, and X server replies.

They also mention the possible failure of applications due to failures of key centralized pro-

cesses in the system (processes running on a single machine). A replicated approach, i.e.

running key processes in the system on multiple machines, is suggested as a possible solu-

tion. No recovery of key processes is supported by all XTV, COMIX, and Share. Ahuja et al.

explore a couple of variants of the PSEUDO server architecture by having the shared appli-

cation running on a different number of machines [AEL90]. One variant is the single-site

approach. In this approach, the shared application is run on the machine of one of the par-

ticipants. The other variant is named multi-site approach. The shared application is run on

several participants’ machines. An analysis is done on the pros and cons of the two variants.

The performance of the two different variants is also discussed.

Studies such as the Amoeba distributed operating system [MVRT+90, TVRVS+90,

KT92] and the telemedicine system by Gomez et al. [GdPA+96] use the sequencer-based

model for group communication. In Amoeba, all participants in a session form a group.

Group communication is achieved by having all participants to send messages/transactions

to the sequencer in the corresponding group. The sequencer then assigns a sequence num-

ber to the message before it multicasts the message to the group. The sequencer in Amoeba

is integrated into the kernel, but it is not the application itself. An election for a new se-

quencer will be called if the current sequencer fails [CDT94, KT92]. [GdPA+96] built a

66

telemedicine system for remote cooperative medical imaging diagnosis. In the telemedicine

system, collaborative toolkits, which provide coordination service, are integrated into appli-

cations. There are also group communication modules being integrated into applications.

However, no details is given on the data flow in the system. Thus, it is unclear as to whether

a single application instance acts as the sequencer or multiple application instances cooper-

ate to do the sequencing job. One major weakness of this telemedicine system is the required

modifications to the interface of stand-alone applications. Modifications to interface of ap-

plications may lead to inefficient collaboration due to unfamiliarity of the new interface.

An event-capturing mechanism is proposed by Hao et al. [HLJ96, HJ96] to provide

application sharing. Instead of intercepting traffic between X clients and X servers as in

the PSEUDO server architecture, the system developed (RES-AP) captures relevant input

events on a shared window. RES-AP then orders and groups the input events before sending

them to other application instances. The authors claim that capturing and processing of input

events reduce the communication traffic as compared to the PSEUDO server architecture.

A number of papers discuss generic collaborative tool development environments.

The generic environment allows sharing of more than one application. Participants can in-

voke any X applications, which they want to share, in the environment and collaborate with

other participants. Maly et al. [MAWO+97] present a Interactive Remote Instruction Sys-

tem for interactive distance learning. The system provides a virtual classroom for geograph-

ically dispersed students. The architecture of the system is a combination of the PSEUDO X

server architecture and the client-server architecture. There are several servers which pro-

vide specific types of services, e.g. class information service, multicast service. In addition,

the system also incorporates XTV [AWF91], an X Windows tool-sharing engine, which is

PSEUDO server architecture based. Fault-tolerant service is also addressed by the system.

However, the system only handles application failures. It does not handle server failures. In

67

contrast with CTDS, this system protects server processes from crashing if application fails.

Applications are restarted after failure. Another multi-application sharing environment is

discussed in [JJ96]. This environment is different from the one developed by Maly et al.

in the sense that the shared model is made up by joining 3-D objects from different applica-

tions, in contrast to each application has its own shared model. This shared 3-D environment

model is targeted for existing applications which use a scene graph model for display geom-

etry, e.g. Open Inventor applications. DEEDS, a prototype distributed multitasking environ-

ment, developed by Liang et al. [LLC+94], uses a 3-layer architecture. DEEDS consists of

a groupware server that possesses similar functionality as the arbiter in CTDS. The group-

ware server provides the coordination and communication services to applications. There

is an application server for each shared application to take care of coordination and other

needs associated with the execution of the application. For instance, partitioning of the 2-

D workspace in a 2-D paint program into several resources and the access to each of the

resources are handled by the application server associated with the 2-D paint program. In

CTDS, an application server is associated with each application instance. The application

server in DEEDS sits in between the groupware server and the application.

68

Chapter 6

Conclusions and Future Work

This thesis presents a system for developing collaborative tools (multi-user applications).

The system is named CTDS. It facilitates the development of collaborative tools by provid-

ing the communication and coordination services, which are required in multi-user appli-

cations, to collaborative-application programmers. Application programmers not only can

use CTDS to develop multi-user applications from scratch, but they can also use CTDS to

easily convert stand-alone applications (single-user applications) to collaborative ones. In

converting a stand-alone application to a collaborative one using CTDS, application pro-

grammers have to modify the source code of the stand-alone application. However, changes

to the stand-alone application are limited to a few function calls. CTDS offers a library of

functions to client applications for integration with the system.

CTDS employs a client-server architecture as the model. CTDS consists of two

main components: arbiter and application server. The arbiter is the server which provides

the communication and coordination services. The application server together with the mod-

ified application form the client. There is an application server associated with every in-

stance of the shared application. It provides the additional Graphical User Interface required

69

for session management and gives information of the session. Thus, the interface of the

shared application remains intact. CTDS provides total and atomic ordering of transactions

by usage of sequence numbers (assigned by the arbiter) and two-phase commit protocol re-

spectively.

CTDS is designed to target at satisfying the two main fault-tolerance requirements

on collaborative tool development systems. Failure of any of the participants and failure of

the arbiter are not going to affect the continuity of a session. Participants can leave or fail

any time during a session with a notice being sent to all other participants by CTDS. CTDS

recovers the arbiter of a session by restarting a new arbiter and recovering the state of the

dead arbiter. The recovery process of an arbiter is achieved by having clients to monitor

the arbiter and by having clients to store information which allows the new arbiter to re-

construct the state of the dead arbiter completely. In addition to the fault-tolerant features,

CTDS offers other attractive features which are desired in the development of most collabo-

rative applications. With the capability of handling multiple collaborative resources, CTDS

supports multiple masters in a session without requiring “soft protocol” (coordination be-

tween participants on interactions on the shared model). This results in more efficient and

more effective collaboration. Moreover, CTDS is enhanced for building interactive collab-

orative tools. Because of the relatively long time required to commit a transaction using

2-phase commit protocol, the rate at which transactions are generated is much higher than

the rate at which transactions are committed in interactive applications. It is found from

experiments that the higher the rate at which transactions are generated, the longer the re-

sponse time of transactions. CTDS employs two strategies to improve the response time of

transactions in interactive applications. Firstly, it holds onto generated transactions without

sending them to the arbiter until the previous transaction being sent is committed. Secondly,

CTDS combines transactions of the same kind that are being held onto.

70

There are still a number of improvements that can be made to CTDS. CTDS cur-

rently treats every participant equally. In other words, every participant has the same level

of access to resources. Every master can interact with every resource. This may be inad-

equate in some situations. For instance, in a session with both instructors and students as

participants, it is undesirable to grant write (interaction) permissions on some parts of the

shared model to students. CTDS can be modified to take a user level and a password when

a participant joins a session. Based on the user level, CTDS checks the given password

against the password associated with the given user level. If the given password is correct,

the participant is allowed to join the session. And CTDS also determines the level of ac-

cess to each resource based on the user level. Some participants may not be able to become

masters on certain subsets of the resources. The provision of different levels of access to re-

sources requires application programmers to specify all user levels with their corresponding

levels of access on each resource.

The transfer of the shared model when a new participant joins a session can be au-

tomated. CTDS currently requires one of the participants in a session to manually save and

transfer the shared model to the new participant before resuming interactivity of the session.

To make the transfer of the shared model to the new participant automatic, one of the par-

ticipants have to send the shared model to the arbiter. And the arbiter then forwards the

shared model to the new participant. The arbiter is involved in the process because there

does not exist any connection between clients in CTDS. Only the arbiter can communicate

with clients. Clients cannot communicate with each other. Transfer of the shared model

from one of the participants to the arbiter is necessary because the arbiter does not carry

any information of the shared model. The arbiter only stores the transactions being applied

to the shared model. Thus, the state of the shared model has to be transferred from one of

the participants to the arbiter before the arbiter can send the shared model to the new par-

71

ticipant.

72

Bibliography

[AEL90] S.R. Ahuja, J.R. Ensor, and S.E. Lucco. A comparison of application sharing
mechanisms in real-time desktop conferencing systems. Sigois Bulletin, 11(2
and 3):238–248, 1990.

[AWF91] H.M. Abdel-Wahab and M.A. Feit. Xtv: A framework for sharing x win-
dow clients in remote synchronous collaboration. In Proceedings of the IEEE
Conference on Communications Software: Communications for Distributed
Applications and Systems (TRICOMM) 1991, pages 159–167, Chapel Hill,
NC, 1991.

[AWGN88] H.M. Abdel-Wahab, S.U. Guan, and J. Nievergelt. Shared workspaces for
group collaboration: An experiment using internet and unix interprocess
communications. IEEE Communications, 26(11):10–16, November 1988.

[Bab93] A. Babadi. Comix: A tool to share x applications. In Proceedings of the
Seconf Workshop on Enabling Technologies for Collablorative Enterprises,
pages 192–196, Morgantown, WV, 1993.

[BRPS94] R. Bentley, T. Rodden, Sawyer P., and I. Sommerville. Architectural support
for cooperative multiuser interfaces. Computer, 27(5):37–45, May 1994.

[CDT94] G. Coulouris, J. Dollimore, and Kindberg T. Distributed Systems: Concepts
and Design. Addison-Wesley Publishers Ltd., 1994.

[CKT91] E. Chang, R. Kasperski, and Copping T. Group coordination in participant
systems. In Proceedings of the Twenty-Fourth Annual Hawaii International

Conference on System Sciences, pages 589–599, Kauai, HI, 1991.

[CVB92] M.S. Chen, H.M. Vin, and T. Barzilai. Designing a distributed collabora-
tive environment. In Global Telecommunications Conference. Conference
Record., GLOBECOM’92. Communication for Global Users., volume 1,
pages 213–219, Orlando, FL, 1992.

73

[GdPA+96] E.J. Gomez, F. del Pozo, M.T. Arredondo, H. Rahms, M. Sanz, and P. Cano.
A telemedicine system for remote cooperative medical imaging diagnosis.
Computer Methods and Programs in Biomedicine, 49(1):37–48, January
1996.

[Gre90] S. Greenberg. Sharing views and interactions with single-user applications.
SIGOIS Bulletin, 11(2 and 3):227–237, 1990.

[Gre91] S. Greenberg. Computer-supported cooperative work and groupware: An in-
troduction to the special issues. International journal of man-machine stud-
ies, 34(2):133–141, February 1991.

[HJ96] M.C. Hao and Sventek J.S. Collaborative design using your favourite 3d ap-
plication. HP Laboratories Technical Report, 96(51), April 1996.

[HLJ96] M.C. Hao, D. Lee, and Sventek J.S. A light-weight application sharing
infrastructure for graphics intensive applications. In Proceedings of the
IEEE International Symposium on High Performance Distributed Comput-
ing, pages 127–131, 1996.

[JJ96] B. Jasnoch, U.and Anderson and H. Joseph. Shared 3-d environments within
a virtual prototyping environment. In Proceedings of the WET ICE ’96.
IEEE 5th Workshop on Enabling Technologies, pages 274–279, Stanford,
CA, 1996.

[KC95] M. Ko and P. Cahoon. A shared 4-d workspace. The University of British
Columbia Department of Computer Science Technical Report, 95(19), Au-
gust 1995.

[Kis96] O. Kiselyov. Handling multiple tcp connections in c++. C/C++ Users Jour-
nal, 14(5):17–23, May 1996.

[KT92] M.F. Kaashoek and A.S. Tanenbaum. Efficient reliable group communica-
tion for distributed systems. Part of Ph.D. Thesis ”Group Communication
in Distributed Computer Systems, Vrije Universiteit, Amsterdam, 1992.

[LLC+94] T.P. Liang, H. Lai, N.S. Chen, H. Wei, and M.C. Chen. When client/server
isn’t enough: Coordinating multiple distributed tasks. Computer, 27(5):73–
79, May 1994.

[MAWO+97] K. Maly, H. Abdel-Wahab, C.M. Overstreet, J.C. Wild, A.K. Gupta,
A. Youssef, E. Stoica, and E.S. Al-Shaer. Interactive distance learning over
intranets. IEEE Internet Computing, 1(1):60–71, January and February 1997.

74

[MVRT+90] S.J. Mullender, G. Van Rossum, A.S. Tanenbaum, R. Van Renesse, and
H. Van Staveren. Amoeba: A distributed operating system for the 1990s.
IEEE Computer, 23(5):44–53, May 1990.

[RCHS97] I. Rhee, S.Y. Cheung, P.W. Hutto, and V.S. Sunderam. Group communica-
tion support for distributed collaboration systems. In Proceedings of the 17th

International Conference on Distributed Computing Systems, pages 43–50,
Baltimore, MD, 1997.

[Ste90] W. R. Stevens. UNIX Network Programming. Prentice Hall PTR, Englewood
Cliffs, New Jersey, 1990.

[TBE+94] I. Tou, S. Berson, G. Estrin, Y. Eterovic, and E. Wu. Prototypingsynchronous
group applications. Computer, 27(5):48–56, May 1994.

[TBK+96] A. Thiel, J. Bernarding, M. Krauss, S. Schulz, and T. Tolxdorff. Distributed
medical services within the atm-based berlin regional testbed. In Proceed-
ings of the SPIE. The International Society for Optical Engineering V2711.

Society of Photo Optical Instrumentation, pages 32–43, 1996.

[TVRVS+90] A.S. Tanenbaum, R. Van Renesse, H. Van Staveren, G. Sharp, S.J. Mullender,
A. Jansen, and G. Van Rossum. Experiences with the amoeba distributed
operating system. Commun. ACM, 33(12):46–63, December 1990.

75

Appendix A

CTDS User Guide

This appendix serves as a guide on the integration of an application with CTDS. Application

programmers are referred to different files which come with CTDS in the discussion. Appli-

cation programmers are advised to look into the suggested files to get a better understanding

on the usage of CTDS.

A.1 Header Files

There are four header files in CTDS which should be included into an application:

1. client.h

2. client const.h

3. client state.h

4. const.h

Both client const.h and client.h should be modified to suit the needs of an applica-

tion. These two header files contain definitions of constants which are used by CTDS. There

76

are THREE constants in these two header files which MUST be modified for an application:

� ARBITER PATH NAME (const.h)

- the directory in which the CTDS arbiter executable is.

� RESOURCES (client const.h)

- the number of resources in the application.

� NO XSACTIONS (client const.h)

- the number of types/kinds of transactions in the application.

A.2 Modules

Since CTDS is an application-independent system, application programmers have to write

a number of application-specific modules for CTDS to work with a particular application.

A.2.1 Xsaction types

Xsaction types.h

This header file should contain all possible types of transactions in the application as well as

the definitions of the structure of the data parts in the types of transactions. Every transaction

generated by an application in CTDS has the structure shown in Figure A.1. The transaction

structure is called Xsaction.

For every transaction type, the transaction data part is a record composing of a num-

ber of fields, each of which stores a piece of information in that type of transaction.

The following example illustrates the organization of Xsaction types.h. Refer to Xs-

action types.h, which is coded for Robot application, in the CTDS package.

77

Transaction
 type

CTDS
System
Field

Length
 of
 data

Transaction data

Info
 1

. . . Info
 n

Figure A.1: Structure of a Transaction in CTDS

// All possible types of transactions

typedef enum

{

type_1,/* application-dependent

type_2,

type_3,*/

.

.

.

} XsactionType;

// Record structure for transaction data of transaction type_1

typedef struct

{

type_1_field_1_type field_1; /* application-dependent

type_1_field_2_type field_2; */

78

} type_1_data;

// Record structure for transaction data of transaction type_2

typedef struct

{

type_2_field_1_type field_1; // application-dependent

} type_2_data;

// No transaction data of transaction type_3

Xsaction types.cpp

This file is optional. However, applicationprogrammers are suggested to put functions which

initialize the transaction data structures defined in Xsaction types.h. These initializationfunc-

tions can be used later when CTDS reads transactions (Section A.2.3). Xsaction types.cpp

in the CTDS package contains initialization functions for Robot application.

A.2.2 event dispatcher

event dispatcher.h

This header file should not be modified by application programmers. It contains the proto-

types of two application-dependent functions used by CTDS.

event dispatcher.cpp

Definitions of two application-dependent functions are in this file. Application programmers

are required to give the definitions of these two functions. The two functions are named

79

dispatch Xsaction and redraw scene. dispatch Xsaction tells CTDS how to carry out

transactions upon receiving “COMMIT” from the arbiter. And redraw scene tells CTDS

how to refresh the application window. There is a event dispatcher.cpp in the CTDS pack-

age which is coded for Robot application. The following piece of code is a template for the

function dispatch Xsaction. Note that the number of arguments to the functions and the ar-

guments shouldnot be modified. They shouldbe kept the same as those in event dispatcher.cpp

in the CTDS package.

void dispatch_Xsaction(struct Xsaction *t)

// Transaction to be committed is stored in the t

{

// Define behaviour on every possible transaction type

switch(t->type)

{

case type_1: // Transaction type is application-dependent

/* Carry out the transaction of type_1 in an

application-specific way */

process_type_1(...);

break;

case type_2: // Transaction type is application-dependent

/* Carry out the transaction of type_2 in an

application-specific way */

80

process_type_2(...);

break;

/* Do the same thing for every transaction type */

} /* End switch */

}

A.2.3 app Xsaction

app Xsaction.h

This header file should not be modified by application programmers. It contains the proto-

type of an application-dependent function used by CTDS.

app Xsaction.cpp

This file contains the definition of a function which tells CTDS how to read transactions

defined for an application. The function is named read Xsaction. app Xsaction.cpp in the

CTDS package is coded for Robot application. The following piece of code is a template

for the function read Xsaction. Note that the number of arguments to the function and the

arguments should not be modified.

int read_Xsaction(int sockfd, struct Xsaction *t)

// Transaction is to be read from socket sockfd to t

{

int amt_read = 0; /* Total number of bytes read from

81

sockfd */

int n; // Temporary integer

// Define way to read every type of transaction

switch(t->type)

{

struct type_1_data *data1; /* Structures for storing

transaction

struct type_2_data *data2; data for every kind of

. transactions --

. application-dependent */

.

case type_1:

data1 = new type_1_data; /* Allocate space for data of

transaction type_1 */

/* Initialize data1 using the initialization function

defined in Xsaction_types.cpp */

t->dynamic = 1; /* REQUIRED for freeing of

the space dynamically

allocated to data1 */

82

// Read data from sockfd to data1 with error checking

if ((n = smart_read(sockfd, (char *)data1, t->length)) == 0)

return 0;

// Error checking

if (n < 0)

return n;

// Increment the number of bytes read from sockfd

amt_read += n;

t->data = data1; /* REQUIRED for storing

the data read to the

transaction structure

*/

break;

case type_2:

data2 = new type_2_data; /* Allocate space for data of

transaction type_2 */

/* Initialize data1 using the initialization function

defined in Xsaction_types.cpp */

83

t->dynamic = 1; /* REQUIRED for freeing

of the space

dynamically allocated

to data2 */

// Read data from sockfd to data1 with error checking

if ((n = smart_read(sockfd, (char *)data2, t->length)) == 0)

return 0;

// Error checking

if (n < 0)

return n;

// Increment the number of bytes read from sockfd

amt_read += n;

t->data = data2; /* REQUIRED for storing

the data read to the

transaction structure

*/

break;

case type_3:

/* No transaction data for transaction type type_3 =>

84

nothing to be read */

t->dynamic = 0; // No dynamic allocation

t->data = NULL; // No transaction data

break;

/* Do the same thing for every type of transaction */

} /* End switch */

return amt_read; /* Return number of bytes

read */

}

Note: smart read(socket, buffer, size) is a function provided by CTDS to read

data of size bytes from socket to buffer. It is similar to the function read in UNIX. How-

ever, smart read will not return until it has read size bytes from socket even if size is

bigger than the TCP segment size (usually 1460 bytes). Besides, smart read is ca-

pable of resuming reading after signal interruption.

A.3 The Application

In addition to defining modules required by CTDS, application programmers also need to

modify the application itself to work with CTDS. Application programmers are advised to

refer to robot.cpp in the CTDS package for details on the integration of an application with

CTDS.

85

A.3.1 Setting Up a Session

In order to establish or join a session, a number of function calls has to be placed at the be-

ginning of the application. The following list contains the functions which are necessary in

establishing or joining a session. These functions must be put into the application in exactly

the same order as in this list.

1. define Xsaction acc rules()

- This function defines the rules for combining transactions in Bufferunprocessed. Ap-

plication programmers are required to define this function as the combining of trans-

actions are application-specific (Section A.3.4).

2. session init(int argc, char *argv[])

- This function initializes all state variables in the session. It takes two arguments.

The first one is the number of mainline arguments to the application program. The

second one is an array of string which contains the mainline arguments to the appli-

cation program.

3. setup app server()

- This function sets up the application server associated with the application instance.

4. connect to arbiter()

- This function connects the application instance to the arbiter if an arbiter exists in the

session. Otherwise, it creates an arbiter for the session and connects the application

instance to it.

A.3.2 Communications with Application Server and Arbiter

To communicate with the arbiter and the associated applicationserver, the application should

make use of two functions provided by CTDS:

86

� process sockets()

- This function checks whether there is data from the application server and the ar-

biter. It reads and processes the data if any.

� send Xsaction(struct Xsaction *t)

- This function sends a transaction generated to the arbiter.

A.3.3 Multiple Resources

After defining the number of resources in client const.h, application programmers need to

associate resource IDs to resources in the application code. This is done by a number of

#define statements. For instance, #define BODY 1 associates the resource ID 1 to the

body of the robot in Robot application. Resource IDs must start from 0 to RESOURCES

(in client const.h) - 1.

In order for the application to access information of the resources, the application

needs to include the following statement in the code as a global variable:

extern my resources[RESOURCES];

A.3.4 Transaction Accumulation/Combination

CTDS is enhanced for interactive applications by combining adjacent transactions of the

same type into a single transaction. Since different applications have different kinds of trans-

actions, and hence, different methods to combine transactions, CTDS requires application

programmers to define rules to combine each type of transactions. CTDS requires a func-

tion named define Xsaction acc rules to be defined. An array of rule-storage structures is

offered to an application. Each element in the array should contain the rules for combining

all data fields in the corresponding type of transaction. This array is called xar. Figure A.2

87

shows the rule-storage structure used to store a combination rule. This structure is defined

in client.h and is called Xsaction acc rule.

Xsaction_id

(Transaction
 type)

accumulative

(combinable or
 not)

no_of_fields

(No of data
 fields)

rules

(Rule structure for
 each data field)

a_or_o field_length

(additive or
overwritable)

a_type
(Type of data field if it
is additive: LONG,
INT, FLOAT)

(Data field
 length)

For every data field in the transaction type,

Xsaction_acc_rule

field_acc

Figure A.2: Structure of a Combination-rule-storage Record

The following is an example of define Xsaction acc rules. Refer to robot.cpp in

the CTDS package for details. Note that the number of arguments to the function and the

arguments should not be modified.

void define_Xsaction_acc_rules()

{

struct Xsaction_acc_rule *a;

/* Rule for transaction type_1 to be stored in xar[0].

type_1 is accumulative/combinable and it has two

88

data fields. The first data field should be

combined using the overwrite method and the second

one should be combined using the additive method

on float. */

a = &xar[0];

a->Xsaction_id = type_1;

a->accumulative = 1;

a->no_of_fields = 2;

a->rules = new field_acc[a->no_of_fields];

a->rules[0].a_or_o = overwritable;

a->rules[0].a_type = ADD_TYPE_NONE; // Not additive

a->rules[0].field_length = 10;

a->rules[1].a_or_o = additive;

a->rules[1].a_type = FLOAT;

a->rules[1].field_length = sizeof(float);

/* Rule for transaction type_2 to be stored in xar[1].

type_2 is not combinable. */

a = &xar[1];

a->Xsaction_id = type_2;

a->accumulative = 0;

/* Do the same thing for every type of transaction */

}

89

