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Abstract

Collaborativetools(multi-user applications) are very popular. Itisdesirableto have
an appli cation-independent system which providesthe basic el ements that are necessary for
developing any kind of collaborativetools. Thisthesis presents a system named Collabora-
tive Tools Development System (CTDS) for devel oping these tools. It not only facilitates
the building of collaborative software from stand-alone (single-user) software, but it also
eases the devel opment of collaborative software from scratch. CTDS provides the commu-
nication and coordination services which are used by collaborative software. CTDS offers
fault-tolerant collaboration. Failures of key componentsin CTDS do not have any impact
on collaboration. CTDS a so offers many other features for more effective and efficient col-

| aboration.
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Chapter 1

| ntroduction

In the past few years, white board software has become popular. It allowswidely separate
users to collaborate on documents, to participate in presentations, etc. However, the shar-
ing is not real-time; sharing islimited to static images or screen snapshots from programs’
output. This kind of sharing is unacceptable in some situations. Consider the sharing of
amorphing process from an ape to a human being. Apparently, one can understand better
how an ape morphsto ahuman being by looking at the entire animation as compared to | ook-
ing at snapshots of the animation. Thisis due to information |ost in-between the snapshots.
Thisinadeguacy of white board software leads to the development of “application sharing”
software. Application sharing software alows two or more users running the same appli-
cation to work collaboratively and simultaneously on the shared model/data. The meaning
of the shared model/datais application-dependent. For instance, the shared model/datais
a document if the shared application is a document editor. On the other hand, the shared
model/datais a 3-D object in a 3-D application sharing environment. Application sharing
software offers real-time sharing. Application sharing software, which alows multi-user

collaboration, is also called collaborativetools. In most cases, collaborative tools are de-



veloped from stand-al one (single-user) applications. Users of collaborativetoolsare called
participants. Participantsare said to be participating in a session. Collaborative tools are
useful in many different fields. In the field of medicine, it opens up the possibility to per-
form a surgery without the presence of the necessary specialistsin the operating room. By
sharing the patient’s model in an appropriate application, specialists can give advice to the
surgeons. Speciaistscan also giveinstructionsto the surgeons by manipulating the patient’s
model. Collaborative tools a'so make interactive distance learning possible in the field of
education. With ashared model between theinstructor and the students, together with video
conferencing software, avirtual classroomisformed. Theinstructor can explain thelecture
material clearly to the students by referring to the relevant model and through verbal and
visual communication. Students can aso clarify their questions by manipulating the corre-
sponding model. Onelast example of collaborativetoolsis Internet games. Internet games
allow users from different parts of the world to play asingle game session on the Internet.
Evidently, collaborative applications need to communicate with other instances of
themselves. For exampl e, changes made to the shared model by any of the participants must
be seen by other participants. In addition, a coordination mechanism must exist to ensure
state consistency among all participants. State consistency among participants is guaran-
teed only if al participants execute the same set of changes to the shared model in exactly
the same order (total atomic ordering). In the field of distributed systems, many techniques
have been devel oped to handle problems encountered in designing collaborative tools. For
instance, there are techniques to ensure replica consistency and techniquesto preserve or-
dering of requests from different clients. Most of the collaborativetools that have been de-
vel oped build the code for communication and ordering into the applicationsthemselves. In
fact, every kind of collaborativetool requires similar communication and ordering mecha-

nisms. Thus, it is desirable to build an application-independent system which providesthe



communication and coordination services. Thisnot only allows reuse of code, but also fa-
cilitates conversion of a stand-alone application into a collaborative one. The collaborative
version of an application can be built by reusing existing application code with any modi-
fications required by the system. Such a system for developing collaborative tools can be

classified into two main categories:

1. view-level sharing systems

2. mode-level sharing systems

View-level sharing systems require no modification to the application code in con-
verting astand-al oneapplication to acollaborative one. It offers collaboration by exchanges
of window events, e.g. XEvents. XEventsthat are generated asaresult of changesto shared
models are sent to all participants to achieve application sharing. The applicationis said to
be collaboration-unaware since the same piece of codeis used for running the applicationin
stand-alone mode and collaborative mode. On the contrary, model-level sharing systems
require application code to be modified in building a collaborative version of a stand-alone
application. However, model-level sharing systems provide sharing at ahigher level of se-
mantics. In model-level sharing systems, sharing is achieved by exchanging information
of the shared model, e.g. rotationsto the shared model. A good model-level sharing sys-
tem should require aslittle change to the application code as possible. Collaboration-aware
softwareis produced by model-level sharing systems.

It isalsoimportant that collaborativetools provide fault-tolerant services. Thereare
two aspects of fault-tolerance in application sharing. The first one is the isolation of fail-
ures of participants. Failure of any of the application instances must not affect the others
from functioning correctly. The other aspect of fault-toleranceisthe recoverability of ases-

sion. The meaning of the recoverability of asession dependson the design of the system that



provides the communication and coordination services. In general, a system that provides
the communi cation and coordinati on services consistsof acertain number of componentsor
processes. A sessionisrecoverableif failure of any component in the system does not affect
the continuity of the session. Theimplementation of fault-tolerant services differsfrom sys-
tem to system, depending on the design of the system. If asystem fulfillsthe fault-tolerance
requirements in the two aspects discussed, there should be no failure at al from the point of
view of a participant. Thisis because the application instance that a participant is running
diesonly if the participant quitsor terminates his/her own application instance.

To summarize, asystem for devel oping collaborativetools should provide the com-
munication and coordination services, which are necessary in application sharing. More-
over, it should provide fault-tol erant application sharing. Failures of any of the participants
or any of the componentsin the system should have no effect on the continuity of asession.
Lastly, amodel-level sharing system should require as little code change to the original ap-
plication code as possible.

This thesis presents a fault-tolerant approach in implementing a system for devel-
oping collaborative tools. The system developed offers model-level sharing. It alows any
number of userssharing the same applicationat geographically dispersedlocations. Thesys-
temdevel opediscalled the Collabor ative ToolsDevel opment System (CTDS). Thedesign
andimplementation of thissystemtargetsthethreemajor requirementsof asystemfor devel-
oping collaborativetools. It employs a client-server architecture. The application instances
together with session management processes provided by the system form the clients. The
server isa separate process provided by the system to give the communication and coordi-
nation services. The server isalso called arbiter because of itsimportant rolein the system.
CTDS requires the arbiter running on acomputer with inetd (I nternet Daemon) running.

Code of astand-alone application is modified by adding necessary function callsto commu-



nicate with thearbiter and the session management process, and by adding stateinformation
which is collaboration-specific. Application sharing is then achieved by having each of the
partici pantsrunni ng the modified application on his’her machine. Fault toleranceisachieved
by automatic recovery of the arbiter.

Chapter 2 of thisthesis presentsthe model of CTDS. Each of the componentsin the
system is described briefly. A dataflow diagram is also presented to illustrate the process
to commit a transaction/request. Some important terminologies are also introduced in this
chapter. Thischapter aso presents other model s which are commonly used in building col -
laborative tools devel opment systems. Comparisons and contrasts are done between CTDS
model and these models.

Chapter 3 talks about the implementation of the system. It gives a detailed descrip-
tion of the implementation of session initiation and session termination. In addition, the al-
gorithm of joining a session and that of leaving a session are also discussed. Some interna
details of the core component in CTDS — the arbiter — are also uncovered.

Chapter 4 presentsthe main features of CTDS. It introduces each of the key features,
followed by an in-depth discussion of itsimplementation.

Chapter 5 discusses related work. Research work which employs models similar
to that used by CTDS as well as research work which uses the other models introduced in
Chapter 2 are presented.

Chapter 6 presents the conclusions and some ideas on enhancing the system.



Chapter 2

M odel

This chapter presentsthe model used in developing the system (CTDS) that we haveimple-
mented in this project. Each of the componentsin the system is described in detail, along
with a discussion on its functionality. Moreover, interactions between the system compo-
nents are aso discussed. This chapter then gives an overview on how application sharing
is achieved in CTDS. Lastly, two other models, which are used in building collaborative
tools devel opment systems in the research field are presented. Comparisons and contrasts

between these models and the CTDS model are also given.

2.1 Terminologies

Before presenting the model used in developing CTDS, itiscrucia to know the definitions
of some terms that are used throughout this document. Some of the terms are introduced

previously. We will repeat them here for the completeness of this section.

e SEssion

- the environment formed by multiple shared instances of a single application. All



interactions occurring in any of the shared instances are seen by all other instances.

arbiter
- server in CTDSwhich providesthe communication and coordinati on servicesto sup-

port collaboration. Thereis one arbiter per session.

participant
- the user of a shared application instance. The user is said to be participating in a

session.

shared model

- ageneric term used to describe dl| the objects shared by the participantsin asession.

client
- the shared application instance and the session management process associ ated with
that shared applicationinstancerun by aparticipant. (Since CTDS offers model-level

sharing, the application instance is a modified one.)

Note: participant and client are used interchangeably in this document based

on the justification that an application instance is run by a single participant.

master
- aparticipant/client who has permission to perform interactions on the shared model
in asession. Subject to the capability and limitationsof asystem, the number of mas-

tersin a session can be greater than one.

slave
- a participant/client who does not have permission to perform interactions on the
shared model in a session. Obviously, there is no limit on the number of slavesin

asession.
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Figure 2.1: The Client-Server Architecturein CTDS

e initiator
- the participant/client whichinitiatesa session. In other words, theinitiator isthefirst

clientin asession.

2.2 System Architecture

Figure 2.1 showsthe client-server architecture used in developing CTDS.

221 Server

The server is called the arbiter. It ispart of CTDS. It provides the communication and co-
ordination services to clientsin asession. The arbiter providestotal ordering by assigning
seguence numbers to transactions on the shared model. In other words, the sequencing and

ordering job is done by the arbiter. The arbiter works with any application. It is started



automatically when theinitiator starts asession, and it runs on ainitiator-specified machine.

2.2.2 Client

The client consists of two processes, the modified application program and an application
server associated with it. Both processes run on the same machine, which can be different

from the arbiter'smachine.

M odified Application

Since CTDS provides model -level sharing, the application code has to be modified to work
with CTDS. Connection-establishment procedures have to be added to the application code
for the application program to communicate with other componentsin CTDS. In addition,
communication procedures have to be added to the application code at appropriate placesto
achieve application sharing. All the modifications are made based on alibrary of functions
provided to any applicationsby CTDS. Refer to Appendix A for details on theintegration of
CTDSintoan application. The user interface to the stand-aloneversion of the applicationis
preserved even after integration with CTDS. Thus, participantswill not have any difficulty
in using the collaborative version of the software.

Note: In the rest of this document, the modified application will be referred

to as the application.

Application Server

The application server ispart of CTDS. It providesthe additional user interface for control-
ling collaboration-specific parameters, and thus, preserving the interface of the original ap-
plication. It also handles all interactions with participants which result from collaboration.

The application server always comes with the application program. It is started automati-
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cally when the modified application is run. The application server alows a participant to
switch between master and slave. In addition, it shows alist consisting of the information
of al participantsin the corresponding session. The information of a participant includes
his/her name, the host and the port number on which the participant’sapplicationis, and the
status (master/slave) of the participant. Figure 2.2 showsthe user interface provided by the

application server, along with an annotation for each piece of information.

2.3 Communication

Figure 2.3 shows the types of communication used between each processin CTDS. Note

that communication only existsbetween thearbiter and clients. Clientsdo not communicate

10
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with each other.

2.3.1 Communication Between Application Server and Application Program

Any kind of 1PC (Interprocess Communication) can be used for the communication between
the application server and the application program. In CTDS, two pipes are used for this
purpose. Since pipes provide one-way flow of data, two pipes are used to provide the bi-
directional communication desired. For a detailed discussion on pipes, refer to [Ste90].
The communication between the application server and the application program is
necessary upon situationsinwhich theinformation displayed by the application server hasto
be updated or the application server hasto providecollaboration-specificinteractions. These
situationsinclude joining of new participants and leaving of existing participants. When a
new participant joins, the arbiter will notify the application program, which in turn notifies
the corresponding application server of thejoining. Upon notification of thejoining, the ap-
plication server updatesthelist of participants. The application server also handlesall inter-
actionsin thejoining process (Section 3.1.2). Similarly, when an existing parti cipant | eaves,

the arbiter will notify the application program, which in turn notifies the application server

11



of the leaving. Again, the application server will update the participant list. Moreover, the
application server also needs to communicate with the application program when a partici-
pant switches status (master/slave) using the buttons provided. If a participant switchessta
tus, the application server informs the application program of the request to change status.
The application program then consults the arbiter, which determines whether the partici-
pant can make the status change. The rule for determining the validity of status changeis
discussedin Section 4.1. After consulting the arbiter, the application program will reply to
the application server saying whether the request is approved or not. The application server
will then update the statusif the requested status changeis approved.

The communication between the application server and the application program is
indispensable in many other situations which will be discussed in the presentation of the

implementation of the arbiter and in the discussion of the main features of CTDS.

2.3.2 Communication Between Application Program and Arbiter

Since the arbiter does not necessarily run on the same machine as any of the clients, some
kind of network communication is necessitated between the application programs and the
arbiter. In CTDS, TCP/IP communication is used for this purpose. TCP/IP is chosen for
simplifyingtheimplementation of total ordering sinceit guaranteesin-order delivery of data
packets.

The communication channel between an application program and an arbiter not only
makes the communi cations necessitated from the scenarios described in the previous section
(joining or leaving of participants, requests and approvals of status changes) feasible, but it
also playsavery important rolein achieving application sharing. Infact, the communication
channel is mainly used for transmitting transactions, which are changes to the shared model

and transaction-related requestsand replies, in either direction. Detailsof dataflowinCTDS

12
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Figure 2.4: Data Flow Diagram of One Transactionin CTDS

are discussed in the following section.

2.4 DataFlow

In CTDS, application sharing is achieved by multicasting changes to the shared model to

all participants. Application programmers have control over which changes should be mul-

ticasted and which should not. Atomic ordering provided by a 2-phase commit protocol

[CDT94], working with thetotal ordering provided by TCP/IP and thearbiter, ensures state

consistency among al clients. Masters send changes to the shared model as a transaction to

the arbiter. The arbiter then assigns unique sequence humber to this transaction and mul-

ticastsit to al clients, including the originator of the transaction. The multicasting is done

by point-to-point TCP/IP communication to every client. Upon the receipt of atransaction,

13



aclient checks whether it is“ready-to-commit” the transaction by comparing the sequence
number of the received transaction and the sequence number of the transaction it just com-
mitted. If the difference between the sequence number of the transaction just committed
and that of the received transaction is greater than 1, the received transaction is not ready to
be committed. If the transaction received is ready to be committed, the client repliesto the
arbiter. Otherwise, it storesthetransaction and waitsuntil it is*ready-to-commit” thetrans-
action before replying to the arbiter. When the arbiter receivesrepliesfrom all clientsfor a
particular transaction, it will inform al clientsto commit the transaction by sending “com-
mit” to them. For details on the agorithm of 2-phase commit protocol, refer to [CDT94].

Figure 2.4 summarizes the dataflow of asingletransactionin CTDS.

2.5 Other Models

In additionto thearchitecture usedin building CTDS, thereare two other main architectures
for implementing collaborativetools devel opment systemswhich are commonly used inthe
research field. We will introduce both of them. Some comparisons and contrasts between

them and the CTDS model will aso be presented.

251 Sequencer-based Model

Thefirst model we are going to introduce iswhat we described as the sequencer-based dis-
tributed applicationarchitecture. Inthisarchitecture, oneof theapplicationinstances, which
is called the sequencer, will do the sequencing and ordering job. Masters send transactions
to the sequencer. Acting likethearbiter in CTDS, the sequencer will carry out the 2-phase
commit protocol for the transactions after assigning sequence numbersto them. Figure 2.5
shows the sequencer-based distributed application architecture.

Apparently, the application code has to be modified in order to communicate with

14
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Figure 2.5: Sequencer-based Distributed Application Architecture

other application instances, as well as to perform the sequencing and ordering job. Note
that not only the sequencer, but aso all application instancesin the session need to have the
sequencing and ordering procedures incorporated. This is because the provision of fault-
tolerant service requiresthat every application instance be willing to become the sequencer.
If the current sequencer dies or the corresponding participant quits, an election has to be
called to elect a new sequencer for the session to continue. Thisis done by some kind of
election algorithm, which are well-developed in the field of distributed systems. Since any
of the application instances can become the sequencer, communication channels have to be
established between each pair of application instances despite of the fact that application
instances only communicate with the sequencer.

The architecture employed in building CTDS has advantages over the sequencer-
based distributed architecture in several aspects. Firstly, |ess communication channels are
required to be established in the CTDS architecture. The number of communication chan-
nelsin the CTDS architecture increases linearly with the number of participants, whereas

the number of communication channelsin the sequencer-based architecture increases with

15
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the square of the number of participants. Figure 2.6 gives the numbers of communication
channelsrequired for some chosen numbers of participantsin both architectures. Thelarger
the number of participants, the bigger the difference between the number of communication
channels required to be established (Table 2.1).

Worst of al, most of thecommunication channel s establi shedin the sequencer-based
architecture are not active. Application instances do not need to communication with each
other, except with the sequencer. Consider the session shown in Figure 2.5, only three of
the six communication channels established are actually used. On the contrary, dl the es-
tablished communication channels are utilized in CTDS. Thus, the sequencer-based archi-
tecture is wasting computer resources in some sense. Table 2.2 shows the percentage of
unused communication channels in the sequencer-based architecture.

Secondly, inthe CDT Sarchitecture, the coll aboration has|essimpact on theinterac-

16



Number of | Communication ChannelsRequired | Communication Channels
Participants | Traditional | CTDS Difference
2 1 2 -1
3 3 3 0
4 6 4 2
5 10 5 5
6 15 6 9
7 21 7 14
8 28 8 20
9 36 9 27
10 45 10 35

Table 2.1: Information on Communication Channels Required in Sequencer-based and
CTDS

| Number of Participants | Percentageof Unused Communication Channels |
2 0%

33.3%
50.0%
60.0%
66.7%
71.4%
75.0%
77.8%
10 80.0%

OO|N[O|0 W

Table 2.2: Percentage of Unused Channelsin Sequencer-based architecture

tivity of theapplicationinstances. Inthesequencer-based architecture, the sequencer, which
is one of the application instances, has to do the sequencing job in addition to handling the
normal applicationinteractions. Thisnot only deterioratestheinteractivity of the sequencer,
but al so makes the 2-phase commit protocol carried out by the sequencer not as effective as
that carried out by the arbiter in CTDS. Asaresult, the performance of the entire sessionis
affected. Thirdly, the CTDS architecturerequiresno election algorithmsinceitisawaysthe
arbiter which doesthe sequencing job. Even though el ection a gorithms are well-devel oped
in the area of distributed systems, they are usually hard to implement. CTDS uses a clean,

simple method to take care of the failure of the arbiter. The method isdescribed later inthe

17
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discussion of thefault-tolerant featureof CTDS (Section 4.3). Lastly, and most importantly,
the sequencing code istotally separate from the application code in the CTDS architecture.
In CTDS, the sequencing codeislocated inthearbiter. Asdiscussed before, the sequencing
codeis completely application independent. Thus, CTDS alows the sequencing codeto be

written only once for the arbiter but worksfor all applications.

25.2 PSEUDO Server Architecture

PSEUDO server architectureisapopul ar architecture used in providing application sharing.
Figure 2.7 showsthebasics of the PSEUDO server architecture. Thereare many variantsof
the PSEUDO server architecture. All the variants provide application sharing based on ex-
changes of some kind of window events, mostly XEvents. In the rest of this discussion, we
will assume an X window environment, and hence, X Eventsare exchanged to provideappli-
cation sharing. Thissection serves as an overview on how the PSEUDO server architecture
provides application sharing. Details can be found in many papers discussed in Chapter 5.

Inthe PSEUDO server architecture, aPSEUDO server isintroduced in between the
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X Clients, which are the applications in a session, and the corresponding X Servers. This
PSEUDO server assumes the role of a X Server when interacting with X Clients and the
role of a X Client when interacting with X Servers. Its main responsibility is the transla-
tions and modifications of X requests and replies in order to make them meaningful to a
particular X Server or X Client. The translations and modifications are necessary because
different resources with different identifiers are associated with each X Server and X Client
connection. When a X Client generates a X request, it is sent to the PSEUDO server. The
PSEUDO server forwards the request to thelocal X Server, aswell as translating and modi-
fying therequest for X Servers associated with other X Clientsin thesession. The PSEUDO
server then sends the tranglated request to the X Servers of al other participants. Variants
of the PSEUDO server architectureincludereplicated or centralized PSEUDO servers, and
replicated or centralized storage of application data, replicated or centralized applications.
The PSEUDO server architecture give rise to collaboration-unaware software. It
providesview-level sharing. Thus, it requires no modification to the application. However,
asmentioned before, it resultsinalost of semantics. Thisisduetotheexchangesof X Events,
in contrast to exchanges of model-level events, between application instances. View-level
events are not as meaningful as model-level events to human users. The PSEUDO server
architecture al so introduces complicationsinto providing fault-tolerant application sharing
since there are more points of failures as compared to CTDS. For instance, in a replicated
PSEUDO server architecture, mechanisms have to be defined to take care of the failure
of any of the PSEUDO servers. This may include having some of the X Clients connect
to another PSEUDO server when failure of the corresponding PSEUDO server happens.
Moreover, systems using PSEUDO server architecture are limited to a particular window
environment. Thisresults from the sharing of window events. And the PSEUDO server is

also hard-coded to perform the transl ationsand modifi cations of window-system-dependent
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events. CTDS, on the other hand, does not have any restriction on the underlying window
environment. In CTDS, only the application server has a user interface. Tcl/Tk, aprogram-
ming system which consistsof abasic programming language (Tcl) and atoolkit of widgets
(TK), is used to implement the application server so that the application server can run on
the two main window environments: Windows, and X Window. In addition, implementing
therequest translation al gorithmin PSEUDO serversrequiresthorough understanding of the
window environment of interest. On the contrary, CTDS does not require any knowledge of
the underlying window environment. Lastly, the PSEUDO server architecture only allows
sharing of graphics callswhich are directed to X Servers. Thiscausesdifficulty in some3-D

X Windows applicationsthat utilize direct hardware access which bypasses X Servers.
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Chapter 3

| mplementation

This chapter discusses the implementation details of CTDS. It presents the details on the
initiation and termination of a session. |mplementations of joining a session and leaving a
session are also discussed. CTDS consistsof the application server and the arbiter. Arbiter
is the core component in CTDS. The application server, which is the other component, is
mainly for provision of auser interface for session management resulted from collaboration.
Thus, only the arbiter isdiscussedin detail in thischapter. Internal detailsof the arbiter are

presented.

3.1 Session

3.1.1 Session Initiation

A sessionis started by having theinitiator running the application program. There are sev-
eral parameters associated with asessionin CTDS. All of them arerequired for initiating a

session:
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1. Server Host

- the host name of the machine on which the arbiter is going to run.

2. Server Port
- the port number (communication point) on the server host through which the arbiter

iS going to communicate with clients.

3. Session Number
- an unigue identifier to identify a session. Thisisindispensablein identifying a ses-

sion if there are more than one arbiter running on the same machine.

4. Maximum Number of Masters

- the maximum number of masters allowed in the session.

In addition to these parameters, every participant has to give his’lher own name to
start the application. The name is part of the participant information displayed in the appli-
cation server.

Asmentioned earlier, thearbiter is started automatically when asessionisinitiated.
Thisis done by registering the arbiter as a new service provided by inetd (Internet Dae-
mon). inetd isadaemon process running on atypical UNIX server machine which listens
for al kindsof requestsand invokesthe appropriate server to handle the request based on the
type of the request received. For detailson inetd, refer to [Ste90]. This means that the ar-
biter hasto run on amachine with inetd running. When theinitiator’ sapplicationis started,
itwill talk toinetd onthegiven server host. I netd will then spawn off an arbiter asrequested
by theinitiator’sapplication. Thearbiter then bindstothe given server port. Failurein bind-
ing to the server port resultsin immediate termination of the sessioninitiation process. The
initiator has to pick another server port and try to establish the session again. Finally, the

initiator’s application establishes a connection with the arbiter on the server port. Mean-
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Figure 3.1: Initiator’'s Application Server

while, the application server will aso beinvoked and it will show the initiator as the only
participant in the session. Theinitiator isawaysamaster unlessan explicit statuschangeis
reguested through the application server after the sessionis successfully established. Figure

3.1 showsthe application server of theinitiator right after a sessionis started.

3.1.2 Session Joining

To join asession, a participant is required to specify three of the four parameters that are
mandatory in initiating a session. These three parameters are used to correctly identify the

desired session. They are:

1. Server Host
2. Server Port

3. Session Number

Every timean applicationisstarted, it will talk to inetd on the server host. Asinthe
initiator’scase, inetd will spawn off an arbiter as requested. However, this arbiter will fail
in binding to the given server port since the initiator has aready started an arbiter on the

given server port for the specified session. This arbiter will inform the application of the
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Figure 3.2: Join Notice Message Box

failurein binding. Upon receiving the notice of the failure, the application will establish a
connection directly with the existing arbiter started by theinitiator.

All participantscurrently inthesession will beinformed of thejoining by thearbiter.
The information is in the form of a message box as illustrated in Figure 3.2. Interactions
on the shared model will be suspended until the new participant successfully joinsor diesin
thejoining process.

The suspension of interactions is enforced to ensure that the shared model isin a
consistent state for retrieval by the new participant. After suspending interactivity, al out-
standing transactions, which have not compl eted 2-phase commit protocol, will be processed
as usual, bringing the shared model to afina state. To complete thejoining process, al par-
ticipants currently in the session will be prompted to transfer the shared model to the new
participant (Figure 3.3).

Any of the participants can push the “Resume” button after transferring the shared
model to the new participant. Since only one of the participants will do the transfer, the
dialog box shownin Figure 3.3 at al other participants’ siteswill disappear once the “Re-
sume” button is pushed by the participant who does the transfer. The new participant not

only needs the shared model, but &l so needs the information of all the existing participants.

24



Ready to transfer
data to thhe new
client. Save data.
Click = Resuine=>

after xsfer.

Figure 3.3: Transfer and Resume Dialog Box

After the“Resume’ button is pushed by one of the participants, the arbiter transfersinfor-
mation of all existing participantsto the new participant. Then, interactivity isresumed and
the session continues. Application servers of all theold clientswill reflect the joining of the
new participant while the application server of the new participant shows a complete list of
all the participants currently in the session, including himself/herself. Figure 3.4 presents
the application server before and after the joining of a new participant. If, anytime during
the joining process, the new participant dies, all the current participants will be informed
by an appropriate message box (Figure 3.5). Interactivity will be resumed automatically

afterwards.

3.1.3 Session Leaving

A participant can leave anytime during a session. Leaving under special circumstances, in-
cluding recovery of arbiter (Section 4.3), the process of joining of a new participant, the
process of requesting to join, are supported. A participant leaves asession by either closing

the application server or by quitting the application program.
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3.1.4 Session Termination

A sessionisterminated automatically when all participantsleave. If thereare no participants

left, the corresponding arbiter will be terminated.

3.2 Arbiter

This section uncovers the state information stored in the arbiter as well as the implementa-

tion details on several aspects of the arbiter’s functioning.

3.2.1 State

Section 2.4 outlines how the arbiter provides coordination and communication services to
collaborative applications. In order to support these two services, the arbiter has to keep
different kinds of information. The information that the arbiter has to keep is described as

the state of the arbiter. The state of the arbiter consists of two main components:

1. Information of al participantsin the session
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2. Seguenced transactionsreceived from all clients, aong with a 2-phase commit proto-

col statusfor each of the participantsfor every transaction

Information of all participantsincludesthe participants’ names, the addresses of the
hosts and the port numbers at which the clients are, the clients' status (master/slave). In-
formation of the participantsis kept for providing multicast as well as for validating status
change requests.

Different participants can be at different stagesin the 2-phase commit protocol. For
instance, participants at slower machines may still be processing transactions which were
received earlier when a new transaction is sent to them by the arbiter. Hence, those par-
ticipants are not “ready-to-commit” the new transaction yet. On the contrary, participants
at faster machines, who have processed al earlier transactions, are “ready-to-commit” the
new transaction. And they will send “ready-to-commit” to the arbiter for the new trans-
action. Besides, some participants may have received a particular transaction while some
others have not. Thisis dueto the usage of multiple point-to-point communications in im-
plementing multicast. Thus, for every transaction, the arbiter hasto store a 2-phase commit
protocol statusfor each participant. Thearbiter also storesthe sequence numbers of transac-
tions. Asdiscussed in Section 2.4, the 2-phase commit protocol uses sequence numbers of
transactionsand 2-phase commit protocol statusof each participant to provide atomic order-
ing. Therefore, the storage of transactions' sequence numbers and 2-phase commit protocol
statusis essential for proper implementation of 2-phase commit protocol. For every trans-

action, there are four possible 2-phase commit protocol status:

1. NONE
- Theinitia status for every participant. When the arbiter isin the process of multi-
casting atransaction and a participant has not been sent the transaction yet, the status

for that participant is NONE.
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2. MULTICASTED

- The transaction has been sent to the corresponding participant.

3. READY TO COMMIT

- “ready-to-commit” has been received from the corresponding participant.

4. COMMIT
- “commit” has been sent to the corresponding participant. This status only appears

after all participants have replied “ ready-to-commit”.

Transactions with 2-phase commit protocol status being COMMIT for al partici-
pants are said to be committed from the point of view of the arbiter. Indeed, the arbiter
has no way to tell whether or not atransactionis actually committed by clients based on the
2-phase commit protocol statusit stores. Clients may fail to perform the transaction which
the arbiter asks dl clientsto commit. Asaresult, there are two interpretations of “commit-
ted transactions’. Thefirst interpretation results from the point of view of the arbiter. And
the second oneresults from the point of view of aclient. In order to distinguish between the
two interpretations, committed,, .5+, iSused to describethe committed transactionsfrom the
point of view of the arbiter and committed,;;.,.; is used to describe the committed transac-
tions from the point of view of clients.

The sequence number of atransaction, the transaction, and the corresponding set of
2-phase commit protocol statusare stored in afixed-sizelist. Thislistisnamed atransaction
list (Figure 3.6).

There are two important pointersto thelist:

1. current

- pointer to thefirst empty slotinthelist. The next transaction received will be stored
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Figure 3.6: Transaction list Structure

inthe slot being pointed to. This pointer will be incremented to point to the next slot

every time a new transactionisreceived and stored.

2. start

- pointer to the first transaction stored in the list.

n slots for a maximum
of n transactions

A
0 T n-1

start current

oY

s’: Occupied
Figure 3.7: Transactionlist in the arbiter
Transactionlist isactually acircular list. The start pointer can point to any slot in

thelist (Figure 3.7). If all slotsfrom start to n-1 are occupied, the next transaction received

will be stored in slot 0. Slotsin thelist are recycled by a flushing mechanism discussed in
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Section 3.2.2.

3.2.2 Flushing

Dueto the limited number of slotsin thetransactionlist, amechanism to free slotshasto be
establishedto avoid overflow inthelist. Themechanism usedin CTDSisknown asflushing.
Only slots containing committed.;;.,.; transactions can be recycled.

The flushing mechanism composes of a periodic polling of all clientsfor the largest
sequence number they have committed so far, finding a minimum from all these sequence
numbers, and a recycling of slots in the transaction list up to and including the transac-
tion with the minimum sequence number found. Every certain period of time (can be cus-
tomized), the arbiter requests a sequence number fromall clients. Every client, upon receipt
of this request (request f1,.51:n4), replies to the arbiter with the sequence number of the |ast
committed transaction. After the arbiter collects replies from all clients, it finds the mini-
mum of the sequence numbersin the replies. This sequence number gives the latest trans-
actions that are committed.;;.,,; to al clients. Thus, every transaction up to and including
this transaction stored in the transactionlist can be removed safely as no more clients need
them. Figure 3.8(a) presentsthe flow chart for the flushing mechanism.

An example: Suppose the transaction with the minimum sequence number found is
stored in slot x. The arbiter recycles the dots starting from start to x by moving the start
pointer to slot x+1. In other words, slots start to x are appended to the end of the transac-
tion list for reuse. Figure 3.8(b) illustrates a flushing with the transaction of the minimum

sequence number found stored in slot X.
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3.23 Processing Priority

Priority of processing comesinto place when an arbiter receivestransactionsfrommorethan
oneclient at the same time.

Every timethearbiter isready toread requests, it formsapriority list by first assign-
ing the highest priority to joining requestsfrom new participants. The arbiter then scansthe
transaction list for the first non-committed,,»;:. transaction. For every transaction starting
from the first non-committed,,,.;:., transaction, the arbiter checks which clients have not
replied “ready-to-commit” and the arbiter will assign the next highest priority to these par-
ticipantsif they have not been assigned a priority yet. The underlying theory of thisisthat
wewant to recycle the slots at the beginning of thetransactionlist as soon as possible. And
by having “ready-to-commit” for all participants, the arbiter can send “commit” immedi-
ately to al clients, which will make the clients commit the transaction. Lastly, the clients
without priority assigned after the scanning process will be assigned equal priority.

Whenever there are multipleinputsto the arbiter, the arbiter will processtheinputs
according to the priority list generated at that time. The priority list will be re-generated

everytime when the arbiter reads input.

3.2.4 Transaction List Full

Despite of the flushing mechanism, thereis a possibility of overflowing thetransactionlist,
especially with interactive client applications. Thisis because interactive applications are
transaction-intensive. Thus, the arbiter has to be able to deal with overflow in the transac-
tionlist.

In CTDS, the arbiter raises awarning if the number of empty slotsin the transac-
tion list dropsbelow acertain threshold. Thewarning forcesthearbiter to assign the highest

priority to the clients who have not replied request ;,,s:n,. Thisis because flushing frees
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slotsin thetransaction list. If the transaction list does become full, the arbiter will inform
al clientsto stop sending new transactions. In other words, interactivity of clients will be
temporarily suspended until the number of empty slotsin the transaction list becomes rea-
sonable again. Figure 3.9(a) shows the message box used to inform clientsof atransaction
list overflow. Unprocessed transactions being sent to the arbiter before the issue of the list
full noticewill be stored in atemporary list. After suspending interactivity, the arbiter con-
tinues carrying out 2-phase commit protocol for the transactionsin the transaction list and
continuesflushing thetransactionlist. When the number of empty slotsinthelist, in view of
the number of unprocessed transactions stored temporarily, becomes acceptable again, the
arbiter will process the unprocessed transactions. The arbiter assigns sequence numbers to
these unprocessed transactions and carries out 2-phase commit protocol on them. Then, the

arbiter resumes interactivity of al clients.

3.25 Failureor Leaving of Clients

Thisis one of the fault-tolerance requirements discussed earlier. In order to satisfy thisre-
guirement, the failure or leaving of clients should not affect the continuity of asession. In
CTDS, leaving or failure of clients are handled in the same fashion. In CTDS, the arbiter
monitorsall clients. Whenever the arbiter detectsfailure of aclient, it immediately updates
its own state by removing the information of that client. The arbiter then checks whether
there is any clients left in the session. If there are none, the arbiter quits to terminate the
session. Otherwise, the arbiter informs all other clients of the leaving of that client so that
the corresponding application server can update the participant list accordingly. In updating
the state, the arbiter not only has to delete the information of the dead client, it also hasto
remove the 2-phase commit protocol status of that client for every transactionin the transac-

tion list and to remove the reply to request ¢;,sxi,, from that dead client. Immediate update
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of the arbiter’sstateis crucia to ensure that the arbiter does not send latter transactionsto
the dead client, which may cause unexpected results, including termination of the arbiter.
Nested client failures may occur when the arbiter informs other clients of the failure of a
particular client. In this case, failures encountered later are ignored until handling of the
current failure is completed.

Since the update of the arbiter’s state affects the 2-phase commit protocol status
stored, which may make the first non-committed,,.+:.,- transaction in the transaction list
“ready-to-commit”, the arbiter has to check against the first non-committed, ;.. transac-
tion after updating its state. If, after the failure or leaving of a client, the 2-phase com-
mit protocol status of al remaining clients for the first non-committed, .+, transaction are
“ready-to-commit”, the arbiter has to inform al clients to commit that transaction. More-
over, the arbiter aso has to check whether, after the failure or leaving of aclient, all the
remaining clients have replied to the request ¢, .1in, SNt if any. If the arbiter finds replies
to request s1,,51:n, fOr al remaining clients, it carries out flushing described in Section 3.2.2.

Note: Either the failure of an application program or the failure of the corre-
sponding application server results in a failure of a client in CTDS.

Figure 3.10 summarizes the handling of a client’sfailure or leaving.

3.26 Recovery of State

In addition to handling clients’ failure, the other fault-tolerance requirement states that the
failure of the arbiter should have no impact on the continuity of a session. In order to sat-
isfy thisrequirement, anew arbiter has to be started after the previous one dies. However,
restarting an arbiter isby no means sufficient to continue a session. The new arbiter has to
have the same state of the previous arbiter in order to continue providing servicesto clients.

Thus, we need to recover the state of the previousarbiter. In other words, everytime an ar-
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biter is started, it has to figure out whether it is a replacement of a dead arbiter or it isthe
first arbiter of asession. If it is areplacement of a dead arbiter, it has to recover the state
of the dead arbiter before entering normal service mode. Details on recovering the state of

the previous arbiter are givenin Section 4.3.
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Chapter 4

CTDS Features

Thischapter presentsthekey features of CTDS. It givesdetailed descriptionsof thefeatures

and the motivations behind them. Implementation of the features are also discussed.

4.1 Multiple Masters

CTDS supportsmore than one master in asession. A session with asingle participant being
amaster and al othersbeing slaveis often called a presentation. In a presentation, only the
presenter, who is the master, is alowed to perform interactions on the shared model. All
participantstake turn to be the presenter. A single-master session makesimplementation of
the underlying collaborative tool development system easier since transactions only come
from a single source. As aresult, no ordering of transactionsis necessary. In a multiple-
master environment, the underlying collaborative tool development system not only hasto
order transactions originating from different masters, but it also has to take into account the
possible conflicting actions performed by different masters. In most systemswhich support
multiple masters, either multipleresources are introduced or a “ soft protocol” isrequired to

avoid conflicting actions. “ Soft protocol” refers to the human coordination between differ-
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ent mastersin order to avoid conflicting actions. Because every master isallowed to interact
with every part of the shared model, there isa possibility that more than one master istrying
to change the shared model at the same time. These simultaneous actions may lead to con-
flicts. For instance, in atwo-master session with a dragon as the shared model, both master
A and master B intend to move the tail of the dragon. Master A wants to move the tail to
theleft hand side, whereas master B wantsto movethetail to theright hand side. Masters A
and B do the changes at about the same time before they see each other’saction. Theresult
of this scenario depends on the amounts of movement performed by masters A and B. The
actionsof masters A and B can completely cancel out each other, resulting in no movement
of thetail. Other possible outcomesinclude a movement of thetail to the left if the amount
of A’'smovement ishigger than that of B's, and amovement to theright if the amount of B's
movement isbigger than that of A’s. Unfortunately, none of the three outcomesisdesired by
either A or B. Therefore, a*“ soft protocol” is desired. Theimplementation of a“ soft proto-
col” requires somekind of human communi cation between the masters. The communication
can be done by means of video conferencing or telephone conferencing.

Another way to avoid possible conflicting actions in a multiple-master session is
the introduction of multiple collaborative resources into a session. In a multiple-resource
and multiple-master session, the shared model is partitioned into several parts. Each part is
called aresource. Each resourceis“owned” by a single master. That is, only a designated
master isallowed to interact with aresource. Thus, no conflicting actions will happen with
the provision of multiple-master support. CTDS supports multiple-master and multiple-
resource sessions. Details on the multiple-resource aspect of asessionin CTDS are given
in the next section.

InCTDS, thereisalimit on the maximum number of mastersinasession. The max-

imum number of masters is specified by the initiator of a session as discussed in Section
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3.1.1. The maximum number of mastersisin effect anytime during a session. The applica
tion server showsthe statusof each of the partici pantsso that a participant knowsthe current
number of masters in a session. Switching of statusis done using the buttons provided by
the application server (Figure 2.2). A participant can request to be a master anytime dur-
ing asession. The request is sent to the arbiter for approval. The approval is hecessary to
ensure the limit on the maximum number of mastersis honored. Upon receiving a request
to be a master, the arbiter checks the current number of masters against the maximum al-
lowable number of masters. If the current number of masters has not reached the limit yet,
the arbiter grants permissionto the originator of the request by informing all participants of
his/her status change. Otherwise, the request is declined and the arbiter continues servic-
ing asif it has not received such arequest. Requeststo be slaves can aso be made anytime
during asession. Requeststo be slaves are sent to the arbiter. The arbiter always approves
requeststobeslaves. Uponreceiving arequest to beasave, thearbiter immediately informs
all participants, including the originator of the request, of the status change of the originator.
All application servers will update their displays afterwards to reflect the new status of the
originator of the request. If every participant requests to be aslave, there will be no master
inthe session. Thisisalowed in CTDS. And we say that all the control isat the arbiter in
such scenario. Participants can claim control from the arbiter anytime afterwards. Figure

4.1 summarizes the processing of arequest of status change.

4.2 Multiple Resources

CTDS supports multiple resources. Resources make up the shared model in asession. In
other words, aresourceispart of theshared model. Some systemssimply dividetheworkspace
in which the shared model sitsinto a number of fixed-size 2-D squares or 3-D cubes and

make these squares or cubes as resources. However, this method of generating resources
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may not be appropriate in some applications. Consider the example used before in which
the shared model is a 3-D dragon. In this case, if we follow the method we just described
in generating resources, we partition the 3-D workspace into a number of cubes. And each
cube can be owned by amaster. However, acube may not mean anything to the correspond-
ing master sincethe cube may contain part of thetail and part of the dragon’sbody. Some of
the cubes may even contain part of afoot of the dragon but nothing else! Because different
applications have different numbers of resources and different ways of partitioning shared
modelsinto sensible multipleresources, CTDS requires application programmers to define
resources on their own. The definition of resources is done by assigning each part of the
shared model aresource ID. CTDS keepstrack of which resource is owned by which mas-

ter and which resource is not owned by any of the masters. Each resource is owned by one
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master. CTDS providesthe flexibility to application programmers to determine whether or
not amaster isalowed to own morethan oneresource. By supporting multipleresourcesand
enforcing one master per resource, collaboration becomes more effective from the point of
view of participants. Thisisbecause masterscan work on different partsof the shared model
simultaneously without worrying about interfering with others' work.

After a participant becomes a master, he/she can start claiming ownership of avail-
able resources. Claiming or releasing resources and checking availability of resources are

easy and simplein CTDS. CTDS offers three functionsto client applicationsfor doing so:

1. release_resource(resource D)

- rel eases the resource of resource ID

2. grab_resource(resource ID)

- claims ownership of the resource of resource D if available

3. resource_available(resource D)

- checks the availability of resource of resource ID

rel ease_resource/grab_resource both notify the arbiter of the rel ease/taking of are-
source. Thearbiter then informsall participants of the change of ownership of the resource
of interest. grab_resource aso checks the availability of the resource of interest before no-
tifying the arbiter in order to save communication costs. resource_availableis provided to
application programmers for implementing some other application-specificfeatures. For in-
stance, the example application presented in the next section utilizes resource availablefor
coloring different resources depending on their status. Resources owned by a master are au-
tomatically rel eased when the master switches to be a slave or the master dies. Ownership

of these resources are given back to the arbiter.
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4.2.1 Example Application - Robot

The Robot application is an interactive graphica application that allows a participant to
manipulate a robot, which is the shared model. The robot is partitioned into six different

resources: body, head, left arm, right arm, |eft leg, and right leg (Figure 4.2).

LEFT ARM

RI GHT LE

RI GHT ARM
BODY

LEFT LEG i

Figure 4.2: Robot Application

The original Robot application is a stand-alone application. It allows the user to
pick any of the body parts and manipulateit. Pickingisdone by clicking the mouse over the
desired body part. There can only be one active body part (picked body part) at any time.
After picking a body part, the user can manipulate it by moving the mouse while holding
any of the mouse buttons. The name of the current active body part is shown at the lower
left hand corner of the application window. The lower right hand corner of the application
window also displaysthe name of abody part. Thisname belongsto the body part whichis
currently pickable by the mouse at its current position. For instance, if the mouse cursor is

positioned over theleft arm with the body being the current active body part, the lower left



hand corner shows“BODY” and thelower right hand corner shows*“LEFT ARM”. Release
of abody part isdone by clicking the mouse over the same or another body part. Theformer
resultsin no current active body part whilethelatter resultsin anew active body part. Robot
employsacol oring schemeto col or body parts differently basing on their status. The current
active body part is colored red, the pickable body part is colored yellow, and all other body

parts are colored light blue.

A’ Mbuse cur sor

LEFT LEG

H ckabl e Body Part

(A(::‘E)i| \C/)?e%%” (Col ored YELLOW

Figure 4.3: Snapshot of the Robot Application with Active and Pickable Body Parts

In order to run Rabot in collaborative mode using CTDS, several changes have to

be made in theimplementations of the picking/rel easing of resources and in that of the col-
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oring scheme. Similar to the stand-alone version, the collaborative Robot only allows one
resource per master. However, pickinginthecollaborativeversionismore complicated than
that in the stand-al oneversion. Whenever aparticipant picks abody part, the resourceisnot
pickedright away. Thatis, thebody part will not be colored redimmediately, whichisnot the
case in the stand-alone version. Instead, the application program calls grab_resource with
the ID of the body part as the argument and waitsfor areply from the arbiter. Thereply is
used for ensuring that al participantsare aware of the change of ownership of the resource.
After receiving the reply from the arbiter, the corresponding resource can be colored red.
Similar procedures are carried out in releasing a resource. The application program does
not color the body part light blue immediately upon areleasing action. Instead, the applica
tion program calls release_resource with the ID of the resource as the argument and waits
for areply fromthearbiter. After gettingthereply fromthearbiter, the application program
colorsthe corresponding body part appropriately. Changes also have to be made to the col-
oring scheme employed by the stand-aloneversion. A new color isrequired in coloring the
body parts owned by other masters so that a master knows what resources are available to
be picked. Moreover, resources owned by other masters must not be shown as pickable. In
the collaborative Robot implemented in this project, only asingle color is used to color all
resources owned by other masters. Therefore, one cannot tell aresource isowned by which
master if there are more than two masters in a session. The new color that collaborative
Robot usesis dark blue. With the addition of a couple of tests, the rendering procedures
used in the stand-alone Robot are modified to suit the needs of the collaborative version.
Before rendering aresource, atest is performed to check the availability of the resource us-
ing resource_available. If the result returned is negative, the resourceis colored dark blue.
An additional test is also introduced into the coloring of the pickable body part. In coloring

the pickable body part, the application program ensures that the body part is not owned by
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other masters utilizing resource available again. Figure 4.4 shows the scenario in which

the pickable body part is owned by another master.

H ckabl e Body Part is
not coored yel low It
renai ns dark bl ue since

it is omed by another
nast er

Mbuse Qur sor

The Body Part over
Active Body Part whi ch the nouse cursor

(Gl ored RED) I's posi ti aed

Figure 4.4: No Pickable Body Part in Robot

4.3 Fault-Tolerance

CTDS isafault-tolerant system. The arbiter isrecoverable. In other words, a session can
continue after the corresponding arbiter recovers from failure. The ability to sustain the
failure of aserver isone of the fault-tol erance requirements discussed earlier. The recovery
of an arbiter refersto the starting of anew arbiter as a replacement of the dead one, and the

recovering of the state of the dead arbiter in the new arbiter.
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4.3.1 Algorithm

Thefundamenta questionis: who or which processisresponsiblefor starting anew arbiter
asareplacement of the dead one. One simplesolutionisamanual restart of thearbiter. This
solutionisnot desired dueto two main reasons. Firstly, thissolutionimpliesthat at |east one
of the participantsmust monitor thearbiter all thetime during asessionin order to catch any
failure of the arbiter and to restart it as soon as possible. Asaresult, the systemis not auto-
matic. Secondly, noneof the participantsmay havethe authority to start anew processonthe
server host. CTDS automates the restart of an arbiter. The automatic restart of an arbiter
is done by thefirst client which noticesthefailure of the arbiter. Similar to the detection of
clients’ failure, the failure of an arbiter is detected by having al clientsin a session moni-
toring the arbiter. Therationale behind thismethod of restarting an arbiter isthat an arbiter
doesnot haveto berestarted if thereisno client left in asession. Thisis becausethe session
should have been terminated if there is no client left. Thus, there is aways a client which
detects the failure of the arbiter whenever the arbiter has to be restarted. Upon detection
of the failure of the arbiter, the application server notifies the participant of the temporary
service interruption by a message box (Figure 4.5). Interactivity istemporarily suspended
until therecovery of thearbiter completes. Depending on whether it isthefirst client which
detectsthefailure, the client then carries out procedures similar to thosein sessioninitiation
(Section 3.1.1) or tothosein session joining (Section 3.1.2) to start anew arbiter. Thefor-
mer ones being carried out by the first client which detects the failure while the latter ones
being carried out by all other clientswhich detect thefailure. Onceaclient detectsthefailure
of thearbiter, it incrementsthe server port by acertain number. The client then requeststhe
arbiter servicefrom inetd on the server host. A new arbiter will be spawned by inetd. This
new arbiter bindsto theincremented server port. Finaly, theclient establishesa connection

with the new arbiter. Asin sessioninitiation and session joining, only thefirst client which
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Arbiter 1s dead. Recovering...

Please wait.

Figure 4.5: Notification of Failure of Arbiter Message Box

talks to inetd will succeed in creating a new arbiter at the incremented server port. Upon
receiving the notice of the new arbiter’sfailure in binding to the incremented server port,
the client connects directly to the existing arbiter. The existing arbiter is the new arbiter
spawned off by thefirst client which detects the failure of the previous arbiter. Figure 4.6
illustrates the process of restarting a new arbiter. The purpose of incrementing the server
port isto ensure that failure of binding to the server port is aresult of an existing arbiter,
and it is not a result of the hold time imposed on a port. If the new arbiter tries to bind to
the same server port asthe dead one did, it may fail sincethe port isnot released yet due to
the hold time.

The new arbiter has to have the same state as the dead arbiter in order to continue
servicing clients in the session. The recovery process requires total recovery of the state
of the dead arbiter. The state of the dead arbiter includesinformation of all clients, and the
transactionlist. Information of al clients(names of clients, hostsand ports of clients, status
of clients) can be acquired through the establishmentsof connectionswith clients. However,
the new arbiter still lacks the data stored in the transactionlist of the dead arbiter. Because
there exists only two kinds of processes in a session: client and arbiter and, as discussed

earlier, no recovery of an arbiter is needed if there isno client left in a session, the content
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Figure 4.6: Restart of Arbiter Flow Chart

of the transaction list can be recovered from al clientsin CTDS. The recovery processis
successful only after the transaction list of the dead arbiter istotally recovered and all pro-
cessing on the recovered transaction list are completed. Recovery of the transactionlist is
discussed in detailsin later sections. When an arbiter isin the process of recovering state,
itissaidto bein recovery mode. After the recovery process, the message box in Figure 4.5
will disappear and interactivity will be resumed.

Every time an arbiter is started, every connected client will send a message to it.
This message is for telling the arbiter whether it is a replacement of adead oneor itisa
server of anew session. If the arbiter realizesthat it isa server of anew session, it begins
servicing clientsimmediately. Otherwise, the arbiter recovers the state of the dead arbiter

before entering servicemode. Figure 4.6 showsthe proceduresthat an arbiter followswhen
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itisfirst started.

When an arbiter diesduring recovery, anest failureoccurs. CTDS handlesnest fail -
ure and also any occurrences of nest failureswithinanest failure. Nest failuresare handled
by having the clientsto go through the procedures of starting a new arbiter again. Themon-
itoring of an arbiter by clients startsimmediately after connections are established with the
arbiter. During arecovery process, if failure of thearbiter isdetected, aclient will carry out
exactly the same procedures of starting anew arbiter asin the non-nest failurecase. In other
words, regardless of the mode of an arbiter (service/recovery), the same set of procedures
(Figure 4.6) isfollowed by a client upon the detection of the failure of the arbiter. In the
case of nest failure, therecovery processinvolvestherecovery of the state of the last “func-
tiona” arbiter instead of the dead arbiter. A “functional” arbiter is defined as an arbiter
whichisin service mode.

Failure of clientsduring recovery will not affect the recovery process. Theinforma-
tion of the dead client as well as the transaction list information sent to the arbiter by that

client will be erased at once.

4.3.2 Implementation
Client

The recovery of the transaction list of an arbiter relies on clients. Recall that the transac-
tionlist of an arbiter isan array of sequence numbers of transactions, the transactions, along
with a set of 2-phase commit protocol status associated with every transaction. In order to
recover thetransactionlist of an arbiter, clientsneed to store the transactionsreceived from
the arbiter. The data structure used to store the transactionsis very similar to the transac-
tion list of the arbiter. The only difference is that the client’s data structure only storesthe

client’s own 2-phase commit protocol status for each of the transactionsreceived from the
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arbiter, instead of an array of 2-phase commit protocol statusfor every participant as on the
arbiter side. During recovery of the transaction list, the new arbiter recovers the 2-phase
commit protocol statusof al clientsby having al clientssend to it their own statuswith se-
quence numbers attached to them. The client’s data structureis named Buffer ;. ;ccsseq (Fig-
ure 4.7(a)) sincethisdata structure storesinformation of all transactionsthat are processed
(being assigned sequence numbers) by the arbiter. The 2-phase commit protocol status used
on the client side are slightly different from those used on the arbiter side (Section 3.2.1).
Thisis due to different meanings of a 2-phase commit protocol stage resulted from the two
pointsof view of asender and arecipient: whenan arbiter sends, aclient receives. For every

transaction, there are three possible 2-phase commit protocol status on the client side:

1. RECEIVED
- The multicast of the transaction is received. This status corresponds to the status

MULTICASTED used on the arbiter side.

2. RCOMMIT
- Thetransactionisready to commit. Inother words, “ready-to-commit” has been sent
tothearbiter. Thisstatus correspondsto the status READY TO COMMIT used onthe

arbiter side.

3. COMMITTED
- Thetransactioniscommitted,;;.,;. Thisstatusonly appearsafter receiving“commit”
from the arbiter. This status corresponds to the status COMMIT used on the arbiter

side.

In fact, clients need to store another type of datato ensure no dataislost due to the
failure of an arbiter. This type of data consists of the transactions that are generated by

clients but have not been processed by the arbiter. These transactions have already been
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Figure 4.7: (a) Buffer,,ocesseq @nd (0) BUffer y,processed

sent to the arbiter but they may be sitting in the arbiter’s socket buffer or they haven't ar-
rived at the arbiter yet when the arbiter dies. If clientsdo not store these transactions, none
of the clients or the new arbiter will have the information of the transactions after the old
arbiter dies. Asaresult, these transactionswill simply disappear in the recovered session,
resultingin adatalose. Theseunprocessed transactionsdo not have sequence numbers. And
they do not exist in the transaction list of the dead arbiter. The data structure used in stor-
ing these transactionsin clients is named BUffer ., ocesseq (Figure 4.7(b)). Every time a
client generates a transaction, the transaction is first stored in Buffer ., ocesseq. Then, the
transactionissent to thearbiter for assignment of asequence number and for notifying other
clients of thistransaction. The transaction iskept in BUffer ;. cesseq UNtil the multicast of
the transaction is received from the arbiter. After receiving the multicast, the transaction
is moved to Buffer,,qcsseqa With the sequence number assigned by the arbiter and with a
2-phase commit protocol status RECEIVED.

During the recovery process, clients not only have to send data in Buffer ,,ocessed
for recovering the transaction list of the dead arbiter, but they also have to send data in

BUFfer ,processeq fOr precluding data lose. Since transactions in BUffer .,y ocesseq dO NOt
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have sequence numbers, clientshaveto adopt amechanism to preservetheorder inwhichthe
transactions are generated so that the arbiter knowswhich comes first upon receiving them
in the recovery process. Clients use “fake sequence numbers’ to ensure the ordering of the
transactions in BUffer ., occs5e4 1S honoured by the arbiter. “Fake sequence numbers’ are
similar to the sequence numbers used by the arbiter. However, “fake sequence numbers’
are negative integers. They run from -1 to the maximum allowable negative integer. The
oldest transaction in BUffer ., ocessed Will be assigned -1, the next one will be assigned -2,
so on so forth. As aresult, the ordering of the transactions in a client’s Buffer ,,processed
is preserved. Thereis no ordering relationship between transactionsin Buffer ., p,ocessed Of
different clients. If there exists an ordering rel ationship between two transactions A and B,
which are generated by different clients, and both of them are not processed by the arbiter
yet, only the earlier onewill appear in Buffer ,;,p,cessea Of ONeof the clients. Supposetrans-
action A from client A is generated earlier than transaction B from client B. By assumption,
transaction A has not been processed by the arbiter yet. Thus, it has not been multicasted to
client B. In other words, client B has not committed transaction A yet. Hence, transaction
B, which should occur after transaction A, cannot be generated by client B and be put into

BUFfer yprocesseq OF Client B.

Recovery Process

The recovery processincludes collecting recovery information (datain Buffer,,ocesseq and
BUffer ,,,processeq) fromal clients, reorganizing the recovery information collected, as well
as completing the 2-phase commit protocol for all transactions received. Completing the
2-phase commit protocol for al received transactions prepares a clean new arbiter for the
recovered session.

Asdiscussed before, clientssend datain Buffer ;. ccsscq aswell asdatain Buffer ;- ocessed
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after establishing connections with the new arbiter. Upon receiving a transaction, the new
arbiter storesit into the recovery list. The recovery list has identical data structure as the
transactionlist (Figure 3.6). It can beviewed asthetransactionlist used in recovery mode.
The 2-phase commit protocol status used in the recovery list are exactly the same as those

used on the client sidewith the additional of 2 new statuses:

1. NA

- the default status.

2. SENT

- the status for transactions from Buffer ., ocessed-

In storing a transaction with a sequence number (from Buffer . cesseq) into the re-
coverylist, thearbiter first checksfor the existenceof that transactioninthelist. A record for
that transaction may have aready been created by another client. If no record for thetransac-
tionisfound, thearbiter storesthe sequence number aswell asthe 2-phase commit protocol
status sent by the client into a new record and appends the record to the end of the recovery
list. Otherwise, the arbiter extractsthe 2-phase commit protocol statusin the datareceived
and storesit into the statusfield corresponding to the sender of the datain the record found.
Transactionswithout sequence numbers (from Buffer ., ocesseq) fromclientsare a so stored
in the recovery list. However, no searching of recordsis required before storing these into
the recovery list. Thisisbecause the sender of atransaction in Buffer .., ocesseq iStheonly
client which carries information of that transaction. Thus, arecord is always created for a
transaction without sequence number. And the record will be appended to the recovery list.
Thearbiter will assign SENT asthe 2-phase commit protocol statusfor transactionsreceived
without sequence numbers.

After getting recovery information from all clients, the arbiter starts organizing and

55



processing theinformation received. It organizestheinformation by sortingtherecovery list
inascending order of sequence number. Then, thearbiter startsprocessing transactionswith
positive sequence numbersin ascending order of sequence number, followed by processing
those with negative sequence numbersin descending order of sequence number. Processing
of transactions mainly involves carrying out 2-phase commit protocol for the transactions.
Transactionsin the recovery list are processed sequentially during recovery. That is, unlike
in normal service mode, the arbiter does not start processing the next transaction in the re-
covery list until it finishes the entire 2-phase commit protocol for the current one. The way
that the arbiter processes a transaction in the recovery list is based on the combination of
the 2-phase commit protocol status of all clients. Table 4.1 presents all possible combina
tions of the 2-phase commit protocol status of clients, the causes of the combinations, and

the ways the arbiter processes the transactions.
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Table4.1: Processing of Recovery List in Recovery Process

Case | Characteristics Cause of Arbiter’s Processing
of Combination Combination

1 1 SENT, Arbiter diesbefore Assign a sequence number
all other NAs receiving the transaction. to the transaction. If

The transaction hasa thisis the first transaction

negative sequence number. with negative sequence number,
the sequence number to be
assigned is the sequence
number of the last processed
positive-sequence-number
transaction + 1. Otherwise,
the sequence number to be
assigned is the sequence
number of the last processed
transaction + 1. Then,
carry out 2-phase commit
protocol for the transaction
by first multicasting the
transaction to all clients.

2 >=1RECEIVED, | Arbiter diesin the Send the transaction to
all other NAs middle of multicasting the NA clients and continue

transaction. The originator with 2-phase commit protocol
and some other clients has (wait for “ready-to-commit”
been sent the multicast. from all clients).

3 >=1RCOMMIT, | Arbiter diesin the Send the transaction to
all other NAs middle of multicasting the NA clients and continue

transaction and the clients with 2-phase commit protocol
which has been sent the (wait for “ready-to-commit”
multicast are already from NA clients).
“ready-to-commit” the

transaction.

4 1 SENT, Arbiter diesin the Send the transaction to SENT
>=1RECEIVED, | middle of multicasting the and NA clients and continue
all other NAs. transaction. And originator of with 2-phase commit protocol

the transaction has not (wait for “ready-to-commit”
been sent the multicast. from all client).

5 1 SENT, Arbiter diesin the Send the transaction to SENT
>= 0 RECEIVED, | middle of multicasting the and NA clients and continue
>=1RCOMMIT, | transaction. The originator of the | with 2-phase commit protocol
all other NAs. transaction has not (wait for “ready-to-commit”

been sent the multicast.
And some clients which .
have been sent the multicast
are “ready-to-commit”

the transaction.

from NA, SENT, RECEIVED
clients).
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>=1RCOMMIT,
all other NAs.

middle of multicasting the
transaction. Originator and some
other clients have been

Case | Characteristics Cause of Processing
of Combination Combination
6 >=1RECEIVED, Arbiter diesin the Send the transaction to NA

clients and continue with
2-phase commit protocol
(wait for “ready-to-commit”

from NA, RECEIVED,
clients).

sent the multicast. Some

of theseclients are
“ready-to-commit” the transaction.
Arbiter diesin the

middle of multicasting
“commit”. Some clients which
have been sent “ commit”

have already committed the
transaction.

Thetransactionis

committed by all clients.
However, the transaction

has not been flushed yet.

Send “ commit” for the
corresponding transaction
to RCOMMIT clients.

7 >=1RCOMMIT,
>=1COMMITTED.

8 All COMMITTED. Proceed to process
next transaction in

the recoverylist.

After sending datain Buffer ;. ocesseq @A in BUFfer ;5 0ce55e4 to@New arbiter, aclient
waits for data from the arbiter to complete the recovery process. As seen from Table 4.1,
data from the arbiter is the data used in carrying out 2-phase commit protocol. Thus, the
client behaves normally asif the new arbiter is already in service mode. The client sends
appropriate 2-phase commit protocol responses to the arbiter upon receipt of datafrom the
arbiter. The only difference between clients' processing in recovery mode and that in ser-
vice modeis that the clients are not generating new transactionsin recovery mode since in-
teractivity istemporarily suspended. Clients only receive new transactionsfrom the arbiter
if any exist.

Therecovery processiscompleted after the arbiter, with the cooperation of clients,
finishes 2-phase commit protocol for every transaction in the sorted recovery list. Interac-
tivity of clientswill beresumed after the compl etion of the recovery process, and the arbiter

will begin servicing clients.

58



4.4 |Interactive Applications Enhanced

Interactive applications demand quick response time. The response time of a transaction
refers to the time required for the effect of the transaction to take place after the transac-
tionisgenerated. In CTDS, the time spent on communications between the arbiter and the
clientsintroduced by 2-phase commit protocol lengthensthe response time of a transaction
significantly. Because of the 2-phase commit protocol, a transaction experiences a total of

two round-trip time before it is committed (Figure 4.8).

Client Arbiter

@ .
Transaction generated — transaction —» Assign sequence number and all

other processin
® p g

<+—multicast ——

@ "ready-to-
commit"

®

<«—"commit" ——

Figure 4.8: Two Round-trip Time as a Result of Using 2-phase Commit Protocol

Unfortunately, there is no way to reduce the additional response time introduced by
the 2-phase commit protocol since the communications are necessary to implement the 2-
phase commit protocol, and the 2-phase commit protocol is required to ensure atomic or-
dering. On the contrary, the way that clients send transactionsto the arbiter, which can ad-
versely affect the responsetime of client applications, isimprovable. Supposeaclient sends
transactions to the arbiter immediately after they are generated. Figure 4.9 illustratesthe
adverse effect ontransactions' responsetimeif clientssend transactionsto arbiter right after

they are generated.
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Figure 4.9: Adverse Effect on Response Time If Generated Transactions are sent |mmedi-
aely

60



Because the communi cation time required for datato be exchanged between aclient
andthearbiter issignificantly larger than that required to generate atransaction, many trans-
actions can be generated (t 2 to t x) and be sent to the arbiter before the arbiter receives
the first transaction (t 1). Upon receiving t 1, the arbiter multicasts t 1 to all clients af-
ter assigning a sequence number to it. Assuming al clients have committed al previous
transactions, clientsrespond “ready-to-commit” t 1 right after receivingthe multicast. How-
ever, the clientsdo not receive “commit” t 1 as the next piece of datafrom the arbiter even
all clients have sent “ready-to-commit” t 1 to the arbiter. Thisis because the “ready-to-
commit” t 1 responsesfrom all clientsare not processed by the arbiter until the arbiter has
finished multicastingt 2 tot x. After multicastingt 2 tot x, thearbiter will multicast* com-
mit” fort 1. Then, t 1 can be committed by al clients. On the contrary, if transactionst 2
tot x were not sent to the arbiter yet, t 1 will be committed earlier since the time for the
arbiter tomulticastt 2 tot x issaved (Figure 4.9 showsthisscenarioin gray). Thiskind of
scenario happensvery frequently in interactive applicationssince transactions are generated
a ahighrate.

In CTDS, this adverse effect on response time isreduced by synchronizing the rate
a which transactionsare generated and are sent to the arbiter with the rate at which transac-
tionsare committed on the client side. Recall that everytime atransactionis generated, it is
stored into BUffer ,;,processeq. [NStead of sending transactionstothe arbiter right after storing
them into BUffer ;. ocessed, transactions generated are simply stored into Buffer - ocessed
without being sent to the arbiter until the previous transaction is committed.;;..;. When a
transactioniscommitted by the client application, theoldest transaction in Buffer ., ;- ocessed
will be sent to the arbiter. Thus, the responsetime of transactiont 1 will not be affected by
the transactionst 2 tot x, which are generated whilet 1 is being sent to the arbiter.

To further improve transactions' response time, CTDS combines adjacent transac-
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tions of the same kind in BUffer ;- ocesseq 1NtO @ single transaction. Application program-
mers define rules to combine transactions. For each piece of datain every kind of transac-
tions, application programmers define away to combineit with the same piece of datain an
adjacent transaction of the same kind. Currently, two ways of combining dataare supported

by CTDS:

1. Overwrite
- Datais combined by replacing the dataiin the older transaction with that in the later

one.

2. Add
- Datais combined by adding the datain the ol der transaction and that in the | ater one.

Currently, only additions of real numbers are supported.

Application programmers also specify whether a particular type of transaction is
combinableor not. If atype of transactionis combinable, the corresponding combining rule
will be applied to that type of transaction. Otherwise, adjacent transactions of that type in
BUFfer ,,pr0cesseq Will NOt be combined into one transaction. Figure 4.10 gives an example
on combining transactionsin Buffer,;,,ocesseq 1N the Robot application.

Dueto the combination of thefirst, the second, and the third Body Rotation transac-
tions, responsetime of the second and the third transactionsisimproved. Thisisbecausethe
effects of thesetwo transactionsnow happen earlier after being integrated with thefirst trans-
action. Thecombinationof transactionsal solowersthe probability of overflowing Buffer ., processed
on the client side and that of overflowing the transaction list on the arbiter side. The only
disadvantage of the combination of transactionsisthat |arge state changes may happentothe
shared model. For instance, the combination of Body Rotation transactionsin Figure 4.10

can result in ajaggy rotation of the robot. Thisis because rotations of the robot suddenly
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Type y Type Rotation
X Y Z X Y

Rotation Rotation Rotation Rotation | Rotation
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0] 2 ]2

A Body Rotation transaction is generated :

Body Rotation
0] 2] 2

Body Rotation
14| 3 ][5

Combine the two transactions :

Body Rotation
4[5 |7

N

replace 10 by 14 add2and3 add2and5

A Body Rotation transaction is generated :

Body Rotation
18] 2 |1

Body Rotation
14 | 5 |7

Combine the two transactions :

Body Rotation
18] 7 |8

replace 14 by 18 add 5 and 2 add 7and 1

A Head Rotation transaction is generated :

Head Rotation ‘

20 | 30 |

Body Rotation
8] 7 |8

A Body Rotation transaction is generated :

Body Rotation Head Rotation Body Rotation

18] 7 [ 8 [ 20]3 2] 3] a4

A Arm Rotation transaction is generated :

Body Rotation Head Rotation Body Rotation

Arm Rotation

18] 7 [ 8 [ 20]3 2] 3]a4

5 7

A Arm Rotation transaction is generated :

Head Rotation

Body Rotation Body Rotation

Arm Rotation

Arm Rotation

18 | 7 [ 8 [ 203 [ 20] 3 ] 4

5 | 7

3 | 2

Figure 4.10: An Example of Combining Transactionsin BUffer ,,,,,ocessed
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jump from (2,2) to (7,8) inthe Y, Z directions.
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Chapter 5

Related Work

This chapter presents a number of projects devel oped to provide application-sharing envi-
ronments. Some of the projects handle fault-tolerance. However, they are not as robust as
CTDS inthefault-tolerant aspects. Most of the systemsbuilt only alow one master per ap-
plication. Some systems provide more generic application sharing environments in which
more than one application can be shared.

Asdiscussedin Section 2.5.2, the usage of aPSEUDO server architectureisan easy
way to provide application sharing without requiring modifications to stand-alone applica-
tions. Most of theresearches doneinthefield use PSEUDO server architecturefor sharing X
applications. XTV by Abdel-Wahab et al. [AWF91], COMIX by Babadi [Bab93], and Share
by Greenberg [Gre90] are systems based on the PSEUDO server architecturefor sharing X
applications. The PSEUDO serversin thesethree systems are made up of several processes.
In XTV, some of these processes run both locally and remotely, whereas othersrun only re-
motely. All processesin COMIX and Share only have one running instance. Nevertheless,
the processes making up the PSEUDO server in the corresponding systems provide similar

functionality. Each of the processes making up the PSEUDO server has its own responsi-
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bility in the system. For instance, the packet translator processin XTV, the comix server in
COMIX, and the view manager in Share dl handle the X requests and replies trandlations;
the token manager in XTV, the comix-control process in COMI X, and the chair manager in
Share regulate access to applications. All three systems allow only one master per appli-
cation. However, XTV supports more than one application in a session. It is unclear as to
whether COMIX and Share support multiple applicationsin a session. Abdel-Wahab et al.
go into details of the translation of X resources|Ds, X client requests, and X server replies.
They aso mention the possiblefailure of applicationsdue to failures of key centralized pro-
cesses in the system (processes running on a single machine). A replicated approach, i.e.
running key processesin the system on multiple machines, is suggested as a possible solu-
tion. No recovery of key processesissupported by al XTV, COMIX, and Share. Ahujaet al.
exploreacoupleof variants of the PSEUDO server architecture by having the shared appli-
cation running on a different number of machines [AEL90]. One variant is the single-site
approach. In this approach, the shared application is run on the machine of one of the par-
ticipants. The other variant is named multi-site approach. The shared applicationisrun on
severa participants machines. An analysisisdone on the prosand cons of thetwo variants.
The performance of the two different variantsis also discussed.

Studies such as the Amoeba distributed operating system [MVRT 90, TVRV S+ 90,
KT92] and the telemedicine system by Gomez et al. [GAPAT96] use the sequencer-based
model for group communication. In Amoeba, all participants in a session form a group.
Group communication is achieved by having al participantsto send messages/transactions
to the sequencer in the corresponding group. The sequencer then assigns a sequence num-
ber to the message before it multicasts the message to the group. The sequencer in Amoeba
is integrated into the kernel, but it is not the application itself. An election for a new se-

quencer will be called if the current sequencer fails [CDT94, KT92]. [GdPAT96] built a
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telemedi cine system for remote cooperative medical imaging diagnosis. In thetelemedicine
system, collaborativetoolkits, which provide coordination service, areintegrated into appli-
cations. There are also group communication modules being integrated into applications.
However, no detailsisgiven on the dataflow inthe system. Thus, it isunclear asto whether
asingle application instance acts as the sequencer or multiple application instances cooper-
ateto do the sequencingjob. Onemajor weaknessof thistelemedicinesystemistherequired
modificationsto the interface of stand-alone applications. Modificationsto interface of ap-
plications may lead to inefficient collaboration due to unfamiliarity of the new interface.
An event-capturing mechanism is proposed by Hao et al. [HL J96, HJ96] to provide
application sharing. Instead of intercepting traffic between X clients and X servers asin
the PSEUDO server architecture, the system developed (RES-AP) captures relevant input
events on ashared window. RES-AP then orders and groupsthe input events before sending
themto other applicationinstances. Theauthorsclaim that capturing and processing of input
events reduce the communication traffic as compared to the PSEUDO server architecture.
A number of papers discuss generic collaborative tool development environments.
The generic environment allows sharing of more than one application. Participants can in-
voke any X applications, which they want to share, in the environment and collaborate with
other participants. Maly et al. [MAWO™ 97] present a Interactive Remote Instruction Sys-
tem for interactivedistancelearning. The system providesavirtual classroom for geograph-
ically dispersed students. The architecture of the systemisacombination of the PSEUDO X
server architecture and the client-server architecture. There are several servers which pro-
vide specific typesof services, e.g. classinformation service, multicast service. In addition,
the system also incorporates XTV [AWF91], an X Windows tool-sharing engine, which is
PSEUDO server architecture based. Fault-tolerant serviceis also addressed by the system.

However, the system only handles application failures. It does not handle server failures. In
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contrast with CTDS, thissystem protects server processes from crashingif applicationfails.
Applications are restarted after failure. Another multi-application sharing environment is
discussed in [JJ96]. This environment is different from the one developed by Maly et al.
in the sense that the shared model is made up by joining 3-D objectsfrom different applica
tions, in contrast to each application hasitsown shared model. Thisshared 3-D environment
model istargeted for existing applicationswhich use a scene graph model for display geom-
etry, e.g. Open Inventor applications. DEEDS, aprototypedistributed multitasking environ-
ment, developed by Liang et al. [LLCT94], uses a 3-layer architecture. DEEDSconsists of
agroupware server that possesses similar functionality as the arbiter in CTDS. The group-
ware server provides the coordination and communication services to applications. There
is an application server for each shared application to take care of coordination and other
needs associated with the execution of the application. For instance, partitioning of the 2-
D workspace in a 2-D paint program into severa resources and the access to each of the
resources are handled by the application server associated with the 2-D paint program. In
CTDS, an application server is associated with each application instance. The application

server in DEEDS sitsin between the groupware server and the application.
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Chapter 6

Conclusions and Future Work

This thesis presents a system for developing collaborative tools (multi-user applications).
The systemisnamed CTDS. It facilitates the development of collaborativetools by provid-
ing the communication and coordination services, which are required in multi-user appli-
cations, to collaborative-application programmers. Application programmers not only can
use CTDS to devel op multi-user applicationsfrom scratch, but they can also use CTDSto
easily convert stand-alone applications (single-user applications) to collaborative ones. In
converting a stand-alone application to a collaborative one using CTDS, application pro-
grammers have to modify the source code of the stand-al one application. However, changes
to the stand-alone application are limited to a few function calls. CTDS offers alibrary of
functionsto client applicationsfor integration with the system.

CTDS employs a client-server architecture as the model. CTDS consists of two
main components: arbiter and application server. The arbiter isthe server which provides
the communi cation and coordination services. Theapplication server together with themod-
ified application form the client. There is an application server associated with every in-

stance of the shared application. It providesthe additional Graphica User Interface required
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for session management and gives information of the session. Thus, the interface of the
shared application remainsintact. CTDS providestotal and atomic ordering of transactions
by usage of sequence numbers (assigned by thearbiter) and two-phase commit protocol re-
spectively.

CTDSisdesigned to target at satisfying the two main fault-tolerance requirements
on collaborative tool development systems. Failure of any of the participantsand failure of
the arbiter are not going to affect the continuity of a session. Participants can leave or fail
any time during a session with anotice being sent to all other participantsby CTDS. CTDS
recovers the arbiter of a session by restarting a new arbiter and recovering the state of the
dead arbiter. The recovery process of an arbiter is achieved by having clients to monitor
the arbiter and by having clients to store information which alows the new arbiter to re-
construct the state of the dead arbiter completely. In addition to the fault-tolerant features,
CTDS offers other attractivefeatureswhich are desired in the devel opment of most collabo-
rative applications. With the capability of handling multiple collaborativeresources, CTDS
supports multiple masters in a session without requiring “soft protocol” (coordination be-
tween participants on interactions on the shared model). This results in more efficient and
more effective collaboration. Moreover, CTDS is enhanced for building interactive collab-
orative tools. Because of the relatively long time required to commit a transaction using
2-phase commit protocol, the rate at which transactions are generated is much higher than
the rate at which transactions are committed in interactive applications. It is found from
experiments that the higher the rate at which transactions are generated, the longer the re-
sponsetime of transactions. CTDS employs two strategiesto improve the response time of
transactionsin interactive applications. Firstly, it holds onto generated transactions without
sending them to the arbiter until the previoustransaction being sentiscommitted. Secondly,

CTDS combines transactions of the same kind that are being held onto.
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There are still a number of improvements that can be made to CTDS. CTDS cur-
rently treats every participant equally. In other words, every participant has the same level
of access to resources. Every master can interact with every resource. Thismay be inad-
equate in some situations. For instance, in a session with both instructors and students as
participants, it is undesirable to grant write (interaction) permissions on some parts of the
shared mode! to students. CTDS can be modified to take a user level and a password when
a participant joins a session. Based on the user level, CTDS checks the given password
against the password associated with the given user level. If the given password is correct,
the participant is alowed to join the session. And CTDS also determines the level of ac-
cess to each resource based on the user level. Some participants may not be able to become
masters on certain subsets of the resources. The provision of different levels of accessto re-
sources requires application programmers to specify all user levelswith their corresponding
levels of access on each resource.

Thetransfer of the shared model when a new participant joins a session can be au-
tomated. CTDS currently requires one of the participantsin a session to manually save and
transfer the shared model to the new participant before resuming interactivity of the session.
To make the transfer of the shared model to the new participant automatic, one of the par-
ticipants have to send the shared model to the arbiter. And the arbiter then forwards the
shared modédl to the new participant. The arbiter isinvolved in the process because there
does not exist any connection between clientsin CTDS. Only the arbiter can communicate
with clients. Clients cannot communicate with each other. Transfer of the shared model
from one of the participants to the arbiter is necessary because the arbiter does not carry
any information of the shared model. The arbiter only stores the transactions being applied
to the shared model. Thus, the state of the shared model has to be transferred from one of

the participants to the arbiter before the arbiter can send the shared model to the new par-
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ticipant.
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Appendix A

CTDS User Guide

Thisappendix servesas aguide on theintegration of an applicationwith CTDS. Application
programmers are referred to different fileswhich comewith CTDSin thediscussion. Appli-
cation programmers are advised to look into the suggested files to get a better understanding

on the usage of CTDS.

A.1 Header Files
There are four header filesin CTDS which should be included into an application:

1. client.h
2. client_const.h
3. client_state.h

4. const.h

Both client_const.h and client.h should be modified to suit the needs of an applica-

tion. These two header files contai n definitionsof constantswhich are used by CTDS. There
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are THREE constantsin thesetwo header fileswhich M UST bemodified for an application:

¢ ARBITER_PATH_NAME (const.h)

- the directory in which the CTDS arbiter executableis.

¢ RESOURCES(client_const.h)

- the number of resourcesin the application.

e NO_XSACTIONS (client_const.h)

- the number of types/kinds of transactionsin the application.

A.2 Modules

Since CTDS s an application-independent system, application programmers have to write

anumber of application-specific modules for CTDS to work with a particular application.

A.2.1 Xsaction_types
Xsaction_types.h

Thisheader file should contain al possibletypes of transactionsin the application aswell as
the definitionsof the structure of the datapartsin thetypes of transactions. Every transaction
generated by an applicationin CTDS hasthe structureshownin Figure A.1. Thetransaction
structureis called Xsaction.
For every transaction type, the transaction data part isarecord composing of anum-
ber of fields, each of which stores apiece of information in that type of transaction.
Thefollowing exampleillustratesthe organization of Xsaction_types.h. Refer to Xs-

action_types.h, which is coded for Robot application, in the CTDS package.

77



Transaction CTDS Length
type System of Transaction data
Field data

Info Info

Figure A.1: Structure of a Transactionin CTDS

/1 Al possible types of transactions

t ypedef enum

{
type_1,/* application-dependent

type_2,
type_3,*/

} XsactionType;

/'l Record structure for transaction data of transaction type_1

t ypedef struct

{
type_1 field_ 1 type field_1; /* application-dependent

type_1 field 2 type field_2; */
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} type_1 data;

/'l Record structure for transaction data of transaction type_2

t ypedef struct

{
type_2 field_1 type field_1; // application-dependent

} type_2 data;

/1 No transaction data of transaction type_3

Xsaction_types.cpp

Thisfileisoptiona. However, application programmers are suggested to put functionswhich
initializethetransaction datastructuresdefined in Xsaction_types.h. Theseinitializationfunc-
tions can be used later when CTDS reads transactions (Section A.2.3). Xsaction_types.cpp

in the CTDS package contains initialization functionsfor Robot application.

A.2.2 event_dispatcher

event_dispatcher.h

This header file should not be modified by application programmers. It contains the proto-

types of two application-dependent functions used by CTDS.

event_dispatcher.cpp

Definitionsof two application-dependent functionsareinthisfile. Applicationprogrammers

are required to give the definitions of these two functions. The two functions are named
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dispatch_Xsaction and redraw_scene. dispatch_Xsaction tells CTDS how to carry out
transactions upon receiving “COMMIT” from thearbiter. And redraw_scene tellsCTDS
how to refresh the application window. There is a event_dispatcher.cpp inthe CTDS pack-
age which iscoded for Robot application. Thefollowing piece of codeis atemplatefor the
functiondispatch_Xsaction. Notethat the number of argumentsto thefunctionsand thear-
gumentsshouldnot bemodified. They shouldbekept the same asthosein event_dispatcher.cpp

in the CTDS package.

voi d di spatch_Xsaction(struct Xsaction *t)

/1 Transaction to be conmitted is stored in the t

{
/1 Define behaviour on every possible transaction type
switch(t->type)
{

case type_1: // Transaction type is application-dependent

/* Carry out the transaction of type_1 in an
application-specific way */
process_type_1(...);

br eak;

case type 2: // Transaction type is application-dependent

/* Carry out the transaction of type_2 in an

application-specific way */
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process_type_2(...);

br eak;

/* Do the same thing for every transaction type */

} /* End switch */

A.2.3 app_Xsaction
app_Xsaction.h

This header file should not be modified by application programmers. It contains the proto-

type of an application-dependent function used by CTDS.

app_Xsaction.cpp

This file contains the definition of a function which tells CTDS how to read transactions
defined for an application. The function is named read_Xsaction. app_Xsaction.cpp in the
CTDS packageis coded for Robot application. The following piece of code is atemplate
for the function read_Xsaction. Note that the number of argumentsto the function and the

arguments should not be modified.

int read_Xsaction(int sockfd, struct Xsaction *t)

// Transaction is to be read from socket sockfd to t

{

int ant_read = 0; /* Total nunber of bytes read from
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sockfd */

int n; // Tenporary integer

/1 Define way to read every type of transaction
sw tch(t->type)
{
struct type_ 1 data *datal; /* Structures for storing
transaction
struct type 2 data *data2; data for every kind of
transactions --

appl i cati on-dependent */

case type_1:

datal = new type_1 data; /* Allocate space for data of

transaction type_1 */

/* Initialize datal using the initialization function

defined in Xsaction_types.cpp */

t->dynanic = 1; /* REQUI RED for freeing of

t he space dynanically

all ocated to datal */
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/'l Read data from sockfd to datal with error checking
if ((n = smart_read(sockfd, (char *)datal, t->length)) == 0)

return O;

/1 Error checking
if (n<0)

return n;

/1 1ncrenment the nunber of bytes read from sockfd

ant _read += n;

t->data = datal; /* REQUI RED for storing
the data read to the

transaction structure

*/
br eak;
case type_2:
data2 = new type_2 data; /* Allocate space for data of

transaction type_ 2 */

/* Initialize datal using the initialization function

defined in Xsaction_types.cpp */
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t->dynanic = 1; /* REQUI RED for freeing
of the space
dynamical ly all ocated

to data2 */

/'l Read data from sockfd to datal with error checking
if ((n = smart_read(sockfd, (char *)data2, t->length)) == 0)

return O;

/1 Error checking
if (n<0)

return n;

/1 1Increnment the nunber of bytes read from sockfd

ant _read += n;

t->data = data2; /* REQUI RED for storing
the data read to the
transaction structure
*/

br eak;

case type_3:

/* No transaction data for transaction type type_3 =>
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nothing to be read */

t->dynanic = O; /1 No dynam c allocation
t->data = NULL; // No transaction data
br eak;

/* Do the same thing for every type of transaction */
} /* End switch */
return amnt _read; /* Return nunber of bytes

read */

Note: smart_read(socket, buffer, size) is a function provided by CTDS to read
data of size bytes from socket to buffer. It is similar to the function read in UNIX. How-
ever, smart_read will not return until it has read size bytes from socket even if sizeis
bigger than the TCP segment size (usually 1460 bytes). Besides, smart read is ca-

pable of resuming reading after signal interruption.

A.3 TheApplication

In addition to defining modules required by CTDS, application programmers also need to
modify the application itself to work with CTDS. Application programmers are advised to
refer to robot.cpp in the CTDS package for details on the integration of an application with
CTDS.
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A.3.1 SettingUp a Session

In order to establish or join a session, a number of function calls has to be placed at the be-
ginning of the application. Thefollowing list contains the functions which are necessary in
establishing or joining a session. These functionsmust be put into the applicationin exactly

the same order asin thislist.

1. define_Xsaction_acc_rules()
- Thisfunction defines the rules for combining transactionsin Buffer ;.- ocessed- Ap-
plication programmers are required to define this function as the combining of trans-

actions are application-specific (Section A.3.4).

2. session.init(int argc, char *argv[])
- Thisfunction initializes dl state variablesin the session. It takes two arguments.
Thefirst one is the number of mainline arguments to the application program. The
second oneis an array of string which contains the mainline arguments to the appli-

cation program.

3. setup_app_server()

- Thisfunction sets up the application server associated with the application instance.

4. connect_to_arbiter()
- Thisfunction connectsthe applicationinstanceto thearbiter if anarbiter existsinthe
session. Otherwise, it creates an arbiter for the session and connects the application

instancetoit.

A.3.2 Communicationswith Application Server and Arbiter

To communicatewith thearbiter and the associated applicationserver, theapplication should

make use of two functions provided by CTDS:
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e process_sockets()
- This function checks whether there is data from the application server and the ar-

biter. It reads and processes the dataif any.

e send_Xsaction(struct Xsaction *t)

- This function sends a transaction generated to the arbiter.

A.3.3 Multiple Resources

After defining the number of resources in client_const.h, application programmers need to
associate resource 1Ds to resources in the application code. Thisis done by a number of
#define statements. For instance, #define BODY 1 associates the resource ID 1 to the
body of the robot in Robot application. Resource IDs must start from 0 to RESOURCES
(in client_const.h) - 1.

In order for the application to access information of the resources, the application
needs to include the following statement in the code as a global variable:

extern my_resources|RESOURCES];

A.3.4 Transaction Accumulation/Combination

CTDS is enhanced for interactive applications by combining adjacent transactions of the
sametypeintoasingletransaction. Sincedifferent applicationshavedifferent kindsof trans-
actions, and hence, different methods to combine transactions, CTDS requires application
programmers to define rules to combine each type of transactions. CTDS requires a func-
tion named define_Xsaction_acc_rules to bedefined. Anarray of rule-storage structuresis
offered to an application. Each element in the array should contain the rulesfor combining

al datafieldsin the corresponding type of transaction. Thisarray iscalled xar. Figure A.2
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shows the rule-storage structure used to store a combination rule. This structure is defined

inclient.h and is called Xsaction_acc_rule.

Xsaction_acc_rule

Xsaction_id | accumulative | no_of fields rules

(Transaction (combinableor| (Noof data | (Rule structure for
type) not) fields) each datafield)

For every datafield in the transaction type,

aor o atye | figd |ength
. (Type of datafield if it _
(addltlve or is additive: LONG (DaIaerld
field_acc

Figure A.2: Structure of a Combination-rule-storage Record

Thefollowing is an example of define_Xsaction_acc_rules. Refer to robot.cpp in
the CTDS package for details. Note that the number of arguments to the function and the

arguments should not be modified.

voi d define_Xsaction_acc_rul es()

{

struct Xsaction_acc rule *a;

/* Rule for transaction type_1 to be stored in xar[O0].

type_1 is accunul ative/conbinable and it has two
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data fields. The first data field should be
conbi ned using the overwite method and the second
one shoul d be conbi ned using the additive nethod
on float. */

a = &ar[0];

a->Xsaction_id = type_1;

1;

a- >accunul ative
a->no_of fields = 2;
a->rules = new field_acc[a->no_of _fields];

a->rules[0].a_or_o = overwitable;

a->rul es[0].a_type ADD_TYPE_NONE; /1 Not additive
a->rules[0].field_length = 10;

additive;

a->rules[1].a_or_o

a->rules[1].a_type FLQAT;

a->rules[1].field_length = sizeof (float);

/* Rule for transaction type_2 to be stored in xar[1].
type_2 is not conbinable. */

a = &ar[1];

a->Xsaction_id = type_2;

a- >accunul ati ve = 0;

/* Do the sane thing for every type of transaction */
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