
Integrating Hsplines into Softimagej3D

by

Jean-Luc Duprat

B.Sc., McGill University, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

Department of Computer Science

We accept this thesis as conforming

to the required standard

The University of British Columbia

July 1997

c
 Jean-Luc Duprat, 1997

In presenting this thesis in partial ful�llment of the requirements for an ad-

vanced degree at the University of British Columbia, I agree that the Library shall

make it freely available for reference and study. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by the head

of my department or by his or her representatives. It is understood that copying or

publication of this thesis for �nancial gain shall not be allowed without my written

permission.

Jean-Luc Duprat.

The University of British Columbia

Department of Computer Science

2366 West Mall

Vancouver, BC

V6T 1Z4 Canada

Date: September 5, 1997.

Abstract

Hierarchical splines (hsplines) are a multiresolution representation of spline surfaces

with support for local re�nement. They have proved to be more �exible for character

animation than the surface formulations supported by modern animation systems,

especially when driven by a skeleton, a technique known as enveloping.

An extension to the basic hspline formulation allows cylinders to be smoothly

connected to non-isoparametric lines of another hspline surface. This allows limbs

to be connected to bodies with unprecedented ease for the animator. The region of

the attachment is represented with Catmull-Clark surfaces.

This thesis describes how hierarchical splines have been integrated into the

Softimagej3D environment, emphasizing both technical and user interface aspects,

and including a complete discussion of enveloping. Arbitrary topology surface at-

tachments are described in detail, including current limitations in Softimage that

prevent their complete integration. Rendering of hsplines was not implemented in

a satisfactory manner due to limitations in the host environment, and these issues

will be carefully examined.

ii

Contents

Abstract ii

Contents iv

List of Figures viii

Acknowledgements x

1 Introduction 1

1.1 Overview . 4

2 Background material on Splines 7

2.1 B-Splines . 7

2.1.1 Properties of B-splines . 8

2.1.2 Uniform cubic B-splines . 10

2.2 NURBS . 11

2.3 Hierarchical Splines . 12

2.3.1 Common operations on hsplines 14

2.4 Arbitrary Topology Attachments . 15

2.4.1 Subdivision Surfaces . 17

iv

3 Implementation 23

3.1 Plugin Architecture . 24

3.1.1 E�ciency of Softimage's plugin model 26

3.2 Flow Control . 27

3.3 Mapping between Softimage and Dragon data structures 30

3.4 Arbitrary Topology . 32

3.5 Enveloping . 33

3.6 Auxiliary Plugins . 36

3.6.1 Inter-plugin communication 37

3.6.2 Re�ning and Unre�ning . 37

3.6.3 Load and Save . 40

3.6.4 Support Tools . 42

3.7 User Interface . 43

3.8 Integration into the production environment 44

4 Inherent Limitations 45

4.1 Dragon . 45

4.2 Softimagej3D . 46

4.2.1 Saaphire architecture . 46

4.2.2 Plugin entry points . 47

4.2.3 Texture coordinates . 49

4.2.4 Scene Graph . 50

4.3 Mental Ray . 51

5 Conclusions and Future Work 53

5.1 Possible Improvements and Future Extensions 54

v

5.1.1 NURBS patches . 54

5.1.2 Auxiliary plugins . 55

Bibliography 59

Appendix A Tutorial: using Hierarchical B-Splines in Softimagej3D 65

A.1 Creating an Hspline in Softimage . 67

A.2 Re�ning Hspline Surfaces . 69

A.3 Editing Hspline Surfaces . 70

A.4 Local Re�nement . 74

A.5 Managing Tagged Points . 77

A.6 Unre�ning . 79

A.7 Adding key bindings in Softimage . 80

vi

List of Figures

1.1 Angle vs. endpoint interpolation . 2

1.2 Surface collapse at the joint . 3

2.1 Local re�nement of a bicubic B-spline surface 13

2.2 Attaching a cylinder to a square patch 16

2.3 Constraining the cylinder's CVs to the parent surface 17

2.4 Constrained CVs across cylinder and parent patch 18

2.5 Illustrating the subdivision process 20

2.6 Examples of arbitrary topology attachments 21

3.1 Shared CVs among Softimage patches 31

3.2 Hierarchical enveloping of a joint . 36

3.3 Minimizing the number of patches in Softimage 38

A.1 The Softimagej3D Display . 66

A.2 Create Hspline dialog box . 67

A.3 Square hspline patch . 68

A.4 The hspline hierarchy . 68

A.5 Tagged CVs for re�nement . 69

viii

A.6 Level 1 of the re�ned square patch 69

A.7 A 2 level hierarchy . 70

A.8 Editing the patch at level 1 . 70

A.9 Re�ning the patch to level 2 . 71

A.10 Editing the patch at level 3 . 71

A.11 Selecting CVs at level 1 of a 4 level hierarchy 72

A.12 Selected CVs at level 1 . 72

A.13 CV at level 1, moving up . 73

A.14 CV at level 1, moving down . 73

A.15 Head before local re�nement . 74

A.16 Selected CVs for local re�nement . 75

A.17 Head with locally re�ned patch . 75

A.18 Editing the new patch . 76

A.19 New head, with locally re�ned areas 76

A.20 Final head . 77

A.21 Untagged B-spline surface . 78

A.22 Movable CVs tagged . 78

A.23 Before unre�nement . 79

A.24 Top view, before unre�nement . 79

A.25 Top view, after unre�nement . 80

ix

Acknowledgements

I must thank Dave Forsey, my supervisor, whose enthusiasm for animation is highly

contagious. His help was invaluable, and often requested at indecent hours during

production.

Chantal Guyon who gave me the strength to get through it all must be praised, for

her support was not always acknowledged promptly. Los Angeles would have been

a nightmare if I had been on my own.

My parents Anne and Pierre, as well as my sisters Séverine and Catherine who are

always very supportive and understanding have my eternal gratitude.

I want to thank the members of the computer graphics lab (Imager) at the university

of British Columbia, who made my stay stimulating, challenging and rewarding. In

particular the following people must be mentioned: Kevin Coughlan, Joel DeYoung,

Alain Fournier, Jason Harrison, Paul Lalonde and Dave Martindale.

My o�cemates Ronald Beirouti, Joel DeYoung and Brian Fuller who didn't mind it

when I slept in the o�ce must be thanked for the many entertaining conversations

that kept the pressure under control.

My friends Ben and Tristan made sure that I got a healthy amount of laughs on a

regular basis.

x

The DreamWorks production crew in Los Angeles taught me a lot about animation

and management, but the most exciting thing was de�nitely the artwork. I want to

thank Ken Harsha, Sylvia Matchett, Tom Sito and Michael Stone for their enduring

friendship. Tom Sito must also be thanked for the March of History. I am indebted

to the Propellerheads: Rob Letterman, Loren Soman and Andy Waisler for being

the �rst to believe in us. I am grateful to the rest of the programming team: Andy

Bruss, Bart Gawboy and Mike Meckler for sharing the excitement and the pain.

The animators who took time to make constructive suggestions helped shape the

plugin into what it is today, in particular Anders Beer, Donnachada Daly, Loren

Soman and Goesta Struve-Dencher.

I would like to thank Peter Cahoon for taking time out of his busy schedule to be

my second reader.

Finally UBC and UCLA must be thanked for indulging my hectic moves, especially

Joyce Poon who made it all happen.

Thank you all, for none of this would have been possible without your help, support

and friendship.

Jean-Luc Duprat

The University of British Columbia

July 1997

Softimagej3D, Softimage and Saaphire are registered trademarks of Softimage Inc., a wholly owned subsidiary of
Microsoft Corporation. Mental Ray is a registered trademark of Mental Images Gesellschaft für Computer�lm und Maschi-
nenintelligenz mbH & Co. KG, Berlin. All other product names mentioned in this thesis may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

xi

Chapter 1

Introduction

Digital character animation is a very complex undertaking that requires mastery of

motion, timing and acting from the animator, as well as expertise with the medium.

Animation packages currently available allow users to build complex spline surfaces,

however animating them remains a frustrating experience. The medium imposes

many constraints, most of which are derived from the mathematical model of spline

surfaces.

Surface representation is problematic: the more detail that need to be repre-

sented, the larger the number of degrees of freedom (DOF) that must be controlled

during animation. Another di�culty lies with the topology of the characters we are

trying to model. Human-like characters cannot be accurately represented with a

single spline surface. If they are represented as a collection of separate surfaces,

continuity is di�cult to maintain during animation. If the surfaces are joined, we

get vertices at which more than 4 edges meet. This does not �t the tensor product

framework, because the mesh isn't a grid around these points.

The two broad categories of tools currently available to manipulate models

1

Figure 1.1: Angle vs. endpoint interpolation

are space deformations and enveloping. Space deformations, exempli�ed by lattice

deformations (also known as free-form deformations or FFDs), are a local deforma-

tion of the space containing the model, which forces its control vertices (CVs) to

undergo these same deformations. Enveloping assigns control vertices of a surface to

the coordinate frame of a controlling segment or bone from an underlying skeleton.

The segment in�uences the position of the CVs as it moves in space, thus deforming

the surface in a predictable manner. Both of these categories of tools attempt to

control most of the DOF in the model.

Although these tools are useful, in practice animators are reduced to directly

manipulating CVs in many situations. Lattices are very useful for anthropomorph

objects, but less so for human �gures since they distort the space in which the

geometry is embedded, rather than the geometry itself. This makes them inadequate

when complex, subtle, local deformations are required, as in facial animation.

Enveloping is usually implemented as the weighted average of the in�uence

of each one of the individual segment a�ecting a surface in the neighborhood of

a joint. This linearly interpolates the position of each CV between the positions

determined by the individual segments, rather than doing an angular interpolation,

as illustrated in �gure 1.1. Further, even angular interpolation does not prevent the

surface from collapsing on the inner side of the joint when it is closed (�gure 1.2),

not maintaining the volume de�ned in the region of the articulation. Both of these

2

(a) Enveloping a Spline surface (b) Enveloping with a �ner parameteri-

zation

Figure 1.2: Surface collapse at the joint

problems require animators to spend a lot of time �xing the segment assignments in

the regions around articulations.

Hierarchical splines [Forsey 88], or hsplines for short, o�er multi-level control

over surfaces, each level corresponding to a re�ned area of its parent surface. This

allows manipulating and enveloping the surface at multiple levels of detail. Less

points need to be explicitly enveloped than with regular spline surfaces, articulations

can easily be made to deform convincingly [Forsey 91], and the multi-resolution

control over the surface allows one to work with a relatively smaller number of

patches. The current implementation of hsplines also supports arbitrary topology

attachments, which are invaluable for character animation. They allow cylinders

to be attached to non-isoparametric lines of another surface, thereby allowing the

modeller to attach limbs to bodies very easily. This is done by extending the basic

spline framework with subdivision surfaces.

3

Hsplines have been used in an experimental modeller, but it is not yet a

complete animation system, and it lacks many of the surface construction tools

familiar to animators. We attempted to integrate hierarchical splines into Soft-

imagej3D, a high-end animation system, to bring their features to a larger audience.

The goal was to integrate the new surface primitive in the package in such a way that

their use would be non-intrusive to the rest of the system. This work took place in the

context of creating a complete pipeline for the use of hierarchical splines in a feature

animation production environment. The modi�cations required a�ected the whole

digital production cycle: from the digitization of the surfaces, to the construction of

the hierarchies, to their animation in Softimagej3D and �nally to the renderer.

1.1 Overview

It is assumed that the reader is reasonably familiar with the mathematics of splines

and with hsplines. This salient points will be discussed in chapter 2 which brie�y

covers some background material on the mathematics of splines, in particular B-

splines and NURBS, the hierarchical spline representation and �nally subdivision

surfaces.

Chapter 3 describes the implementation within the Softimage/Saaphire

framework, and how the di�erent issues were addressed. User interface issues are

also examined.

Chapter 4 describes the inherent limitations of the di�erent components used

in this implementation. The problems described in that chapter could not satisfac-

torily be circumvented.

Chapter 5 summarizes the �ndings and concludes by describing possible im-

provements to the plugin with current technology, and possible forthcoming technol-

4

ogy from Softimage.

Finally, appendix A contains a tutorial on using hsplines in Softimagej3D,

covering all the tools implemented that are not part of Softimage.

5

Chapter 2

Background material on Splines

This chapter presents background material on spline curves and surfaces, in particu-

lar B-splines and NURBS are examined. It then examines higher-level abstractions

based on these concepts: hierarchical splines and subdivision surfaces. The remain-

der of this thesis will rely heavily on the material presented here.

2.1 B-Splines

A spline curve Q(u) is de�ned by a control vector V and a set of basis functions

Bi;k(u), which are polynomials of order k (degree k � 1). The curve is then de�ned

as:

Q(u) =

nX
i=0

ViBi;k(u) (2.1)

This is a vector equation, that is, a single u value is used to evaluate the equation

for each of the x, y and z component of Q, using the respective components of V.

Similarly, a spline surface S(u; v) is de�ned by a control mesh M and two

sets of basis functions Bi;k(u) and Bj;l(v) of respective order k and l. The spline

7

surface is then de�ned as a tensor product :

S(u; v) =

nX
i=0

tX
j=0

Mi;jBi;k(u)Bj;l(v) (2.2)

In the case of B-splines, the basis functions are recursively de�ned using the

Cox-deBoor recurrence relation:

Bi;1(u) =

8>><
>>:
1 if ui � u < ui+1,

0 otherwise.

Bi;k(u) =
u� ui

ui+k�1 � ui
Bi;k�1(u) +

ui+k � u

ui+k � ui+1
Bi+1;k�1(u)

(2.3)

The quotient 0=0, which may arise from the recursion, is de�ned to be zero.

The nondecreasing sequence of real numbers U = fu0; : : : ; umg is called the knot

sequence. The order k, the number of control vertices n+1, and the number of knots

m+ 1 are related by m = n+ k.

2.1.1 Properties of B-splines

The following interesting properties are stated without proof. The reader is directed

to [Bartels 87] or [Piegl 97] for details.

� Local support: Bi;k(u) > 0 for ui < u < ui+k and Bi;k(u) = 0 elsewhere. That

is each basis function spans k intervals. To put this di�erently, the interval ui �

u < ui+1 is supported by the following k basis functions: Bi�k+1;k; : : : ; Bi;k.

This also means that control point Vi in�uences the curve Q(u) only on the

interval ui � u < ui+k.

� Convex Hull property: For uk�1 � u < un+1,
P

n

i=0
Bi;k(u) = 1. The impli-

cation is that the curve Q(u) lies inside the convex hull formed by the n + 1

8

control vertices of the control vector V. In surface terms, S(u; v) lies inside

the convex hull formed by the (n+1)� (t+1) control vertices of the meshM.

� Continuity: Since Q(u) is a linear combination of the Bi;k its continuity is

determined by that of the basis functions, which is in turn determined by the

knot vector. Q(u) is at least k � �i � 1 continuously di�erentiable at knot ui

of multiplicity �i (that is ui = : : : = ui+�i�1), and is always k�1 continuously

di�erentiable between knots. ThusQ(u) is anywhere from C�1 (discontinuous)

to Ck�2 continuous as determined by U .

� Knot Insertion and Re�nement: Knot insertion allows inserting a set of new

knots U 0 (jU 0j = mu0) in the original knot sequence U (jU j = mu), thus chang-

ing the vector space basis, without changing the curve geometrically or para-

metrically. There are two common methods to perform knot insertion: Böhm's

algorithm [Böhm 80] and the Oslo algorithm [Bartels 87]. While Böhm's al-

gorithm sequentially inserts single knots values from U 0 into U , the Oslo algo-

rithm which is described here can insert all of the knots in U 0 simultaneously.

The old basis functions Bi;k must be re-expressed as a linear combination of

�smaller� basis functions:

Bi;k(u) =

n+m
u0X

r=0

�i;k(r)Nr;k(u)

so that equation 2.1 becomes:

Q(u) =

nX
i=0

ViBi;k(u) =

n+m
u0X

r=0

WrNr;k(u)

whereW is a new control vector related to V by

Wr =

nX
i=0

�i;k(r)Vi

9

For details on computing the set of functions �i;k(r) the reader is referred

to [Bartels 87].

2.1.2 Uniform cubic B-splines

In the particular case of the uniform cubic B-spline, we have k = l = 4, and ui+1 =

ui +�u = ui + 1. The resulting spline basis functions are:

B0;4(u) =
1

6

�
�u3 + 3u2 � 3u+ 1

�

B1;4(u) =
1

6

�
3u3 � 6u2 + 4

�

B2;4(u) =
1

6

�
�3u3 + 3u2 + 3u+ 1

�

B3;4(u) =
1

6
u3

(2.4)

Using these results, equation 2.1 and 2.2 can be written more compactly using matrix

notation as:

Qi(u) = u �Bu �
�Vi Si;j(u; v) = u �Bu �

�Vi;j �B
T

u � v
T

u =

�
1 u u2 u3

�
Bu =

1

6

2
666666664

1 4 1 0

�3 0 3 0

3 �6 3 0

�1 3 �3 1

3
777777775

(2.5)

where Qi represents the i
th curve segment and �Vi is the vector of CVs in�uencing

Qi, namely Vi�3, Vi�2, Vi�1 and Vi. Similar de�nitions apply to S(u; v).

The local support property can be interpreted as follows for bicubic B-spline

patches: each basis function spans four intervals of the spline; that is, each control

vertex in�uences four segment of the curve or surface.

Finally, knot insertion must be looked at, for inserting knots in a uniform

knot sequence can a�ect its shape. In order to preserve uniformity we re�ne the

10

control mesh, a global operation which turns U into U 0, a uniform knot sequence

where �u is of the form 1=x, for x integer.

2.2 NURBS

NURBS are non-uniform rational B-splines, and they di�er from the B-spline patches

described above in that they are rational functions. They are de�ned as:

Q(u) =

P
n

i=0
wiViBi;k(u)P

n

i=0
wiBi;k(u)

(2.6)

The wi's are called the weights, and it is assumed that wi > 0.

There is an elegant geometric interpretation for rational curves, which uses

homogeneous coordinates to represent geometry, a 4-dimensional coordinate system

where coordinates are represented as:

Ph =

�
x y z w

�

and are projected into 3D Cartesian space using the following transformation:

Pc =

�
x

w

y

w

z

w

�

Technically, Cartesian space is de�ned as the w = 1 hyperplane of 4D homogeneous

space. The weight must be di�erent from zero to avoid problems when projecting

back to Cartesian space (w = 0 represents points at in�nity).

Equation 2.1 extended to 4-dimensional homogeneous space reduces to equa-

tion 2.6 after the projection into Cartesian space. This makes B-splines a special

case of NURBS (the weight associated with each point is set to w = 1), and all the

results which hold for B-splines also hold for NURBS.

NURBS have many interesting properties, one of the most important arguably

being that they can represent conics exactly. The reason they are discussed here is

11

that most implementations of NURBS, including Softimage's, support trim curves,

a technique which allows to remove pieces from NURBS surfaces surrounded by

(trim) curves. Most B-spline implementations do not have this facility, however

since NURBS can represent B-splines this can usually be done through them.

2.3 Hierarchical Splines

Hierarchical splines are rigorously described in [Forsey 88]; here we will discuss those

aspects of hsplines that are relevant to the animator using them. The tutorial in

Appendix A illustrates these concepts.

Hierarchical splines are multiresolution representations of surfaces, with spline

patches grouped in a hierarchy. The root of the hierarchy, referred to as level 0, has

the lowest resolution, and its children correspond to re�ned areas of the parent sur-

face. In particular, the position of the CVs at level p+ 1 are de�ned by a vectorial

o�set O relative to the parent level p (�gure 2.1c).

Wi;j = Ri;j +Oi;j (2.7)

where Ri;j is the called the reference point on the parent surface. The reference

point Ri;j for Wi;j is de�ned as the point on the surface maximally in�uenced by

Wi;j.

There are two major implications that may not be readily apparent from this

brief description. First, hierarchical splines allow local re�nement : unlike regular

spline surfaces where re�nement is a global operation, hierarchical re�nement creates

a new patch with a �ner parameterization covering the area being re�ned. Detail

has been added to the model only where needed, rather than globally as would be

12

(a) 7 � 7 bicubic B-spline

patch

(b) parent patch has been

locally re�ned

(c) local re�nement has

been be edited

Figure 2.1: Local re�nement of a bicubic B-spline surface

the case with regular splines. The re�ned area can be edited independently of the

parent surface, subject to the constraint that cracks may not appear between the

two surfaces.

To avoid introducing cracks between a patch and its parent, some of its CVs

are prevented from moving. The local support property tells us that a single CV

in�uences 4 knot intervals (in the case of cubics), so the surface edge must be 2 knots

away from the CV being moved in both parametric directions. In other words, every

movable CV must be centered on 7� 7 grid of CVs (refer to �gure 2.1).

The second implication of the formulation of hsplines is that re�ned level p+1

will follow level p when it is deformed. This comes about because Ri;j is attached to

level p, and is updated as the level is deformed. Thus detail modelled on the surface

at level p + 1 will follow the underlying surface as it is deformed. This process is

illustrated in the tutorial on editing hspline surfaces, found in section A.3 on page 70.

The scale at which each level in�uences the surface, which is related to the

di�erent parameterization of the levels, is very useful when enveloping. By attaching

points at di�erent levels to the two di�erent skeletal segments of a joint, one can

avoid having the surface spanning the joint collapse upon itself when the joint is

manipulated (this will be discussed in more detail in section 3.5).

13

Hsplines also make it easy to de�ne secondary actions for animation, since

these can be applied to the o�sets of the �nest level of the surface. For example a

simple spring-mass system may be applied to the CVs of the model, for realistic skin

dynamics. More details on enveloping hsplines and procedural o�set techniques can

be found in [Forsey 91].

The hierarchical structure of hsplines greatly reduces redundancy in the data

set by providing controls only where needed. A side e�ect is that it signi�cantly

reduces the storage cost of hsplines when compared to an equivalent B-spline surface

(see [Wong 95] for details). Most important however is the fact that hsplines can

signi�cantly reduce the number of CVs (DOF) that must be manipulated to animate

a surface.

2.3.1 Common operations on hsplines

This section describes those operations which were found to be useful when working

with hsplines in an experimental modelling system. They arise from the hierarchical

nature of the surface representation.

� Re�ne: This operation performs local re�nement on the hspline surface, adding

detail where required. It compares to global re�nement of uniform splines

patches.

� Unre�ne: This operation removes detail from a surface. This usually causes

information to be lost, and may be compared to the knot removal techniques

described in [Piegl 97].

� Zero O�sets: This operation zeroes the o�set vector Oi;j at a given vertex,

and causes level p+ 1 to lie closer to level p at that point.

14

2.4 Arbitrary Topology Attachments

Although it is possible to create a seamless character from a single cylindrical or

toroidal surface, this requires severe distortion of the surface, so that is not par-

ticularly well suited to manipulate or animate. The parameterization of the sur-

face is likely to be the source of problems, for example when texturing the sur-

face. Limbs and articulations are going to be particularly problematic under such a

scheme [Maestri 96].

Animators have devised many approaches to model these regions from sepa-

rate surfaces, in particular NURBS trims and blends. The technique is quite simple:

the limb and the body of the character are modelled separately using NURBS. The

curve at the extremity of the limb is �rst projected on the body (and possibly scaled),

and then used as a trim curve. Finally a piece of geometry is created, called a blend

surface, to smoothly join the area of the body around the trim curve to the limb.

Although this technique works well enough for modelling, the animator runs

into problems when he tries to move the limb in question. While sophisticated

animation packages support animated blends, which generate a new blend surface

at each frame for the di�erent positions of the limb, the animator has little or no

control on the blending surface. If the surface does not look right it can be modi�ed,

however on the next frame the modi�cations are lost, when the blend surface is

regenerated. This usually forces the animator to either tweak the blend surface at

every frame�a tedious task indeed�or to simply try to hide the joint from view,

which limits the usefulness of the geometry.

The reason attachments are so hard is that the attached limb has cylindrical

topology, and we are not trying to attach, in general, to an isoparametric line of the

body. Arbitrary curves on a bicubic surface are represented in space by curves of

15

(a) Di�erent attachment

schemes

(b) Perspective view

Figure 2.2: Attaching a cylinder to a square patch

degree much higher than 3, and they can't be �t with the edge of a cylinder. Trying

to cover the region of attachment with patches will result in gaps and overlaps,

despite the parameterization of the attached surface, as shown in �gure 2.2. It is

impossible to maintain a tensor-product surface across the seam, since some CVs

will have more than 4 incoming edges (�gure 2.3b).

Hsplines use a di�erent approach, relying on subdivision surfaces, which are

described in section 2.4.1. The CVs of the limb and body in the region of the at-

tachment now de�ne the piece of geometry covering the seam. The advantage of this

method over animated blends is that the region of the joint can be manipulated di-

rectly like other surfaces. Moving the limb a�ects the surface at the joint rather than

just a�ecting the projected curves that de�ne the blend. An added bene�t is that

local re�nement is possible across the joint, improving control from the animator's

perspective.

16

(a) Bicubic Cylinder and its CVs

Cylinder CV Extraordinary Point

U

V

U V

(b) Top view of attachment constraints

Figure 2.3: Constraining the cylinder's CVs to the parent surface

2.4.1 Subdivision Surfaces

Catmull-Clark surfaces [Catmull 78] are de�ned over polygon meshes of arbitrary

topology by recursive subdivision of the mesh. The subdivision rules were chosen so

that the resulting surface is continuous in tangent and curvature almost everywhere.

The process generates tensor product B-spline patches over the mesh where it ex-

hibits a quad structure, except around a �nite number of extraordinary points, which

have n 6= 4 incident edges. The surface at the those points is de�ned as the limit

of the subdivision process, where it is continuous in position and in tangents, and

it is either discontinuous in curvature (for n = 3) or the curvature vanishes at these

points (for n > 4). [Halstead 93] describes a closed form solution to the position and

normal of the surface at the extraordinary point. Further properties of subdivision

surfaces are discussed in [Doo 78] and [Ball 88].

The exact subdivision rules are based on an extension B-spline re�nement,

17

Figure 2.4: Constrained CVs across cylinder and parent patch

and are described in [Catmull 78]. The number of extraordinary points does not in-

crease with successive iterations of the subdivision algorithm, and after the �rst step

all the polygons of the mesh are guaranteed to be quadrilaterals (quads). [Dyn 90]

and [Doo 78] explore alternative subdivision schemes with other interesting proper-

ties. In this application we will be dealing with n > 4 at the extraordinary points,

so that curvature is not discontinuous. The subdivision process will be illustrated

after some preliminary material is presented.

We will refer to the surface to which the cylinder attaches as the parent

surface. The rim of the cylinder is attached to a rectangular area of the parent

surface by constraining CVs from the cylinder to CVs of the parent surface. The

combined set of CVs is then used to de�ne a subdivision surface that covers the

jointed area. There is a restriction on the attachment: only the coarsest level of the

cylinder can be attached to the parent surface (�ner levels of detail will stride the

subdivision surface as expected).

Figure 2.3 shows how the CVs of the cylinder are constrained to those of the

parent surface. The only CVs a�ected are those immediately in the region of the

attachment. The next to last row of CVs from the cylinder, which corresponds to

the rim of the cylinder in the case of a bicubic patch, is constrained to the CVs

18

surrounding the rectangular region where the attachment takes place (see �gure 2.3

and 2.4), thus creating four extraordinary points (these CVs have now n = 5 incident

edges). In this case all the polygons are quads even before the subdivision process

begins. The control graph of the cylinder and its parent surface must match, but

they can be larger than the 1� 1 example depicted in �gure 2.3b and 2.4.

The last row of patches on the cylinder is not rendered, since they are to be

replaced by subdivision surfaces as discussed above. Under these circumstances it

does not really matter where the last row of CVs from the cylinder goes, because

they do not in�uence the rendered part of the cylinder. In practice however, many

modelling packages, including Softimage, do not support subdivision surfaces. The

artist is thus forced to render the frame (assuming that the renderer does support

them) to look at the joint. While this is unavoidable, we can provide an approxima-

tion to the subdivision surface quite easily by constraining the CVs from the last row

of the cylinder to the corner diagonally opposite from where the CV on the previous

row is constrained (see �gure 2.3b), and displaying the last row of patches from the

cylinder. The resulting row of spline patches can be seen in �gure 2.4.

Figure 2.5 illustrates the �rst few steps of the subdivision process at the

junction of the cylinder and its parent surface. Only two of the four extraordinary

points are shown in the �gures. The highlighted region in each �gure represents the

area that cannot be represented by B-spline patches. As shown, the Catmull-Clark

surface becomes smaller at each iteration of the subdivision process.

Once the subdivision surface has been created, the user can keep working on

the model using the usual editing tools. It is possible to re�ne the surface across

the Catmull-Clark patch since the process used to generate the surface itself relies

on subdivisions. This means that the consistency of the interaction model with the

19

(a) Original (b) After 1 step (c) After 2 steps (d) After 3 steps

Figure 2.5: Illustrating the subdivision process

user is not compromised by the attachment, unlike the blending surface solution to

this problem.

Figure 2.6a has two cylinders attached, and one of the extraordinary point is

clearly visible, with local re�nement. It is also possible to attach cylinders next to

each other on the parent surface. This feature is very useful when trying to attach

�ngers to a hand, for each �nger in�uences the attachment region as it is moved.

Figure 2.6b shows what is happening in that case, and there are n = 6 edges at the

shared extraordinary points.

It should be noted that texture coordinates are de�ned non-ambiguously

across the Catmull-Clark patch, based on both the cylinder and the parent sur-

face texture coordinates, since the new surface is recursively de�ned in terms of the

old ones. However there is a sharp discontinuity in coordinates at the extraordinary

point (�gure 2.5). The direct consequence is that the two textures associated with

this region must blend properly at the extraordinary point if the change in texture

is to go unnoticed.

20

(a) Cylinder attachment with re�nement (b) Fingers attached to the palm of a

hand

Figure 2.6: Examples of arbitrary topology attachments

Given the advantages of subdivision surfaces, it is legitimate to ask why

they were not used instead of B-spline patches to build hierarchies, as suggested

in [Zorin 97]. First o�, in this project we wanted to integrate hierarchical modelling

into the Softimagej3D framework. Since neither Softimage nor Mental Ray, its ren-

derer, support subdivision surfaces it would have been very hard to use hierarchies

based on them. Textures are also more di�cult to use on surfaces with complex

topologies. Finally, editing tools like trims and �llets cannot work without �rst

converting the region in question to a collection B-spline patches.

The best solution seemed to use the smallest Catmull-Clark surfaces that

would cover the arbitrary topology regions, and explicit B-spline patches for the

rest of the model. Through subdivision, the Catmull-Clark surfaces can be made

arbitrary small. This is useful in getting those regions to render when the renderer

has no direct support for them. These options will be further explored in sections 3.4

and 4.3.

21

Chapter 3

Implementation

Hierarchical splines have been developed for the past ten years within an experimen-

tal modeller called Dragon, developed mainly by David Forsey both at the University

of Waterloo and the University of British Columbia. This modeller has grown from

a simple proof-of-concept experiment to a powerful system with many features that

are not found in commercial packages; support for hierarchical splines and arbitrary

topology being the most important of them.

Since research was the driving impetus, Dragon lacks many features that

animators have come to take for granted. The most obvious features are arguably

surface construction tools, inverse kinematics (IK), lattice deformations, curve edit-

ing features (especially in the animation subsystem) and rendering. Dragon supports

bicubic B-spline patches but none of the other spline bases, nor higher order curves;

this is somewhat unfortunate since the mathematical formulation of hierarchical

splines has none of these restrictions. Finally little attention has been paid to the

user interface which has grown idiosyncratic over the years.

This project aims to bring the innovative features of Dragon to Softimage,

23

to allow animators to use them in a familiar environment. Hsplines have been im-

plemented as a plugin, a program that �ts in the host package's framework by using

a well de�ned API (Application Programming Interface). The main problem in

achieving this goal is that the API provided by Softimage is far from being �exible

enough to allow new primitive objects to be added to the system. This forced this

implementation to work in terms of the underlying package's spline implementation.

As will be discussed in the following paragraphs this approach had many drawbacks

both in terms of e�ciency and functionality.

3.1 Plugin Architecture

The hspline plugin for Softimagej3D is built around Saaphire (Softimage Advanced

API for Relations and Elements). Saaphire's architecture is designed on the same

model as an operating system kernel: everything happens through system calls; the

core does not interact directly with data structures of the plugin, nor does it provide

any memory management facilities.

The advantage of this design is that it is not possible for the user to keep

pointers into data structures in the core that could become invalid through some

action of the user (for example, keeping a pointer to a list of CVs after the surface

to which they belong has been deleted). However this safety comes at a huge price:

every system call requires the Softimage kernel to copy data to and from plugin

memory. These costs are analyzed in section 3.1.1.

As of September 1996, Saaphire was still an early version of the API in-

tended for Softimagej3D. On the one hand its architecture was inherited from legacy

code used in an earlier API, while on the other hand it had limited functionality in

many respects. The implementation described here spanned several incarnations of

24

Saaphire, from version 1.0 to 1.7. As Saaphire matured, we were presented with

functionality that became powerful enough to solve some of our problems, and this

project provided a lot of feedback to the Saaphire development team.

Saaphire plugins (also known as Custom E�ects in Softimage parlance) are

implemented as DSOs (Dynamic Shared Objects) on IRIX, which can be loaded at

run time through services provided by the ELF dynamic linker. Each plugin may

de�ne three entry points: an init function, which we will refer to as init()�the

function name can be chosen by the programmer but must be unique among all

plugins�that handles any initialization required by the custom e�ect; an update

function, referred to here as update() that applies the custom e�ect whenever Soft-

image refreshes the scene; and a cleanup function, referred to as cleanup(), that

can reclaim storage and do other housekeeping tasks after the custom e�ect.

There can be many instances of a custom e�ect so that the same e�ect can be

applied to di�erent models within a scene (multiple hspline objects). Each instance

of a custom e�ect has a private data structure that can be used to keep track of

internal state.

The lack of a more �exible callback structure burdens the plugin, since es-

sentially the update() function is the only entry point for all operations on hsplines,

forcing the plugin to determine the reason for being called. It should be noted that

there are no callbacks prior to saving the surface to disk (but init() is called imme-

diately after a load), there are no callbacks when the CVs of an object are selected

(we would be able to prevent users to select unmovable CVs), etc.

25

3.1.1 E�ciency of Softimage's plugin model

Graphics data structure tend to be quite large, making the operating system model

very expensive. A bicubic B-spline patch needs to have at least 16 CVs (and much

more to be useful for modelling purposes). Assuming a double for every coordinate

of every CV, we have to deal with 16�3�sizeof(double) = 384 bytes for a typical

system. The amount information doubles if we require normals at these points and

then there are also texture coordinates. A typical model would have something closer

to 500 CVs, requiring the copying of over 11Kb from kernel space to plugin memory

for the whole control mesh (without normals or texture coordinates).

This copying is required whenever a plugin wants to examine the CVs of a

mesh, even if only to �nd out whether they have moved or not. If the coordinates

are to be modi�ed as well, they will also be copied back to kernel memory. This

design issue has enormous consequences on the interactive performance of plugins: if

a control vertex is interactively manipulated, the plugin which controls the geometry

will be called repeatedly. On every call, it needs to retrieve the coordinates of the

model in order to �nd out which CV is being manipulated, and to react appropriately

to the edit. There can be 10 to 20 updates per second, as a CV is interactively

dragged during a typical modelling operation. This requires between 110 and 220Kb

of memory to be copied back and forth between the Softimage kernel and the plugin,

even before the computational part of those updates can take place.

The only reason the system is responsive is that the topology of the surfaces

involved in general modelling tasks require the user to break surfaces into di�erent

patches of di�erent resolution. This allows plugins to query the di�erent patches in-

dividually, somewhat reducing the data transfers (assuming that not all patches need

to be examined). An alternative would have been for the kernel to send messages

26

to the plugin with the old and new position of the manipulated CVs, thus avoiding

the querying of the kernel. A similar scheme could have been devised to update only

some of the CVs that plugins need to modify in the kernel.

This shows that we should try to make as few calls as possible into the Soft-

image kernel given their individual cost. The hspline plugin implements an extensive

caching mechanism to attempt to alleviate this problem. Also, wherever possible the

plugin avoids to call on the services of the kernel. Computing tangents and normals

is an example of operations performed more e�ciently in the plugin than by going

through the kernel.

3.2 Flow Control

Softimage plugins come in two �avors: immediate e�ects and persistent e�ects. This

distinction is required by Softimage's model of updates in the scene graph. An

immediate e�ect is a plugin that modi�es the scene once and for all. For example we

could write a `noise e�ect' that perturbs the z-coordinate of an object with a noise

function. The e�ect is immediate because after the plugin terminates it does not

need to be noti�ed when the user edits the perturbed object. An immediate e�ect

is usually implemented completely in its init() function.

On the other hand a persistent e�ect is added to Softimage's update list and

will be called whenever the object under the control of the plugin is updated in any

way. It is possible to choose where to insert the plugin in the update list, which

allows the plugin to see coordinates in an object's own coordinate system, or after

they have been been modi�ed by inverse kinematics for example.

The hspline plugin is a persistent e�ect, since it needs to enforce constraints

on CVs and how they relate to underlying levels (see section 2.3). Others tools

27

related to hsplines are implemented as immediate e�ects: `Zero O�sets' for example

modi�es the geometry and returns immediately. Whenever the user manipulates

CVs from a patch under the control of the hspline plugin, the update() function is

called. There is no way to to �nd out directly what triggered the update. A CV

could have moved, but it could also be an IK transformation, advancing to the next

frame, a deformation applied to the model, or any one of a multitude of operations

that a�ect the model.

As described in section 3.1, it is very costly to determine whether an indi-

vidual CV has been moved. All the CVs at all the levels of the hierarchy must be

retrieved from the Softimage kernel, and compared with the copies kept by Dragon.

Incidently this can make it costlier for hsplines than regular spline patches since all

levels of the hierarchy must be examined. One solution to this problem would be to

use the Softimage scene graph to control explicit updates, by associating a persistent

e�ect with every level in the spline hierarchy. A CV modi�ed at level j would call

the appropriate plugin notifying it that the level under its control has been modi�ed.

Since a change at level j in the hspline a�ects the CVs at lower levels (j+1, : : : , n),

we need Softimage to traverse the hierarchy towards the leaves to notify �ner levels

that the parent surface has been modi�ed. This approach would at least minimize

the number of CVs to retrieve from the kernel to the bare minimum.

The problem with this approach is that in Softimage updates propagate up

the model tree, towards the root. This renders this approach infeasible, and re-

quires a single instance of the hspline custom e�ect to manage all the levels of the

Dragon hierarchy. This also proves to be a problem with enveloping, as described in

section 3.5.

When a CV is modi�ed in Softimage, either directly by the user or indirectly

28

through a tool, the update() function of the instance of the hspline plugin managing

the surface will go through the following steps to try to determine the what triggered

the update:

� The �rst step�which really has nothing to do with updates, but is required

due to the lack of callbacks�is to check the consistency of the Softimage

hierarchy of patches. The user can delete intermediate levels of the hierarchy,

or to randomly reparent the patches without the update() function being

called. This is very frustrating because the plugin must perform expensive

checks on the data structures to ensure their consistency. The plugin is able

to recover from most of the above user manipulations, except where the user

deletes leaves and their direct parents. This is due to Saaphire not being

able to con�rm whether a given object has been deleted (the object ID could

have been reassigned to another object in the meantime). If an object and

its associated label are deleted inside the hierarchy (i.e: the object has both a

parent and a child) then it is replaced by a Softimage Null, which makes it

easy to detect.

� The second step is to check whether there has been a change in the frame

number. This check is cheap and should therefore happen before querying all

the CVs of the surface. If the frame number has changed and there is animation

data associated with the surface (usually facial animation, see section 3.8), it

is updated accordingly.

� Finally the CVs are checked against their last known location. All the patches

are looked at, from the root of the hspline tree towards the leaves. When a CV

is found to have moved from its earlier position we check whether it is movable

29

(see section 2.3). If the CV is movable, then the Dragon CV is updated by

computing its new o�set. If the CV is not movable, its position is modi�ed

in Softimage's data structures, according to Dragon's view of where it should

be. When a user interactively moves a CV, the update() function is called

often enough that the hspline is updated smoothly in Softimage's display. By

the same token, if the CV is marked as unmovable, it will be updated often

enough not to move in Softimage's display.

3.3 Mapping between Softimage and Dragon data structures

While we had a working implementation of hierarchical splines in the form of the

Dragon kernel, there was a choice to be made as to whether to reuse the code that

already existed or to try to write something designed around Softimage's view of

hsplines. Since Softimage's update model does not provide a way to �nd what

triggered the update, it is important for the plugin to keep track of the last known

position of every CV, in order to be able to identify changed CVs. Given this need,

and the fact that the plugin must also build its own data structures describing the

constraints and relations between CVs, it made sense to start from the Dragon kernel

which already provided all these features.

Softimage's view of Dragon's data structures is entirely limited to B-spline

patches. At �rst this may seem convenient, but soon one realizes that it is possible to

get a situation where a CV in Dragon is present on multiple distinct B-spline patches

in Softimage. This is because Dragon deals with a three-dimensional mesh of CVs,

whereas Softimage deals with individual surfaces, unaware of their connectivity.

Figure 3.1 depicts the situation clearly. The surface has been re�ned around

three points as labeled, and the resulting mesh at the new level does not have rectan-

30

Control Vertex

Shared CVs

Refinement Point

Figure 3.1: Shared CVs among Softimage patches

gular topology. That is, it cannot be represented with a single B-spline patch. One

way of breaking the area in two distinct patches is presented in the �gure. There

are 21 CVs shared between the two patches. While Softimage has no notion of the

underlying representation of the surface, the plugin must make sure that when the

user explicitly moves a CV on one of the surfaces, the other one gets updated.

The way constraints are enforced among CVs in the Softimage scene is to build

a translation table between Softimage's data structures and Dragon's. A control

vertex in Dragon can be identi�ed by a quadruplet (surf; level; u; v) which describes

the surface we are interested in, the required level in the hierarchy and the CV's u

and v coordinates. This method is quite general but fairly expensive since it requires

the traversal of a fair amount of data structures to locate a particular CV. A CV

also has a unique identi�er which can be used to locate it more e�ciently. While

the identi�er is often the preferred way to identify a CV it must be noted that the

identi�er is not preserved across a save and restore of the data structures. In Soft-

image, individual CVs are identi�ed by pairs (object; i) which represent an index

31

into an array of CVs, for a given object.

The hspline plugin must be able to translate from a given representation

to any of the other ones. This is implemented as a hash table which, given any

representations, can retrieve a list containing all the Softimage CVs as well as the

Dragon vertex associated with them. What is actually retrieved in the case of Soft-

image is the pair of identi�ers needed to request the CV from the kernel.

As described in section 3.1, the plugin needs to cache as much data as possible

during a single update cycle to minimize the number of calls to the Softimage kernel.

When updating a surface in Dragon we always recompute the position of a�ected CVs

from the lowest level a�ected down the hierarchy towards levels with �ner details.

As the Dragon data structures are traversed in that order, the Softimage patches

will be traversed in a totally di�erent order. Since Softimage only allows to retrieve

the control mesh for the entire patch, we would need to retrieve the same list of CVs

many times over if it were not for caching.

The caching mechanism implemented retrieves the control mesh of a patch

and keeps it around, in case it is ever needed again for other CVs of the same mesh.

If the mesh is updated, the piece of geometry will be sent back to the Softimage

kernel when the cache is cleared. If a given patch has not been modi�ed, its control

mesh will be simply discarded. Although this caching technique may sound obvious,

it makes all the di�erence between a plugin that can be used interactively and one

that can't.

3.4 Arbitrary Topology

Arbitrary topology is fully supported in the Dragon kernel. Softimage on the other

hand currently lacks the major feature required to completely support Dragon's

32

implementation: neither the modeller itself, nor its renderer (Mental Ray) currently

support subdivision surfaces.

Despite these issues, arbitrary topology can be added to the hspline plugin

because the region around extraordinary points can be recursively subdivided, with

the non B-spline region getting smaller at each iteration (see section 2.4). Thus the

user can re�ne that area until the region not de�ned by B-splines is smaller than a

pixel and can be represented polygonally. These are essentially the steps that the

renderer would follow if it supported subdivision surfaces directly.

While this requires e�ort from the user, once the re�nement is done the

arbitrary topology attachment will behave as expected. It is possible to implement

the re�nement procedure in software, which would remove some of the burden from

the user; but the downside is that the geometry is a�ected by the procedure. Whether

this will be done or not will depend on the next major release of Softimage and its

support for subdivision surfaces.

Arbitrary topology does not present any further technical di�culties than

enforcing constraints among di�erent B-spline patches. Dragon enforces these con-

straints with its own data structures, while the plugin keeps mapping them to Soft-

image, as with regular hsplines.

3.5 Enveloping

A �exible envelope is geometry whose CVs are assigned to the coordinate frame of

a segment from an underlying skeleton. Each CV is usually in�uenced by a single

segment, but it is not uncommon, in the area surrounding a joint, to use a linear

combination of segments to better control the surface. The envelope can then be

driven by the skeleton, either through forward kinematics, or inverse kinematics.

33

Softimage associates two complete sets of coordinates with each CV of each

model in the scene. They are labeled original coordinates and deformed coordinates,

and correspond respectively to the world coordinates of the object itself, and to the

world coordinates of the object after undergoing deformations. Deformations are

a broad class of tools that can manipulate models, to which both enveloping and

lattices belong. Both sets of coordinates are accessible from Saaphire.

Until deformations are actually applied to a model, its deformed coordinates

are simply ignored. If a plugin requests the deformed coordinates of an undeformed

model, the original coordinates will be returned. If a plugin tries to modify the

deformed coordinates of an undeformed object, the modi�cation will succeed, but

will be ignored by Softimage, since it is not looking at these deformed coordinates.

The existence of two sets of coordinates poses a problem to the hspline plugin.

It cannot try to work through the deformed coordinates, because the Softimage

kernel ignores the updates made by the plugin to the deformed coordinates of an

undeformed model. Similarly, working with original coordinate poses a problem on

models that have been deformed since now the plugin and Softimage see the CVs in

di�erent locations.

In Softimage, enveloping works at the level of a complete surface, while hi-

erarchical splines require only some of the CVs in a surface to be enveloped. This

di�erence forces the plugin to keep track of whether a CV is enveloped or not, to

decide whether to look at its deformed coordinates or its original coordinates. Cur-

rently, the only way to do this is for the user to provide this information explicitly

by using an auxiliary plugin to mark enveloped CVs. Once this is done, both Dragon

and Softimage will agree on the position of CVs in world space.

The hierarchical nature of hsplines interferes with Softimage's traversal of

34

the scene graph. Whenever the whole scene needs to be updated, Softimage sorts

the nodes according to internal constraints, and selects parents before children when

no other constraints are present. Then, as the nodes of the graph are traversed, all

the transformations and e�ects that a node must undergo are applied, before the

following node is updated.

Now lets assume that all the levels of an hspline have been enveloped, as

Softimage insists on doing by default. As it traverses its scene graph, updating

each node in turn, it will update level 0 of the hspline hierarchy. At that time the

hspline plugin is called through its update() function, to adjust the lower levels of

the hspline to re�ect the new situation. As the traversal of the scene graph continues

with the next level of the hspline, Softimage overrides the latest changes from the

plugin with the envelope data that keeps propagating.

The second function of the enveloping auxiliary plugin is to notify Dragon

that since the tagged CVs are enveloped they should not be updated when the

underlying level is modi�ed. Their o�set is not from the parent surface anymore,

but from the frame of reference of the segment which drives them. As far as Dragon

is concerned there is no need to know where the frame of reference of the segment

is located, since the coordinates from Softimage are in world coordinates, and we

might as well assume that it is aligned with the major axes at the origin.

The hierarchical nature of hsplines however determines how the enveloping

should be allowed to happen. In general you want to envelope the lowest level of the

hierarchy that has the relevant features, and not envelope its children. To ensure

that this is the case, when the �Envelope Initial Assignment� dialog box appears,

the �Maximum level� box must be checked and set to 1, unselecting in the process

the �No maximum� box.

35

Enveloped Vertex

(a) Enveloping at level 0

Enveloped Vertex

(b) Enveloping at level 1

Enveloped Vertex

(c) Enveloping at level 2

Figure 3.2: Hierarchical enveloping of a joint

Hierarchical spline enveloping allows very realistic joints to be created, by

enveloping multiple levels in di�erent ways. The collapse of the surface in the area

of the joint may be avoided by re�ning the area at the joint and assigning CVs from

the �ner levels to the parent segment of the rotating one. The result is a very realistic

joint, on which the skin bends reasonably (�gure 3.2c), unlike the default Softimage

technique (�gure 1.2b) which envelops every vertex.

3.6 Auxiliary Plugins

Immediate e�ects were implemented to provide additional features to the basic

hspline plugin, which only manages updates on the hspline surfaces. These tools

are described from the user's point of view in appendix A. Here we will describe

some of the implementation issues encountered within the framework provided by

Saaphire.

36

3.6.1 Inter-plugin communication

There are no explicit provisions in Softimage to allow plugins to share data. However

all the plugins implemented interact with hsplines and their associated data struc-

tures. They need to be able to communicate with the persistent e�ect and retrieve

the Dragon data structures in order to manipulate them.

DSOs share the address space of the process that loaded them. This means

that all the plugins are running in the same address space, and all that is needed to

retrieve data associated with a particular hspline is to be able to somehow obtain a

pointer to it.

Starting with Saaphire version 1.1 it is possible to attach arbitrary data

to objects in Softimage. This data is referred to as user data and is managed by

plugins. Saaphire considers the data as an array of bytes and will make sure that

it is never dissociated from the object it was attached to, until either the object is

deleted or the plugin detaches the data. In particular, user data is preserved across

a save and restore cycle.

A pointer to the Dragon data structures is attached to every surface at the

time they are created, either explicitly or through re�nement. This pointer can

be recovered by all the plugins that request it, thus enabling them to get access

to Dragon's data structures. Once the pointer has been recovered, the individual

plugins are able to manipulate the data structures directly.

3.6.2 Re�ning and Unre�ning

Re�nement a�ects the geometry of a model in a signi�cant way. New patches are

created, corresponding to the new level in the hierarchy. If we were to leave it at

that, the organization of the patches that correspond to a given level would depend

37

Control Vertex

Refinement Point

Figure 3.3: Minimizing the number of patches in Softimage

on the order in which the parent surface has been re�ned�i.e: a single patch at level

n + 1 if all the CVs at level n were re�ned at the same time, or several patches at

level n+ 1 if level n was re�ned in several steps.

Referring to �gure 3.3, it is easy to see that the two patches obtained after

re�ning around two di�erent CVs could very well be represented by a single patch

without loosing information. Despite this discrepancy in patches, both con�gura-

tions de�ne the same surface, and it will behave in the same way when edited (see

section 3.3).

The hspline plugin attempts to minimize the number of patches it creates in

the Softimage scene. This guarantees that the representation of a given topology is

independent of how the user arrived at that result, provides a more consistent view

of the geometry to the user and makes the control mesh easier to visualize. It is also

more e�cient for Softimage to deal with a small collection of large patches, than the

opposite.

The set of heuristics that determines the arrangement of patches not only

tries to make the patches as large as they possibly can be, but also tries to preserve

38

as many of the existing patches as possible. The reason for this is that once a model

has been created there can potentially be animation data associated with it, some of

which is not be accessible to plugins. If we were to simply discard the patches and

create new ones all that information would be lost. While it is certainly still possible

to loose some information when reorganizing the patches, practice has shown that

some of the animation data could be salvaged.

In general, animation systems make no guarantees on the result of modifying

models which have already been animated. The hspline plugin makes a stronger

commitment: only the level at which patches are generated (and possibly its children)

can potentially loose animation. The parent levels will still behave as they did before

the re�nement. The new patches are also constrained to follow the parent patch

during the animation, since they are part of the hspline hierarchy, which minimizes

the impact of re�nement on the animated sequence.

Unre�ning a model is even more drastic than re�ning it. The topography of

the model is simpli�ed, by removing all the CVs whose o�set from the parent surface

is zero, constrained by the mathematical de�nition of bicubic B-spline surfaces, as

described in section 2.3. Thus all the levels of the surface can possibly be a�ected,

unlike in the re�nement case. While this does not a�ect the surface de�ned by the

hierarchy, it deeply modi�es its representation, thus destroying all the animation

data associated with the surface. No attempt is currently made to minimize the

impact of unre�nement, even though it is possible that the surface representation

remains unchanged by the operation.

39

3.6.3 Load and Save

Users expect to be able to save a scene containing hsplines, and be able to continue

working on the scene the next time it is loaded in Softimage. The main problem

with that scenario is that Softimage does not provide a way for the plugin to know

that the data it manages is being saved to �le. The plugin's init() function is

called once the scene has been restored from �le to initialize itself. The patches

have already been recreated properly and animation data has been reattached to the

models in the scene, but all the internal data structures managed by the plugin have

been discarded. It must be in a position to recreate its internal data structures and

match them to the patches in the scene from the information restored by Softimage.

Given the cost of manipulating the user data attached to a model, we must

again make sure that it is updated as little as possible. This is handled by attaching

to the whole hierarchy a description of Dragon's data structures, so that they can be

recreated once the scene is restored from �le. In essence, we are saving the hspline

to a .hs1 �le, which is attached to the model. This needs to be updated every time

there is a change in topography (re�ne and unre�ne), but not for every update from

the system. The assumption is that re�nement is an operation that is not performed

very often, since it dramatically alters the model.

When the plugin's init() function is called, it reads the .hs �le attached to

the hierarchy and recreates its internal data structures. It then needs to be able to

map between the Softimage patches and its internal data structures to rebuild the

hash table. To that end, the plugin attaches information to every CV in Softimage,

at the time patches are created. The information contains the texture coordinates of

the CV, u and v, as well as the level to which the CV belongs. If Softimage directly

1
.hs �les can be read by the Dragon kernel, shared among all implementations of hsplines.

40

supported texture coordinates2 no information would have to be attached to CVs:

given the texture coordinates and the depth of the patch in the hierarchy we would

be able to retrieve the Softimage vertex matching any Dragon vertex.

As mentioned in section 3.6.1, there is also a pointer attached to each patch

that permits to retrieve the Dragon data structures in memory from the patch. As

the patches are read from �le, and the plugin is reloaded into memory, these pointers

must be updated.

Finally, the position of the CVs must be updated in Dragon, to synchronize

it with Softimage's display. Since the �le is attached to the hierarchy only when a

topological change occurs, all the manipulations of the surface that have occurred

after the attachment are unknown to Dragon when it restores its data structures

from that �le. All that needs to be done is to traverse the restored data structures

from the top of the hierarchy down, recomputing the o�set of every CV with respect

to its parent level.

Besides loading and saving the hspline data with the Softimage scene, it is

also possible to export the model to a .hs �le, which can then be read by other

implementation of hierarchical splines. An option is provided to optimize the model

for space, which removes all zero o�set CVs from the description of the surface, just

like the surface obtained through unre�ning. Although this is the default in Dragon,

it isn't in Softimage as the hspline which gets loaded is di�erent from that which

was saved�by di�erent we mean that the hierarchy has been simpli�ed, not the

resulting surface. Since Dragon does not support the unre�ne operation it made

sense to provide it every time the surface was saved to disk, but this is not necessary

in Softimage.

2This is issue is discussed in section 4.2.3.

41

3.6.4 Support Tools

While hierarchical splines and arbitrary topology attachments are the two major

contributions of this project to Softimage, it should be noted that for the convenience

of animators a small number of auxiliary plugins were created to assist animators in

their use. They will be described brie�y here.

� Save!Export Hspline+3 allows to export the hspline surface to a .hs �le,

which can be read by other implementations of hierarchical splines.

� Edit!Hspline Re�ne+ re�nes the selected objects around the tagged vertices.

� Edit!Hspline Unre�ne+ tries to remove redundancy in the model by getting

rid of re�ned areas that are not used. Every CV whose o�set is zero (i.e: the

CV has not moved away from the underlying level) can potentially be removed.

The mathematical formulation of bicubic hsplines however requires a 7�7 mesh

of CVs centered on each non-zero o�set, which means that in the worst case

a single CV is surrounded by 24 CVs that cannot be removed by unre�ning.

This tool will remove all the redundant CVs from the model, while satisfying

the above condition.

� Edit!Zero O�sets+ will zero the o�set of the tagged CVs, so that they lie

on the underlying level. If there are no �ner levels with non-zero o�sets, a

subsequent Edit!Hspline Unre�ne+ will remove these levels from the surface,

within the constraints stated above.

� Edit!Set Envelope+ will mark the tagged CVs as enveloped. As described

in section 3.5, this is a necessary step, if enveloped hsplines are to behave

3This notation means that the `Export Hspline' command is found under the `Save' menu. The+

symbol is used in Softimage to indicate that the selected item is a plugin.

42

properly.

� Tags!Tag Movable+ will tag all the CVs on the selected surface that can be

moved by the user.

� Tags!Untag Fixed+ will untag all the CVs that cannot be moved due to

mathematical constraints from the set of tagged CVs on selected items.

3.7 User Interface

The hspline plugin attempts to integrate itself in Softimage at the lowest possible

level, in order to work with all the tools already present in the modeller. At the same

time it attempts to provide a straightforward interaction model to the user. The

only way to reconcile these two goals would be to have a very �exible environment

in which plugins are �rst-class citizens, permitted to set their own interaction model

with users.

Unfortunately Saaphire was not designed with that kind of �exibility in

mind, and the hspline plugin must act through objects already present in Soft-

image to de�ne its own interaction model. This issue has been the source of much

experimentation : : :

Before the advent of Saaphire version 1.1 and the appearance of user data

that could be attached to CVs of a model we were restricted to using a polygon

mesh to control the splines, as this was the only way to enforce the constraints

on the control mesh. We eventually settled on the collection of B-spline patches

described in section 3.3, but this is not completely satisfying since it is not possible

to interact with the �nest representation of the surface without having the internal

levels clutter the work space. Appendix A illustrates the current interface, while

43

section 5.1.1 describes another approach that may be implemented in the future,

but even that approach will not be as satisfying as the one adopted in Dragon.

3.8 Integration into the production environment

The hspline plugin for Softimage is the central piece of software written to imple-

ment the hspline production pipeline mentioned earlier. A complete set of tools was

produced, and they need to be able to communicate with each other to exchange

data. The surface hierarchies are described in .hs �les. This provides a mechanism

to exchange data among the di�erent tools, and allows them to remain independent.

All the steps preceding animation can therefore take place outside the Softimage

environment and we shall not be concerned with them here.

The main exception is the production's proprietary facial animation system,

which interacts directly with the hspline plugin. This tool is external to Softimage,

and allows the animator to directly animate facial expressions and lip sync. The

sequences thus created must then be integrated into the scene managed by Softimage.

A library has been written which permits the hspline plugin to update character

heads in the Softimage scene using the tracks created by the facial animation system.

The advantage of this arrangement is that animators are able to use a well adapted

tool to animate faces, and use Softimage to animate the characters themselves.

The production required most of the character motion data to be gathered

using motion capture. The motion capture data can be imported in Softimage and

used to drive a skeleton. The skeleton is then enveloped with hspline surfaces and

drives the animation of the surface, as described in section 3.5.

44

Chapter 4

Inherent Limitations

Trying to get two pieces of software which understand di�erent concepts to work

together is de�nitively a devious task. This section attempts to analyze the problems

and limitations found in the components used, independently of the actual e�ort to

get them to work together (this was discussed in chapter 3).

Dragon and Softimagej3D both have faults of their own, but there was a

signi�cant advantage in favor of Dragon: its source code was available. This allowed

most of the problems found with Dragon to be �xed promptly, while we were forced to

rely on the Softimage development team to �x problems in their modeller. Needless

to say, most of the �xes requested never made it in the product during the lifetime

of this project. This partly explains why most of the limitations currently lie with

Softimage rather than Dragon.

4.1 Dragon

Dragon's code lacks modularity with respect to the spline basis used. As described

in [Forsey 88], there is nothing in the formulation of hsplines that limits them to

45

the uniform B-spline basis. The current version of the Dragon kernel does not make

it easy to provide di�erent bases, however it can be argued that uniform bicubic

B-splines, when complemented with arbitrary topology attachments, are �exible

enough for character animation purposes.

With our implementation committed to uniform B-splines, we had to provide

a unique user interface to hsplines inside Softimage. Had the �exibility been present

in Dragon, hsplines could have been presented much like spline patches; the dialog

boxes related to hsplines being similar to those used for regular spline surfaces that

are familiar to the user.

4.2 Softimagej3D

Softimage currently has many limitations, most of which can be traced to the lack of

maturity of some of its components. Both Saaphire�the plugin API�and Mental

Ray�the renderer�are recent additions to the Softimagej3D package. Saaphire

currently o�ers access to a subset of the functionality present in Softimage, and it

might gain in �exibility in future releases.

4.2.1 Saaphire architecture

Saaphire is impeded by the cost of system call to the Softimage kernel, as described

in section 3.1. This is the result of architectural decisions made during the design of

the API, and isn't expected to change in future releases. This architecture o�ered

some fairly obvious advantages to the designers of the API: plugins can never have

pointers inside Softimage data structures, so their contents can only be changed

through the published API, with the guarantee that the modeller can check the

sanity of the values written. This also ensures that the maintainers of the modeller

46

will be free to modify these internal data structures as needed in future releases of

the software.

These design decision make for an API that spends much of its time copying

data to and from plugin memory. Although the impact can be somewhat minimized

by implementing extensive caching mechanisms, intended to minimize the number

of system calls into the kernel, it de�nitely burdens the plugin programmer for the

convenience of the Softimage developers.

Saaphire does not allow plugins to animate parameters under their control.

Motion graphs (called fcurves in Softimage) cannot be attached to an arbitrary

animated parameter. The problem is that hsplines are really controlled by their

o�sets, and there is currently no way to keyframe them. If fcurves could be associated

with o�sets the hspline surfaces would behave much better in Softimage. Currently

one must make sure that all the levels are accounted for when keyframing the surface,

which puts the burden on the user.

4.2.2 Plugin entry points

The aspect of Saaphire which proved most inappropriate for our purposes was the

lack of entry points to the plugin. With only three functions available (init(),

update() and cleanup()), two of which used for bookkeeping purposes, we are left

with a single function that needs to do a lot of extra work every time it is called to

make sure that the state is consistent. This further adds to the delays caused by the

cost of system calls. The following additional entry points have been suggested to

the Saaphire development team:

� save() would be called before the geometry managed by the plugin is saved

to �le, with the rest of the scene. This would have allowed the plugin to

47

be conceptually much simpler than it is now. The workaround described in

section 3.6.3 could have been avoided, and the re�nement operation would have

been signi�cantly faster.

� select() would be called whenever the user tags CVs associated with geometry

managed by the plugin. This would have allowed the plugin to prevent the user

from tagging unmovable CVs making for a more consistent user interface. It

would also have made both of the following auxiliary plugins unnecessary:

Tags!Tag Movable+ and Tags!Untag Fixed+.

� delete() would be called whenever geometry managed by the plugin is deleted

by the user. The plugin should have the option of refusing to let the user delete

the geometry, or decide to terminate (in which Softimage would automatically

ensure that the cleanup() function is properly called).

� render() would be called whenever Softimage is ready to dump geometry

managed by the plugin to the renderer. The plugin should have a way to write

out speci�c commands directly to the renderer, and possibly prevent Softimage

from dumping the geometry (in case the plugin does this itself, or the geometry

is not intended to render).

� deformed() would be called after Softimage envelopes geometry managed by

the plugin. This would allow the plugin to retrieve the assigned weights, and

possibly modify them. The hspline plugin would then be able to work without

support from the Edit!Set Envelope+ auxiliary plugin.

Since the update() function is the only one called during normal operations

of the plugin, it serves many di�erent purposes. A mechanism through which it could

48

�nd what triggered the update event would help in keeping conceptually di�erent

parts of the code separate.

In particular, it is currently very costly to determine which CVs of the hspline

are being interactively manipulated by the user. A mechanism which could identify

those CVs readily would certainly be helpful. If the mechanism was able to provide

both the old position of the control vertex and the new one, the hspline plugin could

be redesigned to be much smaller, discarding most of the Dragon kernel. Movable

CVs would be updated to their new position, while unmovable CVs would be updated

to their old position. A side bene�t would be that plugins are now able to �nd out

how fast a CV is being moved. This would be useful, for example, in implementing

automatic generation of secondary action through dynamics.

4.2.3 Texture coordinates

One of the most surprising aspects of Softimage, is that it does not support explicit

textures coordinates associated with B-spline patches. Implicitly, all patches in the

scene are parameterized from zero to one along the main local axes of the patch.

Theoretically this should not be a problem since we can provide a texture for each

patch, obtaining the same result than with explicit texture coordinates for each

patch.

In practice however, an object composed of multiple patches cannot be asso-

ciated with a single texture. Instead, the texture must be cropped to match the area

covered by each patch, and each of these must be associated with the appropriate

spline patch. This is much less convenient than having a single texture and associ-

ating texture coordinates to the di�erent patches in such a way that they each map

to a di�erent area of the image.

49

In the case of hsplines, this alternative approach would have two signi�cant

advantages. First, as described in section 3.6.2, whenever re�nement occurs existing

patches are rearranged to minimize the number of new patches required to represent

accurately the hspline in the Softimage scene. All the patches that are modi�ed in

this fashion need to be associated with a new custom cropped texture. The second

signi�cant advantage of using a single texture is that when an hspline model is viewed

at a lower resolution than the maximum level of detail in the model, the areas that

would be hidden by �ner detail and are now exposed can be mapped to the same

texture, giving the user a good idea of the surface being deformed.

4.2.4 Scene Graph

The Softimage scene graph is unfortunately very poorly documented in the current

Saaphire litterature, and some aspects of its behavior are surprising. Updates in

the graph in particular do not behave as one would expect, since changes to a node

do not propagate towards the children of the node. This is surprising since the

state of the children is partly dependent on the parent (graphics context, cumulative

transformation matrix, etc).

As described in section 3.2, updates have been found to propagate towards the

root of the hierarchy, as far as the plugins are concerned. This forces a single plugin

to handle the whole hierarchy of B-spline patches. If instead updates propagated

down the scene graph, we could associate one instance of the plugin with each level

of the hierarchy. This would make sure that only levels which have been modi�ed

and their children need to be updated, limiting in this manner the number of calls

to the Softimage kernel required to retrieve the geometry.

Another issue was raised when the behavior of enveloping was examined in

50

section 3.5, for after the skeleton controlling the skin is updated, the whole hierarchy

of patches making up the envelope is traversed top-down. This required the inter-

vention of an auxiliary plugin to notify Dragon that some of the CVs are enveloped,

and that they are not controlled by the parent level anymore.

4.3 Mental Ray

Mental Ray is a mature product in itself, and it has just recently been added to the

Softimage environment. Most of the limitations experienced arised from its partial

integration in the environment, with one exception. Mental Ray does not currently

support subdivision surfaces. This can be worked around, since Catmull-Clark sur-

faces can be recursively subdivided into B-spline patches, however this functionality

really belongs in the renderer. Section 3.4 discusses a possible workaround that

may be implemented if the next version of Mental Ray o�ers no native support for

subdivision surfaces.

Saaphire currently o�ers no help in interfacing to the renderer. This is

a problem since you do not want to render all the de�ned B-spline patches that

make up a hierarchical spline. Areas that have been re�ned should not render, since

there is a �ner representation for them. It is wrong to assume that the �ner surface

will hide the lower level, for it could very well intersect the underlying level and

be hidden behind it. This also means that it is currently di�cult for the user to

visualize her work at the �nest level of detail, by rendering the frame without hiding

the underlying levels.

Section 5.1.1 o�ers a possible solution to this dilemma using NURBS and trim

curves, but what is really needed is for the plugin to be able to supply the geometry

to be rendered to Mental Ray, independently of the data in the scene. Currently,

51

this can only be done by forcing the plugin to dump the collection of patches that

represent the hspline to a �le, then having the user hide the geometry in the scene,

so that Softimage won't try to add it to the scene description itself. This requires an

additional auxiliary plugin that must be applied to each hspline model in the scene

before starting the renderer, an inelegant way to solve the problem.

52

Chapter 5

Conclusions and Future Work

This thesis has described how hierarchical B-splines were integrated into the Soft-

imagej3D environment, using the Saaphire API. Three major features were im-

plemented: basic support for hsplines, arbitrary topology attachments and skeleton

enveloping. Those features were used daily in a feature animation production envi-

ronment for several months and have triggered a lot of positive responses from the

animators working on the project.

There was one major issue left to be resolved at the close of this project:

how to render the hsplines. This is conceptually simple to accomplish, but we were

prevented from doing so by the poor integration of Mental Ray in the Softimage

environment. Since Mental Ray is the latest addition to the package, this issue is

expected to be resolved shortly after the next release of Softimage. A temporary

solution using NURBS will be proposed in section 5.1.1, which also has the potential

of signi�cantly improving the user interface to hsplines, and this possibility should

be explored.

Besides rendering there are several improvements that could be made both

53

to the tools already present and the user interface. More feedback would be required

from animators in order to assess which directions to take next.

5.1 Possible Improvements and Future Extensions

This section describes possible extensions to the hspline plugin, which would improve

the user interface to hierarchical splines. The �rst section suggests a major archi-

tectural change in the plugin, while the following section suggests auxiliary plugins

that could be implemented. It is expected that as animators work with hsplines in

Softimage more changes and improvements will be suggested.

5.1.1 NURBS patches

The Softimage implementation of NURBS supports trim curves both in the shaded

viewports and the renderer. As described in section 2.2, NURBS are a superset of the

B-splines used to represent hsplines in Softimage, they could indeed be used instead

of B-splines. The hspline plugin would have to enforce the following constraints to

make sure that they are strictly equivalent to B-splines:

1. The knots must be uniformly spaced, and the user should not be allowed to

change the parameterization of the surface.

2. The weight associated with each knot is 1.0, and may not be modi�ed by the

user.

Within these restrictions, the surface is identical to that represented by the

collection of B-spine patches, with one major distinction: trim curves may now be

used wherever the surface has been re�ned. It is now practical to view the surface

54

represented by the hspline in the viewports, without seeing the underlying levels,

since they have been trimmed o�.

Although this sounds like an attractive alternative, the potential issue of the

renderer must be studied before this can be attempted. The renderer must make sure

that the boundary of the surface at the trim curve will be tessellated in the exact same

way as the NURBS patch that �lls the hole, despite their di�erent parameterizations.

If the tessellation is not consistent, some pixel along the boundary of the trim region

will end up not belonging to either surfaces, due to numerical imprecisions, and will

show up black in the rendered frame. Although Mental Ray is apparently able to

handle things properly when told to, plugins are currently not able to communicate

directly with the renderer. As a last resort, it is possible to run Mental Ray in a mode

where it tests curves and surfaces against each other, to make sure that boundaries

are always tessellated consistently, but this adds a terrible computational burden to

the renderer, which will in general not be tolerated.

5.1.2 Auxiliary plugins

The following auxiliary plugins could possibly be implemented, on top of those de-

scribed in section 3.6.4:

� Tags!Tag along U+ and Tags!Tag along V+ would select all the CVs on the

same parametric line as the CVs in the current selection set. This functionality

has proved useful in Dragon in a slightly di�erent form.

� Tags!Tag Neighbours+ would tag up to 8 CVs surrounding every CV cur-

rently tagged. This allows to quickly tag large areas of a model, by repeated

use of the plugin.

55

This is di�erent from using the rectangle selection tool to tag vertices, since it

tags all the CVs falling in the rectangular area, regardless of the portion of the

surface they belong to. When trying to tag CVs on the surface of a cylindrical

object for example, one usually ends up selecting CVs from both the front and

the back of the cylinder, half of which must then be unselected.

� Tags!Tag Non-Zero O�sets+ would tag all the CVs of the selected patches

whose o�sets from the parent level is non-zero. This may be followed, if needed,

by Edit!Zero O�sets+ and Edit!Hspline Unre�ne+.

� Tags!Tag Re�ned CVs+ would tag all the CVs of the selected patches which

have been re�ned. This is a useful visualization tool when trying to understand

the structure of an hspline surface before animating it.

� Edit!Toggle Hspline Symmetry+ would allow all changes made to one side of

a symmetric surface to be re�ected on the other side, when symmetry is turned

on. This is another feature that has proved to be quite useful in Dragon, but

which is currently absent from the Softimage implementation.

� Edit!Hspline Unre�ne+ should be improved to minimize the impact it has

on the hspline representation in Softimage. As described in section 3.6.2, the

current implementation will loose all the associated animation data, even if

the surface is not modi�ed in the process. It should also be possible to set the

level at which to start the unre�nement procedure.

� Edit!Remove Transforms+ would make sure that all the levels of the hierar-

chy render in the same reference frame as level 0.

It is currently possible to translate and rotate individual levels, to allow users

56

to edit surfaces in a less cluttered area of the scene, if required. Although

this may be convenient for modelling and animating, it must be avoided at

rendering time, or the rendered surface will not look as expected. By applying

this e�ect to the hspline before rendering, all the levels will render in the same

reference frame (as long as the transformations on the individual levels have

not been keyframed).

57

Bibliography

[Ball 88] A. A. Ball, D. J. T. Storry, �Conditions for Tangent Plane Con-

tinuity over Recursively Generated B-Spline Surfaces�, ACM

Transactions on Graphics, 7(2), pp. 83�102, 1988.

[Barghiel 95] C. Barghiel, R. H. Bartels, D. R. Forsey, �Pasting spline sur-

faces�, In M. Dæhlen, T. Lyche and L. L. Schumaker, edi-

tors, �Mathematical Methods in computer aided geometric de-

sign III �, Academic Press, 1995.

[Barry 88] P. J. Barry, R. N. Goldman, �A recursive evaluation algorithm

for a class of Catmull-Rom splines�, Computer Graphics (ACM

SIGGRAPH '88 proceedings), pp. 199�204, Atlanta, Georgia,

1988.

[Bartels 87] R. H. Bartels, J. C. Beatty, B. A. Barsky, �An introduction to

splines for use in computer graphics and geometric modeling�,

Morgan Kau�mann, 1987.

[Bartels 89] R. H. Bartels, J. C. Beatty, �A technique for the direct manip-

ulation of spline curves�, Graphics Interface '89 proceedings,

pp. 33-39, London, Ontario, 1989.

[Blans 95] C. Blans, C. Schlick, �X-splines: A spline model designed for

the end-user �, Computer Graphics (ACM SIGGRAPH '95 pro-

ceedings), pp. 377�386, Los Angeles, California, 1995.

[Böhm 80] W. Böhm, �Inserting new knots into B-spline curves�, Com-

puter Aided Design, 12(4), pp. 199�201, 1980.

[Catmull 74] E. E. Catmull, R. J. Rom, �A class of local interpolating

splines�, In R. R. Barnhill and R. F. Riesenfeld, editors, Com-

puter Aided Geometric Design, pp. 317�326, Academic Press,

1974.

59

[Catmull 78] E. Catmull, J. Clark, �Recursively generated B-spline surfaces

on arbitrary topological meshs�, Computer Aided Design, 10(6),

pp. 350�355, 1978.

[Culhane 88] S. Culhane, �Animation from script to screen�, St. Martin's

Press, 1988.

[Doo 78] D. Doo, M. Sabin, �Behaviour of recursive division surfaces near

extraordinary points�, Computer Aided Design, 10(6), pp. 356�

360, 1978.

[Dyn 90] N. Dyn, D. Levin, C. A. Micchelli, �Using parameters to in-

crease smoothness of curves and surfaces generated by subdivi-

sion�, Computer Aided Geometric Design, 7(1), pp. 129�140,

1990.

[Eck 95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W.

Stuetzle, �Multiresolution Analysis of Arbitrary Meshes�, Com-

puter Graphics (ACM SIGGRAPH '95 proceedings), pp. 173�

182, Los Angeles, California, 1995.

[Eck 96] M. Eck, H. Hoppe, �Automatic reconstruction of B-spline sur-

faces of arbitrary topological type�, Computer Graphics (ACM

SIGGRAPH '96 proceedings), pp. 325�334, New Orleans,

Louisianna, 1996.

[Farin 93] G. Farin, �Curves and surfaces for computer aided geometric de-

sign: A practical guide�, Third Edition, Academic Press, 1993.

[Foley 92] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, �Computer

Graphics: Principles and practice�, Second Edition, Addison-

Wesley, 1992.

[Forsey 88] D. R. Forsey, R. H. Bartels, �Hierarchical B-spline Re�ne-

ment�, Computer Graphics (ACM SIGGRAPH '88 proceed-

ings), pp. 205�212, Atlanta, Georgia, 1988.

[Forsey 91] D. R. Forsey, �A surface model for skeleton-based character ani-

mation�, Eurographics Workshop on Animation and Simulation

(proceedings), pp. 55�73, Vienna, Austria, 1991.

[Forsey 95] D. R. Forsey, R. H. Bartels, �Surface Fitting with Hierarchical

Splines�, ACM Transactions on Graphics 14(2), pp. 134�161,

1995.

60

[Fowler 93] B. M. Fowler, R. H. Bartels, �Constraint based curve manip-

ulation�, IEEE Computer Graphics and Applications, 13(5),

pp. 43�49, 1993.

[Golub 89] G. H. Golub, C. F. Van Loan, �Matrix computations�, Second

Edition, John Hopkins University Press, Baltimore, 1989.

[Grimm 95] C. M. Grimm, J. F. Hughes, �Modeling surfaces of arbitrary

topology using manifolds�, Computer Graphics (ACM SIG-

GRAPH '95 proceedings), pp. 359�368, Los Angeles, California,

1995.

[Halstead 93] M. Halstead, M. Kaas, T. DeRose, �E�cient, fair interpola-

tion using Catmull-Clark surfaces�, Computer Graphics (ACM

SIGGRAPH '93 proceedings), pp. 35�43, Anaheim, California,

1993.

[Hoppe 92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuet-

zle, �Surface reconstruction from unorganized points�, Com-

puter Graphics (ACM SIGGRAPH '92 proceedings), pp. 71�78,

Chicago, Illinois, 1992.

[Hoppe 93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle,

�Mesh optimization�, Computer Graphics (ACM SIGGRAPH

'93 proceedings), pp. 19�26, Anaheim, California, 1993.

[Hoppe 94] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J.

McDonald, J. Schweitzer, W. Stuetzle, �Piecewise smooth sur-

face reconstruction�, Computer Graphics (ACM SIGGRAPH

'94 proceedings), pp. 295-302, Orlando, Florida, 1994.

[Kochanek 84] D. H. U. Kochanek, R. H. Bartels, �Interpolating splines with

local tension, continuity and bias control�, Computer Graphics

(ACM SIGGRAPH '84 proceedings), pp. 33�42, Minneapolis,

Minnesota, 1984.

[Krishnamurthy 96] V. Krishnamurthy, M. Levoy, �Fitting smooth surfaces to dense

polygon meshes�, Computer Graphics (ACM SIGGRAPH '96

proceedings), New Orleans, Louisianna, 1996.

[Kurihara 93] T. Kurihara, �Interactive surface design using recursive subdi-

vision�, In N. M. Thalmann and D. Thalmann, editors, �Com-

municating with virtual worlds�, Springer-Verlag, 1993.

61

[Lasseter 87] J. Lasseter, �Principles of traditional animation applied to 3D

computer animation�, Computer Graphics (ACM SIGGRAPH

'87 proceedings), pp. 35-44, Anaheim, California, 1987.

[Loop 87] C. Loop, �Smooth subdivision surfaces based on triangles�, Mas-

ter's thesis, Department of Mathematics, University of Utah,

Salt Lake City, Utah, 1987.

[Loop 90] C. Loop, T. DeRose, �Generalized B-spline surfaces of arbitrary

topology�, Computer Graphics (ACM SIGGRAPH '90 proceed-

ings), pp. 347-356, Dallas, Texas, 1990.

[Loop 94] C. Loop, �Smooth spline surfaces over irregular meshes�, Com-

puter Graphics (ACM SIGGRAPH '94 proceedings), pp. 303-

310, Orlando, Florida, 1994.

[Lounsbery 92] M. Lounsbery, S. Mann, T. DeRose, �Parametric surface inter-

polation�, IEEE Computer Graphics and Applications, 12(5),

pp. 45�52, 1992.

[Maestri 96] G. Maestri, �Digital character animation�, New Riders, 1996.

[Nasri 91] A. H. Nasri, �Surface interpolation on irregular networks with

normal conditions�, Computer Aided Geometric Design, 8(1),

pp. 89�96, 1991.

[Piegl 97] L. Piegl, W. Tiller, �The NURBS Book �, Second Edition,

Springer, 1997.

[Rogers 89] D. F. Rogers, J. A. Adams, �Mathematical elements for com-

puter graphics�, Second Edition, McGraw-Hill, 1989.

[Softimage 96] Softimage, �The Softimagej3D Reference Guide�, Version 3.5,

Microsoft Corp., 1996.

[Softimage 96b] Softimage, �Working with Softimagej3D �, Version 3.5, Microsoft

Corp., 1996.

[Saaphire 96] Softimage, �The Saaphire Reference Guide�, Version 1.1, Mi-

crosoft Corp., 1996.

[Sheikh 97] H. S. Sheikh, R. H. Bartels, �Towards a generic editor for sub-

division surfaces�, Shape Modelling and Applications '97 pro-

ceedings, pp. 000�000, Aizu-Wakamatsu, Japan, 1997.

62

[Thomas 81] F. Thomas, O. Johnston, �The illusion of life: Disney anima-

tion�, Hyperion, 1981.

[Wong 95] D. Wong, D. R. Forsey, �Multiresolution surface Reconstruction

for hierarchical B-splines�, Technical Report TR-95-31, Depart-

ment of Computer Science, University of British Columbia, Van-

couver, British Columbia, 1995.

[Zorin 96] D. Zorin, P. Schröder, W. Sweldens, �Interpolating Subdivi-

sion for Meshes with Arbitrary Topology�, Computer Graphics

(ACM SIGGRAPH '96 proceedings), pp. 189-192, New Orleans,

Louisianna, 1996.

[Zorin 97] D. Zorin, P. Schröder, W. Sweldens, �Interactive Multiresolu-

tion Mesh Editing�, Computer Graphics (ACM SIGGRAPH '97

proceedings), pp. 259-268, Los Angeles, California, 1997.

63

Appendix A

Tutorial: using Hierarchical B-Splines

in Softimagej3D

This tutorial on using hsplines in Softimagej3D assumes that the reader is familiar

with the Softimage environment. All the functions used in this tutorial that are

not directly part of Softimagej3D will be described in detail, while you may refer to

[Softimage 96] for further information on Softimage functions.

Figure A.1 shows the Softimage display as it typically appears, with its tool-

bars and viewports. The hierarchical spline functions were all added to the Model

module, and are not accessible from the other Softimage modules.

Hierarchical splines are limited to the B-spline basis in the current imple-

mentation, and all hspline objects are in fact hierarchies (in the Softimage sense) of

B-spline patches. The level with the least amount of detail, referred to as level 0, is

at the top of the hierarchy. Regions with re�ned detail will be added to the hierarchy

as children of the patch they re�ne.

65

Figure A.1: The Softimagej3D Display

66

A.1 Creating an Hspline in Softimage

To add a hierarchical spline in the current scene, from the Model module select

Get!Primitive!Hspline+. The + symbol indicates that the selected item is a

plugin. The dialog box of �gure A.2 will appear.

Figure A.2: Create Hspline dialog box

This dialog box is divided in two

halves; the top half allows one to create a

simple surface of speci�ed topology: planar,

cylindrical or toroidal. The user can spec-

ify the number of knots in both u and v.

The cylinder is wrapped in v�at the current

time it is not possible to request a cylinder

wrapped in u.

The bottom half of the dialog box

allows one to import a hierarchical spline

surface from a .hs �le. It behaves in a sim-

ilar way to the Softimage �le dialog boxes,

and allows you to easily navigate directories

through quick access entries: Home, Root,

Original and Parent, with their usual meanings. A .hs �le is a �le stored in a

format that permits to transfer a collection of hspline surfaces across a wide range

of systems.

Files in the current directory are listed in �le box, and the current directory

may be changed either by navigating the �le box or by typing a new path in the

Directory box and using the Scan button to update the list of �les. Once a model

is selected, it will be imported in the current scene.

67

Figure A.3: Square hspline patch

For this tutorial, we will use the de-

fault surface: a square B-spline patch with

4 knots in both the u and v directions. The

patch appears in the scene, along the XZ-

plane. Note that the control vertices are

represented by black boxes, which, when

selected for manipulation (tagged) become

slightly larger. The patch at this point is

simply a B-spline patch, and it will respond

as expected to the Softimagej3D tools.

Figure A.4: The hspline hierarchy

As can be seen in �gure A.4, the hi-

erarchical view of the scene has the model

parented to a NULL. Note that the patch

is selected in the Softimage hierarchy, and

its ancestors and sibling are hidden. Plu-

gins that implement persistent e�ects need

to be represented by an icon, with associ-

ated geometry in the scene. This feature is

not useful for the hspline plugin, and the

icon for the plugin is simply a NULL. This

NULL is parented to another NULL which serves as the root of the hierarchy. The

main reason for things to be parented in this way is historical, and this might be

changed in the future.

68

A.2 Re�ning Hspline Surfaces

Figure A.5: Tagged CVs for re�ne-

ment

We are going to re�ne the patch we just

created, but �rst we need to tag the CVs

around which the re�nement is to hap-

pen. Refer to �gure A.5 where the 16

control vertices of the level 0 patch have

been tagged. The patch is re�ned by se-

lecting Edit!Hspline Re�ne+. Figure A.6

shows the new level that was created (called

level 1), along with its CVs. Note that

level 0 has been unselected (tags have been

removed on its CVs) and level 1 is now the

selected level in the hierarchy.

Figure A.6: Level 1 of the re�ned

square patch

There are now 25 CVs in�uencing

the surface, however each CV now in�u-

ences a region only half the size of that in-

�uenced by CVs on the parent level, in ac-

cordance with the mathematical description

of B-spline re�nement. This allows for �ner

control of the shape of the surface, and is

the primary reason why you would want to

re�ne a surface. We will discuss how to edit

the surface at di�erent levels of the hierar-

chy in the next section.

69

Figure A.7: A 2 level hierarchy

Figure A.7 shows the new level par-

ented to level 0. Note that there can be

more than one child to a level, when the

re�ned area cannot be represented with a

single B-spline patch. This is common in

advanced modelling situations, and is dis-

cussed at length in sections 3.3 and 3.6.2.

Although in these cases the spline hierarchy

is a complex tree, it easier to think in terms

of levels.

A.3 Editing Hspline Surfaces

Figure A.8: Editing the patch at

level 1

As can be seen in �gure A.8, all that is re-

quired to edit the hspline surface is to tag

the appropriate CV and move it. This is

identical to what would be done to edit CVs

from a regular B-spline patch. We will see

in section A.4 that there are constraints on

certain CVs which may prevent them from

moving. If you are using the surface in this

example, however, all CVs are movable at

this point. Note how the surface is a�ected

by the tagged CV.

70

Figure A.9: Re�ning the patch to

level 2

We are going to re�ne the surface

twice. Tag all the CVs at level 1 and re-

�ne the surface. If you look closely at �g-

ure A.9 you will notice that with the sur-

face deformed at level 1, the new re�ned

level follows the parent level exactly. The

surface is identical to that before the re�ne-

ment, with more control points. Make sure

you understand what happened in the hier-

archical view window before continuing with

this tutorial. Re�ne the surface once again,

to get a four level hierarchy (levels 0 through 3).

Figure A.10: Editing the patch at

level 3

We are now going to edit the sur-

face at level 3. Figure A.10 shows an ex-

ample of moving two such CVs. Note the

area a�ected by the CVs and compare it to

what we were moving at level 1 (�gure A.8).

You should still be able to see the surface

at level 1 in the viewport, but it should be

unselected. This makes it useful as a refer-

ence since you can easily see what the local

deformations are. The scene may become

cluttered quickly and we will see how to deal

with this at the end of this section.

71

Figure A.11: Selecting CVs at level 1

of a 4 level hierarchy

We can still edit the surface at

level 1. To do so, make sure that you are

in single selection mode and select level 1 in

the hierarchical view of your scene. Level 1

is the third node from the end of the chain�

two levels above the �nest level of detail (re-

fer to �gure A.11). Notice that level 3 is

now unselected in the di�erent viewports,

and its parent is highlighted. You should

still be able to distinguish the contribution

of each level to the complete surface.

Figure A.12: Selected CVs at level 1

The CV you manipulated earlier at

level 1 should still be tagged. Notice how

the whole surface is a�ected when it is

moved around. This is the only CV at

level 1 which allows us to easily observe the

changes to the surface, since the other ones

are o� towards the edges of the patch. You

will notice that the deformations at level 3

�follow� the changes. This is the feature of

hierarchical splines that you will �nd most

useful: surfaces may be edited at di�erent levels of resolution. After re�ning the

surface it is still possible to do broad modi�cations while manipulating very few

CVs.

72

Figure A.13: CV at level 1, moving up

Since the changes at level 1 do not

destroy the work done at level 3 you can

always go back and work on the surface at

that level later if you are not satis�ed with

it. It is not di�cult to understand what

is happening intuitively: if you refer to �g-

ure A.13 and A.14, you will notice that the

changes at level 3 happen relative to the sur-

face at level 2, wherever it may be. Level 2

(which we have not modi�ed) in turn follows

the changes in level 1. In practical terms this means that you never have to worry

about not being able to do broad level manipulations of the surface once detail has

been added to it, since the hierarchy is still there.

Figure A.14: CV at level 1, moving

down

This is the most powerful feature of

hierarchical splines and you should make

sure that you understand what the conse-

quences are on your modelling habits. We

will look at a real life example in the sec-

tion A.4. Even though the di�erent levels

all appear on top of one another, there is

nothing in the software to enforce that con-

straint. It may be useful to translate lev-

els so that they do not overlap for complex

models. This will reduce the clutter of hav-

ing everything superimposed on the screen, and might be of great help to the mod-

73

eller. Note that even when the levels are separated in space, they are still con-

nected and manipulations at one level a�ect lower levels in the hierarchy. You

can also hide some levels from view, by picking the level in question and selecting

Display!Hide!Toggle & Deselect Hidden. Even if a level is hidden it is still be

updated internally.

You should never manipulate the hierarchy of surfaces directly. Trying to

delete a level by playing with the hierarchy will not work, and the level will be

recreated as soon as the plugin notices that it is missing. Section A.6 will examine

some of the issues involved in simplifying an hspline and removing levels. If you

want to delete the hspline from the scene, you should delete the icon for the hspline

plugin, and all the patches will be properly removed from the scene.

A.4 Local Re�nement

Figure A.15: Head before local re�ne-

ment

This tutorial is going to tackle a more re-

alistic example. The challenge is to model

eyes on a human head. The head has been

modelled from a cylinder, with one end lo-

cated inside the mouth and the other at the

top of skull. So far, the cylinder has been

uniformly re�ned, so that every part of the

head has the same amount of detail (see �g-

ure A.15). There aren't enough controls in

the region where the eye is to appear, so we

will re�ne the surface locally in that region.

74

Figure A.16: Selected CVs for local re-

�nement

The goal is to avoid inserting rows

of CVs at the back of the head, as would be

required with regular spline surfaces using

knot insertion techniques. The region of the

eye is tagged, and we want to make sure that

we grab enough CVs to cover the region of

interest (�gure A.16). The area is re�ned

as usual, but since we only selected a subset

of the parent surface to re�ne, the re�ned

region is local to the eye. Figure A.17 shows

that there are more controls around the eye.

Figure A.17: Head with locally re�ned

patch

Since the new patch is a local re�ne-

ment of the parent surface, there are going

to be constraints on its CVs. The hspline

plugin always ensures that no cracks can ap-

pear between the two levels of the hierarchy.

When manipulating bicubic B-splines, this

requirement can be understood in the fol-

lowing simple manner: the only CVs that

can be manipulated are those that lie at

least 2 knots away from the patch edge in

every direction. This is a direct consequence

of the mathematical formulation of B-splines, and will be strictly enforced by the

plugin.

75

Figure A.18: Editing the new patch

There are a few cases where this may

look not to be true, and they should be

described for completeness. The original

spline surface in �gure A.3 did not have this

restriction (otherwise none of its CVs would

have been movable), since the edge of the

surface is part of its description. Once the

surface has been re�ned (�gure A.6), the

new level still in�uences the edges of the

original patch, and thus all its CVs are also

allowed to move. In most cases however, the locally re�ned patch will not be adjacent

to the edge of the level 0 patch, and the 2 knot rule will apply.

Figure A.19: New head, with locally

re�ned areas

With these restrictions in mind, the

new patch can modelled into an eye socket

(�gures A.18 and A.19). The eyeball can

be added later and should be ignored for

the rest of this tutorial. The back of the

eye socket does not need to realistically sur-

round the eyeball since it will be invisible

once rendered. Note how the parent surface

was hidden in �gure A.18, to avoid clutter-

ing the window. The isolated patch is much

easier to edit than with the rest of head

present, and we are guaranteed that the surface boundaries will perfectly match.

76

Figure A.20: Final head

The plugin does allow the user to

move the child patch away from the par-

ent by modifying the transformation matrix

associated with it, but you must remember

to move it back to the parent surface before

rendering, or the output will not meet your

expectations. Figure A.20 has the other eye

socket in place and is ready for more work.

Eyebrows should probably be re�ned from

our latest two patches.

If the shape of the head was to be modi�ed at level 0, to model a di�erent

character, all the work we have done on the eyes would still be there, although we'd

probably want to change the shape of the eye sockets slightly to avoid having many

characters with the same features.

A.5 Managing Tagged Points

The rules that govern which CVs are movable and which aren't will become a second

nature in almost no time, but there are cases where the surface has been heavily

modi�ed and the connectivity of the control mesh is hard to understand, as in

�gure A.22. Another possible source of confusion has to do with the con�guration

of patches. The movability of a CV is determined by the hspline representation and

not the Softimage patch hierarchy. A CV may be on the edge of a patch and still

be movable, if there is a patch with the same parameterization next to the CV. This

was illustrated in �gure 3.1.

77

Figure A.21: Untagged B-spline sur-

face

An auxiliary plugin has been pro-

vided which will tag all the movable CVs on

the currently selected surface. It is invoked

through Tags!Tag Movable+, and is often

used to help visualize how a surface has been

built. In a similar vein, the Tags!Untag

Fixed+ plugin untags CVs from the cur-

rently selected set, so that it contains only

movable CVs. This operation is often used

during modelling, since it allows the user to

make sure that the selected CVs will move.

Figure A.22: Movable CVs tagged

Figure A.22 shows the result of us-

ing the Tags!Tag Movable+ plugin on the

patch of �gure A.21. Finally it is possi-

ble to request that a level be moved back

to where the parent surface lies, by select-

ing Edit!Zero O�sets+. This is used when

trying to simplify a surface, or when trying

to undo some edits even after the package

has forgotten the edit history. This option

should be used with caution because subse-

quent unre�nes may remove those CVs, as described in the next section.

78

A.6 Unre�ning

Figure A.23: Before unre�nement

In order to discuss the steps involved in un-

re�ning a surface, we should go back to a

simple example, so that the e�ects of un-

re�nement may appear clearly. We are go-

ing to use the model from the �rst part of

this tutorial. Figure A.23 is identical to �g-

ure A.12, and �gure A.24 is a top view of

the same patches. We can see from these

�gures that all the levels of the hierarchy

are fully re�ned. One CV at level 1 and two

CVs at level 3 have non-zero o�sets, while the other ones remain unchanged. The

assumption is that the model can be simpli�ed through unre�ning, getting rid of

unnecessary CVs inside the hierarchy. This need arises when surfaces are re�ned

more than they need to be in the construction process, a fairly common mishap.

Figure A.24: Top view, before unre-

�nement

The mathematical restrictions de-

scribed in section A.4 force CVs on local

patches to be at the center of a 4 � 4 grid.

The CVs at level 3 re�ne CVs at level 2,

which must provide support for them, and

are thus submitted to those same restric-

tions. Let us now unre�ne the surface, by

selecting the Edit!Hspline Unre�ne+ aux-

iliary plugin. The result of this operation is

shown in �gure A.25, and we can see that

79

level 3 is now smaller than it was.

Figure A.25: Top view, after unre�ne-

ment

Each non-zero o�set CV is now at

the center of a 4�4 grid, and because these

touch they are part of the same patch at

level 3. The CVs that were not in use at

level 3 have been removed by the unre�ne

process, thus trimming the set of movable

CVs at that level. It is to be noted that

the current implementation of the unre�ne

plugin is not very user friendly, and all the

animation data associated with the model

before the operation is lost in the process.

A.7 Adding key bindings in Softimage

It is often practical to de�ne keyboard accelerators (Swift Keys) for some of the func-

tions described above. Re�ning the tagged area by selecting Edit!Hspline Re�ne+

is the prime example of a function that you may want to be able to invoke through

a keyboard accelerator.1

Follow the steps below to create a keyboard accelerator for surface re�nement:

� Select Preferences!Keyboard Setup!Learn

� Softimage is now waiting for you to choose a menu cell command that you

want associated with a keyboard accelerator. Select Edit!Hspline Re�ne+.

1More information on the topic can be found in [Softimage 96b].

80

� The Key Sequence Setup dialog box is now displayed. It represents your key-

board, and you can choose the accelerator by clicking on the appropriate keys

in the dialog box. Both `r' and `Shift+r' are already bound to the Refresh

Display command, so you may want to use `Ctrl+r' to avoid con�icts. It is

important not to rebind Softimage key bindings as people not used to your

setup and working at your station may hit `r' or `Shift+r' expecting to refresh

the display, but causing them to alter your model. Softimage allows you to

select either control key to be associated with your keyboard accelerator. You

should pick the one that you are most comfortable with, and stick with it.

� There may be other keyboard accelerators that you want to set up. They can

be created by repeating the above steps until you are satis�ed.

� Now select Preferences!Keyboard Setup!Save to save your new keyboard

setup to �le. If you want to have the accelerator present every time you run

Softimage, it is advised to save the �le in your home directory and give it the

name `.softimage-keys.sks'.

In general, you need to select Preferences!Keyboard Setup!Load in order

to load a new keyboard de�nition into the current Softimage session. It is possible

however to have Softimagej3D load your custom keyboard setup each time it is run

by modifying your .softimage �le. Ask your system administrator to change the

soft alias in that �le to look like this:

alias soft $SI_LOCATION/3D/bin/soft $SI_LOCATION/3D/rsrc n

-k $HOME/.softimage-keys.sks

81

