
- RASP -
R o b o t ic s a n d A n im at i o n S im u l at i o n P l at fo r m

by

Gene S. Lee

S.B. (Computer Science and Engineering)

Massachusettes Institute of Technology, 1989

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Masters of Science

in the Faculty of Graduate Studies

Department of Computer Science

We accept this thesis as conforming

to the required standard

: :

: :

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

January, 1994

c Gene S. Lee, 1994

In presenting this thesis in partial ful�lment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer-

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for �nancial gain shall not be allowed

without my written permission.

Department of Computer Science

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T 1Z1

Date:

Abstract

A basic problem associated with the development of new techniques in the �elds of computer

animation, robotics, and simulation is that many researchers utilize dissimilar constructs to

represent common structures. Attempts to combine various models into one coherent system

can often be painstakingly di�cult. This forces the users to expend valuable time re-inventing

previously written code.

To resolve this problem, this thesis presents the RASP (Robotic and Animation Simulation

Platform) toolkit - an extensible collection of primitives, functions, and essential abstractions

for the creation of reusable time-varying simulations. Based on object-oriented principles,

modern patterns of communications, and various simulation techniques, the toolkit de�nes a

common architecture and set of conventions for researchers to follow when developing simula-

tions. Through these building blocks, users will be able to borrow, without considerable need

for modi�cations, code segments and tools from previously developed RASP projects.

The RASP toolkit is highlighted by the following set of features: (a) IMVCD - a frame-

work for the construction of time-varying systems; (b) Connection Paradigm - a \port"-based

approach to data communication; (c) Hierarchical Temporal Modeling - a top down approach

to temporal management based upon multiple world views and �rst-class temporal primitives;

and (d) Hybrid Object Construction - a clear design for the development and visualization of

complex objects.

ii

Table of Contents

Abstract : ii

Table of Contents : iii

List of Tables : xi

List of Figures : xii

Acknowledgments : xv

Dedication : xvi

1 Introduction 1

1.1 Characteristics of Simulation Tools : 2

1.2 The Thesis : 4

1.3 Thesis Contributions : 6

1.4 Organization of the Thesis : 8

2 Graphics Toolkits 9

2.1 Survey of Graphics Toolkits : 10

2.1.1 DORE : 10

2.1.2 INVENTOR : 12

2.1.3 CONDOR : 12

2.1.4 GRAMS : 13

2.2 Summary : 14

3 Computer Animation Systems 17

3.1 Control Modes : 17

3.2 Motion Speci�cation : 18

3.2.1 ANIM8 : 18

iii

3.2.2 GRAMPS : 19

3.2.3 DIAL : 19

3.2.4 ASAS : 19

3.2.5 MIRA : 20

3.2.6 TWIXT : 20

3.2.7 AVENUE : 20

3.2.8 Fiume : 21

3.2.9 SOLAR : 21

3.2.10 CLOCKWORKS : 22

3.2.11 PINOCCHIO : 22

3.2.12 Zeleznik : 23

3.2.13 Kalra : 23

3.3 Summary : 24

4 Simulation 26

4.1 General Simulation Languages : 27

4.1.1 Scenario Languages : 28

4.1.2 Procedural Languages : 28

4.2 Simulation Environments : 29

4.2.1 SIMLAB : 30

4.2.2 INEFFABELLE : 30

4.2.3 WADE : 31

4.3 Object-Oriented Simulation Design : 32

4.3.1 DOSE : 33

4.3.2 PRISM : 33

4.3.3 DESAda : 34

4.4 Summary : 35

iv

5 Temporal Management 37

5.1 Temporal Advancement : 37

5.1.1 Classi�cation : 38

5.1.2 Discrete Time : 39

5.1.3 Discrete Event : 39

5.2 Discrete Event Strategies : 40

5.2.1 Event Scheduling : 41

5.2.2 Activity scanning : 44

5.2.3 Process interaction : 47

5.3 Processes Coordination : 51

5.3.1 Common Schemes : 54

5.3.2 LINDA : 54

5.3.3 MANIFOLD : 54

5.4 Summary : 56

6 RASP: The Design Goals 58

6.1 Simulation Framework : 58

6.1.1 Rules of Interaction : 58

6.1.2 Decomposability : 59

6.1.3 Communication Architecture : 59

6.2 Multiple Temporal Strategies : 59

6.3 Time and State : 60

6.3.1 De�nitional Uniformity : 60

6.3.2 Hierarchical Temporal Modeling Tools : 60

6.3.3 Temporal Granuality : 60

6.3.4 Minimal Kernel : 61

6.4 Geometric Model Construction : 62

6.4.1 Model Creation Methodology : 62

v

6.4.2 Rendering Supportive Architecture : 63

6.4.3 Complete Control : 63

7 RASP: The Framework 64

7.1 Patterns of Change : 64

7.2 The I-M-V-C-D Pentad : 66

7.3 Connection Paradigm : 68

7.3.1 Direct vs. Indirect Communication : 69

7.3.2 First-Class Links : 71

7.3.3 First-Class Interface : 72

7.3.4 Connections vs. Dataow : 74

7.4 IMVCD vs. MVC : 75

8 RASP: Discrete-Event Modeling 78

8.1 Multiple Interface Approach : 79

8.2 Activity Scanning Modeling : 79

8.2.1 First-Class Conditionals : 80

8.3 Process Modeling : 82

8.3.1 Process Requirements : 82

8.3.2 Process States : 83

8.3.3 Process De�nition : 83

8.4 RASP Process : 84

8.4.1 Process States : 85

8.4.2 Process Design : 86

8.4.3 Message Passing : 87

8.4.4 Bene�ts : 89

8.4.5 Coroutines : 90

8.4.6 Unresolved Issues : 91

vi

8.5 Informal Description : 91

9 RASP: Time and State 94

9.1 Time Representation : 95

9.1.1 Time Structure : 95

9.1.2 Central Clock : 95

9.2 Temporal management tools : 95

9.2.1 Events : 96

9.2.2 Event Activation : 97

9.2.3 Activities : 99

9.2.4 Processes : 100

9.2.5 Processions : 101

9.2.6 Hierarchical Structure : 102

9.3 RASP's Kernel : 102

10 RASP: Graphical Models 106

10.1 Model Creation : 107

10.1.1 The Hybrid Model : 109

10.1.2 \Feature" Ports : 112

10.2 Data-to-image translation : 112

10.2.1 Multiple Geometries, Primitives, and Renderers : : : : : : : : : : : : : : : 114

10.2.2 Image Creation : 116

11 Rasp: The Implementation 118

11.1 Class Design : 119

11.1.1 Member Function Classi�cation : 119

11.1.2 IdentifyInfo Class : 121

11.1.3 RogueWave Classes : 121

11.2 World Modeling : 122

vii

11.2.1 The Setting : 122

11.2.2 HybridModels : 123

11.2.3 Multiple Views : 125

11.3 Port Classes : 127

11.3.1 Inheritance Tree : 127

11.3.2 Point Class : 128

11.4 Temporal Tools : 130

11.4.1 Events : 130

11.4.2 Activities & Processions : 131

11.4.3 Examples : 132

11.5 Chronos : 138

11.6 Processes : 140

11.6.1 Abstract Class : 140

11.6.2 Process Ports : 143

11.6.3 Relationship with Activities : 144

11.6.4 Example : 145

11.7 Renderers : 148

11.8 Geometry : 150

11.9 Utility Classes : 150

12 Conclusion 152

12.1 Assessment of RASP : 153

12.1.1 Goals : 154

12.1.2 Discussion : 156

12.2 Future Work : 157

A Object Oriented Languages 160

A.1 De�nition : 160

viii

A.2 Class Hierarchies : 161

A.2.1 Inheritance : 161

A.2.2 Delegation : 162

A.3 Languages : 163

A.3.1 C++ : 163

A.3.2 SELF : 163

B Software Reusability 165

B.1 Reusability Technologies : 166

B.2 Object-Oriented Approach : 166

B.2.1 Abstract Data Type : 167

B.2.2 Type Parameterization : 168

B.2.3 Framework : 169

C Examples 170

C.1 Bouncing Ball : 171

C.1.1 Main : 171

C.1.2 Creating Windows & Cameras : 172

C.1.3 Creating Models : 174

C.1.4 Scripting Animation : 175

C.1.5 Collision Checker : 176

C.1.6 Images : 179

C.2 Two Processes : 182

C.2.1 Main : 182

C.2.2 Creating Windows, Cameras, Models : 182

C.2.3 Script Processes : 183

C.2.4 Process De�nitions : 185

ix

D RASP Class Library 189

D.1 Class Organization : 189

Bibliography 194

Glossary 201

x

List of Tables

5.1 Temporal Management Methodologies : 56

7.2 Member functions vs. Ports : 72

11.3 Primitive List : 148

12.4 Temporal Interval Relations : 158

A.5 Class Systems vs. SELF : 164

D.6 Environmental Classes : 189

D.7 Port Classes : 189

D.8 Temporal Tools Classes : 190

D.9 Geometric Classes : 190

D.10 User Interface Classes : 191

D.11 Rendering Classes : 191

D.12 Specialized Classes : 191

D.13 Utility Classes : 192

xi

List of Figures

5.1 Classi�cation of Time-Varying Simulations : 38

5.2 Next-Event Prototype Procedure : 43

5.3 Conditions List : 46

5.4 Activity Scanning Prototype Procedure : 47

5.5 Erroneous Activity : 48

5.6 Process De�nition : 50

5.7 Process Interaction Prototype Procedure : 52

6.1 Simulation Kernel Designs : 62

7.1 Explicit vs. Implicit Rule : 65

7.2 Internal vs. External Rule : 65

7.3 The IMVCD Framework : 67

7.4 Model with Informers : 67

7.5 From Model to Viewer to Image : 68

7.6 Direct vs. Indirect Communication : 69

7.7 Multiplex Connection : 70

7.8 Indirect Link Types : 71

7.9 Amalgamated Component : 73

7.10 Members vs. Ports : 74

7.11 MVC Framework : 75

8.1 First Class Conditional : 81

8.2 Synchronous Receive : 89

xii

8.3 Composite Process : 90

9.1 Breakdown of Temporal Tools : 96

9.2 Absolute vs. Relative Time : 98

9.3 Activity Event Partitions : 100

9.4 Variational Timing of Processions : 101

9.5 Simulation Hierarchy : 102

9.6 Object Kernel Design : 104

9.7 RASP Multiple Interface Kernel : 105

10.1 Display-list vs.Geometric Primitive : 108

10.2 Object-User vs. Object-Render : 109

10.3 Object \Ball" with three features : 109

10.4 Hybrid Model Inheritance Tree : 110

10.5 Complex Hybrid Object : 111

10.6 A model with its \feature" ports : 113

10.7 Renderer Object List Formation : 115

11.1 Port Hierarchy : 127

11.2 Event Hierarchy : 130

11.3 Activity Hierarchy : 132

11.4 Motion Paths : 133

11.5 Spline Path Events : 136

11.6 Renderer Hierarchy : 149

11.7 Window Hierarchy : 150

11.8 Geometry Hierarchy : 151

C.1 Frame at t = 10 : 179

C.2 Frame at t = 12 : 180

xiii

C.3 Frame at t = 30 : 180

C.4 Frame at t = 47 : 180

C.5 Frame at t = 75 : 181

C.6 Frame at t = 89 : 181

D.1 RASP Class Hierarchy : 193

xiv

Acknowledgments

My foremost thanks go to my supervisors, Dr. David Forsey and Dr. Dinesh Pai. If it were not

for their inspiration, support, and guidance, this project would never have been accomplished.

I appreciate the freedom they granted me to choose my own direction, to adjust continually my

time lines, and to take leave during the summer.

I would also like to thank the following list of people. Their valuable assistance and contribution

to the development of this thesis is greatly appreciated.

...My sister Gia Lee for spending her valuable time to proofread.

...Dr. Jack Snoeyink for supporting my research and for discussions on graduate school.

...Larry Palazzi for being my student reader (although he was no longer a student) and for his

help in the layout and formatting of this thesis.

...Pierre Poulin for x�g-diagrams, valuable discussions, and being a good friend.

...My friends at Apple Computer, Inc. for an extremely educational and exciting summer.

...Grace Wolkosky for �ghting to extend the deadline of my thesis until completion.

...Mandeep Dhami and Sameer Mulye for valuable discussions on system protocols, architec-

tures, and terminology.

...Donald Acton for discussions on co-routines and RAVEN.

...Bill Gates for potato chips, pizza money, and 7-11 Big Gulps.

...Larissa McWhinney and Olivier Tardi� for being good friends, providing help in assembling

my thoughts and supplying good quotation books.

Finally, I would like to thank my family. Their love and support has inspired me to excel and

dream.

xv

To

my parents,

sister,

and friends.

xvi

Chapter 1

Introduction

`Where shall I begin, please your Majesty?' he asked.

`Begin at the beginning' the King said, gravely,

`and go on till you come to the end: then stop.'

- Lewis Carroll, Alice's Adventures in Wonderland, Ch. 11

Computer simulation serves to reproduce or represent test conditions likely to occur in real

situations. In addition to supplying behavioral patterns, collections of statistics, and good

estimates, simulations prove important industrial tools. Due to their o�-line nature1 and their

ability to predict the behavior of the systems they emulate, simulations are used to reduce the

costs, hazards, and design schedules of real world applications. In certain instances, the value

of simulations actually exceeds that of natural observations, providing otherwise imperceptible

information such as the internal stresses within materials.

Productivity and the power of simulation can be greatly enhanced by reusing the compo-

nents of various simulations. However, the melding of two or more simulations into one coherent

application proves quite di�cult. For example, simulations based upon alternative methodolo-

gies of specifying changes to a system can be arduous to combine. Incompatible designs force

users to redesign the plans of their original simulations before the simulations can be combined.

Apart from prolonging the length of time it takes to construct a simulation, the redesign process

can introduce errors not established in the original designs.

There are three principal features in an ideal reusable simulation environment. First, it

should have the ability to incorporate algorithms, elements, and interfaces from other simulation

designs. Users should not need to design new models from scratch every time a new objective

is encountered. Second, it should be quickly modi�able. Extensive re-modeling to provide

elementary changes defeats the purpose of reusability. Third, the domain of the simulation

1O�-line development does not require the actual objects being studied to be used during the simulation

process.

1

Chapter 1: Introduction 2

should not be limited in scope. This does not imply that every possible feature of every

simulation should be enforced in one design. Rather, it should be possible to modify the

simulation to imitate a large set of multifarious functions and behaviors.

Most attempts to create reusable simulation environments fail to satisfy one or more of

the above criteria. The majority of approaches to simulation are too specialized and often too

complicated to extend. This leads to tools unusable for future research. For graphical systems,

this can mean unavoidable revisions of the entire modeling environment. Reusable simulations

should not constrain the user's ability to incorporate other models into already existing ones.

Attempting to create a completely reusable set of tools for a wide variety of simulations is an

enormous task. An all-purpose toolkit would require the development of many new ideas and

concepts concerning the theory of modeling and simulation. A smaller task, yet still of great size,

is the development of a reusable library for the creation of computer animations and robotics

applications. The necessity for such a set of building blocks is sensed in both the academic and

production community. A common development base would encourage researchers from a wide

variety of disciplines to share their workspace, thereby, enhancing each other's facilities.

1 .1 C h a r a c t e r i s t i c s o f S im u la t io n T o o l s

The task of creating reusable tools for the development of computer simulations is not an

unfamiliar endeavor. The literature abounds with research papers written by simulationists

delineating the features of numerous simulation libraries, languages, and systems. The major

trait that distinguishes one approach from another is the extent to which each tool imposes

on the design and structure of simulations. Basic tools, such as simulation libraries, provide

users with collections of components and functions. Free to use these tools in the manner that

be�ts them the best, users are not restricted to construct simulations that adhere to a general

design. Although this freedom promotes the general use of these types of tools, it severely

limits the ability of users to reuse the components from multiple simulations. Models which

adhere to di�ering modeling conventions are often di�cult to interchange and rede�ne. Inter-

mediate tools, such as simulation languages, provide users with sets of high-level expressions.

Chapter 1: Introduction 3

Users assemble expressions into meaningful phrases to de�ne the components and dynamic in-

teractions of a simulation. Language grammars de�ne the rules for simulation construction.

However, rules are usually limited to tools usage, not simulation design. Modeling precepts are

not supplied that de�ne a general framework for simulation development. Advanced tools, such

as simulation systems, provide users with a complete simulation modeling environment. Users

are supplied with sets of components, functions, high-level expressions, and simulation design

rules that conform to a general plan. This plan promotes the creation of simulations with high

reuse potential. Although these types of tools are powerful, their strengths contribute to their

weaknesses. The modeling environments formed by these tools are usually di�cult to extend

and modify. In some cases, the architecture of the modeling environment is unalterable. This

limitation restricts the number and variety of simulations which can be constructed with these

types of tools.

Simulation tools can also be distinguished by three additional characteristic traits. First,

they can be characterized by the \projected range" of applications they wish to accommodate.

Some tools attempt to serve a wide variety of applications while others cater to the needs of a

select few. Second, the tools can be described by the \level of abstraction" of its components.

Advanced tools usually enable users to construct from a high-level of abstraction while interme-

diate and basic tools force users to construct from lower levels of abstraction. Third, simulation

tools can be characterized by their \design focus". Distinct sets of tools that attempt to solve

similar problems do not always provide users with exactly the same collections of components

and abstractions. Some tools will focus their designs on certain elements of a simulation while

others will focus their designs on alternative elements. A tool's focus is dependent upon the

requirements of the audience it serves.

The composition of a set of simulation tools is directly a�ected by the projected range

of applications it attempts to model. Tools intended to model a gamut of applications are

generally composed of sets of generic components and functions. They provide users with a

minimal amount of support to create a wide variety of scenarios. Components and functions are

developed to meet the demands of a broad range of users' objectives. Tools intended to model

a small range of applications provide users with specialized components. For instance, tools

Chapter 1: Introduction 4

generated from the computer animation community are typically very speci�c in nature. Most

collections are usually utilized to attack only a subset of problems, such as object modeling,

motion speci�cation, and image synthesis, encountered in the �eld of graphics.

The model speci�cation technique, such as entity construction methods[35, 83, 66], environ-

mental planning procedures[55, 17, 3], and protocols of temporal control[70, 27, 6, 40], employed

by a set of simulation tools dictates the level of abstraction and de�ne the methodology used

by users to describe their simulations. These techniques are classi�ed as programming-based

or scripting-based. Programming-based techniques provide users with collections of data struc-

tures and data types and an enormous amount of control. However, it requires users to develop

simulations from an extremely low-level of abstraction and to possess pro�cient knowledge of

programming techniques to accurately express their designs. Scripting-based techniques pro-

vide users with special expressions, grammars, and interpreters. Adhering to the grammars,

users organize expressions into meaningful phrases for interpreters to transform into low-level

descriptions. Although these techniques empower users to de�ne simulations from a high level

of abstraction, they limit users from making detailed modi�cations to their simulations.

The design focus of a set of simulation tools is governed by the needs of its group of users.

Distinct groups, possessing dissimilar design goals and attempting to solve analogous problems,

generally emphasize the advancement of di�erent aspects of the simulation modeling process.

For instance, the drive to alter the attributes of geometrical �gures over time has introduced a

variety of animation and robotics systems. Animation systems tend to stress the development

of constructs for user-scripted changes while robotics systems stress the importance of de�ning

relationships between physical bodies and applying control algorithms to them. In turn, neither

of these two approaches address the creation of general transitional structures, the foundation

of many simulation languages, that serve to de�ne, organize, and execute the passage of model

variables from state to state.

1 .2 T h e T h e s i s

In the past two decades, the �eld of computer science has witnessed an enormous growth in the

variety of projects studied by researchers. A general problem associated with an outgrowth of

Chapter 1: Introduction 5

new ideas is the di�culty of combining the bene�ts of several research �elds into one coherent

design. For example, recent trends in robotics research[36] has seen the need to visualize and

plan the actions of robotic elements in a complex environment. Although computer animation

systems have addressed the problem of placing automated �gures in con�gurable workspaces

for some time, few constructs from the �eld of computer animation have been incorporated

into robotics research. The lack of a prevailing set of tools to create time-varying simulations

limits users from borrowing components and structures from simulations outside their domain.

However, this problem is not limited to users across multiple disciplines. Great hardships are

even experienced by users who attempt to merge the designs of various simulations within their

respective �elds. Simulations which share similar goals are not always easily united. It is often

di�cult to reconcile the di�erences between equivalent simulation components represented by

dissimilar structures.

The failure of simulation tools to gain widespread acceptance is attributed to the absence

of �rm theories and general principles concerning software reusability. The lack of a clear un-

derstanding of reusability has festered a general mood of apprehension and dread toward the

usage of reusable tools[5, 38]. The lack of �rm tradeo�s between generality and specialization

exacerbates users' tendencies to neglect the usage of simulation tools. Users experience frustra-

tion when their tools are too speci�c or too vague. Explicit guidelines and de�nite structures

limit a tool's total applicability while obscure rules of usage and ambiguous structures limit a

tool's purpose.

This thesis aims to present the computer graphics, robotics, and simulation community

with a set of tools for the development of time-varying simulations. The research presented

here synthesizes knowledge from each of these �elds to determine the appropriate abstractions

and integrates the results with existing reusable technologies. Through this careful examina-

tion, a collection of building blocks and abstractions are constructed to provide programmers,

animators, and researchers with a foundation for application development. The toolkit's design

especially attempts to provide users with a non-constraining environment that readily supports

their particular designs and enables them to borrow ideas and segments of code from previously

developed applications. Extensible data structures, modern patterns of communications, and

Chapter 1: Introduction 6

variable modes of control help to facilitate the design of new concepts and algorithms.

1 .3 T h e s i s C o n t r i b u t io n s

This thesis presents RASP (Robotics and Animation Simulation Platform), an object-oriented

collection of primitives and abstractions for the development of time-varying simulations. Pro-

viding research scientists with a common platform to construct, manipulate, and visualize

their temporally-based applications, RASP's reusability results from its employment of object-

oriented strategies, hierarchical schemes, and extensible designs. One may envisage RASP as

providing the role UNIX2 has with respect to general application programming. While UNIX

provides users with a consistent interface to peripheral devices, �le systems, and multi-language

support, RASP provides users with a clear framework for the development and visualization of

complex objects, an extensible approach to simulation modeling, and a simple scripting con-

vention to manipulate temporal data. The RASP toolkit is highlighted by the following set of

features.

Uniform Terminology

The RASP toolkit's terminology derives from the literature related to the development of

a toolkit for time-varying simulations. These terms reect the various types of simulation

techniques from di�erent �elds which inform the overall design of the RASP toolkit. The

creation of a uniform set of tools enhances both RASP's exibility and reusability in a large

variety of modeling simulations.

I-M-V-C-D Framework

Serving as a framework for time-varying systems, IMVCD (Informer-Model-Viewer-Controller-

Delegator) informally de�nes the divisions and rules of interaction between the various elements

of a RASP constructed application. Inuenced by the concepts from the MVC user-interface

modeling paradigm[45], this object-oriented framework provides users with a relatively simple

modeling pattern for the development of reusable applications. Simulations devised from this

2UNIX is a registered trademark of AT&T

Chapter 1: Introduction 7

reference model enhance their ability to be examined, understood, and modi�ed by future users.

It strengthens their potential for reusability.

Connection Paradigm

The means of data communication within a simulation system a�ects the way information

is transferred between the individual elements of a simulation. Patterns of communication

that embed their rules of interaction in solitary structures promote unnecessarily the design of

overly complex models. Concentrated patterns enforce interacting components to accommo-

date additional constructs and plans towards the maintenance and formation of data links. A

superior plan apportions the duties and responsibilities across a number of modeling elements.

The RASP toolkit employs a distributed3 pattern of communication based on the connection

paradigm[55]. Using unidirectional data ports and active data links, informational pathways are

maintained and constructed by elements not directly inuenced by the data transferal process.

External elements ensure the transportation of information between the ports of compatible

models. Models are constructed to react to events raised on their ports, not to establish data

links. They are never involved in the data transferal process and are always oblivious to the

identity of the partners to which they exchange information. Apart from reducing the complex-

ity of models, this design enhances the development of reusable components and strategies.

Hierarchical Temporal Modeling

The behavior of a time-varying simulation is determined by the nature of its user-de�ned state

changes and the techniques employed to regulate the progression of time. A simulation can not

express or imitate behaviors that are not explicitly or implicitly de�ned in its model speci�-

cations. Hence, a simulation's validity is compromised if it is not possible for users to specify

speci�c temporally-dependent state changes. In RASP, simulation developers express time-

based state changes with the assistance of a collection of temporal modeling tools. Conforming

to the prescribed rules of the connection paradigm, these temporal primitives enable users to

3In this context, the keyword \distributed" is not be identi�ed with distributed system or parallel

architectures.

Chapter 1: Introduction 8

specify the starting times, durations, and granularities of state altering actions. A clear rela-

tionship between time and state is generated from the natural hierarchical arrangement of these

temporal building blocks. In addition, the temporal primitives o�er users the ability to incorpo-

rate multiple temporal progression techniques or world views into one simulation model. This

multiple interface approach towards simulation modeling permits users to select the technique

that provides the most exibility to their modeling needs.

Hybrid Model Construction

In simulation modeling, the intrinsic design of the elements in a system imposes a strict set of

constraints on the transmission of information \to" and \from" the models they describe. An

model's internal architecture de�nes how data is stored and accessed by other system compo-

nents. In RASP, an model's internal organization is governed by its \feature" ports. Adhering

to the connection paradigm, these special ports encourage the delegation of model responsibili-

ties and the hierarchical organization of information. Deemed as a hybrid model, this approach

fosters the construction of odels which responds to messages and an architecture which supports

rendering operations.

1 .4 O r g a n iz at io n o f th e T h e s i s

This thesis consists of four parts. The �rst part, chapters 1 to 5, previews the motivation

towards and background concepts of the creation of a toolkit for the development of time-

varying simulations. Discussion encompasses previous work in computer graphics toolkit de-

sign, computer animation system development, simulation designs, and temporal manipulation

techniques. Part two, chapters 6 to 10, de�nes the design features of the RASP toolkit. While

chapters 6 and 8 present design goals, the IMVCD framework, the connection paradigm, and

the multiple interface approach to discrete-event modeling, chapters 9 and 10 elucidate the

relationship between time and state, and outline the hybrid model construction methodology.

The third part, chapters 11, discusses the details of the toolkit's implementation. The �nal

part, comprised of the conclusion and appendices, provides an analysis of the toolkit's design

and implementation, suggests possible future modi�cations and enhancements.

Chapter 2

Graphics Toolkits

Give us the tools, and we will �nish the job.

- Sir Winston Leonard Spencer Churchill, 9 Feb 1941

Computer graphics toolkits provide users with a basic set of tools and de�nitions for the

creation and manipulation of three-dimensional geometric models. In addition, they provide

users with the ability to share resources, to build device-independent interfaces to multiple

platforms, and to export standard database meta�les.1

The �rst standard in three-dimensional graphics was called 3D Core Graphics System[28].

Intended as a baseline speci�cation in computer graphics, this standard lead to the develop-

ment of several graphics packages, such as GKS-3D[35] (the Graphical Kernel System) and

PHIGS+[89] (Programmer's Hierarchical Interactive Graphics System). Each standard de�ned

a set of methods and structures for the modeling and displaying of three-dimensional data.

The primary emphasis of these two graphics packages was the construction of geometric mod-

els. Utilizing a display list architecture, users associated physical and user-de�ned attributes

with geometric primitives to de�ne and render computer-generated images. Apart from a min-

imalistic set of dynamic features, such as scaling, rotation, and translation, there were no

mechanisms for the speci�cation of general dynamic movements. Graphics researchers were

forced to de�ne their own mechanisms for the speci�cation of physical movement.

The introduction of faster hardware, improved programming models and languages, and

the demand for higher levels of abstraction spurred the construction of larger toolkits with

greater capabilities. Enhanced features included paradigms for direct manipulation, object-

based construction and modeling, and improved modularity of toolkit components.

1Meta�les are data �les containing collections of low-level device-independent descriptions. Although they

are usually large in size, they provide users with a standard method to describe a picture or scene.

9

Chapter 2: Graphics Toolkits 10

The remainder of this chapter describes and analyzes several of the latest developments in

computer graphics toolkit design. Readers already familiar with these packages may jump to

this chapter's summary without loss of continuity.

2 .1 S u rv e y o f G r a p h i c s T o o lk i t s

2.1.1 DORE

DORE[46], developed by Kubota Paci�c Computer, is a semi-object-oriented photo-realistic

three-dimensional graphics library. It supports various geometric primitives, surface property

tools, scene manipulation elements, numerous rendering representations, and a wide variety of

graphics database editing functions.

Written in C and FORTRAN, DORE places an object-oriented framework on top of the

display list approach of traditional 3D graphics systems. Sequences of drawing commands,

which are sequentially parsed to alter the state of the rendering environment, are encapsulated

into objects. Although these objects can not be treated as �rst-class items, this representation

scheme signi�cantly improves the display list approach to computer graphics development.

DORE supports three types of objects:

� primitives: These objects represent the basic set of geometric shapes supported by

DORE. Users may de�ne additional primitives if the pre-de�ned basic set does not match

their geometrical or behavioral needs. All new primitives must de�ne private variables,

identi�cation and initialization routines, and a basic set of editing and querying opera-

tions. In addition, since all DORE renderers do not render the same set of primitives,

it is the responsibility of the user to empower the new primitive to decompose itself into

alternate representations.

� primitive attributes: The appearance of geometric primitives is e�ected by these types

of objects. They e�ect the display representation, material properties, and shading style

of primitive objects.

Chapter 2: Graphics Toolkits 11

� geometric transformations: These objects a�ect the shape and position of 3D shapes.

E�ects such as scale, translate, rotate, and shear are de�ned by these objects.

DORE utilizes reference counts to administer the process of garage collection. Each object

has a reference count that is incremented by one every time it is added to an organizational

object. Similarly, object reference counts are decreased by one as they are removed from

organizational objects. Once an object's reference count reaches zero, it is removed from the

system. The memory deallocation2 process is overridden by locking objects. This forces the

system to retain the locked object in main memory until its reference equals zero whereupon it

is unlocked and deallocated.

In DORE, a group is an ordered listed of object handles. Groups contain references to

primitive objects, primitive attribute objects, geometric transformation objects, labels, and

other groups. The position of elements within a group is important. Only elements with higher

precedence (lower list index) in the ordered list e�ect those in the remainder of the list. An

object's appearance is not a�ected by attribute references possessing lower precedence.

A group references another group in one of two manners: as a subroutine or as a macro.

In the subroutine case, the referenced group's attributes can not a�ect the appearance of the

parent group. In the macro (in-line) case, a child group's attributes produces display changes

in the objects of its parent group. In-line groups are often utilized to rapidly change dynamic

attribute values.

Callback objects invert execution of the DORE database. When activated, these objects pass

user speci�c data to user-written functions. Callback objects initiate three special functions

during their active lifetimes: force re-execution of the current database method, terminate

execution of the database traversal process, or prune the current execution path.

2Deallocation is the opposite operation to allocation. Allocated memory is freed by deallocation procedures.

Chapter 2: Graphics Toolkits 12

2.1.2 INVENTOR

INVENTOR[83] is an object-oriented toolkit for 3D graphics applications. Heavily relying on

SGI's GL graphics library3, this toolkit enables users to created interactive programs. Uncom-

mon to previous 3D libraries, INVENTOR supports the direct manipulation (picking) of 3D

objects and regards objects as geometric, physical entities.

The scene database is the foundation of the INVENTOR toolkit. The dynamic represen-

tation of scenes are stored as a composition of objects, called nodes, in a hierarchical graph

structure. Each node in a graph represents a geometrical shape, physical property, database

traversal behavior, or composite group. The group nodes de�ne the framework and method of

interpretation for each graph. Individual nodes are connected as they associate with groups.

The type of group node de�nes how children are traversed and how properties are inherited.

Some group nodes have the ability to cache the traversal state, while others dynamically prune

the tree traversal path.

INVENTOR's database provides a set of basic actions that are applied to entire scenes or

segments of scenes. Fundamental operations, such as rendering, picking, calculating bounding

boxes, event handling, and scene storing, are de�ned as action objects. Encapsulating actions

into objects enables users to de�ne new database traversal tasks.

In addition to the basic set of actions, the toolkit supports sensors and callbacks. Sensors

are special objects that enable users to build simple animations. They are utilized to detect

changes in groups of nodes or to continuously trigger changes to the scene database. Callback

objects are de�ned to invoke user-de�ned functions. These nodes enable users to create their

own application-speci�c mechanisms.

2.1.3 CONDOR

CONDOR (Constraints Dynamics Objects and Relationships)[41], written by Micheal Kass

of Apple Computer, Inc., is an interactive dataow programming environment for computer

graphics. Most properly viewed as a next-generation math compiler, it supports constraints,

3GL is a registered trademark of Silicon Graphics, Inc.

Chapter 2: Graphics Toolkits 13

dynamics, and various other computational models. Every CONDOR dataow element per-

forms derivative evaluation and interval arithmetic. Utilizing an interactive graphics interface,

users compose new functions by linking vector (or scalar) inputs to vector (or scalar) outputs.

An e�cient C++ \generating" compiler and a special set of optimization operations enhance

system performance by producing e�cient C++ code segments.

CONDOR relies on the dynamic composition of compiled functions to con�gure quickly

complex systems. As users form links between data ports, the environment associates e�ciently

compiled modules together. Error-free functional units are generated by CONDOR's compiler.

Written in Lisp, the compiler utilizes the Mathematica symbolic math package to generate

streamlined C++ code. It is important to note that only C++ code is called during application

run-time. The Lisp compiler and Mathematica package are utilized only to generate C++

code. Essentially, the CONDOR expression tree evaluation process consists of a series of calls

to compiled functions.

2.1.4 GRAMS

GRAMS[18], developed by Parris Egbert of the University of Illinois, is an object-oriented

system for 3D computer graphics applications. Using a multi-layer paradigm, this system

separates the modeling and rendering aspects of traditional graphics systems into separate

entities. This approach to graphical support allows users to de�ne applications at high levels

of abstraction. The extendibility of this model is attributed to its object-oriented design and

structured scheme to the image synthesis process.

The three main components in GRAMS are the application, graphics, and rendering lay-

ers. Each layer is responsible for a separate phase of the image generation and application

development process.

� Application: All user's applications reside in this layer. This layer separates the appli-

cation architecture from the graphics sub-system. Application data may be stored and

manipulated by each program in any form that is most convenient. At image genera-

tion time, vital rendering data, such as object coordinate transformations, materials, and

geometries, are extracted from this level and passed to the graphics layer.

Chapter 2: Graphics Toolkits 14

� Graphics: This layer performs as an intermediary between the Application and Ren-

dering layers. It is responsible for transforming the high-level data objects from the

application layer into a suitable format for the rendering layer. This process is handled

by well-de�ned paths of communication and an internal translation mechanism.

� Rendering: The actual rendering process is performed at this level. Given information

from the Graphics layer, this layer generates a static image. It is important to note that

this layer de�nes the type of information that will be accepted from the Graphics layer.

The format and quantity of information may vary from application to application.

GRAMS' greatest contribution to the design of an extensible graphic toolkit is the concept

of independent construction. Allowing users to focus attention on separate aspects of the

application design process enables them to build a variety of 3D programs. Useful ideas, such

as the independent construction of renderers and geometric objects, are valuable concepts to

the development of reusable components.

2 .2 S u m m a ry

This chapter has presented a brief summary of a variety of three-dimensional computer graphics

toolkits. Each toolkit provides users with a set of constructs to associate information with

geometric models and to manipulate their physical structures. Toolkits di�er in the manner they

store, interpret, and access a model's information. Some toolkits emphasize the interaction of

the geometric models with their users and the simulation environments while others emphasize

the interaction of the models with toolkit image renderers.

A careful review of computer graphics toolkits permits the creation of a general feature list.

� scenario modeling tools: Basic operations are provided to facilitate the development of

the simulation environment. The global behavior and organization of models are regulated

by these tools.

� geometric primitives: A common set of geometric objects, such as spheres, cylinders,

cones, etc., is de�ned for user-convenience. Primitives serve as building blocks for physical

design.

Chapter 2: Graphics Toolkits 15

� geometric composition: The hierarchical or at4 construction of geometric primitives

enhances users's abilities to build complex geometric entities. Complex geometries are

formed using a variety of composition techniques.

� transformations: Associating transformation, such as rotation, translation, scaling, etc.,

with primitives enables users to alter the shape and position of their models, lights,

and cameras. Transformations are linked with temporal information to de�ne simple

animations.

� geometric attributes: Attribute techniques allow users to fasten physical properties

and application dependent information to geometric primitives and user-created objects.

� camera primitives: Camera types allow users to alter the viewing con�guration of image

without manipulating the attributes of an image renderer. Viewing parameters, such as

�eld of view, aspect ratio, and point of view, are controlled by these tools.

� illumination primitives: A basic set of illumination devices, such as directional lights,

spot lights, point lights, and area lights, is de�ned for user-convenience.

� direct manipulation: Direct support of user interface events provides users with simple

methods to perform picking and highlighting operations.

� callbacks & sensors: The placement of user-de�ned routines into toolkit structures

facilitates the construction of complex applications. Callbacks enable users to invoke user-

dependent operations while sensors enable users to test the values of speci�c variables.

� object-oriented design: The incorporation of object-oriented principles in graphic li-

braries enhances the coherency of toolkit constructs, improves the reusability of the pack-

age, and assists in the design of independent components.

Although the strength of a toolkit can be documented by its features, a toolkit should also

be assessed by its extensibility. Supporting user-de�ned structures and components enhances

4A at composition of multiple objects places every entity on common ground. No object has precedence or

advantage over another.

Chapter 2: Graphics Toolkits 16

the usability of a package. A well-planned extension process must be de�ned if new constructs

are to be added to any system. If a well-de�ned set of rules is not established, the extension

process will meaninglessly clutter the contents of any toolkit.

Chapter 3

Computer Animation Systems

For tribal man space was the uncontrollable mystery.

For technological man it is time that occupies the same role.

- Marshall McLuhan, The Mechanical Bride, \Magic that Changes mood"

Animation is generated from the rapid display of images. The slight alteration of successive

images imparts the illusion of motion. A computer animation system aims to provide users

with powerful, but easy to use, mechanisms to coordinate the motion of animated objects.

The strength of an animation system can be partially judged by its ability to separate its

internal control constructs from its user interface. An unencumbering interface allows users

to concentrate on the design of sequences of animation without interacting with the low-level

system architecture.

3 .1 C o n t r o l M o d e s

Three-dimensional animation systems can be classi�ed according to the methods they use to

describe the behavior of animated objects[100]. The three primary methods or control modes are

labeled as guiding, animator level, and task-level. In a guiding system, the motion of animated

objects must be de�ned explicitly. Guiding systems, such as BBOP[82]and TWIXT[27], require

users to specify the details of motion. In an animator-level system, users are allowed to specify

the behavior of objects algorithmically. Typical animator-level systems, such as GRAMPS[62],

ASAS[72], and MIRA[52], support adaptive motion and abstraction. In a task-level system,

the animation of objects is described in terms of events and relationships. For example, in

Zeltzer's knowledge-based animation system[99], animation is speci�ed using broad outlines of

movements.

17

Chapter 3: Computer Animation Systems 18

3 .2 M o t i o n S p e c i f i c at i o n

Every animation system employs a methodology to specify motion. The simplest of these

techniques, key-framing, emulates the steps used in traditional hand drawn animation. Users

specify the values of particular variables at key points in time while the computer �lls the

temporal gaps with intermediate values. Although very powerful, this technique requires users

to manipulate an extraordinary large number of variables. For complex sequences of animation,

key-framing is arduous and unwieldy.1

In the most advanced computer animation systems, motion is speci�ed with a scripting

language. Containing many special mechanisms for animation, a scripting language provides

users with a notation to describe the dynamic changes in sequences of animation. Essentially,

a layer of abstraction is created between users and the intricate detailing of the parameters of

motion. A number of dissimilar approaches have been developed which attempt to simplify

the complexity of this abstraction and yet still maintain a powerful scripting system. These

include new animation languages[19, 72, 11, 98], extensions to existing programming languages

(by adding constructs for graphics and animation)[52, 40], and object-oriented designs[21, 25].

The remainder of this chapter discusses the design of several computer animation systems

developed in academic environments.2 Emphasis is placed on the methodology used to specify

motion and temporal progression. The systems are presented in chronological order to elucidate

the relative changes appearing in animation research during the last two decades.3 Readers

already familiar with the design of these systems may jump to this chapter's summary without

loss of continuity.

3.2.1 ANIM8

ANIM8[93] (designed as an education tool) utilizes a block diagram notation very similar to a

data ow graph. The exible block diagram syntax facilitates the interpretation of data paths

1Although quite burdensome, key-framing systems prove extremely popular in the consumer �eld of animation.
Most non-key-framing animation systems have not reached a state for general use by the public.

2The general lack of literature about \production" systems precludes their discussion in this chapter
3Subsection titles refer to the names of systems being described. However, when a system name is unknown,

the author's name has been used as a surrogate title.

Chapter 3: Computer Animation Systems 19

for animation. It supports three ways to specify motion: algorithmic descriptions, tabular

descriptions, and real-time data.

3.2.2 GRAMPS

GRAMPS[62] (developed at the National Resource for Computation in Chemistry, Berkeley

Laboratory) utilizes framed object data types and delayed update functions to produce anima-

tion. The framed objects permit dynamic variations of an object's coordinate data, while the

delayed update functions provide for the variations to the transformations.

3.2.3 DIAL

DIAL[19] (developed at Brown University) utilizes an action speci�cation scheme very similar

to musical notation. Each line of a stave describes when actions are to occur and how long

they will last. DIAL notation is separated into two distinct parts: the de�nitions and the

execution lines. In the de�nition phase, particular actions are assigned to animated objects.

Execution lines formalize the length and time of occurrences of these actions. The DIAL system

is actually only a pre-processor. It functions to convert all of its notation into event de�nitions,

event executions, and timing actions.

3.2.4 ASAS

ASAS[72] (developed at the Architecture Machine Group at MIT) is an object-oriented system

that utilizes several types of objects to produce animation sequences:

� Actors are the main driving forces behind the ASAS system. One may think of an Actor

as \an independent computing process in a non-hierarchical system with synchronized

activation and able to communicate with other actors by message passing."[72]. Actors

can be initialized, activated, or terminated by scripts, themselves, or other actors. Unlike

previous scripting systems, ASAS Actors can be de�ned to respond to external state

changes. This enables users to describe an Actor's behavior in terms of its relationship

with its environment.

Chapter 3: Computer Animation Systems 20

� Newtons represent animated numbers. Their values are automatically updated every time

step according to a prede�ned sequence (chain of cubic piecewise continuous curves).

3.2.5 MIRA

MIRA[52] (developed at the University of Montreal) is a procedural based system utilizing the

concept of language extensions. With regards to scripting, MIRA's extended language supports

animated basic types and actors. Programmers describe how the traits of many standard types,

such as integers, oats, and vectors, vary with time. They can de�ne the starting and ending

times, the starting and ending values, and the evolutionary law[53] or function that governs

each basic type's value. An actor data type is a time constrained abstract graphical type. It is

only valid within a speci�c interval of time. An actor is constructed from a time range and a

graphical representation.

3.2.6 TWIXT

TWIXT[27] (developed at Ohio State University) is a multi-track event driven animation sys-

tem. Events on every track (stored as events lists) indicate the transitional behavior of display

parameters. At each frame, the system evaluates the activity of every track of every object.

Higher levels of functionality are provided through transformations, such as coping, shifting,

and scaling, on individual tracks.

3.2.7 AVENUE

AVENUE[17] (developed in Japan) is a rule-based motion system that generates animation

automatically based on environmental information and user-speci�ed criterion. Utilizing an

implicit representation, animation is presented as a collection of events. Each event refers to

the changes in objects and their environments with respect to place and time. Special events

called rules enable users to specify prescribed guides for conduct or action. Every event (and

rule) is represented by the following tuple < L;R; (x1;x2;x3; : : : ;xn);F >, where L is a time-

space location, R is n-array relation (logical expressions), xi's are individuals, and F is a boolean

ag indicating whether the event is to be labeled as \true" or \false".

Chapter 3: Computer Animation Systems 21

The system generates motion data from the analysis of events and rules. At each point in

time, the system selects an appropriate rule (from a rule set) and determines its validity. If

valid, the rule is applied and if necessary, new events or rules are created. The system repeats

itself until all rules (or events) are exhausted.

3.2.8 Fiume

Fiume[21] (when at the University of Geneva) created an object-oriented language for express-

ing the temporal co-ordination of animated objects. Every expression denotes a temporal

relationship between instances of animated objects. Temporal operators allow users to specify

the chronological sequencing, repetition, asynchronous and nondeterministic execution, temporal

overlap, conditional triggering and simultaneous activation and termination of multiple objects.

Operators also exist to pause or delay the activation of objects relative to others. Since all

objects are de�ned over a continuous time domain, the scaling speed of animations can be

enforced by reducing the sampling rate.

To enhance reusability, all object displacements, for example, trajectories, are encapsulated

as motion objects. Motion objects have duration and temporal properties, and provide users

with the ability to script complex motion patterns.

The system scheduler utilizes multiple binary expression trees to generate animation. Every

expression creates an independent tree in which the nodes represent the displacement in ticks

between the left and right subtrees. Each scene in an animation is composed of a forest of

expression trees - in particular, one synchronous tree linked with multiple active asynchronous

trees. Each tick from the scheduler enables time to percolate down each tree, causing the

formation of messages to a�ected objects.

3.2.9 SOLAR

SOLAR[11] (developed at the Institute of Systems Science) is an object-oriented three-pass

interpreted animation language utilizing abstraction, adaptive motion, and controlled environ-

mental access to create complex scenarios. Utilizing a master clock to synchronize all opera-

tions, all statements are either synchronous or asynchronous. At every clock cycle, asynchronous

Chapter 3: Computer Animation Systems 22

statements are checked and, if necessary, executed before synchronous ones.

3.2.10 CLOCKWORKS

CLOCKWORKS[25] (developed at the Rensselaer Design Research Center at RPI) is an object-

oriented animation system embracing a variety of image synthesis, modeling, and simulation

capabilities. CLOCKWORKS' scripting system CORY[56] utilizes a two tiered approach to

isolate the data structures and data manipulation from the user interface. All animation se-

quences are broken down hierarchically into sets of cues and scenes. A cue provides the starting

and ending times for particular actions, while a scene represents the consolidation of a set of

cues that are interrelated.

Scenes serve to limit the time that a set of common cues remain active. To enhance top

down design, all cue frame times are local; their starting times are relative to the start of the

scene in which they are contained. Only scenes utilize the global clock. In CORY, all scenes

are deemed to be independent of the others and non-overlapping in time.

3.2.11 PINOCCHIO

PINOCCHIO[54] (developed at the Politecnico di Milano, Italy) utilizes a motion database

(movement dictionary) and an object-oriented mechanism to animate a sequence of actions.

Motions in the movement database are classi�ed according to amovement grammar. Movements

(verbs) are classi�ed as either transitional, locomotional, environmental, or communicational.

Additional action parameters include space and time attributes, object and position attributes,

and qualitative aspects.

The system is composed of four special subclasses of the class object. These include the

director, person,motion, and camera. It is the responsibility of the director to control the general

execution and coordination of scenes by de�ning an animation script and by associating motions

to all the active objects. Motions are related through a set of temporal operators which include

rules for sequential execution, parallel execution, repeated execution, time delay, and grouping

of motions. The director also associates with every motion object a set of initial and �nal

constraints. Constraints specify motion timing, spatial location, and coordinations with other

Chapter 3: Computer Animation Systems 23

motion objects.

A person object contains the geometric description of an entity and a script to coordinate

its behavior by controlling the various motion objects associated with it. It is the responsibility

of a person and its motion objects to coordinate themselves once the director has speci�ed the

constraints on motion performance. In other words, the purpose of the director is only to issue

general instructions to actors. It is the burden of the actors to determine how they should

perform.

Finally, the camera is utilized to manipulate the viewing parameters of each animation

sequence. It also follows an animation script given to it by the director.

3.2.12 Zeleznik

Zeleznik et. al[98] (developed at Brown University) created an object-oriented animation system

that utilizes a hierarchical delegation architecture to dynamically change the attributes of all its

objects. Objects send and receive time dependent messages indicating how it and its inuencees

are to change. Changes can be speci�ed using scripted, gestural, or behavioral speci�cations.

This novel interactive modeling and animation system provides users with an environment

where both time and behavior are modeled as �rst-class objects.

The systems's exibility can be attributed to it use of time-varying messages, lazy evaluation

schemes, caching, time-varying delegation hierarchies, and multiple controllers. Time-varying

messages extend modeling tools to support animation. Lazy evaluation and caching exploit

inter- and intra-frame coherency, while multiple controllers enable users to specify complex

animations. The time-varying delegation scheme enables objects to alter their prototypical

behaviors. Unlike most delegation-based systems, object hierarchies can be altered, they are

not \static".

3.2.13 Kalra

Kalra[40] (developed at Caltech) utilizes a time primitive, called an event unit, to create complex

time sequences or event systems with discontinuous behaviors. The organization of event units

provides users with a time programming language to develop hierarchical schemes for motion

Chapter 3: Computer Animation Systems 24

sequences. Event units are speci�ed as triplets, S : (Bi(X); L(X);Bi+1(X)), where X is the

state of the system, Bi(X) is the behavioral rules of the system before the event, L(X) is the

logical condition signifying the event, and Bi+1(X) is the behavioral rules of the system after

the event. General behavioral rules include known functions of time, di�erential equations of

motion, constraints, zero time behaviors, and initializations.

Event systems are constructed from the manual linking of event units. Directed graphs with

event systems as nodes and edges representing the connections between the event units can be

utilized to connect event systems. General composition techniques include the following:

� time line: a linear arrangement of event systems. Each event system can be entered from

and lead to only one other event system, and only one event can occur in every event

system.

� time tree: allows multiple connections (without loops) between event units. Behaviors

may enter from or lead to more than one event system.

� time graph: same as time trees, except for loops. The system may visit events that has it

been to before.

3 .3 S u m m a ry

This chapter has presented a brief survey of computer animation systems from past to present.

Each system is designed to provide users with an alternative and powerful interface to control

the behavior of animated objects. Animation systems are distinguished according to their degree

of abstraction and technique of motion speci�cation. Variable control modes enable animators

to design complex scenarios at a variety of di�erent abstract levels. Scripting languages provide

users (those with programming experience) a special notation to specify time-varying actions.

The continual push to provide users with advanced modeling features, alternative control

modes, and new animation techniques has produced a variety of innovative features in computer

animation systems. Although new tools have emerged from a variety of domains, three key

research �elds have been dominant contributors. They are as follows:

Chapter 3: Computer Animation Systems 25

� Motion Patterns: To facilitate the reuse of previously de�ned motions, several ani-

mation systems use some variation of a motion patterns[53, 21, 11, 54, 40]. Also called

controllers[98], motion patterns are used to assign pre-de�ned movements or state changes

to user-de�ned entities. Ideally, an animator's chore becomes easier as he or she accumu-

lates a personal collection of motion controllers.4

� Adaptive Motions: The necessity of modeling discontinuous behaviors has guided the

development of adaptive motions[100]. These structures enable animators to de�ne an

object's state in terms of its relationship with its environment. Objects can be instructed

to observe its surroundings and respond to particular stimuli. Adaptive speci�cations

are integral elements of rule-based[11, 17, 40] and goal-directed systems. From a simu-

lationist's viewpoint, adaptive techniques are produced with the discrete-event activity

scanning model (described in section 5.1.3).

� Temporal Reasoning: The unwieldy nature of organizing large collections of parallel

actions in complex models has spurred the induction of temporal reasoning abstractions

into computer animation systems[21, 25, 54]. Providing users with the ability to de�ne

relationships between sets of actions enables them to coordinate the behaviors of objects

at a high level of abstraction.

Recent research has shifted to accommodate new lines of thought toward the creation of

computer animations. The need to develop realistic models, to control all modeling attributes,

and to use multiple simulation techniques has induced several new �elds of research. Mod-

ern topics include physically-based modeling[86], �rst-class temporal representations[98], and

discrete-event techniques[20, 40].

4This has yet to be proven true.

Chapter 4

Simulation

Who controls the past controls the future.

Who controls the present controls the past.

- George Orwell, Nineteen Eighty-Four

All computer animations are simulations of objects in motion. Using a pre-de�ned set of

laws and objectives, (most) animators attempt to design computers animations that impart the

illusion of life.1 The inuence of physical laws, realistic models of motion, and patterns of inter-

action have narrowed the gap between simulation and animation. Although the development of

time-varying simulations has become an integral part of computer animation research, very few

researchers have incorporated simulation constructs or languages. Most users emphasize the

accomplishments of their research without concern for the methodology they use. The lack of

a common foundation between various simulation frameworks has hindered the development of

general animation systems supporting a variety of simulation models. The inclusion of modeling

concepts and tools from simulation languages is essential to the construction of a powerful, yet

exible, computer animation system.

Although computer animation scripting languages and simulation languages may have com-

mon goals, they do not attempt to solve similar problems in the same fashion. These incongru-

ous views of problem solving are a result of the di�ering design philosophies of each approach.

In a script-based model, a central description de�nes all the actions within a system. Individual

entities do not usually control their own actions. The system follows the strict script of behav-

iors. Scripting languages provide many di�erent ways to specify change: interpolation schemes,

sets of behaviors, and time-dependent variables. Unlike script-based systems, simulation lan-

guages do not usually support the concept of a central database controlling the evolution of

change within a simulation. Simulation languages localize the control within the components of

1Some animators exaggerate the motions of their objects to induce greater dramatic e�ect.

26

Chapter 4: Simulation 27

the simulation. After connections are created between system modules, a simulation proceeds.

A central control mechanism is de�ned only to ensure the passage of messages between modules

and to guarantee the uniform passage of time. Scripting languages are generally used to exhibit

a particular behavior while simulation languages are commonly utilized to discover the behavior

of a system over time.

The next two sections of this chapter provide a brief synopsis of simulation languages and en-

vironments. Each section enumerates the distinguishing features of various simulation building

tools. The chapter terminates with a discussion of the development of simulators using stan-

dard programming languages. Particular attention is given to the inuence of object-oriented

principles on their designs.

4 .1 G e n e r a l S im u l at i o n L a n g u a g e s

Most simulation systems allow users to describe their models using a prescribed descriptive

language. Descriptive speci�cations range from a straightforward sequential style to the extreme

general network type. The system translates (or sorts) the descriptive statements into a formal

description that is carried out by a sequential program. For parallel models, the order of the

statements does not usually make a di�erence. Each statement describes independent, yet

interacting, actions or processes[96]. This type of design provides a strong foundation to utilize

object-oriented constructs and principles.

Simulation languages can be divided into two major groups. They can be classi�ed as

either scenario or procedural. In scenario languages, active transactions execute descriptive

scenarios, typically in the form of block diagrams, to model simulations. The languages SLAM

II[70], SIMAN[67], and GPSS[77]fall into this category. Although procedural languages do not

support as many simulation constructs as scenario languages, their strength comes from the

inclusion of general-purpose programming devices with simulation-speci�c techniques. Their

power and exibility enable users to attack a wider range of problems. Languages falling into

this category include HSL[74], SIMULA[6], SIMSCRIPT II.5[42], CSIM[79], and GPSS/H[78].

Chapter 4: Simulation 28

4.1.1 Scenario Languages

There are four major disadvantages in using scenario languages. First, implementing a hi-

erarchical stepwise re�nement scheme2 for modeling is arduous. The scenario block network

approach to modeling does not facilitate the use of hierarchies. All the components of a simula-

tion are designed at one level of abstraction. Hence, the introduction of additional detail to any

simulation component may require a complete replacement of the component with a component

of higher detail. Second, high level modularity is not supported. There is no separation between

\control information" and \model actions" statements. The static and dynamic characteristics

of a system are de�ned according to the experimental conditions under which it is run.3 Third,

models not readily supported by scenario constructs require complex implementation. Fourth,

the limited use and length of user-de�ned identi�ers inhibit program readability.

However, scenario languages do provide one good feature. Their modeling construction

methods are conducive to graphical speci�cation techniques. This advantage can enhance the

ability of users to comprehend the characteristics and properties of any system[74].

4.1.2 Procedural Languages

Unlike scenario languages, procedural languages provide stepwise re�nement schemes, high-

levels of modularity, full complements of structured control statements, and long meaningful

variable names. For example, SIMSCRIPT, an event-oriented language, is organized in a �ve-

level hierarchy: three levels of a general purpose programming language, one level of entity

manipulation, and one level of additional simulation features, such as time manipulation tech-

niques. Its pseudo self-documenting code helps bridge the gap between modeling and program-

ming.

2Stepwise re�nement means building components from abstract elements and then re�ning those elements

deemed to be important into sub-elements to introduce additional detail.
3Ziegler[96] stresses that a proper simulation system must make a distinction between the models of a simu-

lation and the experimental frame under which the models are run. Altering the experimental frame should not

require the models to be altered.

Chapter 4: Simulation 29

4 .2 S im u l at io n E n v ir o n m e n t s

Despite the large pool of simulation languages, many users do not embrace their usage to con-

struct their simulations. Many users view the strict interface and design methodologies imposed

by simulations languages as detrimental qualities. Consequently, many users spend consider-

able e�ort developing their own simulation environments. Each new system accomodates the

needs of users in a specialized �eld. Unfortunately, the range of requirements for this multi-

tude of users precludes the incorporation of generic constructs into many new languages.4 This

loss of generality has prohibited the widespread usage of many exceptional systems. Although

simulation environment lack large audiences, the abundance of features established within each

new framework supplies designers of new simulation languages with an exhaustive set of useful

suggestions, innovative ideas, and novel concepts.

Every simulation environment partitions the simulation modeling process. According to

[69], an ideal distribution which promotes greatest reusability is achieved when distinctions

are made among the physical, informational, and control/decision elements of a simulation.

Physical objects represent tangible things found in the real world such as parts, machines,

and robots. Informational objects may also be tangible,5 but most often they represent facts

or pieces of data. For example, constraints or series of operations are represented by these

type of objects. Control/decision objects represent the creative intelligence of a simulation.

Their primary function is to evaluate the state of the system, exercise logic algorithms, and

incite appropriate actions when required. Basically, they provide the interconnections between

physical and informational objects.

The following sections discuss the frameworks of various simulation environments. Each

system exempli�es an alternative approach toward the creation of physical simulations. Careful

attention has been made to emphasize each environment's division of the simulation modeling

process.

4Given enough time and resources, many researchers would probably choose to increase the viability of their

systems. However, the realities of life preclude this type of activity from occurring.
5An tangible object whose information content is of primary importance may be classi�ed as an informational

object. e.g. bills of materials.

Chapter 4: Simulation 30

4.2.1 SIMLAB

SIMLAB[66] is a software environment for creating reusable physical systems. Although narrow

in scope, it introduces an interesting alternative view concerning the production of simulations.

Unlike most simulation tools, SIMLAB does not require users to build simulators using a conven-

tional programming language. Simulations are automatically created from high-level expressive

descriptions de�ned by users. Users are not required to de�ne data structures, combine numer-

ical packages, implement visualization routines, or implement algorithms via a programming

language. All these steps are performed by SIMLAB without user interaction.

To create a simulation with SIMLAB, users must de�ne two pieces of information: the

physics model and the global formulation. A SIMLAB physics model is very simple. Each

instance contains de�nitions of primitives, connections, quantities and constraints. Primitives

represent the basic entities in the model while the connections serve to specify the interactions

between primitives. Quantities and constraints represent any primitive's state or constrained

behavior. Every physics model is interpreted by the global formulation. This formulation

speci�es how SIMLAB creates a set of equations from the primitives, connections, quantities,

and constraints.

SIMLAB's power comes from its unusual interface. The simulator allows users to concen-

trate on the problem of modeling without worrying about writing complex programming data

structures and algorithms. Users design physics models and formulations while the system

handles the creation and operation of the simulation. While limited to the construction of less

complex simulations, this method does have it merits. Users can create simulations from a high

level of abstraction.

4.2.2 INEFFABELLE

INEFFABELLE[64] is a simulation environment (written in LISP) for the development of

reusable robotic models and programs. Central to INEFFABELLE's design is the common body

of information and family of functions found in all robot simulation programs. For example,

all robotic applications require some set of methods to delineate the geometric and kinematic

Chapter 4: Simulation 31

parameters of a robot. With INEFFABELLE, users create model robots and workcells6 through

a simple and clear set of rules and procedures. Application speci�c properties can be assigned

to these models using built-in functions.

INEFFABELLE functions can be categorized into three distinct groups: entity modeling,

entity manipulation, and display. Robot models and their environments are designed using

entity modeling functions. Standard entities found in INEFFABELLE's library include joints,

work cells, coordinate frames, links, and sensors. Users can create new entities or alter the

properties of existing models through INEFFABELLE's exible modeling mechanisms. The

motion of robots, grasping of objects, and other common robot related tasks are performed

using entity manipulation functions. Display and entity manipulation function work together

to provide users with computer animations of their animated models.

4.2.3 WADE

WADE (A Workcell Application Design Environment)[36], a process-oriented system written

in AML/X,7 was developed to meet the needs of simulationists designing workcell applications.

Before WADE, most robotic systems focused primarily on the aspects of robot programming

and simulation while ignoring issues introduced by the broad range of industrial equipment

typically found in workcells. Not enough attention had been directed to building tools for

creating scenes with interacting components. WADE's designers envisioned a system with

tools that would provide users with important information, useful methodologies, and multiple

representation schemes during the various stages of workcell development.

WADE can be decomposed into three basic constituents: modeling, simulation, and user-

interaction. The modeling component supplies tools to create and manipulate the relevant

characteristics of abstract entities (robots, sensors, etc.). The simulation component visualizes

the dynamic behaviors of these abstract entities. The user-interaction component provides users

with a highly interactive and user-friendly interface.

6A workcell is a collection of interconnected pieces of industrial equipment, such as robots, cooperating on a

single manufacturing task[36].
7AML/X (A Manufacturing Language/eXtended) is a multi-layered programming languages designed primar-

ily for manufacturing applications

Chapter 4: Simulation 32

4 .3 O b j e c t -O r ie n t e d S im u la t io n D e s i g n

Many well known simulation languages such as GPSS, SIMAN, and SIMULA, are based upon

object-oriented principles. Each language assists in reducing program development time and

enhancing model understandability by providing users with high level simulation constructs.

However, most users do not utilize these special programming languages to create their simula-

tions. Most simulations are written in general purpose language such as ADA, FORTRAN, C,

and PASCAL. For many users, every new application is constructed from scratch. It is not com-

mon for users to generate their own simulation libraries. The failing of simulation languages to

gain widespread acceptance can be attributed to the fact that most users lack experience with a

simulation language. Compounded with additional learning time, the limitations of simulation

languages have hindered users from incorporating them into their arsenal of programming tools.

The major disadvantage with simulations designed with general purpose program languages is

that users spend too much time specifying the state changes in the simulation system. Valuable

developmental time is lost in designing the characteristics of the simulated targets.

Fortunately, the growing popularity of object-oriented programming and the demand for

reusable tools have fostered the creation of exible simulation constructs and environments

using popular programming languages. Users can pro�t from the bene�ts of simulation tools

without expending the time to gain the understanding of another programming language. Tools

for simulation development can be roughly divided into two categories: clients and servers.

Clients tools assist in the creation, manipulation, and destruction of the simulation target

entities. Targets, labeled as clients, usually represent physical or informational objects. Servers

attend to service the clients of a simulation. They perform duties \for" and \on" clients. A

client's state and behavior is controlled by sets of servers. The power behind this division is

that it enable users to construct independently the characteristics of their clients and the details

of their servers. Clients can be constructed without much foreknowledge of their usage, and

servers can be built without concern for the internal architecture of the clients they serve.

The following sections present the highlights of several object-oriented simulation and mod-

eling environments constructed from commonly used programming languages.

Chapter 4: Simulation 33

4.3.1 DOSE

DOSE[55] is a discrete-event C++ simulation environment based on the connection paradigm.

The entire system is structured as a set of components interconnected through their \input" and

\output" ports. A component is de�ned as an object with its own internal state and collection

of handlers. Each handler is a response to a set of internal and external events. Component

behaviors are speci�ed with respect to their ports. Once a connection is established, output

ports notify its connected input ports, via an event, whenever a change or update occurs. An

output port can be utilized to signal an event or to multicast8 an internal state or variable. An

input port can be linked to an internal variable or attached to an event handler. The dynamic

attachment and detachment of ports provide users with a exible simulation mechanism.

The simulator object Sim provides users with an interface to the run time system support.

It is assisted by three run time support objects: a component manager for the handling of

components, a connection manager for the creation and maintenance of connections, and an

event scheduler for the planning and sequencing of internal and external events during the

simulation.

4.3.2 PRISM

PRISM[90] is a generic event-processing simulator written in C++. Communications is sup-

ported with events and (if desire, hierarchically constructed) simulation units or models. The

execution of events, called SimEvents, is the driving force behind this simulation system. Events

are posted to a simulation engine (a Simulator) by simulation units (SimUnits) to cause future

computations. The two most important member functions declared in SimEvent is doEvent

and cancelEvent.

Rather than o�ering one global simulation engine, PRISM allows users to de�ne multiple

simulation engines (instances of the class Simulator). Each engine manages an event queue

and deals directly with the system model (instance of the class Model). Members functions

declared in Simulator interactively control time, post events, cancel events, and obtain infor-

mation. Although multiple engines can be de�ned, there seems to be no method to design

8To (simultaneously) issue data to multiple ports.

Chapter 4: Simulation 34

two separate, yet interdependent engines. No procedures exist to regulate the progression of

mutually dependent engines. Users must de�ne their own methods to balance and control the

operation of multiple engines.

4.3.3 DESAda

DESAda[48] is a simulation template based on tasking in Ada. The system is composed of a

combination of servers that provide service to clients and clients which acquire services from

the servers. Users are given several \o� the shelf" modules to handle the transitions occurring

within data entities. The simulation system is divided into �ve major components.

� Clients (user-implemented): Implemented as objects, clients are composed of sequential

descriptions of their life cycles. A client becomes active the instant it is declared or

allocated. Each client posts a (time) signal to the task controller as to when it wants to

be noti�ed. Speci�c client requirements or needs are sent to the task controller via the

parameters of the signal.

� Task Controller (built-in): This unit is responsible for maintaining the simulation clock

and processing all the signal requests from every client. After a particular client completes

its own logic (after being noti�ed to proceed), the controller continues to process the

special needs of the client. Clients may make a particular request such as \get service

from a server", \schedule a future event", or \execute one more signal".

� Event List (built-in): Each node in this unit represents an event to be activated at a

future time. Nodes contain two pieces of information not commonly found in standard

implementations of event lists. They contain direct links to their clients, and each event

node has no knowledge of the e�ect of the event on the client. Unlike many traditional

system where events control the execution threads of the simulation, this system delegates

the process of a clients' life cycle to itself. The systemmerely narrates the timing of events.

� Servers (built-in or user-implemented): Servers are dynamic objects which provide service

to clients and other servers. There are two types of servers: built-in and user-implemented.

Chapter 4: Simulation 35

Built-in servers are simple functional objects utilized to serve clients one by one. These

type of servers usually maintain waiting queues for multiple \service requesting" clients.

To handle more complex server sharing, queueing and allocation strategies, users can

implement their own server packages.

� Data Collection (user-implemented): Data collection is performed by each of its separate

entities. Upon request, each object can pass along its collected (summarized) data to a

user-de�ned system collector.

4 .4 S u m m a ry

This chapter has provided a brief overview of simulation languages, systems, and modeling en-

vironments. Each approach provides users with special constructs to facilitate the speci�cation

of \transitions". Transitional elements reduce users' torment in forming their own methods to

alter the states of the system. In addition, all three models support methods to form relation-

ships or communication pathways among collections of objects. Links empower objects with

the ability to react to inuential forces and external stimuli. Apart from the primary bene-

�ts, both mechanisms enable users to focus their attention toward the improvement of their

models. Users are not compelled to continually rede�ne sets of structures common to all their

applications.

Although tools for simulation come in a variety of forms, each tool can be gauged according

to the strength of its underlying framework. A superior design is distinguished by its ease of use

and reusable potential. Providing users with the ability to easily reuse segments of previously

de�ned simulations enhances their productivity. A simulation tool's potential can be measured

according to three important qualities.

� It must be able to support modular design. Modularity enables users to construct complex

simulations from the amalgamation of various well-de�ned components. Modules can also

serve as building blocks for the creation of multifarious components. In an ideal modular

environment, the task of modifying or creating new models is reduced to replacing old

objects with new ones.

Chapter 4: Simulation 36

� Simulation tools must provide users with appropriate abstractions to re�ne hierarchically

their models. Alternative viewpoints empower users to manufacture simulations at dis-

parate perspectives. High-level expressions[66] and stepwise re�nement techniques[6, 42]

are common abstraction building mechanisms.

� A division of the simulation modeling process must be apparent. A highly evolved frame-

work provides users with a clear path for application development. Model creation, entity

manipulation, temporal management, and display techniques are commonly de�ned parti-

tions in many simulation environments. Although a clear division has not been solidi�ed

by the simulation community, an observable consensus can be extracted from recent re-

search. Modern developments have advocated a separation of decision making algorithms

from the models they are controlling. An environment's reusable potential decreases when

it disperses and embeds control logic into its models. A strong division enhances a user's

ability to alter continually a model's interaction with its surroundings.

The increasing demand for general simulation mechanisms as well as the rise of object-

oriented methodologies have inuenced the design of a variety of new simulation environments.

Using an assortment of common object-oriented languages, several simulationists have objec-

ti�ed the simulation modeling process. The drive to maintain object-oriented principles, such

as encapsulation and modularity, has introduced additional perspectives on the development

of simulation environments. Design philosophies, such as �rst-class events[90] and �rst-class

object interfaces[55], introduce new architectures and issues not commonly found in standard

simulation systems.

Chapter 5

Temporal Management

What then is time? If no one asks me, I know what it is.

If I wish to explain it to him who asks, I do not know.

-St. Augustine, Confessions

In time-varying simulations,1 a variety of techniques are employed to control and manipulate

the ow of time. An assortment of methodologies provide di�erent techniques to advance time,

to structure time, and to de�ne the logic and sequence of events. The capabilities of each

approach is directly proportional to its complexity. In general, systems and languages possessing

an advanced set of features require users to de�ne and specify a large set of simulation variables.

Therefore, in many cases, users may opt to choose simpler tools. The needs and requirements

of users vary from individual to individual. Therefore, to obtain a large following, an optimal

tool for simulation should de�ne a simple interface with a large collection of features.

This chapter provides a brief introduction to a variety of important topics related to the

manipulation of time. A quick analysis of temporal management techniques is followed by a

discussion of the advantages and di�culties associated with the design and development of a

process-oriented simulation.

5 .1 T e m p o r a l A d va n c e m e n t

Underlying every time-varying simulation resides a methodology to regulate the progression of

time. It the responsibility of this simulation engine to ensure that every module in one system

e�ciently dwells in the same time frame. For most simulations, it is essential that simultaneous

system actions are performed at the same point in time. The progression of concurrent actions

and activation of mutual interactions are indispensable qualities of a sound temporal based

1In a time varying simulation, time enters explicitly as an argument of the rules of interaction.

37

Chapter 5: Temporal Management 38

simulation. Time must not progress faster than the quickest acceptable rate of any element in

a simulation.2

5.1.1 Classification

Continuous TimeDiscrete Time

Time-Varying Simulation

Discrete EventContinuous State

Activity ScanningEvent Scheduling Process Interaction

Non-AutonomousAutonomous

Time-Varying Simulation

Figure 5.1: Classi�cation of Time-Varying Simulations

All time-varying simulations can be classi�ed as either continuous or discrete time ap-

proaches. In the former case, time ows continuously3, while in the latter, time advances in

pre-de�ned periodic jumps. Most animation research is discrete. The clock continually moves

forward in discrete time intervals, while the simulation's descriptive variables assume a discrete

set of values.

The continuous time approach can be further divided into the continuous state and the

discrete event. In the continuous state approach, state changes are continuous and the system's

time derivatives are governed by its di�erential equations. The discrete event approach is

characterized by state changes occurring in discontinuous jumps and events arbitrarily separated

from each other.

Time-varying simulations can also be classi�ed according to their interaction with their

2In real-time simulations, time may advance faster than the quickest desired rate of any system module. It is

the obligation of every system element to compensate whenever the pace of the simulation exceeds its ideal rate.

However, for this thesis, real-time demands are not in e�ect. This is an issue for future work.
3Because most simulations are performed on digital computers, time does not truly ow continuously. State

variables within continuous systems are usually described by deterministic di�erential (or algebraic) equations

which are solved using standard step-by-step methods.[58]

Chapter 5: Temporal Management 39

environment[96]. If the simulation is not inuenced by its environment, it is labeled as au-

tonomous. Conversely, a nonautonomous simulation is directly inuenced by the events oc-

curring in its environment.4 The general structure of time-varying simulations is shown in

Figure 5.1.

5.1.2 Discrete Time

Discrete time simulations are generally sequential and iterative. They continually repeat the

same set of steps until a terminating condition is met. There are usually no constructs for the

scheduling, creation, or deletion of events and no methods to control the passage of time. All

discrete time simulation are variations of the following prototypical procedure[96].

1 Initialize state variables.

2 Initialize the clock to a starting time.

3 Apply the rules of interaction to the contents of the state

variables to produce new values.

4 Advance the system clock.

5 Check if the clock value exceeds the termination time.

If yes, stop. If no, go to step 3.

Because most of the interactions of a simulation's components are not sequential, the discrete

time approach is limited to a small subset of the possible simulations. The \parallel" nature

of most simulations require that the simulation engine handle many simultaneous actions. A

good simulation kernel must be able to coordinate, control, and execute concurrent actions in

their proper time sequence[96].

5.1.3 Discrete Event

The discrete event philosophy frees the simulator from �xed time step intervals. The system is

driven by an event list containing the sequential ordering of \next clock" times when components

are scheduled to alter their state. Scheduled events times are known as hatching times. The

simulator advances the clock to the closest hatching time on its list and executes all component

actions prescribed for that time. Since the system is not con�ned to a constant time step, the

4In the �eld of dynamical systems, simulations are de�ned to be autonomous or nonautonomous if they are

dependent on time. This nomenclature is ignored to comply with the terminology used in simulation literature.

Chapter 5: Temporal Management 40

simulator ignores the intervals between clock jumps where no actions are known to occur[96]. It

is only recently that research[20] has addressed the usage of discrete event modeling in computer

animation.

The discrete event simulator relies on two basic presumptions. First, the predictable hatch-

ing times of some events are a direct result of (the hatching of) other events. When an event's

hatching time is predictable, it can be scheduled. Second, unless (or until) the state change of

a prescheduled event causes a model to alter its state, the model will not undergo any modi�-

cation in its condition. The validity of any simulation using the discrete event philosophy fails

if either of these two presumptions are violated.

Conicts arise in the discrete event philosophy when two or more events are triggered at

the same time. Since computers are inherently sequential processors, concurrent events can not

be resolved in the same instant of time. Because only one event can be processed at a time,

several di�erent tie-breaking schemes have been developed. The three most basic methods are

as follows:

� Select events as they are found. If A was found before B, process A before B.

� Select an event at random.

� Specify a tie-breaking rules that select the most \imminent" event.

The third approach is the most widely utilized method. Its simplicity and automatic se-

quencing of individual events is ideal for many situations[96].

In discrete event simulations, special attention must be paid to external events that e�ect

the state of the system. Controlling the e�ects of external events should not necessarily be a

large responsibility of the autonomous system rules. Only internal events should be controlled

by the autonomous rules, while external events are controlled by special rules[96].

5 .2 D i s c r e t e E v e n t S t r at e g i e s

Discrete-event simulations can be separated into three related categories: event scheduling,

activity scanning, and process interaction. The third being a combination of the �rst two.

In all three cases, actions are executed at speci�c event times. In this section, we briey go over

Chapter 5: Temporal Management 41

the main structure and features of each classi�cation using an informal description5 developed by

Zeigler[96]. The description is divided into three major parts: components, descriptive variables,

and component interactions. The components are the elements from which the simulation is

constructed. The descriptive variables serve to characterize the range of states each component

can achieve, and each component's role in the simulation. The component interactions are the

rules that govern the behavior of the simulation. They de�ne how components interact other

components.

5.2.1 Event Scheduling

In an event-oriented scheduling approach, every event is prescheduled. Each event contains

a reference to a point in time when it is to be executed. An event is not triggered until its

reaches its time of activation. The scheduling of events is controlled by an event list.6 This list

sorts every event awaiting activation by its hatching time. Events with earlier activation times

are situated near the head of the list. As a simulation progresses, events are placed, executed,

and removed from the event list. The event scheduling approach requires all users to design

their simulations from a global viewpoint. A complete description of all the changes to the

entire system must be given for each event occurrence. Additionally, only explicitly designated

state changes can alter the behavior of the system. It is not possible to test the state of any

system component to invoke state transitions. The event scheduling methodology is structured

as follows:

1. Components:

In the event scheduling approach, the set of components, D = f�1; �2; : : : ; �Ng, is divided

into ACTIVE and PASSIVE types. ACTIVE components invoke changes in a system,

while PASSIVE types retain their state inde�nitely unless acted upon by other compo-

nents.

5The description is informal because it is open to certain intrinsic problems, such as incompleteness, incon-

sistency, and ambiguity. However, it is very useful because it communicates the essential nature of a simulation

strategy.
6Although the word 'list' implies a linear data structure, other possibilities exist, such as indexed lists and

heaps. Therefore, event queues is a more appropriate term than event list. However, event list is used to conform

to the standard terminology used in simulation literature.

Chapter 5: Temporal Management 42

2. Descriptive Variables:

Every ACTIVE type is described by its state, time to activation, and set of inuences. At

any moment during a simulation, an ACTIVE component is de�ned by its value and the

time that remains before it inuences the behaviors of other components in the simulation.

STATE-OF-� TIME-LEFT-IN-� INFLUENCES-OF-�

ACTIVE-�
Range:

Value:

S� (a set)

s�

R� = f0;1g

��

D

f�1; �2; : : : ; �Mg

PASSIVE-�
Range:

Value:

S�
s�

3. Component Interaction:

For each ACTIVE � a local transition function7 f��g is speci�ed. This function simply

maps the set of state assignments to the INFLUENCES-OF-�.

((s0�1 ; �
0

�1
); : : : ; (s0�A; �0�A)| {z }
ACTIV E

; s0�A+1 ; : : : ; s
0

�M
)| {z }

PASSIV E

= ��((s�1 ; ��1); : : : ; (s�A; ��A); s�A+1 ; : : : ; s�M)

The transition function �� is split into m distinct functions f�i�g, where m represents the

number of states that S� can assume. Each function describes the activity of component

� when it is started in one of its possible states. For many simulations, each �i� is coded

separately as a program or routine. This design facilitates the use of object-oriented

programming since every function can be represented as a separate object or member

function.

Next Event Simulation

Simulation systems providing event scheduling operations are often called next event simula-

tions. Apart from the development of a temporal metric to schedule the activity of events, all

next-event modeling systems require the creation of an NEXT-EVENTS-LIST and a SELECT

function. The NEXT-EVENTS-LIST is used to dynamically sort pairs of the form [event, time],

where each pair de�nes the activation time of a speci�c action. Actions associated with earlier

7Given a list of values of the state variables of a model at time ti, a state transition function produces a list

of values for the model's state variables at time ti+1.

Chapter 5: Temporal Management 43

activation times are placed at the head of the list. Given a set of active types from the NEXT-

EVENTS-LIST, the SELECT function singles out an individual pair. For many simulations,

the behavior of the system is decided from the choices determined by the selection function.

To ensure the selection of certain events over others, some simulations incorporate a priority

ordering.

All next-event simulation are subtle variations of the prototypical procedure shown in Fig-

ure 5.2. Developed by Zeigler[96], this algorithm advances time from event to event. As events

are executed, the states of inuenced events are adjusted. This usually entails the reordering

of future events in the event-list.

1 Set CLOCK to initial simulation time t0
Initialization 2 Set variables S�1 ; : : : ; S�n to hold the initial values of s�'s.

3 For every ACTIVE �, place the pair (EVENT-s�, t0 + ��) on

the NEXT-EVENT-LIST. (order the list by low time)

4 Advance the CLOCK to the time of the �rst pair on the

Time Advance NEXT-EVENT-LIST. Call the new time, t, the NEW-EVENT-

TIME.

5 Apply SELECT to all components with events scheduled at

Tie Breaking NEW-EVENT-TIME. Let � denote the winning component.

6 Remove (EVENT-s�, t�) from the NEXT-EVENTS-LIST.

7 Invoke routines for EVENT-s�
(a) Check if each ACTIVE-INFLUENCEE-�-OF-� is a member

of a pair on the NEXT-EVENT-LIST. If yes, remove it from the

list.

State Transition ��i =

8><
>:

t�i � t if (EVENTS-s�i-OF-�i; t�i) was

removed from the NEXT-EVENT-LIST)

1 otherwise

(b) Adjust the state for every INFLUENCEE-�-OF-� (set S�
to s0�). For every ACTIVE-� with �0� < 1, place the pair

(EVENT-s0�-OF-�, NEW-EVENT-TIME +�0�) in its proper

place on the NEXT-EVENT-LIST.

Any events left? 8 If CLOCK and the time of the �rst pair on the NEXT-EVENT-

LIST are equal, jump to 5.

Termination 9 If NEW-EVENT-TIME exceeds termination time, STOP.

Test Else goto 4.

Figure 5.2: Next-Event Prototype

Chapter 5: Temporal Management 44

5.2.2 Activity scanning

The activity scanning approach is an augmented event-oriented system. Apart from allowing

the explicit prescheduling of component activation times, contingency tests allow the conditional

activation of state changes. Every satis�ed test implicitly schedules the execution of a collection

of events. This enhanced approach, unlike the event oriented, enables components to possess

negative \time to activation" times. At any time, there may be many components in the \ready"

(�-TIME-LEFT = 0) or \due" (�-TIME-LEFT < 0) condition. A component is de�ned to be

due if is ready to be triggered and its activation is being precluded by the absence of an

external inuence. Only when the external inuence obtains a certain state will the component

be activated. Therefore, the ordering of waiting components is controlled by a conditions list

or activities list, not an event list. The activity scanning methodology is structured as follows:

1. Components:

The set of components, D = f�1; �2; : : : ; �Ng, is divided into ACTIVE and PASSIVE

types. ACTIVE components impose changes to a system, while PASSIVE types retain

their state inde�nitely unless acted upon by others.

2. Descriptive Variables:

Activity scanning ACTIVE types are characterized by the same set of descriptive variables

that describe next-event ACTIVE types. Each type is distinguished by its value and

capability to alter the states of other components in a simulation. However, activity

scanning ACTIVE types are also distinguished by a set of inuential components which

de�ne when and how ACTIVE types exercise its authority over others.

ACTIVE-� PASSIVE-�

Range Value Range Value

STATE-OF-� S� s� S� s�
TIME-LEFT-IN-STATE-� R� = f�1;1g ��

INFLUENCEES-OF-� D f�1; : : : ; �Mg

INFLUENCERS-OF-� D f�1; : : : ; �Mg

Chapter 5: Temporal Management 45

3. Component Interaction:

� For each ACTIVE-� a local transition function f��g is speci�ed. Given the union of

the current values for the INFLUENCERS-OF-� and the INFLUENCEES-OF-�, this

function simply produces a new list of values for the INFLUENCEES-OF-�. Assigning s

to represent this union, ��(s) de�nes the value of the INFLUENCEES-OF-� immediately

after � is tested and activated.

� Associated with every INFLUENCERS-OF-� is a boolean predicate. This logical as-

sertion represents the condition that determines if �'s state is to be altered. Imme-

diately after the condition is deemed to be true, a set of actions is performed on the

INFLUENCEES-OF-�. Given that C� represents the boolean predicate on the state as-

signments to the INFLUENCERS-OF-� and f�
8 de�nes the action performed by � on

the INFLUENCEES-OF-�, the transition function �� is implemented as follows:

��(

INFLUENCEESz }| {
(s�1 ; ��1); : : : ; s�m;

INFLUENCERSz }| {
(s
�1
; �

�1
); : : : ; s

�m
) =8><

>:
f�((s�1 ; ��1); : : : ; s�m(s�1

; �
�1
); : : : ; s

�m
) if C�((s�1

; �
�1
); : : : ; s

�m
) = TRUE

((s�1 ; ��1 � t(s)); : : : ; s�m) otherwise

If C� is TRUE, then apply f� to obtain the new states of the INFLUENCEES-OF-�.

Otherwise, perform no actions except for clock updates.

Activity Scanning Simulation

In the activity-oriented approach, the actions of the simulator are partitioned into segments

called activities. Every activity, de�ned as the state of a model over an interval, is delimited

by two successive events. Each activity is associated with a boolean condition set to true or

false depending on the state of the system. As the simulation progresses from event to event,

the simulator scans the status of all the activities in the model. Every activity satisfying its

contingency test is immediately scheduled for execution. The activity scanning approach is

more attractive than the event oriented approach when the number of events in a simulation

8The function f� has the same domain and range as ��.

Chapter 5: Temporal Management 46

grows to great size. However, this approach has di�culties when used to accurately model

continuously changing operations. Continually varying variables must be discretized into several

distinct states if they are to be manipulated in an activity scanning approach. Apart from the

introduction of errors by poor apportionment, this approach requires the user to specify a

discretization algorithm.

In the activity scanning approach, the CONDITIONS-LIST dynamically orders a list of

activities according to a priority-based metric. Activities with superior rank are situated at the

top of the list. Each activity is usually stored as a triplet of the form (ACTIVE-�, f�, C�), where

f� represents CONDITIONS-ROUTINE-FOR-� (boolean predicate on state assignments) and

C� identi�es the ACTIVITY-ROUTINE-FOR-� (state altering action). After every event,

activities in the list are scanned from top to bottom. Although it is possible to develop an

autonomous SELECT function, the descending scan eliminates the need of such a routine.

Activities are selected by a SCAN pointer, as shown in Figure 5.3, according to their location

in the list.

TOP

�1 CONDITIONS-ROUTINE-FOR-�1 , ACTIVITY-ROUTINE-FOR �

SCAN ! �2 CONDITIONS-ROUTINE-FOR-�2 , ACTIVITY-ROUTINE-FOR-�
...

...

�A CONDITIONS-ROUTINE-FOR-�A , ACTIVITY-ROUTINE-FOR-�

BOTTOM

Figure 5.3: Conditions List

All activity scanning simulations are subtle variations of the prototypical procedure shown

in Figure 5.4. This routine, developed by [96], advances time from one event to another. As

events are triggered, the algorithm scans its conditions list to determine if any conditional

events need to be activated. The simulation languages CSL[9] and SIMON[31] are based upon

this approach. Although it may seem redundant to continually scan the conditions-list after

every event, it is a required operation. If events occur between successive scans, it is possible

for the scan to miss a state change. The diagram in Figure 5.5 illustrates this problem.

Chapter 5: Temporal Management 47

1 Set CLOCK to initial simulation time t0
Initialization 2 Set state variables S�'s to initial values of s�'s.

3 Initialize CONDITIONS-LIST.

4 Set time cells T�'s to initial values �0�s

5 Move the SCAN to TOP of CONDITIONS-LIST.

Activity 6 SCAN down until the �rst ACTIVE-� is found

Scanning (t� � t) and its CONDITION-ROUTINE-FOR-� re-

turns TRUE when applied to the INFLUENCERS-

OF-�.

State Transition 7 Execute the ACTIVITY-ROUTINE-FOR-�

Test for End 8 If SCAN has not reached the BOTTOM of the

of Scanning CONDITIONS-LIST then goto 5.

Time Advance 9 Advance the CLOCK to the time of the next event

(the minimum T� � the current CLOCK value)

Termination 10 If CLOCK exceeds termination time,

Test then STOP! else goto 5.

Figure 5.4: Activity Scanning Prototype

5.2.3 Process interaction

The process interaction approach is a combined event scheduling - activity scanning system.

In addition to a list of scheduled events, this approach maintains a list of conditional activi-

ties. As planned events are executed, the contingency tests of each activity is scanned. Unlike

event scheduling and activity scanning, the process interaction method stresses the interaction

between the entities of the system. Model component descriptions are amalgamated into units

called processes rather than unstructured collections of unconnected events and activity rou-

tines. The behavior of a system is described by the ow of its processes through time. Users

specify the behaviors of processes, while the system implicitly handles the detection and acti-

vation of events. This type of programming construct provides greater control over the actual

structure of the system they are simulating. The languages GPSS[77] and SIMULA[6] use this

approach to simulation modeling.

Unlike an event or activity, a process's routines are explicitly described in terms of time

ow. A process's behavior may be interrupted at any point in time. It may be forced into an

inoperative state when it comes into conict with an another process or while it is awaiting the

Chapter 5: Temporal Management 48

Condition
Scan

Condition
Scan

Event #1 Event #2

A

Time
S

ta
te

 o
f

O
b

je
ct

B

Figure 5.5: The scan does not note the change in the object's state

arrival of a future event. Multiple entry points, called reactivation points, within individual

processes enables users to de�ne a variety of conditions to reinstate the activity of any halted

or delayed process. The process interaction methodology is structured as follows:

1. Components:

The set of components, D = f�1; �2; : : : ; �Ng, is divided into ACTIVE and PASSIVE

types. ACTIVE components modify the behavior of the system. Their conduct is regu-

lated by time or conditional predicates. PASSIVE types maintain their state values unless

they are altered by external stimuli. Although they do not have the ability to directly

control system execution, they can inuence the behavior of ACTIVE components. An

ACTIVE type's behavior may be suspended if it can not obtain essential information from

an engaged PASSIVE component.

2. Descriptive Variables:

Process interaction ACTIVE types are quali�ed by a set of features similar to those

that characterize activity scanning ACTIVE types. Every component's state, time to

activation, and sphere of inuence is described by its descriptive variables. Unlike the

next-event and activity scanning approaches, the process interaction method decomposes

a component's state description into two distinct elements. An ACTIVE type's state is

Chapter 5: Temporal Management 49

de�ned by the values of its local variables and the status of its control instructions.

STATE-OF-� = CONTROL-OF-��MEMORY-OF-�

ACTIVE-� PASSIVE-�

Range Value Range Value

CONTROL-OF-� L� f0; 1; 2; : : : ;Mg L� f0; 1; 2; : : : ;Mg

MEMORY-OF-� V� v� V� v�
TIME-LEFT-IN-STATE-� R1 ��

INFLUENCEES-OF-� D f�1; �2; : : : ; �Mg

INFLUENCERS-OF-� D f�1; �2; : : : ; �Mg

3. Component Interaction:

� In the activity scanning approach, the transition functions of ACTIVE components were

characterized by two parts, the conditions predicate C� and the action function f�. In

the process interaction approach, each part is broken down into several segments. Each

segment is associated with a substate corresponding to the control state of the program

implementing ��. Thus, C� and f� are decomposed into sets of fCl
�g and ff

l
�g. Employing

this design, the transition function �� is expressed as follows:

Control State

Control 0 If C0
� is TRUE ! apply f0� else nothing.

Control 1 If C1
� is TRUE ! apply f1� else nothing.

...

Control M If CM
� is TRUE ! apply fM� else nothing.

If �'s control algorithm is in state 1, only the condition C1
� and f

1
� are used to construct the

local transition function. This design enables every ACTIVE component to dynamically

alter its transition function according to its needs. Unlike the activity scanning approach,

a component's transition function is not static.

� If should be noted that if � does not possess the ability to alter its own behavior

(� 62 INFLUENCEES-OF-�), then every Cl
� will be equivalent to C� and f l� will be

identical to f� for all l 2 L�. However, for many scenarios this situation will not arise.

Most �'s will inuence their own behavior. For these �'s, their Cl
� and f l� are de�ned as

Chapter 5: Temporal Management 50

PROCESS-FOR-�

1 CONDITIONS-1-OF-�

ACTION-1-OF-�
...

�-POINTER ! l CONDITIONS-l-OF-�

ACTION-l-OF-�
...

M CONDITIONS-M -OF-�

ACTION-M -OF-�

Figure 5.6: Process De�nition

follows:

Cl
�((v�; ��); (l�2

; v
�2
; �

�2
); � � � ; v

�m
) = C�(

SUBSTATEz }| {
(l; v�; ��) ;

INFLUENCERSz }| {
(l
�2
; v
�2
; �

�2
); � � � ; v

�m
)

f l�((v�; ��); : : : ; v�m
) = f�((l; v�; ��); : : : ; v�m

)

These two equations are derived by �xing the control component of � to value l in C�.

Process Interaction Simulation

In a process-oriented simulation, every active component is represented as a process. A process

is con�gured as a sequence of statements divided into M distinct segments. Each segment

corresponds to one of the substates of the transition function ��. Every segment is composed of

two divisions. Each division corresponds to one of the elements of fCl
�g and ff

l
�g. The diagram

in Figure 5.6 portrays the basic structure of a process.

The �rst component of every segment represents the activation position of a process. The

execution of a process always begins at an activation point. As the process's control algorithm

sequentially progresses from segment to segment, it examines the conditional predicate of every

division. If a segment's conditional predicate evaluates to true, its associated \action" routine is

executed. Unlike the components of the previous strategies, processes retain their state during

their periods on inactivity. A reactivated process continues processing from the point of last

Chapter 5: Temporal Management 51

abandonment. The temporary withdrawal of a process does not force the process to re-initialize

its state.

The process-oriented simulator schedules the operation of all the processes in a simulation.

Each process is given the opportunity to execute their actions within the given time frame.

For a single processor simulator, this operation is accomplished with a quasi-parallel algorithm.

The illusion of parallelism is imparted by a piecemeal execution of the statements associated

with individual processes.

A typical process interaction simulation, as shown in Figure 5.7, employs a future-activations

list and current-activations list. Storing triplets of the form (�; l�; t�), each list reects the

states and activation times of individual processes. Functionally equivalent to a next-event list,

the future-activations list maintains a list of processes waiting to be activated. The forward

progression of time is determined by the activation times of the members in this list. The

current-activations list contains references to processes whose scheduled time has just arrived

and to processes waiting for their activation conditions to become true. As active processes are

activated, the conditional tests of suspended processes are examined. Although the current-

activations list is functionally similar to the conditions-list of the activity scanning approach,

each of the lists serves a slightly di�erent purpose. Items in the current-activation list maintain

references to running processes while members of a conditions-list represent processes waiting to

be executed. Components waiting for future activation do not reside in the current-activations-

list.

5 .3 P r o c e s s e s C o o r d in at i o n

In a process-oriented simulation, the primary mechanism of computation is a process. A process

is an \independent" program or procedure that uses the resources of a system to ful�ll its

goals. This approach to simulation facilitates the de�nition of parallel activities. After users

de�ne, describe, and initiate a collection of processes, the underlying simulation architecture

controls their concurrent execution. The simplicity of this design places a greater burden on

the simulation engine. Apart from ensuring the proper activation and deactivation of processes,

the engine must protect individual processes from becoming deadlocked. A process is de�ned

Chapter 5: Temporal Management 52

1 Set CLOCK to initial simulation time t0
2 Set V �'s to the initial values v�'s of MEMORY-OF-� variables.

3 For each ACTIVE �:

Initialization ! l� = initial value of CONTROL-OF-�

! Place (�; l�; t0 + ��) in

(
FUTURE-ACTS-LIST if �� > 0

CURRENT-ACTS-LIST if �� � 0

4 Set SCAN to top of CURRENT-ACTS-LIST

Scanning 5 (a) Move SCAN down until the �rst � is found whose scanned

Phase triplet (�; l�; t�) returns TRUE when the CONDITIONS-OF-�

is executed. Denote the winning � as �.

(b) Remove (�; l�; t�) from the CURRENT-ACTS-LIST.

6 Execute ACTION-l�-OF-� associated with activation point l�):

! execute f
l�
� for each � 2 INFLUENCEES-OF-�. The action

State function will yield new state (v0�; l
0

�; �
0

�) for every �.

Transition ! if � is an ACTIVE type, remove it from the FUTURE or

the CURRENT-ACTS-LIST.

! Insert (�; l0�; t� + �0�) in

(
FUTURE-ACTS-LIST if �0� > 0

CURRENT-ACTS-LIST if �0� � 0

Scan Done? 7 If SCAN has not reached bottom of CURRENT-ACTS-LIST goto 5.

8 Advance the CLOCK to the time of the �rst triplet on the

Time Advance FUTURE-ACTS-LIST. Let NEXT-TIME-EVENT denote the

new CLOCK value.

Update 9 Remove imminent activations from the FUTURE-ACTS-LIST

lists and insert them into the CURRENT-ACTS-LIST.

Termination 10 If NEXT-TIME-EVENT exceeds termination time,

Test then STOP! else goto 5.

Figure 5.7: Process Interaction

Chapter 5: Temporal Management 53

to be deadlocked if it is inactive and none of its reactivation conditions can ever become true.

Because a process-oriented simulation is decomposed into a collection of distinct events,

users do not design simulations in terms of events. The design philosophies of an event-based

and a process-based simulation are not equivalent. In an event-oriented simulation, users de�ne

events and event processing subroutines. The logic associated with every event is developed

after the events have been created. In a process-oriented simulation, users de�ne interacting

processes. Focus is on the creation of entities and the descriptions of behaviors. Unlike the

event-orient approach, it is not necessary to de�ne the logic associated with processes. The

simplicity of this approach to simulation is derived from pre-de�ned logic associated with every

process-oriented statement.

In process-oriented simulations, processes can simulate the resources of a system or act as

the active entities of a system. Processes of the former type are labeled as resource processes,

while processes of the latter type are labeled transaction processes. Neither approach has a

distinct advantage over the other. The nature of a simulation dictates which process type

serves as a better tool for a given situation.

Process-oriented languages contain collections of mechanisms to coordinate the communi-

cation and synchronization of concurrent processes. These constructs facilitate the transferral

of information from process to process and from process to system resource. In addition, these

structures attempt to properly handle a variety of conicts that may arise between processes.

If a process requests the use of an already busy system resource, the structures must execute

resolving actions. Typical responses include: the invocation of resource allocation schemes,

process suspension strategies, and data locking tactics.

The remainder of this chapter examines three paradigms of process coordination. The �rst

section covers traditional approaches, while the last two designs o�er alternative proposals.

Readers wishing to further explore coordination algorithms are directed to examine the plethora

of articles found in the �elds of concurrent systems[32], parallel languages, and simulation[4].

Chapter 5: Temporal Management 54

5.3.1 Common Schemes

Common process synchronization methods include Hoare monitors, Kessels monitors, Robert &

Verjus control modules, and Campbell & Habermann path expressions. Each of these techniques

may be combined in an hierarchical fashion to create elaborate synchronization schemes. A

monitor is basically a shared data structure accessible by only one process at a time. Most

monitors contain special constructs to manage waiting queues of processes. Control modules

separate pure synchronization instructions from the description of the process and are mainly

composed of sets of methods and synchronization rules. These rules dictate authorization

for processes to execute particular methods. Path expressions also emphasize the separation

between the scheduling of and functionality of operations.

5.3.2 LINDA

LINDA[10], developed by Nicholas Carriero and David Gelernter, is an approach to process

creation and coordination that enables users to organize and control the execution of multiple

threads. Utilizing tuple-space operations, this approach is based on generative communication.

Data is never exchanged between processes through messages or shared variables. Instead,

processes place and receive persistent data objects (called tuples) from a region called tuple

space. There is no direct communication between individual processes. A tuple can be an

inactive data object or a "live" computing process.

It is important to note that LINDA is not a language by itself. It is a conceptual model that

must be embedded into a base "computing" language. Currently, LINDA has been successively

combined with C, FORTRAN, and LISP.

5.3.3 MANIFOLD

MANIFOLD[3] is a co-ordination language. Its primary purpose is to describe and manage

the complex interconnections between independent concurrent processes. Based upon a cheap

lightweight process paradigm, MANIFOLD enables users to explicitly de�ne the parallel exe-

cution of various computational modules. The interaction and communication of autonomous

Chapter 5: Temporal Management 55

active agents are controlled by addressless messages9 and the activation of global ags. The

language's primary focus is on how processes are dynamically interconnected during the lifetime

of a system. The design of reusable components is enhanced by separating the communication

issues from the functionality of the component modules in a concurrent system. This separation

enables users to control the operations of co-operating processes at a high level of abstraction.

In MANIFOLD, processes are black box elements with sets of well-de�ned ports. Ports are

joined via connections to facilitate the transferral of information from one process to another.

Each process is oblivious to the identity of any other process with which it exchanges infor-

mation. The sequential ow of information between process ports is represented by a stream.

A stream can be dynamically constructed by the sender or receiver of information, or by any

third party MANIFOLD process. The additive nature of stream de�nitions enable single ports

to be simultaneously connected to many other ports. The ows of information in streams are

replicated or merged at port junctions.

It is important to note that ports within MANIFOLD processes are separate structures.

This enables ports to maintain input and output queues, and store tables of connectivity infor-

mation. In addition, ports can be associated with �lters that change, combine, and split units

of information that pass through them.

In MANIFOLD, the primary mechanism of control is the event. Events are atomic pieces

of information that de�ne upcoming state changes in the system. As events are broadcast into

the environment, individual processes select, interpret, and react to each event. It is important

to note that all events are observed10 asynchronously. Once an event is raised by an external

source, the process generally continues with its own processing. Every event propagates through

the environment independently from its source.

Unlike LINDA, MANIFOLD is a separate language for de�ning processes. It allows any

process to directly inuence the execution of other processes. Communication is not restricted

to a single tuple-space environment.

9Addressless message are not directed to be sent to speci�c places. They roam freely.
10Because events are not directly sent to processes, they are observed, not received by processes.

Chapter 5: Temporal Management 56

5 .4 S u m m a ry

This chapter has provided a brief overview of several temporal management strategies. Each

strategy was evaluated according to its method of temporal advancement and its implicit ap-

proach to world modeling. The temporal advancement methodology of a strategy dictates how

the progression of time is regulated and how the activity of concurrent action is governed within

a simulation. The world modeling approach of a strategy establishes the perspective from which

users construct their simulations.

The table in �gure 5.4 compares, in their \purest" form,11 four of the most popular strategies

in temporal management. Each strategy uses a di�erent set of structures and primitives to

provide users with an alternative approach to simulation modeling.

Discrete-Time
Event

Scheduling

Activity

Scanning

Process

Interaction

Primary NA Event Activity Process

Control Structure NA Event list Conditions List Process List

Temporal Jumps Constant Variable Variable Variable

Coordination Schemes NA None None Many

Concurrency Control No Yes Yes Yes

Ease of Use Easy Easy Moderate Complex

State Transition Types None None None None

Table 5.1: Temporal Management Methodologies

The discrete-time strategy is the simplest to use and easiest to implement. As time ows

uniformly forward, users apply rules of interaction to the state variables of a simulation. How-

ever, the simplicity of this strategy contributes to its failure to handle complex scenarios. Users

are not provided with structures to control the passage of time or to schedule the operations of

state altering actions.

Discrete-event strategies vary in complexity: from the easy, event scheduling, to the complex,

process interaction. The complexity of a strategy is directly linked to the world view it implicitly

embodies. Since not one world view is intrinsically the best, no one discrete-event strategy

11The pure form is identi�ed as the �rst historically attempted strategy of its type.

Chapter 5: Temporal Management 57

dominants. One world view can neither naturally express nor e�ciently process all the forms of

model description. Unlike the discrete-time strategy, discrete-event strategies have the ability

to manipulate the passage of time and to schedule the creation and deletion of state altering

actions. Time may advance non-uniformly and simultaneous actions may occur.

Although temporal management strategies provide users with an attractive base, they do

not guarantee the production of reusable simulations. Rules of interaction and simulation

structures are only supplied to control the passage of time and to schedule the activation of

state changes. Users are not provided with any structures to facilitate the de�nition of state

transitions. This shortcoming, which compels users to de�ne their own types of state changes,

limits the reusability of a simulation. Distinct simulations which utilize dissimilar structures to

alter the values of state variables are di�cult to combine.

An ideal reusable temporal management strategy would provide the following bene�ts:

� State Transition Times: A set of methods to assist users in specifying the execution

times, durations, and frequencies of state changes.

� State Transition Types: A set of extensible structures that de�ne the type and variety

of state transitions which can occur in a simulation.

� Multiple World Views: Simulation languages and systems which embody multiple

world views allow users to construct simulations from multiple points of view. Users

intermix the various approaches to world modeling to create simulations which naturally

express and e�ciently process their designs.

� Coordination Schemes: A set of rules and structures to assist users in coordinating

the actions of concurrent operations. The co-ordination rules will manage the complex

interconnections between simulation models and regulate the transfer of data between

them.

Chapter 6

RASP: The Design Goals

`The time has come,' the Walrus said,

`To talk of many things:

Of shoes - and ships - and sealing-wax -

Of cabbages - and kings -

And why the sea is boiling hot -

And whether pigs have wings.'

- Lewis Carroll, Through the Looking-Glass, Ch. 4

It is the aim of the RASP toolkit to provide computer graphics researchers, simulationists,

and robotic scientists with a common set of tools to build applications within their respective

domains. Providing these users with basic structures enhances their ability to reuse components

and ideas from previously de�ned applications. Components of applications from multiple

domains can also be freely exchanged without sizeable modi�cations promoting the development

of new and innovative simulations. Users are not forced to build from scratch each time a new

application is constructed.

This chapter discusses the four major goals embraced by the RASP toolkit. RASP solutions

to each of these goals are described in subsequent chapters.

6 .1 S im u l at io n F r a m e w o r k

6.1.1 Rules of Interaction

A set of tools is ine�ectual unless accompanied by a set of rules of interaction. Labeled as

a framework (see section B.2.3), these rules abstractly de�ne how users organize relationships

between the various components of their simulations. The precepts of a framework de�ne how

the state and behavioral patterns of simulation components are regulated.

58

Chapter 6: RASP: The Design Goals 59

6.1.2 Decomposability

A framework is extremely useful when decomposable. A partitioned framework enables users

to control e�ectively the overall design of their simulations. An organized separation of a

framework provides users with a standard set of sub-goals. Each sub-goal is used as a measuring

device for the individual segments of an application. Any segment that fails to meet the

requirements of a sub-goal fails the regulations of the complete framework.

6.1.3 Communication Architecture

The communication pathways between framework components establish the behavior of an

object-based system. The transfer of information from one object to another de�nes the per-

formance and capabilities of a system. A favorable communication architecture promotes the

design of reusable components, endorses the formation of dynamic connections (links), and

facilitates the creation of objects directly involved in the communication process.

6 .2 M u lt i p le T e m p o r a l S t r at e g ie s

The temporal management strategy employed by a simulation system dictates the point of

view from which users see the system they are modeling. It inuences greatly the structure

and manner in which models and their interactions are speci�ed. The inability of individual

strategies to express naturally and process e�ciently all forms of model description hampers

the construction of simulations which are generally easy to manipulate, decipher, and reuse. A

better foundation of simulation development supports the use of a wide variety of formalisms

and multiple temporal management strategies[97]. Users select the strategy that provides the

most exibility to their modeling needs and enables them to construct simulations which closely

emulate the behaviors of real-world systems. Recent trends which have seen the emergence of

simulation languages and systems which employ multiple strategies reveal the importance of

such a design.

Chapter 6: RASP: The Design Goals 60

6 .3 T im e a n d S ta t e

6.3.1 Definitional Uniformity

A basic set of de�nitions is needed to distinguish the time and state relationship. A clear

distinction is critical to the design of reusable simulations and the realization of simulation

foundations. A muddled understanding impedes the communication between model developers

and model users, contributes to cost overruns, and aggravates model disutility[13]. A de�ni-

tional uniformity is necessary to clarify simulation concepts, unify simulation structures, and

facilitate the portability of models[57].

6.3.2 Hierarchical Temporal Modeling Tools

The behavior of a time-varying simulation is guided by the nature of its state changes and

the techniques employed to regulate the progression of time. Therefore, it is important for

the toolkit to provide an extensible set of temporal modeling tools which standardizes the

speci�cation of state changes and the employment of temporal management methodologies.

A standardization adhering to the connection paradigm and conforming to a uniform set of

de�nitions promotes the creation of simulations that are easy to interpret, alter, and reuse.

The need to alter rapidly the behavioral speci�cations of a simulation at various levels of

detail requires a natural hierarchical relationship to exist among the set of temporal modeling

tools. Tools at the highest level administer global changes while those at the lowest level

administer local changes. A natural hierarchy contributes to stepwise modeling re�nement and

program readability.

6.3.3 Temporal Granuality

A simulation is heavily inuenced by the granularity of time between system events. In many

cases, the magnitude of the temporal step size can e�ect the accuracy of a model. Large intervals

reduce the precision of many computations. To reduce this problem, many systems let users

set the size of the maximum interval. Although this approach reduces the possibility of error,

it can introduce one major side e�ect. Unless proper structures are de�ned, it will con�ne all

Chapter 6: RASP: The Design Goals 61

the operations of a simulation to a single minimum temporal interval. This scheme is extremely

ine�cient for parallel computations soliciting disproportionate step sizes. An improved design

allows dissimilar computations to operate at disparate step sizes. Although this enhanced model

burdens the system with the task of organizing unevenly computing operations, it a�ords users

with the ability to de�ne optimized simulations.

6.3.4 Minimal Kernel

At the heart of every computer simulation resides a simulation kernel. The driving engine of a

simulation, the kernel employs a temporal advancement methodology (see Chapter 5) to control

the progression of time, to ensure that every module in a system is aware of the global state, to

manage the execution of concurrent activities, and to coordinate the activation of simultaneous

actions. A kernel's design profoundly a�ects the operation and structure of a simulation. To

function properly, all the components of a system must adhere to a single organizational pat-

tern. Apart from a possible reduction in a kernel's e�ciency, multiple formulations can induce

undesirable behaviors.

A kernel's performance and understandability is enhanced when its collection of responsibil-

ities are con�ned to a small set. Kernels serving many roles are frequently di�cult to manage

and reuse. Although many designers are aware of this fact, it is not uncommon for them to

add an assortment of miscellaneous operations within their simulation kernels. A system's

readability and tractability is routinely swapped for system optimizations. For example, some

kernels are directly responsible for controlling the interaction between user-interface devices

and the models of a simulation. Although these additions may enhance a system's outward

performance, this scheme hampers a system's versatility. Operations and functions that are

incorporated into a kernel are usually di�cult to modify or control.

The diagrams in �gure 6.1 illustrate the di�erence between a minimal and expanded kernel

design. In the minimal model, the kernel controls only the elements of the system. Each element

governs a distinct duty. In the expanded model, the kernel ful�lls all the expectations of the

minimal model plus more. This design impedes a system's versatility because it does not provide

users with methods to alter the behavior of the kernel's additional operations. Although it is

Chapter 6: RASP: The Design Goals 62

Element Element

Duty #2Duty #1

Element

Simulation

Duty #3

(A) Minimal Kernel

Kernel

Simulation
Kernel

Duty #2

Duty #3

Element

Duty #1

(B) Expanded Kernel

Figure 6.1: Simulation Kernel Designs: Items within the grey boxes are internal to the kernels

and inaccessible to simulation components.

possible to de�ne constructs to control the extra behaviors, this is not recommended because of

two unfavorable side e�ects. First, unpredictable con�gurations may corrupt the operation of

the kernel, causing the entire system to crash or generate inaccurate solutions. Second, a kernel

exhibiting multiple behaviors will induce additional constraints on a users' designs. Users must

ensure that their designs accommodate various kernel con�gurations.

6 .4 G e o m e t r i c M o d e l C o n s t r u c t i o n

6.4.1 Model Creation Methodology

The intrinsic designs of the models in a simulation impose a strict set of constraints on the

speci�cation of state changes and the transmission of information between system components.

Similarly, the external interfaces employed by models restrict the range of operations support-

able by the models. Therefore, it is necessary to establish a standard approach to model creation

which promotes a manageable and extensible internal architecture and a versatile external in-

terface.

To permit alterations of model traits at various levels of detail, the internal architecture

must support a natural hierarchical arrangement of information. Major changes are induced by

Chapter 6: RASP: The Design Goals 63

altering information at top of the hierarchy while minor ones are induced by altering information

near the lower end of the hierarchy.

To enable models to respond to state changes during runtime, the model's external interface

must permit the toolkit's temporal modeling tools to access the value of internal state variable

and to alter the relationships formed between models and their environments.

6.4.2 Rendering Supportive Architecture

Graphical views of (geometric) models in action are valuable elements of many simulations,

especially computer animations. They ease the veri�cation and augment the validity of sim-

ulation designs. Therefore, there is a great need to construct models and image synthesizers

(renderers) which facilitate the translation of model descriptions into visual images. In addition

to the design goals previously mentioned, a model's internal architecture must support readily

the interaction between models and renderers. However, this interaction must not lead to the

development of models and renderers which strongly depend upon each other. A clear division

must be established to promote independent and reusable design.

6.4.3 Complete Control

The design of a powerful toolkit enables users to control dynamically every attribute of a model.

Providing users with the authority to manipulate many of the individual features of a model

enhances their ability to create complex systems. The value of every state variable associated

with a model must be alterable. After state variables have been initialized, operators should

be available to revise their values during the lifetime of the simulation.

Chapter 7

RASP: The Framework

Only connect!

- Edward Morgan Forster, Howards End, Epigraph

Recent trends in the �eld of simulation have demonstrated the necessity to divide the sim-

ulation modeling process into distinct components (see section 4.4). Adhering to a well-de�ned

framework, a clear division enables the development of the components of a simulation one at a

time. After all the individual components have been developed, they can be assembled together

to form an operative simulation.

This chapter describes RASP's simulation framework. Discussion entails an examination of

the patterns of change, a description of the IMVCD Pentad, and a de�nition of the connection

paradigm.

7 .1 Pat t e r n s o f C h a n g e

The essence of every temporal simulation or computer animation involves the continual evolu-

tion of state variables through time. As time progresses forward, a pre-de�ned set of laws or

rules modify state variables. These \controlling" rules may inuence the literal values of these

state variables in one of two ways: explicitly or implicitly. Explicit rules precisely dictate the

values for state variables while implicit rules de�ne the behavioral response pattern for state

variables. For example (see Figure 7.1), if a rule informs an object to move to a particular

position, an explicit rule determines the object's position. However, if the object is told to

move away from its closest associate, an implicit rule inuences the object's position. Implicit

rule are commonly used in activity scanning simulations. For example, in the animation system

developed by Kalra[40], state variables are controlled by behavioral rules. Whenever a speci�c

rule is triggered, it alters the state of the system. In either case, if a state variable changes

value, it is always possible to deduce some motivating factor that is forcing it to change.

64

Chapter 7: RASP: The Framework 65

State

Variables

MODEL

COLOR to Red.."
"..Change your "...If your color is Blue

then change to Green..."

Exacting Influence Contingent Influence

Figure 7.1: Explicit vs. Implicit Rule

Controlling rules can be also classi�ed according to their association to the variables of

inuence and the ways in which they de�ne a change to a variable. If embedded into the design

of a speci�c variable, then the controlling inuence of change is de�ned to be internal. However,

if an inuence is not an integral part of a variable, it is labeled to be external. In contrast to

external inuences, the former tightly bind variables to sets of behaviors. The same rules of

conduct always govern a variable's reaction to foreign stimuli. A variable's behavior is usually

unalterable. External inuences do not elicit unalterable behaviors because they regulate a

variable's behavior from afar. This loose binding enables users to alter a variable's behavior by

simply changing its controlling inuence. In an object-based environment, one may envision

an internal motivation as a sub-unit of one monolithic entity while an external inuence is an

entirely separate entity. Figure 7.2 illustrates this concept.

External Influences

Variables

MODEL

Force #1

State

Rule #2

Behavior #3

Internal Influences

State

Variables
Behavior #3

Force #1 Rule #2

MODEL

Figure 7.2: Internal vs. External Rule

Examples of internal rule are commonly found in many animation systems which support

\animated basic types". In ASAS[72] and MIRA[52], special variables are de�ned that au-

tomatically update themselves according to an \evolutionary law". Although ideal for some

Chapter 7: RASP: The Framework 66

situations, this is not a suitable control mechanism. Directing an animated type to follow dy-

namically a variety of evolutionary laws can be di�cult or impossible. The inability to remove

or modify an internal rule from any variable type hampers the variable's reusability.

External rules provide a better device for general control than internal rules because they

separate a variable from its behavioral patterns. External rules enable users to build inde-

pendent models of change without directly inuencing the variables they are manipulating.

Exemplary usage of external rules is found in the PINOCCHIO animation system[54] and in

the motion objects of Fiume's temporal system[21]. In both works, external controlling rules

are associated with state variables to produce sequences of animations.

7 .2 T h e I-M -V -C -D P e n ta d

RASP's simulation framework, known as IMVCD (Informer-Model-Viewer-Controller-Delegator),

is based upon the development and usage of external controlling rules. Individual models are

not allowed to make changes to their own state. Only external controllers can induce modi�-

cations to the state variables of a model. Therefore, it is duty of the models of a simulation to

interpret and execute changes issued by controllers.

The IMVCD framework is divided into �ve abstract components, each representing a dif-

ferent aspect of the simulation modeling process. Dividing the process into separate sections

promotes modular design and enhances the reusability of RASP-built applications. IMVCD's

object-oriented design provides users with a common architecture and organizational plan to

build their applications. IMVCD's components, as shown in �gure 7.3, include the following:

� Informer: These elements de�ne the physical traits and immaterial characteristics of

various models in a simulation. Informational traits are a�xed to a common substructure

to create complex models. Constituents of this group control a model's shape, material

attributes, associations, properties, and qualities. For example, Figure 7.4 shows a model

constructed with four Informer objects.

� Model: All application objects are representative elements of this grouping. Models

de�ne the physical or active elements of a simulation. External rules place constraints on

Chapter 7: RASP: The Framework 67

MODELVIEWER INFORMER

RASP’s
Framework

CONTROLLER

DELEGATOR

Figure 7.3: The IMVCD Framework

Properties Colors

Spherical

Geometry

Collision

Info

Model

Figure 7.4: Model with Informers

a model's interface to control its interaction with other models. Models are not directly

responsible for their own behavior. Every model must organize sets of Informer elements

to regulate its appearance and to react to external inuences. A model interprets its

externally situated constraints to control the ow of information between the external

environment and its Informer objects.

� Viewer: Responsible for the production of static images, these objects interpret data

from the physical models of the systems to form visual displays of a simulation.

� Controller: The foundation of RASP's bi-level hierarchy of simulation control, these

objects are \indirectly" responsible for modi�cations to the attributes and state variables

of all the models. Controllers do not form direct links with the variables they are altering.

Rather, they establish constraints on the links that bond the controller and an object's

interface to induce modi�cations. This form of external inuence promotes the design of

Chapter 7: RASP: The Framework 68

Model Viewer
Image

Figure 7.5: From Model to Viewer to Image

\independent" controlling objects. A controller induces a change to its interface, not to

its controlling objects. State modi�cations are produced by the propagation of changes

from a controller's interface to a model's interface. The nature of this scheme permits

users to construct non-adaptive and adaptive inuential links for complex simulations.

� Delegator: Members from this class of objects serve to control the interactions between

the Controllers and Models in a time-varying simulation. Forming the upper layer

of RASP's bi-level hierarchy, these objects administer the linking of component inter-

faces. They delegate to individual Controllers \when" and \how" they are to direct the

behaviors of the models in a simulation.

The communication pathways established by the interactions of these �ve components con-

stitute an integral element of RASP's IMVCD framework. A strict set of rules for data trans-

mission regulates the ow of information between components. In many cases, data is examined

by a variety of objects called ports. Ports ensure that legitimate data is being sent from compo-

nent to component. In addition, some ports can signal the occurrence of state changes. Ports

are discussed in section 7.3.3.

7 .3 C o n n e c t io n Pa r a d ig m

The IMVCD framework communication architecture is based upon the connection paradigm[55].

Based upon �rst-class links and �rst-class interfaces, the connection paradigm structures a sys-

tem as a set of components interconnected through unidirectional ports. Component behaviors

are speci�ed with respect to their ports, not their bindings with other components. Bindings

between components are formed by elements not directly inuenced by the data transferal

Chapter 7: RASP: The Framework 69

process. The separation of binding information from behavioral speci�cations promotes the

development of reusable components.

The following three subsection describe the advantages and minor drawbacks of systems that

adhere to the connection paradigm. Discussion entails the bene�ts of indirect communication,

�rst-class links, and �rst-class interfaces.

7.3.1 Direct vs. Indirect Communication

Communication techniques are distinguished according to their means of establishing data links.

If a system relegates the duty to the components of the system, it uses a \direct" approach. If

the components, such as those following the connection paradigm, are not directly involved in

the establishment of their data paths, the system uses an \indirect" approach.

In the direct approach, all the components of a system de�ne their own links. They ensure

that all the communication protocols between themselves and their partners are correct. Al-

though simple and easy to implement, this plan has several drawbacks. First, every component

must have explicit knowledge of its partner's identity and interface if it wishes to exchange

successfully information. Second, it can be very di�cult to alter an component's partner. Un-

less the new partner has an identical interface to the previous partner, a change may require a

modi�cation to the repertoire between the two components. Figure 7.6a illustrates the direct

approach to component communication.

Producer Consumer
Direct Link

My partner is "Consumer"

(A)

Producer

Body

Governing

ConsumerIndirect Link

My partner is "???".

(B)

Figure 7.6: Direct vs. Indirect Communication

The indirect approach transcends these drawbacks. In the indirect approach, an external

governing body establishes all the links between the various components of a system. The

Chapter 7: RASP: The Framework 70

governing body obtains datum from a \producer" component and delivers it to a \consumer"

component. This process is illustrated in Figure 7.6b. Individual component do not generate

their own data links. They are always oblivious to the identity of their partners. Although the

additional level of indirectness created by this approach is not as e�cient as a direct commu-

nicational link, it a�ords three important qualities to reusable simulation design.

� Indirect communication enhances the independent construction of complex components.

Dependencies are extracted from all components. This di�ers from the direct approach

which may unnecessarily force users to incorporate dependency information into object

designs.

� Indirect connections provide an attractive base for the maintenance of temporally depen-

dent informational pathways because dynamic links are formed and destroyed by external

sources. This design enables objects to be constructed without any time-varying con-

structs. A component's dynamic behavior is not controlled by the component itself.

� Multiplex links, as seen in Figure 7.7, are easy to form. Many paths may meet at or

originate from a single source. Sources and consumers involved in multiplex links are not

required to manage all their connections. For example, a source with multiple links is not

required to send repeatedly one piece of datum to multiple objects.

Producer Body
Governing

Body
Governing

Body
Governing

A

B

Consumer

Consumer
C

Consumer

Indirect Link

Indirect Link

Indirect Link

Figure 7.7: Multiplex Connection

Chapter 7: RASP: The Framework 71

7.3.2 First-Class Links

The indirect approach to component communication requires an external source to de�ne the

data pathways between individual components. To accomplish this task, the governing source

may establish passive or active links. With passive links, the external source must ensure

that proper bonds are formed between compatible components. If a consumer component

requires a double-precision value, it should not be linked to a producer component that generates

only \string" values. Unlike passive links, active links are �rst-class objects. They are well-

de�ned entities with structure. Performing as moderators between components, they ensure

the transferal of identical \types" of information from one entity to another. In addition to

\type-checking", active links can create couplings between incongruous objects. After receiving

data from a source component, the link can �lter or modify the data to an appropriate form.

Producer

Body

Governing

Consumer Producer ConsumerFirst-Class Link

Body

Governing

My partner is "???". My partner is "???".

Passive Indirect Link Active Indirect Link

Figure 7.8: Indirect Link Types

The diagram in Figure 7.8 and the following set of pseudo-code illustrate the di�erence

between the two approaches of component linking.

procedure passive_indirect_foo(obj producer, obj consumer)

{

a = producer.get(); /* get data from source */

if (type(a) == type(consumer)) /* type-check data with consumer */

consumer.send(a); /* pass data to consumer */

}

procedure active_indirect_foo(obj producer, obj consumer) {

link bar(producer, consumer); /* create indirect link */

bar.execute() /* pass info along link */

}

Chapter 7: RASP: The Framework 72

7.3.3 First-Class Interface

The structure and de�nition of passive or active links in any system depends upon the interfaces

of the components to be joined. Each interface asserts the type and quantity of information

produced or consumed by a component. In addition, the interface speci�es all the prerequisites

for a component. In common object-oriented languages, such as C++, an component's interface

consists of a collection of second-class procedures. These routines, called member functions, are

the interface to a component's internal assembly. Passive elements of a component's framework,

they serve to ensure the proper transferal of information from the source to the environment,

and vice-versa. Because they do not retain state or react to messages, member functions do

not usually manage other types of behaviors or functions.

Although prevalent in object-oriented languages this type of component interface provides

limited support for simulation models based on links. The inability of links to obtain informa-

tion, such as data requirements or state changes, from member functions hampers their exibil-

ity. An interface composed of �rst-class objects provides a superior foundation for linking-based

systems. Behaving as member functions, these objects, called ports, provide users with powerful

mechanism to control the ow of information \in" and \out" of an object. Although ports are

similar to member functions, they are not easily interchangeable. Their di�ering designs and

capabilities induce alternative approach to simulation design.

Member functions and ports contrast in the following ways:

Member Functions Ports

Direct access to data members? Yes No

Dataow Bidirectional Unidirectional

Can be Queried? No Yes

Component composition? No Yes

Attach Information? No Yes

Ease of development Easy Moderate

Table 7.2: Member functions vs. Ports

� All ports are unidirectional. They are de�ned as either \in" or \out", but not both. They

can not alter their directional behavior at any time.

Chapter 7: RASP: The Framework 73

� The arity of port routines is at most one. This prohibits all \out" ports from de�ning a

list of arguments. Parameter values must be set by an associated list of \in" ports. For

example, the following member function can not be expressed by a single \out" port.

int PROCEDURE poof(argument1); /* get arg, run poof & return data */

The procedure poof must be partitioned into two separate \port" functions as follows:

InPort arg1(argument1); /* get argument and store for poof */

OutPort poof(); /* run poof and return data */

Although appearing to be a major drawback, this constraint actually enhances the design

of independent components. Functions that simultaneously edit (consume data) and

query (produce data) an component's state are not encapsulated into one command.

The separation of functions enables multiple links to query concurrently the state of

the component whenever a change occurs. A single function that performs editing and

querying operations may delay the activation of vital \state" monitoring actions.1

Object B

Object C

Object D

Object A

Compound Object

InPort

Out Port

Out Port

Figure 7.9: Amalgamated Component

� A port-based system aids the construction of large \black-box" components from numer-

ous smaller components. Users simply link the \out" ports of components to the \in"

ports of other components to create amalgamated components. Diagram 7.9 depicts an

example construction. Without a pre-de�ned organizational plan, the creation of amal-

gamated components is not possible in member function-based systems.

1A state monitoring action is a special function that is immediately triggered whenever a component reaches
a particular state.

Chapter 7: RASP: The Framework 74

� Ports can accept queries and additional arguments not directly related to its purpose.

For example, a port can be informed to invoke a speci�c operation when it receives new

information or observes changes in its associated component's state.

� Ports are generally harder to implement than standard member functions. Users must de-

�ne additional parameters and links to ensure their proper usage. However, this di�culty

may vanish with future language support.

Object

void setPosition(double);

void setColor(kolor);

outPort outPosition();

inPort inPosition();

inPort inColor();

double getPosition();

Object

Object w/PortsObject w/Member Functions

Figure 7.10: Members vs. Ports

The diagram in Figure 7.10 illustrates the di�erence between a component created with

standard member functions and an component created with ports.

7.3.4 Connections vs. Dataflow

The �rst-class links formed by the connection paradigm are similar to the links found in dataow

networks[30, 15]. Each interconnects the components via port-like structures to form a working

system. However, several key di�erences exist between the connection paradigm and dataow

architecture. First, the nodes in a dataow network usually perform an operation roughly

equivalent to an assembly instruction while nodes in a connection paradigm system can have

arbitrary computational power. Second, the topology of a dataow network is static while that

of a connection paradigm system is dynamic. State transition can reorganize the networks of

connection paradigm systems at run time. This advantageous scheme fosters the development

of complex systems which closely resemble the real-world systems they model.

Chapter 7: RASP: The Framework 75

7 .4 IM V C D v s . M V C

View

Model

Controller

Figure 7.11: MVC Framework

The IMVCD and MVC[45] (see �gure 7.11) object-oriented frameworks share many com-

mon traits. Each architecture decomposes an application into several abstract components and

each establishes communication pathways between the individual components. In some ways,

IMVCD may be viewed as an augmented or enhanced MVC framework. However, IMVCD dif-

fers from MVC in many other ways. IMVCD de�nes an alternate modularization of a system.

Some of IMVCD's modules generalize certain MVC components, while others partition them.

IMVCD incorporates temporal information and de�nes a communication protocol between com-

ponents. The di�erence between the two frameworks can be contributed to their di�ering design

goals. MVC supplies an architecture to design reusable user-interface application while IMVCD

supplies an architecture to design reusable time-varying simulations.

Models

MVC models and IMVCD Models are similar in that both represent the active entities of

a simulation, and both are distinguished by their attribute traits. However, each component

di�ers in the way it is constructed. In MVC,models are constructed to follow only a rudimentary

set of modeling constraints. Users are free to build all the models within a simulation di�erently.

In IMVCD,Models are constructed solely to organize sets of Informers objects. No model is

permitted to deviate from this design.

Chapter 7: RASP: The Framework 76

IMVCD enforces its design methodology by requiring all user-de�ned Models to inherit

properties and procedures from \model templates". Templates (OOP base classes) de�ne basic

operations, which Models (subclasses) use to organize Informers and to control the exchange

of information between Informers and the environment.

MVC does not support model templates2 because it would be detrimental to its framework.

It is MVC's belief that \..the model is completely application-dependent and must therefore be

implemented by the application programmer."[92] Although this method of model development

can be viewed as an acceptable manufacturing technique, it does not promote the design of

reusable models. The lack of a structured design methodology endorses the creation of a wide

variety of non-reusable model con�gurations.

Views

MVC views and IMVCDViewers are similar in that both objects produce visual representations

of the models in a simulation. However, each di�ers in the number of duties it performs.

MVC views embrace many responsibilities. They interpret information from models, form links

between controllers and models, and react to the changes occurring in a simulation. The problem

with this design is that it promotes the creation of views of monolithic size and it requires views

to have direct knowledge of the models they are manipulating. These two impediments seriously

undermine an object's reusable potential.

IMVCDViewers avoid these di�culties because they embrace only one responsibility. They

interpret information obtained from the models of a simulation to generate synthetic images.

Additional tasks associated with MVC views are distributed to other components. For example,

link formation duties are relegated to Delegators, while observation tasks are dispatched to

Controllers and Models.

Controllers

IMVCDControllers di�er from those of MVC's in that the former are \general" manipulators,

are oblivious to the identity of the models they control and the operations which the models

2MVC supports templates for its views and controllers, but not for its models.

Chapter 7: RASP: The Framework 77

provide, and are not required to inherit properties and data from an abstract controller (class).

These three properties enhance their reusability:

Controllers are general because they inuence all the states and behaviors exhibited by

models (or other controllers). They are not restricted to handle only one responsibility, such

as the one delegated to MVC controllers - to manage the interaction between models and

user-interface devices.

Controllers are oblivious to the identity of the objects govern because they do not actually

interact directly with them. All modi�cations are relayed from Controllers to models via

Delegators and ports. This level of indirection, not found in the relationship between MVC

controllers and models, promotes the construction of controllers which are not constrained to

interact with only a few types of models.

Unlike MVC, IMVCD does not require controllers to inherit information from one abstract

class. The expanded functionality of IMVCD Controllers restricts the creation of such a

class. One abstract class would hamper the construction of a wide variety of controller types.

However, it should be noted that this latitude may change in the future. Abstract or base

classes may need to be created to promote greater reusability.

Chapter 8

RASP: Discrete-Event Modeling

To choose time is to save time

- Francis Bacon, 1st Baron Verulam, Viscount St. Albans

Essays, \Of Dispatch"

Many computer animation systems and robotic applications are based upon a discrete time

approach. The variables of the system change discretely at speci�c times. Although easy

to implement and use, this approach does not provide a robust foundation for time-varying

simulations. The lack of event scheduling constructs limits the user's ability to control the

passage of time. In addition, the approach's inability to describe the execution of concurrent

actions precludes it from coordinating the parallel nature of many simulations. The discrete-

event approach provides a better foundation for building time-varying simulations because

its variable time step philosophy permits the de�nition of future actions and events are not

constrained to occur at pre-de�ned intervals.

Temporal systems based upon the discrete-event philosophy can be separated into three

world views: event scheduling, activity scanning, and process-interaction (see sec-

tion 5.2). Events can be explicitly pre-de�ned, activated by environmental factors, or initiated

by running processes. Historically, most simulation systems supported only one world view.

However, recent trends have seen the emergence of simulation systems which support multiple

world views. For instance, SIMSCRIPT II.5[42], SLAM[71], and SIMAN[67] o�er users the

choice to create simulations using events and processes.

This chapter introduces RASP's technique to simulation modeling. Labeled as a multiple

interface approach, this scheme enables users to design simulations through any of three world

views in union or separately.

78

Chapter 8: RASP: Discrete-Event Modeling 79

8 .1 M u lt i p le In t e r fa c e A p p r o a c h

All three views toward discrete-event modeling are based upon the creation and activation of

events. Although each view supports a di�erent design philosophy, their common foundation

suggests the development of an approach encompassing all three. A multiple interface approach

to discrete-event modeling enables users to develop simulation systems with pre-de�ned events,

conditional events, and processes.

It is important to distinguish the di�erence between a multiple interface approach and a

\combined" approach. The process-interaction approach to discrete-event modeling is a com-

bined approach.1 It enables users to create pre-de�ned events and conditional activities. How-

ever, it is not a multiple interface approach. Users are relegated to de�ne a process interaction

simulation with only processes. All events and conditional-events are de�ned in terms of pro-

cesses. Although one may view this approach to modeling as a positive quality, it does not

facilitate the creation of simple events and conditional activities. A multiple interface approach

enables users to create events, activities, or processes using an event, activity, or process inter-

face.

8 .2 A c t i v i t y S c a n n in g M o d e l in g

An aggregate interface approach to modeling places a heavy burden on a simulation system.

As events, conditional activities, and processes are de�ned (using three di�erent interfaces), the

system must translate them into one uni�ed event-based framework. This task is simpli�ed by

shifting some of the event handling responsibility from the central processor (of the simulation

loop) to the data components of the system. Aside from reducing the quantity of computations

performed by the system kernel, this shift improves the maintainability of a model. It is usually

easier for users to maintain a system composed of components with minimal responsibilities.

The activity scanning approach to discrete-event modeling necessitates the inspection of

contingency tests for conditional actions. Because the activity scanning approach dispatches

1Although any simulation approach that supports continuous and discrete time can be de�ned as a combined
approach, this is not the de�nition proposed in this chapter.

Chapter 8: RASP: Discrete-Event Modeling 80

this service to the simulation kernel, the kernel must maintain a dynamically ordered conditions-

list. After the completion of every event, the kernel scans the list to determine if any activity's

condition has been satis�ed. Apart from imposing an additional burden on the simulation

kernel, this approach introduces redundant operations. The continual review of unvarying

conditions is ine�cient. If the elements of a condition do not change their state, it should not

be necessary to evaluate the condition's state. An alternative approach to activity scanning

transfers the responsibility of contingency condition testing from the simulation kernel to the

state variables of the system. As variables have their state's altered, they inform all conditional

tests of their new values. This scheme initiates contingency testing only when it is required.

Querying operations are performed only after relevant state changes occur.

Although this alternative scheme has a higher computational overhead, it a�ords three

additional bene�cial qualities. First, it eliminates the need for a conditions-list. The simulation

kernel is freed from continually performing tests of conditional activation. Second, it promotes

the design of reusable �rst-class conditionals. Developed as an object with \ports", a �rst-class

condition possesses state and is viewed as a simulating entity. States variables are linked with

conditionals during the progression of a simulation. A conditional's predicate is evaluated each

time it receives a new value from one of its external linkages. Third, it contributes to a modular

approach to simulation development. It coerces users to balance the distribution of conditional

tests throughout a system.

8.2.1 First-Class Conditionals

In RASP, conditional predicates are constructed as �rst-class entities with sets of \input" and

\output" ports. Input ports values are evaluated by internally-de�ned predicates to produce

values for output ports. The values of output ports are altered each time a conditional object

perceives a change in its input ports. Adhering to the connection paradigm, this scheme enables

users to construct temporally dependent conditional tests. One conditional object can be

used to evaluate the states of several variables at speci�c times. For example, the diagram in

Figure 8.1 illustrates two con�gurations of the same conditional entity during di�erent stages

of a simulation. At time t1, the states of objects A and B are being tested, while at time t2, the

Chapter 8: RASP: Discrete-Event Modeling 81

values of objects A and C are being evaluated. It is important to note that the conditional is

never aware of the variables supplying its input ports with state values. Its behavior is strictly

dependent on the values of its \input" ports.

In1

In 2

If In > 100 & In < 200 then Out = TRUE1 2

Conditional Object

Out
Obj B

Obj A

In1

In 2

If In > 100 & In < 200 then Out = TRUE1 2

Conditional Object

Out

Obj A

Obj C

Time = t 1

Time = t 2

Figure 8.1: First Class Conditional

An activity scanning action is constructed in three steps. First, a �rst-class conditional

with n number of input ports is declared. The cardinality of the input ports depends upon

the arity2 of the conditional's predicate. Second, all state variables involved in the contingency

test are informed to monitor their states. Any noted state modi�cations are transmitted to the

conditional. In the last step, the conditional observes the value of its predicate test. If a state

change is perceived, the conditional immediately schedule the activation of an event or activity.

The following segment of pseudo-code illustrates the commands users would issue to de�ne the

con�guration in Figure 8.1.

FROM t={0,100} if (object A changes state) then

``pass values from A and B to CONDITIONAL''.

FROM t={0,100} if (object B changes state) then

``pass values from A and B to CONDITIONAL''.

FROM t={101,200} if (object A changes state) then

``pass values from A and C to CONDITIONAL''.

FROM t={101,200} if (object B changes state) then

``pass values from A and C to CONDITIONAL''.

FROM t={0,200} if (CONDITIONAL predicate changes state) then

``schedule new ACTIVITY''

2Computer terminology de�ning the number of arguments an expression requires.

Chapter 8: RASP: Discrete-Event Modeling 82

The �rst two statements apply to the period from t = 0 to t = 100. During this temporal

interval, the values of objects A and B are observed. The following two statements alter the

observed variable list to objects A and C. This observation period is established to occur from

t = 100 to t = 200. Sustained from t = 0 to t = 200, the last statement orders the activation

of a new activity if the conditional's predicate evaluates as true.

8 .3 P r o c e s s M o d e l in g

A process is a powerful simulation modeling abstraction. It enables a modeler to group sets

of activities, events, and conditions into one functional unit. Without this mechanism, it is

relatively di�cult to construct relations between otherwise unrelated events and conditional

activities. One might view a process to be a complex activity with dynamic qualities that can

alter its behavior according to the presence or absence of speci�c external or internal variables.

Theoretically, all process-oriented simulation models can be emulated by a system support-

ing only events or activities. However, requiring the de�nition of complex processes using only

simple temporal management tools can prove an arduous task. Users risk generating errors

every time they utilize their own \process-type" constructs. Providing users with \process"

abstraction tools reduces their time of implementation, enhances their ability to focus on their

problem domains, and increases the reusability of their designs.

8.3.1 Process Requirements

A robust process-oriented simulation system must provide users with three important features.

First, it must support multiple mechanisms for creating communication pathways between pro-

cesses. This includes structures for synchronous and asynchronous communication. Second, it

must provide constructs for the resolution of conicting requests of exclusive-use resources. It

should not allow for competing processes to access simultaneously restricted sources of infor-

mation. Third, structures for processes to receive and to send information to their environment

must be available. Processes must coordinate their activities with other processes and resources

to accomplish their aims.

Chapter 8: RASP: Discrete-Event Modeling 83

8.3.2 Process States

In a process-oriented simulation, every process is an individual entity. It interacts with other

processes and uses the resources of a system to ful�ll its immediate goals. The runtime envi-

ronment for a process-oriented simulator must manage the interactions between processes and

regulate the behaviors of processes according to their states. At any time during its lifetime, a

process is in only one of three states. It may be idle, holding, or waiting. A process awaiting

activation (or reactivation) is deemed to be idle. Idle processes neither invoke operations nor

a�ect the state of other processes in a system. A process enters a holding state when awaiting

simulated time to pass. Viewed as an interrupted process, a holding process resumes execution

after its waiting time expires. A process is in a waiting state when it is accessing an unavailable

data server (resource). A process withdraws from a waiting state immediately after the data

resource becomes available.

Process-oriented simulators implemented on single processor machines require a scheduler

to govern adequately the actions of the concurrent processes. The emulation of a genuine

parallel management system is accomplished with an interleaving technique, such as those used

in multi-tasking operating system. As the simulator leaps from process to process, it executes

enough code for each process until it advances it to its next state. This incremental scheme

ensures that every process progresses through time at the same rate.

8.3.3 Process Definition

All process-oriented languages provide developers with special constructs or commands to con-

struct processes. Based upon their approach to process assembly, process-oriented languages

can be classi�ed as either program-based or object-based.

In program-based languages, a process is de�ned by a collection of routines or procedures.

Each time a process is required to interpret information or change its state, one of these routines

is invoked. The major disadvantage of this approach is that it does do not allow multiple

instantiations of a single process. Users must duplicate code segments or de�ne \state" caching

statements to initiate repeated instances of an individual process. Notable program-based

languages include GPSS[77], SLAM[71], and CSIM[79].

Chapter 8: RASP: Discrete-Event Modeling 84

In object-based languages, processes are instances of process templates. Each template is

composed of a collection of routines and data members that de�nes the logic of a single process.

Every instance of a template de�nes a new process. This approach to process assembly o�ers

three distinct advantages. First, processes are �rst-class objects and are manipulated as basic

elements of the simulation language. They may be used in the following ways: (a) as parameter

values to functions or other processes; (b) as return values of functions; (c) as arguments of

equality or inequality tests; or (d) in assignment to process variables. Second, processes may be

instantiated more than once. The use of templates facilitates the creation of similar processes.

Third, it is possible to embed protocols of interaction into a process' design. Processes can be

supplied with rules to regulate their employment during a simulation. For example, a process

may be speci�ed to govern selectively the visibility of its operations according to its state. This

mechanism can ensure that the process is properly manipulated by external inuences. Notable

object-based languages include SIMULA[6], HSL[74], and Concurrent-C++[24].

8 .4 R A S P P r o c e s s

The RASP toolkit uses an object-based approach to process modeling. Processes are created

from general process templates. To enhance a process' e�cacy, the toolkit provides users with

additional constructs to control their progression through time. Commands are furnished to

initiate, suspend, and terminate a running process. These tools facilitate the placement of

processes into the hierarchy of temporal tools. To promote greater reusability, the toolkit

advocates a set of design rules for the development of processes. These guidelines enforce

users to construct processes as an enclosed entities interacting with their environment only

through unidirectional ports. Conforming to the connection paradigm, this design methodology

is consistent with the regulations administered by the IMVCD framework.

Chapter 8: RASP: Discrete-Event Modeling 85

8.4.1 Process States

A process' period of activity can be con�ned to a closed temporal interval.3 Not commonly

used in process-oriented languages,4 this scheme enhances users' abilities to construct variably

operating processes. At any point during a simulation, a process may be coerced into an active

or inactive state; thus the �ve5 behavioral states are de�ned as follows:

� idle: Processes are de�ned to be idle if they are not actively attempting to alter one or

more of the state variables of a simulation. Inactive processes do not process informa-

tion or wait for time to pass. Processes are declared idle before their �rst summons to

activation and immediately after they have been deactivated.

� active: A process is declared active if engaged in processing information. A process will

enter an active state: (1) immediately after initializing; (2) directly after it has waited

for time to pass; (3) as soon as a locked resource has been freed; or (4) after it subsides

from a suspended state.

� holding: A process waiting for time to pass is de�ned to be in a holding state. A holding

process can not query the environment or react to external events. It is (usually) the

responsibility of a process to de�ne the length of time it is to remain in a holding state.

After a process' holding time has expired, it immediately passes into an active state.

� waiting: Some processes require direct interaction with their surroundings. Often, they

will attempt to use or alter the resources of a system. However, not all resources may be

readily available when they are requested for use by a process. When this situation occurs,

a process can respond in two ways. First, it can alter its conduct to avoid utilization of the

unavailable resource. This behavior does not (usually) require the process to forebear its

processing of information or to suspend itself temporarily. Second, it can wait inde�nitely

for the resource to become obtainable. If a process chooses to pursue this second option,

3The association of temporal periods with processes is described in section 9.2.4.
4Except for languages using light-weight threads.
5RASP processes exhibit two additional states. However, this may change in the future.

Chapter 8: RASP: Discrete-Event Modeling 86

it will be placed in a waiting state. A waiting or \blocked" process instantly becomes an

active process the moment the previously unavailable resource becomes available.

� suspended: A suspended process is temporarily inoperative. It does not engage in any

information processing tasks, and is not waiting for external events or holding times

to expire. Only processes de�ned to be in an active, holding, or waiting state can be

suspended.

8.4.2 Process Design

The reusability of an object's de�nition in a programming environment is directly inuenced by

the measure and type of constraints incorporated into the object's design. Design constraints

establish the domain of an object's usage. An object's domain is easily expanded or altered

when it is easy to alter its embodied constraints. Therefore, to enhance an object's usage, it

should be clear how to identify and modify the object's constraints. In section 7.3.1, it was

shown that indirect links coupled with a �rst-class interface a�ords important qualities to the

design of reusable components. Objects purposely using indirect links reduce the exactness and

highlight the identity of their constraints. Viewed and de�ned as objects in the RASP toolkit,

processes can also utilize indirect links. The usage of indirect links, which alleviates an object

from knowing the exact identity of its interacting companion, enhances the design of reusable

processes.

Inuenced by Manifold[3], the connection paradigm, and Kerridge's port language (CPP)[44],

RASP processes are designed to interact with the environment through �rst-class \ports", uni-

directional data entry or egress gateways. A process obtains or transmits data through its

set of ports. Datum transfers occur only through ports. Although process languages, such

as SIMULA, CSIM, and Concurrent C, support port-like structures,6 each language's port de-

vices apply only to incoming information. This scheme empowers processes to be oblivious of

their data sender's identity but requires them to be aware of their data receiver's identity. To

transmit data to its environment, a process must notify every data receiver of the impending

transaction. This di�culty does not arise when processes issue data through output ports. After

6CSIM's \mailboxes" and Concurrent C's \transactions" are similar to RASP process ports.

Chapter 8: RASP: Discrete-Event Modeling 87

a process transfers information to its ports, the system is responsible for advancing the data

from the ports to the appropriate receivers.

This process design scheme separates communication issues from the functionality of process

modules. Processes are developed independently of a context. The communication pathways

between collections of processes and data entities are speci�ed by users after a process' design

has been completed. In RASP, all pathways are constructed with the assistance of a set of tem-

poral management tools (see section 9.2). These tools establish links between separate objects

(processes) contingent upon the value of time or the observation of state changes. Unlike well-

known process organization paradigms, such as Communicating Sequential Processes[32], the

communicational pattern between distinct processes is not �xed at compile time. The topology

of the communication network and the potential connectivity of individual processes is estab-

lished and alterable during run-time. The ability to change dynamically the communicational

patterns of a running simulation can better emulate the properties of a real world system.

8.4.3 Message Passing

In process-based systems, processes interact via message passing. The transfer of information

occurs when one process transmits a message to another. Message passing schemes are classi�ed

as either synchronous or asynchronous. In the synchronous model, distinct processes synchro-

nize their behaviors to accommodate the transfer of information. This scheme requires one or

both of the processes to suspend (block) their behavior until the delivery of information is com-

pleted. In asynchronous (non-blocking) message passing, processes do not block to transmit or

receive information. Communicating processes are not enforced to synchronize their behaviors

to exchange data. Synchronization methods are replaced with message bu�ers and sizable mes-

sage controllers. As data ows from process to process, it must pass through a message bu�er

to enter or exit a process. \Bu�erless" schemes are used when the loss of information between

processes is deemed as acceptable.

RASP processes support three types of message passing schemes: asynchronous send, asyn-

chronous receive, and synchronous receive. Although a general plan to permit \synchronous

send" is not de�ned, it does not imply that it is not possible to formulate. This commonly used

Chapter 8: RASP: Discrete-Event Modeling 88

message passing scheme is consigned under the topic of future work.

Asynchronous Message Send

A process sends messages asynchronously by setting the value of one or more of its \output"

ports, whereupon it continues to execute. The simulation kernel directs the data from the

process' outport ports to the \input" ports of other objects or processes. It should be noted that

RASP ports do not bu�er information. Immediately after new data arrives, old information is

overwritten. Thus objects or processes loose old values unless they choose to cache it themselves.

The impact of bu�ering ports into RASP design is consigned for future work.

Asynchronous Message Receive

A process asynchronously receives a message by polling one of its \input" ports for a value.

If a new value is not available, the process suspends its progress for an explicit period of

time, after which the process is free to re-examine its input port or execute other procedures.

This temporary suspension mechanism is vital to process-oriented simulations implemented on

single-processor machines. A process continually polling its ports for values without repose

hinders the forward progression of a simulation. An enormous amount of processor time would

be devoured by this non-stop polling process.

Synchronous Message Receive

To receive messages synchronously, a process examines one of \input" ports for a value. Unlike

the asynchronous method, the failure to obtain a valid value does not force the process to

re-examine its ports at a later time. A failure induces the invalid \input" port to block the

process' progression and wait for the arrival of information. Upon obtaining a valid value, the

port noti�es the blocked process to restart its state of operation. The diagram in Figure 8.2

shows a few lines of pseudo-code delineating the steps involved in the reception of a synchronous

message.

Chapter 8: RASP: Discrete-Event Modeling 89

if (A has no value)
 wait for A.

 notify system to resume Process
when (A receives a value)

Input A

Input Resume
Process

Figure 8.2: Synchronous Receive

8.4.4 Benefits

The construction of independent processes is enhanced by alleviating each process from ac-

knowledging the identity of its data partners. Eliminating the \naming" restriction allows

processes to be developed without concern for the demands and requests of its surrounding

environment. In addition, port-based processes a�ord four important qualities to simulation

design. They are as follows:

� Parallelism: Although the current toolkit is not devised to take advantage of parallel

architectures, its design can be modi�ed for concurrency. The inuence of Manifold, Con-

current C, and Kerridge's CPP language, to RASP's design advocates the development

of a parallel toolkit.

� Reusability: The ability to develop RASP processes with little regard for the envi-

ronment where it interacts contributes to the design of reusable processes. Liberating a

process from its external constraints enables it to be used in a wide variety of applications.

� Composition: The toolkit's black-box approach to process development encourages the

creation of composite processes. Consolidated processes are formed by an orchestration of

user-de�ned connections. All unconnected ports serve as the ports for the new composite

process. The diagram is Figure 8.3 depicts a complex process created from a collection of

smaller processes.

� Proper Usage: Process ports are useful to ensure a process' protocol for usage is ob-

served. As a port is provided with a value, it can signal its governing process to disregard

Chapter 8: RASP: Discrete-Event Modeling 90

InPort

Out Port

Out Port

Compound Process

Process A

Process B

Process C

Process D

Figure 8.3: Composite Process

information from other ports. This scheme safeguards the process from attaining improper

values or ascertaining a corrupt state.

8.4.5 Coroutines

In a process-oriented simulation, all active processes execute in parallel. Each process may

be viewed as a self-governing entity. Unless speci�cally de�ned, there are no naturally occur-

ring hierarchical relationship existing between separate processes. Therefore, a process-based

simulator must be able to guide fairly the concurrent actions of multiple processes. Unfortu-

nately, this is not truly possible to accomplish on machines with only one central processing

unit (CPU). However, the quasi-parallel execution of processes may be achieved by making

each process temporarily suspend its thread of execution after it has performed a subset of its

operations. This technique enables multiple processes to carry out their patterns of behavior

at approximately uniform rates.

The traditional procedure-based approach to programming does not permit routines to tem-

porarily suspend themselves. Once they exit their train of execution, their procedure instances

are terminated. This problem can be alleviated by utilizing special routines called \coroutines".

These routines enable suspended routines to become reactivated after having been dormant for

inde�nite periods of time. Reactivation automatically restores the pre-suspension state of a

routine. All variables and registers are reset to their previously active values. Most impor-

tantly, reactivation will begin execution from the point immediately following the statement

Chapter 8: RASP: Discrete-Event Modeling 91

which suspended the process.

Despite their apparent usefulness, coroutines are not directly supported by the popular high-

level languages. They have only been provided by specialized programming languages, such

as SIMULA and BLISS. Fortunately, it is possible to emulate the functionality of coroutines

within basic languages. This can be accomplished in two ways. First, assembly code can be

developed to store and restore the registers of the stack. This would enable users to explicitly

suspend the execution of any routine. The major drawback to this method is that one must

write a di�erent set of assembly code for each machine used. Second, the explicit features of a

programming language can be manipulated to store states of routines and bypass segments of

code. Although this method preserves the portability of code, it requires users to incorporate

additional constructs into their programs. This drawback can be eliminated via the development

of a language pre-processor and/or de�nable macro expansions.

The RASP toolkit employs the second method. It requires users to incorporate basic struc-

tures into their code. This enables standard procedures to emulate coroutines.

8.4.6 Unresolved Issues

The RASP toolkit provides users with a common framework to de�ne processes and describe

their interactions. Although this scheme provides enough guidance for the incorporation of

processes in a simulation model, it does not attempt to resolve every issue associated with

process-oriented simulations. Common design problems, such as deadlocking, process priorities,

and port visibilities are not addressed.

8 .5 In fo r m a l D e s c r ip t io n

Using Zeigler's informal description, RASP's multiple interface approach to simulation modeling

is structured as follows:

1. Components:

The set of components is partitioned into two groups: D = f�1; �2; : : : ; �Mg and E =

f�1; �2; : : : ; �Ng. Each partition is divided into ACTIVE and PASSIVE types. ACTIVE

Chapter 8: RASP: Discrete-Event Modeling 92

components impose changes to a system, while PASSIVE types retain their state unless

acted upon by others.

2. Descriptive Variables:

Every ACTIVE-D is described by its state, time to activation, set of inuencees, and set of

inuencers. At any moment in time, an ACTIVE-D is de�ned by its value, its capability

to alter the states of other components (D or E), and its ability to be altered by others

components (D or E). ACTIVE-E's are described by the same set of characteristics,

except that their states are de�ned by the values of their local variables and the status of

their control instructions.

ACTIVE-� ACTIVE-�

Range Value Range Value

STATE-OF- S� s�

CONTROL-OF- L� f0; 1; 2; : : : ;Mg

MEMORY-OF- V� v�

TIME-LEFT- �1 �� �1 ��

INFLUENCEES- D;E f�D1
; : : : ; �DM ; �E1 ; : : : ; �EN g D;E f�D1

; : : : ; �DM ; �E1 ; : : : ; �EN g

INFLUENCERS- D;E f�D1
; : : : ; �DM ; �E1 ; : : : ; �EN g D;E f�D1

; : : : ; �DM ; �E1 ; : : : ; �EN g

3. Component Interaction:

� For each ACTIVE-� a local transition function f��g is speci�ed. Given the union of

the current values for the INFLUENCEES-� and INFLUENCERS-�, the function simply

produces a new list of values for INFLUENCEES-�7.

Influencees� =

Active & Passivez }| {
(s�D1 ; ��D1); : : : ; s�Dm ; ((

Substatez }| {
l; v�; ��)

Active & Passivez }| {
(l�E2 ; v�E2 ; ��E2); : : : ; v�En)

Influencers� = (s
�D1

; �
�D1

); : : : ; s
�Dm

; ((l; v�; ��)(l�E2
; v
�E2

; �
�E2

); : : : ; v
�En

)

��[Influencees�; Influencers�] =8>>>><
>>>>:

f�(Influencees�; Influencers�) if C�(Influencers�) = TRUE

((s�D1 ; ��D1 � t(s)); : : : ; s�Dm ;

((l; v�; ��)(l�E2 ; v�E2 ; ��E2 � t(s)); : : : ; v�En)
otherwise

7Except for the inclusion of variables associated with �, this local transition function is similar to the one
described section 5.2.2.

Chapter 8: RASP: Discrete-Event Modeling 93

� For each substate of ACTIVE-� a local transition functions f�l�g is speci�ed
8 .

Influenceesl� = (s�D1 ; ��D1); : : : ; s�Dm ; ((v�; ��)(l�E2 ; v�E2 ; ��E2); : : : ; v�En)

Influencersl� = (s
�D1

; �
�D1

); : : : ; s
�Dm

; ((v�; ��)(l�E2
; v
�E2

; �
�E2

); : : : ; v
�En

)

�l�[Influencees
l
�; Influencers

l
�] =8>>>><

>>>>:

f l�(Influencees
l
�; Influencers�) if Cl

�(Influencers
l
�) = TRUE

((s�D1 ; ��D1 � t(s)); : : : ; s�Dm ;

((v�; ��)(l�E2 ; v�E2 ; ��E2 � t(s)); : : : ; v�En)
otherwise

To integrate this approach with the toolkit's set of temporal tools (section 9.2), a description

of a prototype multiple interface simulation is withheld until section 9.3.

8Except for the inclusion of variables associated with �, this local transition function is similar to the one
described section 5.2.3.

Chapter 9

RASP: Time and State

We must use time as a tool, not as a couch.

- John Fitzgerald Kennedy,

The Observer, \Saying of the Week", Dec 10, 1961

A simulation speci�es how a system changes over time. The validity of a model is compro-

mised if it lacks descriptive declarations of important state changes. Before users can specify

vital state changing information, they must have a clear understanding of the relationship be-

tween time and state. The association of time and state imposed by the structure of a simulation

language severely e�ects a user's comprehension. Therefore, it is essential to provide users with

a precise set of \implementation-free"1 de�nitions which carefully characterize the state and

time relationship.

This chapter describes the relationship between time and state in the RASP toolkit. It is

\implementation-free" design. Basic de�nitions, important classi�cations and descriptive labels

are discussed in detail. It should be noted that the following deliberately attempts to conform

the terminology in this section to the descriptions used in Nance's theory of time and state[57]

which has provided an excellent foundation for the development of the RASP toolkit. The

chapter concludes with an informal description of RASP's multiple interface to simulation and

a description of RASP's simulation kernel.

1Implementation-free ideas or objects were not designed to conform to any speci�c programming language.

94

Chapter 9: RASP: Time and State 95

9 .1 T im e R e p r e s e n tat i o n

9.1.1 Time Structure

An important design of any simulation language is the speci�cation of a time structure. The

structure of time de�nes the unit of measurement for a temporal system. Time can be mapped

to the set of rational numbers, oating point numbers, or integer numbers. Although an integer

valued time axis is used in many simulation languages, the RASP toolkit uses oating point

numbers. Real numbers provide a better foundation for continuous time simulations. The

inability to specify actions at non-integer times constrains all time-varying simulations to a

discrete-time foundation.

9.1.2 Central Clock

Every simulator maintains an internal clock whose values represent the passage of time. Since

the de�nition of the system's state is often a direct function of time, the behavior of the

simulation clock is important. All simulations created with the RASP toolkit observe one

global clock. The state of this clock represents the \absolute" time of a simulation. Although

there is only one timepiece, the toolkit does not constrain users to reference continually the

global clock as the only source of a \time" value. The nature of RASP's temporal management

tools enables users to design a variety of modeling situations relative to \local" time frames.

9 .2 T e m p o r a l m a n a g e m e n t to o l s

The RASP toolkit provide users with a set of temporal management primitives to produce

scripted animations or self-governing simulations. These primitives are divided into two groups:

action types and governor types. The two primary action types, events and processes, serve to

alter the values of state variables within a system. The two primary governor types, activities

and processions, serve to manage the behavior of action types and to dictate when action

types become active. The well-formed relationships (shown in Figure 9.1) formed between the

primitives facilitates the construction of complex simulations.

Chapter 9: RASP: Time and State 96

Actions

Activity

Process

Event

Governors

Temporal Management
Tools

Procession

Figure 9.1: Breakdown of Temporal Tools

9.2.1 Events

Representing non-decomposable elemental actions, an event promotes a modi�cation to the state

or structure of a system. These modi�cations include function calls, simple data transactions,

and link declarations. All events produce instantaneous changes to a system. It is important

to note that events do not possess any temporally based information. It is not an event's

responsibility to regulate its conduct through time. The exclusion of temporal information

enables users to concentrate on the development of system changes without concern for when

they are to occur.

Although all event-driven languages support the concept of an \event", most of them do

not de�ne structures for the creation of an \event". The pervasive ideology of most simulation

languages is that all events should be created by users. Users create events for the system to per-

form. The lack of common event types contributes to the hardship of joining two independently

constructed models. A common foundation does not always guarantee an e�ortless process of

model assembly. In addition to facilitating the integration of two models, a classi�cation of

event types enhances the language's reusability and ability to create complex simulations.

The RASP toolkit introduces a set of event \templates". Developed to take advantage of the

connectionist structure imposed by the toolkit's design, each event type executes an important

state changing operation. Events are de�ned as follows:

� CallEvent: This is the simplest type of event. It performs only one function during

actuation. It simply activates (executes) a target port. There is no transfer of data or

analysis of port state.

Chapter 9: RASP: Time and State 97

� Event: An instance of this type of event performs one of two actions. When triggered

by the simulation kernel, it may transfer data from a source port to a target port, or it

may execute any procedure requiring no arguments.

� TimeEvent: This type of event is similar to an Event. It supports two types of actions

and can be speci�ed during run-time. Only the functional requirements of the two events

di�er. A TimeEvent does not require a source port and it can only execute a procedure

requiring one argument of type \double".2 When this event is triggered, a system time

value is transmitted to either the target port or the single argument procedure.

� StateEvent: This event type is unlike any of the three other events. Never explicitly

activated by the simulation kernel, its actuation is entirely dependent upon the state of an

associated source port. If the port changes state, this event type will immediately trigger

the occurrence of another event or activity. Events of this type facilitate the building of

any models requiring an activity scanning world view. Once a StateEvent is activated, it

remains active until disabled.

� DisableEvent: Given a source port, this event type clears the port of all previously

associated StateEvents.

� ChainEvent: In many simulations, several sets of events occur simultaneously or execute

in tandem during a single instance of time. Requiring the user to continually pass the

individual elements (events) of each set can become burdensome. This onerous task

is alleviated by using ChainEvents. This collection type (class) enables instances of

Events, TimeEvents, StateEvents, and CallEvents to be grouped into one single

multi-action event.

9.2.2 Event Activation

When an Event or CallEvent is triggered, each event type executes one or more of its associated

set of actions. Target ports are activated or data is transferred between two locations. The

2Time values are of type \double" to accommodate the oating point time axis established in section 9.1.1.

Chapter 9: RASP: Time and State 98

result of activating a TimeEvent or StateEvent is not as simple. The activation of a TimeEvent

provides a port (or procedure) a temporal value. This value is elicited from either the \global"

system time or the \local" lifetime of an activity. It is the responsibility of the user to specify

the time frame from which the temporal value is deduced. This is usually speci�ed when an

event is created.

Local Time =

Absoltute Time =

1.0

2.5

0 1 2 3 4 5 6

Activity

Simulation Time

Figure 9.2: Absolute vs. Relative Time

The diagram in �gure 9.2 illustrates the di�erence between the \global" and \local" time

frames. One explicit instance of time is labeled twice. The �rst label indicates the \local"

value, while the second label indicates the corresponding \global" value. In the \local" frame,

a \zero" time value is de�ned to be the beginning of an activity. Zero time in the global time

frame is de�ned by the beginning of the simulation.

The behavior of a StateEvent is dissimilar to the three other event types. Its activation

may or may not produce any noticeable results. When activated by an activity, this event

type noti�es an associated port to signal the occurrence of any change in the port's state.

Immediately after receiving a positive state change a�rmation from the port, the event will

direct the appearance of its associated action or activity. It should be noted that the state

inspection request does not endure forever. The query is recalled the moment the event's

activity is deactivated.

Chapter 9: RASP: Time and State 99

9.2.3 Activities

Activities3 are used to associate temporal information with events. They provide meaning

(purpose) to collections of otherwise independent events. Only when an activity obtains an

\active" state can its corresponding set of events become \active". The systematic activation

of events de�nes an occurrence. An occurrence represents a continual action occurring over a

�nite length of time.4 Although every activity delimits the duration its existence, no activity

can trigger itself. Actuation noti�cation must come from an external source. The inclusion

of self-triggering mechanisms would unnecessarily clutter the structure and operation of an

activity.

Timing information governs the state of every activity. De�ned as an interval, this span

establishes two important rules of conduct. First, it de�nes a set of conditions to transform a

\passive" activity into an \active" one and vice-versa. Conditions delimit speci�c instances of

time or identify prerequisite conditions to signal the beginning and termination of the activity.

Second, it de�nes the temporal rate at which the activity is to progress. An activity with a

high rate executes its events more often than a low rate activity. This important feature allows

concurrent activities to advance time using di�erent increments.

Every activity partitions its events into one of three categories. Each classi�cation de�nes

a di�erent frequency and timing patterns for its set of events. Categories are as follows:

� Initial Event: Events placed in this category are instantly activated when its governing

activity is assigned an \active" state. These events will be triggered only once during the

lifetime of the activity.

� Acting Event: Every event assigned to this group will be continually activated for

the entire duration of its ruling activity's \active" existence. Events will be activated

during the initialization, advancement, and termination of the activity. It is important

to note that all \initial events" trigger before all \acting events" at the beginning of the

3In the activity scanning approach (described in section 5.2.2), activities are delimited by two successive

events and are de�ned to represent the state of an entity over an interval of time. RASP activities di�er in that

the delimiting events need not be successive and the state of the entity may vary. Allowing events to occur in

between enables users to model simple continuous actions.
4This is not entirely true. An activity may be de�ned to endure for an in�nite length of time.

Chapter 9: RASP: Time and State 100

activity's life span. Similarly, all \�nish events" execute after all \acting events" during

the completion of the activity.

� Finish Event: Events set in this category are immediately activated when their governing

activity is completing. Nothing occurs between the activation of �nal events and the �nal

moment of the activity's existence.

Events are placed into one or more categories. No regulations exist as to the quantity or

type of events linked with each category. Therefore, an event may simultaneously belong to

more than one category and to several activities.

Acting
Events

Initial
Events

0 1 2 3 4 5 6

Activity

Simulation Time

Finish
Events

Figure 9.3: Activity Event Partitions

9.2.4 Processes

In the RASP hierarchy of temporal tools, processes are ranked at a level equivalent to events.

This ranking does not imply that processes are identical to events. It implies that both temporal

primitives are manipulated in a similar fashion. Each requires the assistance of an activity to

initiate their actions and manage their temporal existence. A process' activity determines

the exact time when the process is triggered. Unlike events, once a process is activated, it

can be designated to exist for an inde�nite length of time. Until terminated, the process will

Chapter 9: RASP: Time and State 101

continually accept information and alter the state variables of the system as time advances

forward. A governing activity can not alter the progression of an inde�nite process after it has

been initiated. Regardless of the designated time span of a process, RASP activities do not

have the ability to alter the internal behavior of any process.

A process can be terminated in one of three ways. First, it can intentionally discontinue its

state of activation. When a process completes it last operation, it will not require reactivation.

Second, it can receive a termination message from an external source, such as other processes,

routines, events, etc. Third, the process' governing activity can expire. Unless explicitly desig-

nated to exist for an inde�nite length of time, a process can endure only as long as the activity

which initiated it.

9.2.5 Processions

A governing entity for collection of activities, a procession organizes sets of activities, activates

them in chronological order, and controls their behaviors. Through a procession, activities

are placed into a common event-list.5 This list determines the order in which activities are

processed.

Activity #1 Activity #2

Procession

2010 30

Activity #1 Activity #2

10 17.5 25

Procession

Activity #1 Activity #2

Procession

15 25 35

Figure 9.4: Variational Timing of Processions

Each procession de�nes a \local" timeframe. Through specifying the placement of activities

within the timeframe of a procession, users form temporal relationships among collections of

activities without references to the global clock. A procession's placement in absolute time

de�nes the activation times for its set of activities. In addition, this design makes it easier to

shift, contract, or expand the timing patterns of a set of activities. Figure 9.4 illustrates the

timing intervals of three processions containing identical activities. The interval in the middle

5Every Procession utilizes two event-lists. One list maintains a set of \waiting" activities, and the other list

contains a collection of \active" activities.

Chapter 9: RASP: Time and State 102

has been temporally contracted while the right one has been shifted forward �ve units in time.

9.2.6 Hierarchical Structure

ActivityActivity

Procession

EventTimeEvent CallEventTimeEvent ChainEvent

StateEventEvent

CallEvent Process Process

Procession

Activity

SimulationKernel

Figure 9.5: Simulation Hierarchy

The relationship between RASP events, activities, processes, and processions forms a natural

hierarchy, as shown in Figure 9.5. It provides users with a well-de�ned conceptual framework

for the modeling of time-varying simulations. The responsibilities of each node at any level in

the tree are clearly delineated. The e�ects of modi�cations applied to the parameters of any of

the temporal primitives is localized.

9 .3 R A S P ' s K e r n e l

RASP's kernel is designed to take advantage of the toolkit's multiple interface approach to

discrete-event modeling and its hierarchy of temporal tools. Simulations are de�ned using a

combination of events, contingent activities, and processes. Using an object-oriented approach,

the kernel minimizes the size of its control algorithm to a simple set of steps by apportioning

duties to the set of temporal tools, such the activation of events and the maintenance of process

activation points,

RASP's kernel simply stores and manages the processions of a simulation. Through ex-

amining of each procession, the kernel advances time forward. The kernel does not maintain

Chapter 9: RASP: Time and State 103

any type of sorted list and it is unaware of the existence of events, activities, or processes. The

kernel's purpose is to manage the progression of time.

A procession stores and manages the activities of a simulation. Activities are partitioning

into two groups according to the value of simulated time. Those waiting for activation are placed

into a \waiting activity" list while those already activated are placed into an \active activity"

list. Both lists are sorted by activation times to facilitate the rapid retrieval of activities with

earliest activation times. A procession serves to organize activities (for the simulation kernel).

An activity stores and manages the events of a simulation. Events are partitioned into

three groups according to their frequency, as described in section 9.2.3. An activity serves to

organize events and de�ne the temporal granularity between events (for the simulation kernel).

The diagram in Figure 9.6 illustrates the interactions which occur between the kernel and the

toolkit's temporal tools. The direction of the arrows indicate the ow of information between

the components.

Multiple Interface Simulation

The diagram in Figure 9.7 shows a complete expansion of the algorithm driving RASP's kernel.6

The algorithm's object-oriented design, shown in Figure 9.6, is omitted to emphasize its overall

structure. The statement in line 9 enables users to restrict the temporal jump size of a simulation

to a maximum value. This restriction allows users to design discrete-time simulation without

specifying enormous numbers of events. Future enhancements, which further decompose the

RASP kernel, may decide to consign this restriction to a kernel subclass.

6Variables used in the diagram are described in section 8.5.

Chapter 9: RASP: Time and State 104

1. Timing Information is (BeginTime, EndTime).

1. Inform EVENT to initialize itself.

4. Inform PROCESSION to advance to TIME=CLOCK.

2. If TIME > BeginTime and TIME < EndTime, inform Action-EVENT to perform operation.

3. Calculate new CLOCK time.
2. Ask PROCESSION for NextTimeStep.

5. Goto step 2.

1. Inform PROCESSION to advance to TIME=T

KERNEL

3. if TIME=EndTime, inform Finish-EVENT to perform operation.

PROCESSION

ACTIVITY

4. Inform Active-List ACTIVITY of TIME.

1. Ask ACTIVITY for timing information.

3. Inform moved ACTIVITY to initialize itself.

1. NextEventTime is first item in Active-List

1. Do Event Operation.

1. If TIME=BeginTime, inform Init-EVENT to perform operation.

2. Move ACTIVITY from Waiting-List to Active-List.

EVENT

1. Perform initialization operations.

Figure 9.6: Object Kernel Design

Chapter 9: RASP: Time and State 105

Initialization

1 Set CLOCK to initial simulation time t0
2 Set �MAX�TIME to initial value �0

3 Set state variables S�'s to initial values of s�'s.

4 Place every ACTIVITY in a PROCESSION's WAITING-LIST

5 Place every PROCESSION in the PROCESSION-LIST.

Scanning Phase

6 (a) Scan the PROCESSION-LIST to determine which PROCESSION's

! PASSIVE-LIST has the ACTIVITY with the smallest �. Let � denote the winner.

!ACTIVE-LIST has the ACTIVITY with the smallest !. Let ! denote the winner.

(b) Set NEXT-EVENT-TIME to the smaller of � and !.

7 Set �NEXT�TIME to (NEXT-EVENT-TIME - CLOCK).

8 (a) Examine the �TIME�INC of every ACTIVITY in each PROCESSION'S

ACTIVE-LIST.

(b) Let �REQ�TIME denote the temporal step that satis�es every ACTIVITY's

requirements.

9 Set �NEW�TIME =

8>><
>>:

�MAX�TIME if(�MAX�TIME < �REQ�TIME)

and (�MAX�TIME < �NEXT�TIME)

�REQ�TIME if(�REQ�TIME < �NEXT�TIME)

�NEXT�TIME otherwise

Time Advance

10 Advance the CLOCK by �NEW�TIME .

List Update

11 Move every ACTIVITY in each PROCESSION's PASSIVE-LIST with � < 0 to its

corresponding ACTIVE-LIST.

12 Remove every ACTIVITY in each PROCESSION's ACTIVE-LIST with � =1.

13 Mark every ACTIVITY in each PROCESSION's ACTIVE-LIST as unselected.

Tie Breaking

14 Apply SELECT1 to every PROCESSION's ACTIVE-LIST. Let �Act denote the list

containing the winning ACTIVITY of each PROCESSION.

15 Apply SELECT2 to the �Act. Let ACT denote the �nal winning ACTIVITY. Mark

ACT as selected.

State Transition

16 Invoke ACT
0

s

8<
:

EVENTSInit and EVENTSActs if CLOCK = ACT time�begin
EVENTSActs and EVENTSFini if CLOCK = ACT time�end

EVENTSActs otherwise

17 Adjust the state for every INFLUENCEE-�-OF-ACT -EVENTSANY .

(a) For every ACTIVITY-� with:

! �� <1, place ACTIVITY-� in the PASSIVE-liST containing ACT .

! �� � 0, place ACTIVITY-� in the ACTIVE-liST containing ACT .

(b) For every EVENT-�, invoke its operation.

Any Activities Remaining?

18 If there exists an unmarked ACTIVITY in any PROCESSION's ACTIVE-LIST,

then goto 11.

Termination Test

19 If NEW-EVENT-TIME exceeds termination time, STOP. Else goto 6.

Figure 9.7: RASP Multiple Interface Kernel

Chapter 10

RASP: Graphical Models

People see only what they are prepared to see.

- Ralph Waldo Emerson, Journals, 1863

A place for everything and everything in its place.

- Samuel Smiles, Thrift

Visualizing the attributes, behaviors, and actions of a simulation enhances the transfer of

information. Graphical views serve as valuable tools for the development, explication, and

augmentation of complex simulations. The visualization process is especially important to the

production of computer animations. Visual representations of time-varying models aid in verify-

ing the validity of any simulation. The visualization process can be segmented into two phases,

model creation and data-to-image translation. In the model creation phase, the components of

the simulation are linked with visual attributes. Common attributes include geometric shapes,

physical properties, and material characteristics. Data-to-image translation entails the genera-

tion of computer images from the data of the �rst phase. Component attributes are interpreted

for rendering engines to form resplendent pictures.

This chapter presents RASP's approach to model creation and data-to-image translation.

Discussion includes an analysis of previous approaches to the visualization process and a de-

scription of a new design which improves upon these previous approaches.

106

Chapter 10: RASP: Graphical Models 107

1 0 . 1 M o d e l C r e a t io n

The primary purpose of the model creation phase is to create \visual" entities with \informa-

tional" characteristics. Properties associated with models de�ne their appearance and shape.

For time-varying systems, the ability to dynamically manipulate all the characteristics of an

model proves essential.

There are two traditional approaches to model creation. Popularized by computer graphics

toolkits[35, 89, 92, 46, 83], the �rst approach forms models by amassing physical, material, and

viewing primitives into one large ordered list. Users edit the elements of the list to produce a

visual change to an model's appearance. The diagram in �gure 10.1A demonstrates the usage

of the display-list approach to model creation. A red cube is placed along the x-axis. The ben-

e�ts of this approach include the simple incorporation of new attributes and a straightforward

protocol to hierarchical modeling.1 Although simple to use and implement, the display-list

approach has two major drawbacks. First, models are �rst-class entities. The lack of a formal

object-oriented interface prevents users from directing queries or creating local changes to a

model. In addition, users are not separated from an model's internal representation. Although

previous works by [92, 46, 83] layer an object-oriented interface on top of the display-list struc-

ture, these approaches do not attempt to conceal the display-list implementation from users.

Model procedures (data members) are primarily used to edit the display list structure. Second,

to alter a speci�c trait of a model, the attribute's position in the display-list must be known.

This requirement usually entails the creation of \tags" or tables of \index" or \path" values.2

The second approach to model creation uses geometric primitives to represent basic geo-

metric shapes, such as a cube, square, etc. As shown in Figure 10.1B, a primitive's appearance

is de�ned by its associated set of \visual" characteristics which are attached to them using a

pre-de�ned set of procedures or member functions, A model's capability is expanded by adding

new functions to its inventory of operations. There are several bene�ts to this design. Inheri-

tance and polymorphism assist in the creation of compatible model interfaces. For example, in

GRAMS[18], all primitives are sub-classes of the abstract class \GraphicObject" that de�nes

1In Phigs[89], attributes not de�ned in a sublist are inherited from the sublist's parent.
2The position of an element in a hierarchical data structure can be represented by a \path".

Chapter 10: RASP: Graphical Models 108

Color

Translation (10,0,0)

Red

Cube

Translation: (10,0,0) CubeColor: Red

(B) Geometric Primitive(A) Display List

Figure 10.1: Display-list vs.Geometric Primitive

the common attributes and member functions for all primitives. In addition, \pure" virtual

declarations require the creation of a collection of routines by all of its inheritors. Model are

�rst-class entities and sets of operations that may be performed by them are publicly known.

Models are de�ned by their operations, not their internal implementation. Lastly, complex

geometric �gures are created by hierarchically combining collections of primitives.

Although this approach to model creation is powerful, its strengths are also its weaknesses.

First, models may become di�cult to use or manage as repeated addition of new operations

produce \enormous" models that use more memory and are not easy to modify or extend. Sec-

ond, geometries are not usually modi�able. Most de�nitions enable the primitive to change its

representation but not its overall shape.3 In a complex simulation, an model's entire appear-

ance may need to change. Third, a model's interface that does not provide access to speci�c

encapsulated data structures or data members may hinder an model's usefulness in time-varying

environments. A model may be unusable if it is not possible to animate all of its features.

The discrepancies between the display-list and geometric primitive approaches can be at-

tributed to their dissimilar aims. Each model emphasizes a di�erent aspect of object modeling.

In the display-list approach, importance is placed on the hierarchical ordering of geometrical

shapes and the attributes needed for image rendering. The content and quality of an image are

de�ned by a one-pass traversal of the elements in the display-list because traversed elements

3A sphere may be represented by a collection of quadrilaterals or one large triangular mesh. The representation
is di�erent, but its external shape is still spherical.

Chapter 10: RASP: Graphical Models 109

change the state of the rendering process. Although the geometric primitive approach provides

rendering support, the primary emphasis is placed on unifying the interface between users and

models. The de�nition of �rst-class models with clearly de�ned member functions enables

users to manipulate models as \physical" objects. The disparate placement of importance is

highlighted in �gure 10.2.

Object

with
Attributes

Geometric
Primitive

User Rendering System

Display-List

Figure 10.2: Object-User vs. Object-Render

10.1.1 The Hybrid Model

The RASP method of model creation combines the two approaches. Based on an object-oriented

design, this hybrid model uses a uni�ed user interface and rendering architecture. Models are

�rst-class entities while visual characteristics are referenced in a display-list fashion. Slots and

ports provides a simple method to manage and manipulate the internal structures of any model

during a simulation.

Properties

TextureMap: Checkerboard

Color: Red

Collision Info

Radius: 10

Sphere

Hit?: Ball#2

Ball

Materials

Geometry

Collision

Figure 10.3: Object \Ball" with three features

Chapter 10: RASP: Graphical Models 110

In the hybrid model, an model is de�ned as a collection of \unordered" slots.4 Each slot

contains a reference to a feature object that controls the primary function or the regulation of

a set of attributes. For example, in Figure 10.3, the model \Ball" has three slots: geometrical

information, material attributes, and collision data.5 To add additional feature objects to a

model, users simply create new slots.

The hybrid model approach discourages the creation of massive models by delegating ad-

ditional duties to other feature objects. Hybrid models do not de�ne new operations and are

not in themselves, a geometrical primitive. An model's shape is de�ned by its geometrical

feature object. There are two primary bene�ts to this design. First, an model's shape can be

easily manipulated because geometry is a not a part of an model's de�nition. It is a separate

feature. Second, object features allow the geometry of an model to change without a�ecting its

additional characteristic attributes. For example, if model \Ball" in �gure 10.3 alters its shape,

it retains its material attributes and collision data.6

RASP_OBJECT

ATTRIB_SLOTS

Camera

GEO_BASE

GEOMETRY

Spline SphereCube

GEO_OBJECTS

ISA-classified

ISA-classifiedISA-classifiedISA-specialized

ISA-classifiedISA-classified

ISA-specialized

ISA-derived ISA-derived

HYBRID_OBJECT

Figure 10.4: Hybrid Model Inheritance Tree

The diagram in Figure 10.4 shows the relationships of components (classes) of a hybrid

model. The solid lines represent direct inheritance links, the dashed lines identify component

4Because slots are unordered, tags and tables are not required to access speci�c slots.
5Collision data is associated with models to facilitate collision detection operations.
6Collision data will probably need to be recalculated.

Chapter 10: RASP: Graphical Models 111

employments,7 and the solid circles de�ne object slots. A HYBRID MODEL represents a hy-

brid model, while the descendants of the class GEO BASE describe geometrical shapes. A

GEO BASE type object is a feature object in each instance of a HYBRID MODEL. Classes

derived from the base class GEOMETRY de�ne geometric classes, while GEO OBJECTS store

collections of GEO BASEs. This organization facilitates the hierarchical construction of com-

posite geometries. The classes, GEO OBJECTS and HYBRID MODELS, inherit the ability

to store feature objects in slots from the class ATTRIB SLOTS which enables hybrid models

and collections of geometrical objects to de�ne their own feature objects. Although sets of

geometrical objects are not required to de�ne supplementary features objects, this property

provides added exibility in the design of complex hybrid models. For example, the illustration

in Figure 10.5 portrays the visual and internal representation of a hybrid model composed of

two spherical shapes of di�ering colors.

Translation Sphere#2

Geo_Object

Sphere#1 Geo_Object

Hybrid Object

LightGrey

DarkGrey

Visual Representation Internal Representation

Figure 10.5: Complex Hybrid Model: Dark circles represent slots, while the arrows de�ne the

contents of the slots. Solid arrows emphasize the location of geometric slots.

Note that every slot established within ATTRIB SLOTS does not necessarily control a

single attribute or function of a model. Often, groups of similar features are clustered into

one slot. For example, one of the primary slots de�ned within ATTRIB SLOTS refers to a

\material properties" feature object. This object manages the attributes de�ning a model's

7A class employs another class if it utilizes that class within its internal representation.

Chapter 10: RASP: Graphical Models 112

\visual" appearance. Coupling features allow changes to a model's attribute set to occur at

two levels of detail. A single feature may be manipulated as an individual object or as a part

of a larger set. Coupling also provides a simple organizational pattern for the management of

feature objects. The hierarchical grouping of attributes reduces the complexity of managing an

extensive list of features.

10.1.2 \Feature" Ports

In the hybrid model, all slots are governed by feature ports. Each port regulates the contents

of its associated slot during the lifetime of a simulation. Adhering to the connection paradigm

of section 7.3, these ports enable users to induce changes to slots according to a well-de�ned

script or as a consequence of the activation of a series of indeterminate events. For example, the

following set of pseudo-code changes an model's color at the halfway point of the simulation.

1 MaterialObject colorR = red, colorB = blue;

2 Sphere sph;

3

4 send sph.attribPort = colorR at time t=1;

5 send sph.attribPort = colorB at time t=15;

6

7 do simulation from t=1 to t=30;

Feature ports are not simple variables or member functions as the preceding lines of pseudo-

code may indicate. They are �rst-class entities with their own set of routines that act as

administrators for slots. Data is sent to a port; ports do not point to data. Additionally, the

statement in lines four and �ve do not actually send any information to the port attribPort.

They are actions to be performed at a particular time in the simulation. This additional layer of

indirection between an action and an model's internal components structures any changes made

to a model's features and ensures that slots receive the correct type of information. Figure 10.6

shows an model with its associated ports.

1 0 . 2 D a ta - t o - im a g e t r a n s l at i o n

The data-to-image translation phase uses information from the model creation phase to generate

visual images by directly translating or interpreting information from the models of a scene.

Chapter 10: RASP: Graphical Models 113

Properties

Color: Red

TextureMap: Checkerboard

Hit?: Ball#2

Materials

Collision
Collision Info

Sphere
Geometry

Materials Port

Collision Port

Geometry PortRadius: 10

Ball

Figure 10.6: A model with its \feature" ports

As simple as this task may seem, no general approach has achieved widespread acceptance in

the computer graphics community. The diverse set of requirements of rendering and geometry

groups hampers the design of a common extensible interface for the two disciplines. Common

di�culties include: the inability of renderers to support all model shapes and characteristics,

an model's failure to produce alternative representations, and the inability to introduce new

functionality and algorithms into the data-to-image translation process.

A variety of techniques have been used to administer the data-to-image translation phase

of the visualization process. The following list, provided by [18], provides a brief summary of

an assortment of methods.

� Multiple geometries, multiple renderers: In this approach, every renderer is knowl-

edgeable of all types of geometries. Though simple, this method requires the development

of complex renderers. In addition, extending the capabilities of the model can be arduous

because of the many dependencies between the geometries and renders.

� Conversion to common primitive(s): Advocated in systems developed by [88, 95, 46],

this technique requires geometrical objects to be decomposed or translated into a single

or common set of primitives before being forwarded to any renderer. The reduced set

of primitives permits the development of moderately sized renderers. In this approach,

Chapter 10: RASP: Graphical Models 114

geometries may become overly complex because of the necessity of providing a set of

methods to decompose themselves into all primitives. In addition, a renderer that can

e�ciently handle a larger set of primitives will not be used to its fullest capability.

� Common interface: In this approach, a common interface is established between the

modeling and rendering components. The interface de�nes a standard set of routines,

data formats, and data communication mechanisms that must be supported by both

geometries and renderers. Renderers do not need to be familiar with geometrical types

and the independent construction of geometrical objects is enhanced. Research systems

described in [29, 87, 68, 63] follow this approach. The additional complexity of geometrical

objects constitutes the major drawback of this method.

� Single primitive: This method restricts all modeling to one geometric primitive. Al-

though this design reduces the complexity of the rendering components of a system, it

unduly burdens users - they must spend considerable time editing and combining the

single primitive to generate their geometric objects - and it may be di�cult or impossible

to produce certain geometries. Modeling testbeds described in [22, 61] adhere to this

approach.

10.2.1 Multiple Geometries, Primitives, and Renderers

The RASP toolkit's data-to-image translation technique represents as a combination of the

\multiple geometries, multiple renderers" and \conversion to common primitive" approaches.

Each renderer speci�es the type of geometric representations it can render, and every geomet-

rical object identi�es the type of geometric representations it can form. The union of these

two lists de�nes the form used to render a geometric object. Based upon work by [18], this

method promotes the independent construction of image renderers and geometric objects. New

geometries can be created without the need to update existing renderers, and similarly, new

renderers can be produced without knowledge of the existing geometries.

In the combined model, every renderer is a �rst-class entity composed of a set of rendering

routines and two distinct lists. Each list is used for the data-to-image translation process. The

Chapter 10: RASP: Graphical Models 115

�rst list, the primitive list, contains the primitive geometric types that the renderer can use.

Values are assigned to this list immediately after a renderer is instantiated. The second table,

called the geometry list, stores a similar list of types, but unlike the �rst list, every entry in this

list corresponds to a di�erent geometric type and de�nes the method of data exchange between

the renderer and all of its known geometric types. To render a geometric object, the renderer

examines its geometry list and noti�es the object of what representation type it must produce.

Not containing static values, each entry of the geometry list is updated during the lifetime of

a simulation. Usually performed at the beginning, every object informs the set of renderers of

the type of representations they can supply. Renderers cross-reference this information against

its primitive list to generate values for its geometry list. The caricature in Figure 10.7 depicts

the formation of both lists for a rendering object called Renderer.

I can produce geo type data: B and C

But, I prefer to create B

Geo-Object "Bar"

Geo-Object "Foo"

I can produce geo type data: C and D

But, I prefer to create D.

Object Type "Foo" -> B
Object Type "Bar" -> D

Geometry List

A, B, C, D

Primitive List

Renderer

Renderer

I can render geo types: A, B, C, D.

Figure 10.7: Renderer Object List Formation

Although permitting the independent construction of geometries and renderers, this dual-

list scheme requires all geometric objects to support more than half the members of a common

set of representation types. Any object that fails this requirement is not guaranteed to be

renderable. For example, if a geometric object can not produce a particular representation

type for a single-type renderer, it will not be possible to produce an image. However, if both

objects are constrained to support a minimalistic set of representations, it will always be possible

to create an image.

Chapter 10: RASP: Graphical Models 116

10.2.2 Image Creation

During rendering, a renderer object is passed to every geometric object in a scene. Each

geometric object passes geometrical information of an appropriate type to the renderer. To

determine the suitable type, the object noti�es the renderer of its type and identity. Using

this information, the renderer searches its geometric list to locate the appropriate form of

information it should receive from the geometric object. Once the geometric object is told

what graphic representation to produce, it generates the proper information and passes it to

the renderer - this includes a complete set of material attributes. Since all this information is

encapsulated within the object's material attributes slot, the material feature object is the only

item that needs to be passed to the renderer. The following lines of pseudo-code identify the

basic set of function calls required to generate a single image.

PROCEDURE drawObject() {

1 Object ball; /* create an object */

2 Sphere sph; /* create a spherical geometry */

3 Renderer rend; /* create a renderer */

4

5 ball.addGeometry(sph); /* set the object's geometry */

6

7 rend.addObject(ball); /* let render know about object, so it generate

8 an entry for it in its ``geometry'' list. */

9 ball.render(rend); }

The following lines of pseudo-code detail the operations of ball.render on line 9 above.

MEMBER FUNCTION Object::render(Renderer rend)

{

1 /* ask renderer for appropriate data type */

2 type = rend.getType(geometryIdentity, ME);

3

4 /* generate the appropriate data */

5 representation = makeData(type);

6

7 /* send material info the renderer */

8 rend.sendMaterial(materialFeatureObject);

9

10 /* send data to renderer */

11 rend.sendData(representation);

}

Currently, renderers require only the geometric representation and material attributes of

any model. However, since future renderers may request supplementary information, every

Chapter 10: RASP: Graphical Models 117

model passes its identity to the current renderer. This operation is exempli�ed in line 2 above.

The value \ME", representing the model being rendered, provides the renderer with a reference

to use in requesting additional data.

Chapter 11

Rasp: The Implementation

When we build, let us think that we build forever.

- John Ruskin, The Seven Lamps of Architecture

This chapter discusses the implementation of the RASP toolkit. It is intended to exemplify

the power and exibility of the toolkit's design. Although the library is exclusively developed in

C++, it does not preclude the development of a similar toolkit written in another programming

language. The selection of C++ was driven by three motivating factors:

Abstraction capabilities To properly realize the toolkit's design, it was essential to be able

to construct high-level abstractions that support the object-oriented ideology. The ability

to create objects and to de�ne relationships between various types of objects was of vital

importance.

Platform availability Practicability constraints limited language selection to its availability

on various hardware platforms. The importance of image synthesis to the toolkit's design

encouraged the selection of a language supported by machines specializing in computer

graphics application development.

Popularity To entice users to develop applications with the toolkit, it was imperative to select

a language with widespread acceptance. Many users are easily discouraged from using

libraries and tools constructed with uncommon languages.

C++ was the only language that satis�ed all three design criteria.

118

Chapter 11: Rasp: The Implementation 119

1 1 . 1 C la s s D e s ig n

In C++, the main abstraction mechanism is a class. A class enables users to de�ne their own

data types. Classes serve as templates from which objects (data types) are created. Every class

consists of a set of data members and member functions. Data members represent the state

variables of an object while member functions represent operations that are applied to data

members. Users invoke member functions to alter the state of an object. A class' interface is

de�ned by the number and type of member functions it possesses.

11.1.1 Member Function Classification

Although a class' usefulness is primarily judged by its design and functionality, a class is deemed

to be useless if it is unreadable. If users can not rapidly correlate an association between a

class' member functions and its functional objectives, the class will be di�cult to use. Ob-

scure or abstract public interfaces obfuscate the intended meaning of a class. To clarify a class'

implementation, every header �le1 in the RASP toolkit segments each class' set of member func-

tion into six distinct categories. This scheme enables users to identify member functions with

commons aims and to determine swiftly the general purpose of individual member functions.

Inuenced by [51]'s classi�cation plan, class member functions are categorized as follows:

� manager: The construction and destruction of class instances are governed by manager

member functions. Management activities, such as initialization, assignment, memory

management, and type conversion, are performed by these of functions.

� interface: Explicit duplication and equality testing operations are de�ned as interface

members. These member functions provide users with a variety of methods to copy a

single object or test the equality of two distinct objects.

� access: Any function that enables users to access private data members are incorporated

into this category. Functions of this type are usually preceded with the pre�x \set" or

\get". Predicate operating functions are also included in this set.

1In C++, header �les are distinguished by \.h" endings.

Chapter 11: Rasp: The Implementation 120

� implementor: Functions that serve to invoke the capabilities associated with a class'

abstraction are placed in this category. In general, the behavior of a class object is

altered when functions of this type are activated.

� helper: All protected or private member functions are de�ned to be helpers. These

functions are not intended to be invoked by users. They serve to perform hidden auxiliary

tasks.

� operator: Any function that operates to work on instantiated objects of a class are

placed in this last category. All testing functions, pseudo-math like functions, and logical

operation functions are listed under this category.

� port: Port member functions are unlike all the previous member functions because they

do not induce state changes or return the values of data members. They return ports

(\in" and \out") which are similar to member functions. Ports o�er users an alternative

class interface more appropriate for simulation.

The result of applying this classi�cation scheme to a class' member functions is illustrated

in the following class de�nition. The general aim of each member function is quickly determined

from its classi�cation grouping.

class Rectangle {

long x,y, x2, y2; /* data members */

public: /* member functions */

/* manager functions */

Rectangle();

Rectangle(long, long, long, long);

/* interface functions */

Rectangle* copy() const;

/* access functions */

long left() const { return x; }

long height() const { return y2-y; }

/* implementor functions */

void translate(const long, const long);

void scaleFromCenter(const);

Chapter 11: Rasp: The Implementation 121

/* operator functions */

Rectangle& operator =(const Rectangle&);

Rectangle operator *(const long);

/* port functions */

OPort* outX();

IPort* inX();

private:

/* helper functions */

void initialize();

};

11.1.2 IdentifyInfo Class

Many regular classes and abstract classes in the RASP toolkit inherit information and properties

from the base class IdentifyInfo. This base class supplies its inheritors with data members

and member functions to manage their identity. For clarity, most references to the base class

IdentifyInfo are omitted from many of the diagrams and discussions in this chapter. Readers

are advised to examine Figure D.1 for a complete diagram of the toolkit's inheritance tree.

11.1.3 RogueWave Classes

To alleviate the creation of many common data structures, the RASP toolkit uses various classes

from the RogueWave class libraries. The RogueWave library set[73], developed by Rogue Wave

Associated, is composed of Tool.h++, Math.h++, and Matrix.h++. Although the header �les

and documentation for these libraries are slightly obscure, their usage is highly recommended.

Further references to RogueWave classes and data structures are omitted from this chapter for

clarity.

Chapter 11: Rasp: The Implementation 122

1 1 . 2 W o r l d M o d e l in g

This section describes the basic concepts and essential programming constructs found in all

RASP built simulations. It provides a brief overview of the four required components of a

visual simulation: Setting, Cameras, Renderers, and HybridModels. A fully-functional

simulation can not be created without at least one instance of each these components.

11.2.1 The Setting

The heart of every RASP simulation, the Setting describes the global environment, initiates the

progression of time, and invokes rendering routines. Users specify the parameters and contents

of the setting. By analogy, the setting is the stage on which all the models of a simulation

perform. A stage is empty unless the director places objects, lights, and actors on it.

Users must specify at least one Renderer, Camera, and Window to synthesize static

images of the simulation. The camera holds the viewing parameters of the rendering. One may

visualize the parameters of the camera as de�ning the location where the camera sits relative

to a stage where actors are performing.2 The window de�nes the size and type of user-interface

window to be displayed on users' screens and it delimits the size of viewing screens for cameras.

This latter feature is important because Cameras do not de�ne the size of their own viewing

screen. Extracting the size of the viewing screen from a camera's de�nition permits users to

construct independently new camera types and window types.

The following sample program, redsphere.c, creates a simple image of one red sphere. It

explicitly renders the sphere once, then quits.

main()

{

/* Create a setting and a renderer */

RaspSetting world;

GLRenderer3D glRend;

/* create a user interface window */

fRect windRect(0, 0, 200, 200);

GLWindow3D wind(windRect, "RedSphere Example");

wind.open_window();

2RASP cameras may be place anywhere, even on the stage

Chapter 11: Rasp: The Implementation 123

/* create a camera */

Camera kamera("Example Camera");

kamera.setView(Point3(20,35,110), Point3(0,0,0));

kamera.associateWindow(wind);

kamera.associateRenderer(glRend);

world.addObject(kamera);

/* create a red sphere */

Sphere sph1(10.);

HybridModel obj1(Point3(0,0,0), sph1);

world.addObject(obj1, BASIC_RED);

world.renderAll();

}

The �rst line of the program initializes the object variable world to an instance of a

RaspSetting. The second line creates an instance, called glRend, of a GLRenderer3D. This

object represents a renderer that utilizes three-dimensional GL-library3 calls to synthesize its

images.

The next group of lines creates a GLWindow3D window. The argument windRect represents

the size and location of the window. The following set of lines creates a Camera named \Example

Camera". Along with its instantiation, the camera's viewing parameters, associated window

and renderer have been set. Notice in the �nal line that the kamera is added to the world.

Without this statement, the world would not be able to draw anything.

The last set of statements creates a red sphere. Just like the camera, the ball is added

to the world because all objects must be placed into the setting if they are to be recognized.

However, objects need not be placed into the setting at the beginning of a simulation. They

may be added at any time during the course of a simulation. The �nal statement informs the

setting to render everything.

11.2.2 HybridModels

In the last example, two separate statements were used to create one spherical object. Unlike

standard object-oriented graphics libraries, RASP distinguishes between objects and geometries:

� Attributes of HybridModels represent those aspects of an object that are independent

of its geometrical con�guration. Properties such as surface color, position in world space,

3GL (Graphics Library) is a registered trademark of Silicon Graphics, Inc.

Chapter 11: Rasp: The Implementation 124

texture, and identity are examples of non-geometric attributes.

� Geometrical classes, such as Sphere, only contain information directly associated with its

geometric shape because direct incorporation of non-geometric attributes only increases

the complexity of a class' design. For example, in RASP, all Geometry-based classes are

constructed within a local reference frame. Their position in world space is not de�ned

in their class designs.

In the RASP environment, instances of either class can not stand alone. Only via the

combination of both classes can an object be useful. An object without geometry does not have

form while a geometry without an associated object does not have real world properties. The

many bene�ts of this separation are:

� independent construction of (complex) geometrical classes.

� animation of an object's geometry allowing an object to changes its form and shape during

run-time.

� multiple objects with (pointers to) the same geometrical con�guration. Animating the

common geometrical form will change all the shapes of the relating entities.

� an e�cient hierarchical construction of geometric objects. Non-geometrical informational

attributes are not repeatedly stored within the multiple levels of the hierarchy.

The following example illustrates the creation of two geometric entities: a cube and a cubic

spline. For clarity, all statements concerned with the construction and control of cameras,

windows, and renderer have been omitted.

main()

{

/* Create a setting */

RaspSetting world;

/* create a cube-oid object (5x5x5) at the global origin */

Cube cube(0, 0, 0, 5, 5, 5);

HybridModel obj1(Point3(0,0,0), cube);

/* set color to RED and add to world */

obj1.setColor(BASIC_RED);

Chapter 11: Rasp: The Implementation 125

world.addObject(obj1);

/* create a cubic spline at location (10,10,0) in global space */

Basis sBasis(CUBIC_BASIS);

Spline spl1(10, sBasis, FALSE);

HybridModel obj2(Point3(10,10,0), spl1);

/* set color to BLUE and add to world */

world.addObject(obj2, BASIC_BLUE);

world.renderAll();

}

After creating the world, the �rst group of statements creates a cube of length, width, and

height of �ve units, assigns this geometry to obj1, and places it at the origin in global space.

The following statements assign a RED color to obj1 and adds it to the setting.

To create a spline-based object, spl1 a basis function (class), the ten control vertices spline

is assigned to obj2, which is placed at location (10; 10; 0) in global space. Finally, obj2 is

assigned a BLUE color while it is being added to the world.

Note the di�erence between the two addObject statements. In the �rst call, no color

argument is given. The object is added to the setting without declaring a color. This small

example illustrates an important feature found throughout the RASP library - there are many

ways (function-calls) to produce matching results. Multiple methods permits the design and

development of many diverse programs.

11.2.3 Multiple Views

The RASP architecture does not limit the number of Renderers, Windows, Cameras, or

HybridModels present in a setting. It does not even place a limit on the number of RaspSet-

tings. However, the current toolkit does not support the parallel execution of multiple settings.

Multiple setting can only be executed in tandem. Therefore, the usage of numerous setting is

not advised at this point.

The following example illustrates a simple model with two cameras, two renderers and

two windows. Please note the appearance of several member function calls not shown in the

previous examples. These additional functions illustrate the high degree of control users possess

in altering and de�ning the parameters of a model.

Chapter 11: Rasp: The Implementation 126

void main()

{

/* create a setting and two renderers */

RaspSetting world;

GLRenderer3D glRend;

OptikRenderer opRend;

/* camera attributes */

fVector viewup (-1.0, -1.0, 0.);

dAngle fovx = 90., fovy = 90.;

/* create a 3-Dimensional GLWindow */

fRect w(100., 100., 300., 200);

GLWindow3D *wind = new GLWindow3D(w, "Test", TRUE);

wind->open_window();

wind->setColor(DARK_GREY);

wind->clear_window();

/* create a basic window */

fRect w2(0, 0, 100, 100);

Window *wind2 = new Window(w2, "Test");

wind2->setColor(DARK_GREY);

/* create a camera */

Camera camera("Main Camera");

camera.setView(Point3(20,35,110), Point3(0,0,0), viewup, fovx, fovy);

camera.setClipPlanes(.001, 3500.);

camera.associateWindow(wind);

camera.associateRenderer(glRend);

camera.wind_Set_OrthRt(.5);

/* create another camera */

Camera camera2("Other Camera");

camera2.setView(Point3(0,30,100), Point3(0,0,0), viewup, fovx, fovy);

camera2.setClipPlanes(.1, 1200.);

camera2.associateWindow(wind3);

camera2.associateRenderer(opRend);

camera2.wind_Set_OrthRt(.5);

/* add cameras to the setting */

world.addObject(camera);

world.addObject(camera2);

/* create a spherical object */

Sphere sph1(10.);

HybridModel obj1(Point3(0,0,0), sph1);

world.addObject(obj1, BASIC_RED);

world.renderAll();

}

Chapter 11: Rasp: The Implementation 127

1 1 . 3 P o rt C la s s e s

This section discusses the design of RASP's port classes. Unlike many of the classes found in

the toolkit, port classes are used only to assist in the development of other classes. They serve

as tools to construct objects that adhere to the connection paradigm.

11.3.1 Inheritance Tree

As described in section 7.3.3, RASP inports and outports are similar to standard class member

functions. Both regulate the value of data members and direct actions performed by the class.

However, ports di�er in that they are �rst-class, unidirectional, and able to respond to queries.

Functionally, inports and outports are equivalent. Both ports access data members, associate

conditional tests with data members, and invoke class actions. They di�er only in direction.

This commonality permits the construction of a basic Port class (see Figure 11.1) from which

both ports inherit data and operations.

RaspPorts

OPort IPort

OutPort<Type> InPort<Type>

Port

ISA-derived ISA-derived

ISA-classified ISA-classified

Connection

Figure 11.1: Port Hierarchy

The classes OutPort<Type> and InPort<Type> in Figure 11.1 are parameterized types.4

They represent special port classes formulated especially for C++. Each class facilitates the

construction of ports which maintain references (pointers) to class member functions. Each

class is parameterized because C++ does not permit the construction of simple generic member

function references. All reference declarations must state explicitly the class type from which

the member function it references is de�ned.

4See section B.2.2.

Chapter 11: Rasp: The Implementation 128

11.3.2 Point Class

The following header �le for the class Point exempli�es the de�nition of a class with ports.

The data members outPort and InPort<Point> facilitate the creation of outports and inports.

The constants declared in both typedef statements supply ports with simple identi�ers. The

port function outThis() returns a port which references the class itself.

/**

class POINT definition

**/

class Point {

private:

typedef enum {

OP_X,

OP_THIS

}; /* outports identifiers */

typedef enum {

IP_X

}; /* inports identifiers */

RaspPorts outPort;

InPort<Point> *inPort;

protected:

double x, y;

public:

/* manager functions */

Point(const double, const double);

/* access functions */

void setX(const double);

double getX(void) const;

/* port functions */

OPort* outX();

OPort* outThis();

IPort* inX();

};

The following segment of code implements the constructor function for the class de�ned

above. In addition to setting the values of the data members, the constructor creates the class'

ports, associates data members and member functions with individual ports, and identi�es the

data type managed by each port.

Point::Point(const double xVal, const double yVal): x(xVal), y(yVal)

Chapter 11: Rasp: The Implementation 129

{

outPort.setNumOutPorts(1);

outPort[OP_X]->setVar(&x, RASP_DOUBLE);

inPort = new InPort<Point>[1];

inPort[IP_X].setVarId(RASP_DOUBLE);

inPort[IP_X].setHandler(this, &Point::setX);

}

It should be noted that the similarities between ports and member functions are not limited

to functionality alone. Both structures are subject to the rules of inheritance. Subclasses can

alter the purpose and design of all inherited ports.

Chapter 11: Rasp: The Implementation 130

1 1 . 4 T e m p o r a l T o o l s

This section describes the implementation of RASP's set of temporal primitives, which were

discussed in section 9.2. All primitives, except for processes, are described in detail. A discussion

about RASP processes is relegated to section 11.6.

11.4.1 Events

Every RASP event type is a subclass of the base class EventBase (Figure 11.2). This class

de�nes three important functions which all event types must support: stateEvent, endEvent,

and doEvent. The �rst function initiates actions to initialize an event. Exemplary startEvent

actions include testing port availabilities, comparing ports types between links, and establish-

ing links between ports. The second function simply cancels all stateEvent actions, such as

eliminating link formations between ports. The third function executes the event's objective.

Exemplary doEvents include passing temporal values to ports (TimeEvent), transferring val-

ues from one port to another (Event), and informing ports to test their states (StateEvent).

TimeEvent StateEvent CallEvent DisableEvent ChainEvent

EventBase

Event

ISA-Specialized ISA-ClassifiedISA-Specialized ISA-Specialized ISA-SpecializedISA-Specialized

Figure 11.2: Event Hierarchy

The following segment of code illustrates the usage of a variety of RASP event types. The

number and type of parameters an event receives is dependent upon its objective.

// create event to call target port with no arguments

CallEvent ev1(coll->inRun());

// 2a -> create data transaction event

// 2b -> create event to a call a procedure with no arguments

Event ev2a(spl1->outMaxParam(), evol->inFinishVal());

Event ev2b(proc);

// 3a -> create event to pass time value to target port

// 3b -> create event to a call a procedure with one arguments

TimeEvent ev3a(evol->inCalcValue(), RS_REL_TIME);

Chapter 11: Rasp: The Implementation 131

TimeEvent ev3b(proc2, RS_ABS_TIME);

// create event to call activity when source port target alters state

StateEvent ev4(obj1->outCollision(), act);

// create a chain event composed of

ChainEvent

Conceptually, all RASP event types could have been constructed as one universal event.

Its exact functionality would be extracted from an examination of its argument list during

instantiation. However, there are three major arguments against the development of one uni-

versal event. First, one event type occupies more memory than any single-purpose event type.

For large simulations requiring many events, an excessive use of memory can impede system

performance. Second, augmenting the functionality of an universal event becomes an onerous

task. Users would need to manipulate unnecessarily complex structures simply to extend the

capabilities of the event. Third, the usage of one event type hinders the rapid analysis of a

simulation. Users must examine the argument list of every event to determine their purposes.

11.4.2 Activities & Processions

RASP's Activity class and Procession class inherit data members and member functions

relating to temporal actions from the base class Timing (Figure 11.3). This base class provides

operations to establish and compare the timing information (temporal interval and granularity)

of individual activities and processions. Because the toolkit's current design de�nes only one

type of an activity and one type of procession, the class Activity and class Procession are

not abstract. However, this does not preclude the development of abstract classes for activities

and processions. Future enhancement to the toolkit's design may compel the creation of such

classes.

The following example illustrates the creation of an two activities and one procession.

/* create an activity with time span from 5 to 10 */

Activity act(``Example Activity'', 5, 15);

act.addInitEvent(evt1);

act.addActEvent(evt2);

act.addFiniEvent(evt3);

Activity act2(``Example Activity#2'', 10, 25);

Chapter 11: Rasp: The Implementation 132

Activity

Timing

Procession

ISA-Derived ISA-Derived

Figure 11.3: Activity Hierarchy

act.addActEvent(evt2);

act.addActEvent(evt4);

/* add activities to procession */

Procession seq1(``Example Procession'');

seq1.addActivity(act);

seq1.addActivity(act2);

It is important to note that the toolkit does not restrict the quantity or type of events

associated with each activities. Therefore, any event may simultaneously belong to more than

one category and to several activities.

11.4.3 Examples

This section concludes with two examples to exemplify the usage of events, activities, and

processions. Each example de�nes the motion path of a spherical object. Both paths are

illustrated in Figure 11.4. The route in the �rst example is de�ned by a linear interpolation of

three points. In the second example, the parametric values of a spline object generate the path

for the object in motion.

Linear Interpolating Path

This example is divided into two routines. The �rst routine, main, is responsible for creating

a setting and running the simulation, while the second procedure, initWorld, is assigned to

create all the temporal actions of the model.

main()

{

/* create a setting */

RaspSetting world;

Chapter 11: Rasp: The Implementation 133

-10

10

20

30

10 20 30 40 50

Linear Path Spline Path

Path
Sphere Sphere

Path

-10

10

20

30

10 20 30 40 50

Figure 11.4: Motion Paths

/* create objects, events, activities, and processions */

initWorld(world);

/* run the simulation */

world.run();

}

void initWorld(RaspSetting *world)

{

/* create a light blue sphere */

Sphere sph(10.);

HybridModel *obj = new HybridModel(Point3(0,0,0), sph);

world.addObject(obj, LIGHT_BLUE);

/* create an Point3 evolution object */

Point3 pt1(0, 0, 0), pt2(20, 30, 40), pt3(40, -10, 30);

ptEvolve evol(pt1, pt2, 10);

/* create timeEvent and data transfer event */

TimeEvent evt1(evol.inCalcValue());

Event evt2(evol.outCurVal(), obj->inSetPosition());

/* create an event to alter the evolution start and end values */

ChainEvent evt3;

evt3.addEvent(pt2.outThis(), evol.inBeginVal());

evt3.addEvent(pt3.outThis(), evol.inFinishVal());

/* create an activity, and add both events */

Activity move1(5., 15.);

move1.addActEvent(evt1);

move1.addActEvent(evt2);

Activity move2(15., 25.);

move2.addInitEvent(evt3);

move2.addActEvent(evt1);

move2.addActEvent(evt2);

Chapter 11: Rasp: The Implementation 134

/* create a procession, add the activity, and add procession to setting */

Procession seq1(``Move Ball'');

seq1.addActivity(move1);

seq1.addActivity(move2);

world.addProcession(seq1);

}

The �rst set of statements in initWorld de�nes a blue spherical object. The next set of

statements de�nes three distinct points and an evolutionary object of type ptEvolve.5 Given

an initial and �nal value, ptEvolve uses a linear interpolation scheme to generate a set of

intermediate values. Its last argument represents the number of interval values that are to be

calculated.

The next set of declarations de�nes two distinct events. The �rst statement creates an

event to pass time to evol. The omission of a second argument to TimeEvent indicates that

evol requires \local" (not \absolute") time values. The \local" time will be determined from

the event's (yet to be de�ned) associated activity. The second statement creates an event to

transfer data from evol to obj. This transaction will set the spatial location of the spherical

object to equal the value produced by the evolutionary object.

After composing events evt1 and evt2, the next set of statements creates a ChainEvent.

This event is composed of two separate Events. When triggered, the tandem events will alter

evol's initial and terminal value. It is important to note that no explicit Event statements were

required to generate the individual events. The ability to overload functions in C++ enables

the member function \addEvent" to accept explicit events or special sets of arguments. In this

case, \addEvent" automatically generates an Event from the combination of the two ports.

The circumvention of basic declarations enables users to design rapidly simulations and reduce

code size. For example, the following two statements are equivalent:

1=> evt3.addEvent(pt2->outThis(), evol->inBeginVal());

Event aaa(pt2->outThis(), evol->inBeginVal()));

2=> evt3.addEvent(aaa);

The �rst statement does not require the user to de�ne explicitly an Event. Users may utilize

5ptEvolve is a type de�nition of the template class Evolve with Point3 passed as the parameterization
argument.

Chapter 11: Rasp: The Implementation 135

either method to add events to a ChainEvent. Programmers may wish to utilize the second

method if they require to reference the basic event more than once.

Following the event de�nitions is the activity declarations. The activities move1 and move2

are very similar. Each endures for ten temporal units and activates identical \acting" events.

However, only move2 de�nes an \initial" event. This one time only activation event will alter

evol's interpolation range from (pt1,pt2) to (pt2,pt3) .

The �nal declaration set performs three tasks. It de�nes a procession, insert activities into

the procession, and adds the procession to the world.

Spline-Based Path

The following example de�nes an alternative motion path for the spherical object. It creates

one activity, composed of several events, to move the object along a spline-based route. The

structure of this code is very similar to the one utilized in the previous example.

main()

{

/* create a setting */

RaspSetting world;

/* create objects, events, activities, and processions */

initWorld(world);

/* run the simulation */

world.run();

}

void initWorld(RaspSetting *world)

{

/* create a light blue sphere */

Sphere sph(10.);

HybridModel *obj1 = new HybridModel(Point3(0,0,0), sph);

world->addObject(obj1, LIGHT_BLUE);

/* create a dark green spline with 10 CVs */

Basis sBasis(CUBIC_BASIS);

Spline *spl = new Spline (10, sBasis);

HybridModel obj2(origin, spl);

world->addObject(obj2, DARK_GREEN);

/* create a ``double'' evolution object */

dEvolve *evol = new dEvolve(0, 0, 20);

/* set evolution finish value to spline's maximum parametric value */

Chapter 11: Rasp: The Implementation 136

Event evt1(spl->outMaxParam(), evol->inFinishVal());

/* create a chain event */

ChainEvent evt3;

/* send time to evolution object, then set spline's parametric value to

value of evolution, then set spherical object's position to equal

spline's parametric position */

evt3.addEvent(TimeEvent(evol->inCalcValue()));

evt3.addEvent(evol->outCurVal(), spl->inParamVal());

evt3.addEvent(spl->outParamPos(), obj1->inSetPosition());

/* create an activity, and add both events */

Activity move(2., 22.);

move.addInitEvent(evt1);

move.addActEvent(evt3);

/* create a procession, add the activity, and add procession to setting */

Procession seq1(``Move Sphere'');

seq1.addActivity(move);

world->addProcession(seq1);

}

The �rst set of statements in initWorld create one spherical and one spline-based object.

Each entity is placed at the origin, given a distinct color, and added to the world. The

next statement de�nes a pointer to an object of class dEvolve. This referenced interpolation

object is responsible for generating successive values (of type \double") from zero to a currently

unspeci�ed number.

The next collection of declarations de�nes two events. The �rst event, evt1, de�nes an

action to modify the terminal or maximum value of evol. The second event, evt3, is a multiple

action event. When triggered, it will execute, in succession, three events. A visual illustration

of the action performed by each event is portrayed in Figure 11.5.

Figure 11.5: Spline Path Events

1. A temporal value is transmitted to the evolution object.

Chapter 11: Rasp: The Implementation 137

2. A value from the evolution object to transferred to the spline object. This value represents

an index into the spline's parametric space. Give this index, the spline will generate a

position in three-space.

3. The spline's three-space value is transferred to the sphere. This value will be utilized to

set the sphere's spatial location in the setting.

After creating all the events, one activity, entitled move, is declared. It is characterized by

one initializing event, one active event, and a duration of twenty temporal units.

The last set of statements de�nes a procession and associates it with the setting. Labeled

\Move Sphere", this procession is declared to have one activity and no special temporal at-

tributes.

Direct and Indirect Referencing

In the last two examples, some objects were referenced indirectly (via pointers). Without

these references, both examples would have failed to produce a valid simulation. Most likely,

the programs would have crashed or generated obscure results. The source of this problem

is lodged in the manner that the C++ language de�nes and controls the memory associated

with an object. Objects having \local" scope - directly referenced objects - fail to sustain their

allocation of memory when their local environment disappears. Therefore, any reference to

an object beyond the object's scope proves \unde�ned". Unde�ned references arise in RASP

simulations if events attempt to reference ports of extinct objects. It is important to remember

that all ports are directly linked with the objects they serve, and objects and their ports expire

together. Therefore, when de�ning variables, the following general rule should be followed:

Pointers references should be generated for any objects having one or more of their

\in" or \out" ports referenced in any type of an event.

Chapter 11: Rasp: The Implementation 138

1 1 . 5 C h r o n o s

This section discusses the design of RASP's simulation kernel, Chronos. This class interacts

with the Processions of a simulation to control the ow of time. Currently, the class Chronos

is instantiated and employed by the class Setting. Therefore, unless users explicitly wish to

alter the behavior or functionality of the simulation kernel, most users will never directly use

or invoke operations of the kernel. However, future modi�cations and enhancements to RASP's

design may increase the interaction between users and the kernel.

The following C++ header �le de�nes all the member functions of the class Chronos.

Functions enable users to reset the simulated clock time, adjust the number of Processions

the kernel controls, and initiate the start of the simulation.

/**

class CHRONOS definition

***/

class Chronos {

protected:

double globalClock;

double globalTimeStep;

GSlist(Procession) pList;

public:

/* manager functions */

Chronos(double=0., double=1.0);

/* access functions */

double getWorldTime() const { return globalClock; }

void resetClock(double);

void adjustStep(double);

void addProcession(Procession*);

Procession* getProcession(char*);

void removeProcession(Procession*);

void removeAllProcessesions();

/* implementor functions */

void run(RaspSetting*);

private:

/* helper functions */

double getNextProcessionStep();

void advanceTime(double);

};

The following segment of code showsChronos' member function run. The function iterates

Chapter 11: Rasp: The Implementation 139

a simple set of steps to advance the simulated time of a simulation. The list, eventCameraList,

contains references to all the cameras in the simulation which are required to synthesize images

at every new time step. Although this scheme increases the functionality of the kernel, it

optimizes the system's performance and minimizes users' modeling e�orts. The widespread

usage of cameras which update at every time step justi�es the insertion of this data structure

into the routine.

void Chronos::run(RaspSetting *world)

{

GSlist(Camera) *eventCameraList;

double nextTime, advanceVal;

Bool bLoop;

eventCameraList = world->eventCamerasOnly(); /* get event cameras */

advanceTime(0);

while(TRUE) {

/* get the next value of time to procession towards */

if ((nextTime = getNextProcessionStep()) == STOPTIME)

break;

/* don't advance time too fast */

if ((advanceVal = nextTime) > globalTimeStep)

advanceVal = globalTimeStep;

bLoop = TRUE;

while (bLoop == TRUE) {

if (globalClock + advanceVal >= nextTime) {

bLoop = FALSE;

advanceVal = nextTime - globalClock;

}

globalClock += advanceVal;

advanceTime(globalClock);

/* tell update event cameras to render */

for(int i=0; i<eventCameraList->entries(); i++)

eventCameraList->at(i)->doSnapShot(globalClock);

}

}

}

Chapter 11: Rasp: The Implementation 140

1 1 . 6 P r o c e s s e s

This section outlines the design of RASP processes. Readers are forewarned that process

creation in C++ is not an easy task. Since C++ does not support co-routines,6 users are

required to incorporate mandatory \support" constructs into their process designs. Fortunately,

users are not required to develop these additional constructs. All processes are developed with

the assistance of previously de�ned structures and a set of essential guidelines. Adherence to

these rules is mandatory.

The rules of process creation are very precise. They require users to utilize a basic set of

structures and commands when developing processes. They do not restrict the behavioral devel-

opment of a process. Only the structure of a process is con�ned to a standard set of operations.

Processes are not obligated to alter the state variables or operations of any model. Attempting

to stray from these prescribed regulations is not recommended. Irregularly developed processes

may produce unwanted consequences.

11.6.1 Abstract Class

Every process of a RASP simulation model must be an instantiation of a process-type class.

This class must be a descendant of the abstract class Process. The class Process provides all

process-type classes with a collection of important routines and data members. This class also

de�nes a list of member functions which must be supported by all derived classes. Referred to

as pure virtual functions, these routines can not be left unde�ned. The absence of one or more

of these member functions will evoke errors during program compilation.

The abstract class Process declares that it is essential for all process-type classes to provide

de�nitions for three particular argument-free member functions. They are as follows:

/* pure virtual implementor functions */

virtual void initialize() = 0;

virtual int body() = 0;

virtual void finish() = 0;

6The usage of P-Threadsmay enable users to utilize structures which are functionally equivalent to co-routines.

Chapter 11: Rasp: The Implementation 141

void initialize()

This routine is called upon by the RASP kernel when a process is to be activated. It is

not invoked during process instantiation. Any class variables explicitly de�ned to control a

process' behavior is to be initialized within this routine. All data members which support the

interface between the process and simulation kernel is to be initialized within the process' class

constructor.

int body()

This routine is the most important member function for a process. It de�nes the behavior of

the process from start to �nish. Once this routine terminates, the process will end. Concep-

tually, this routine need only be invoked once. Whenever a process must suspend its thread of

operation, it should use coroutines. If C++ inherently supported coroutines, a sample body

routine could have been written as follows:

void MyProcess::body()

{

cout << "Can't" << endl;

hold(3);

cout << "touch" << endl;

hold(6);

cout << "this" << endl;

}

However, since coroutines are not directly supported by the C++ language, this routine

will be invoked multiple times. Immediately after each invocation, the ow of execution will

leap to the line following the line that suspended it. This is accomplished with the assistance

of a large switch statement containing multiple goto statements. However, for this scheme to

work, users must set a particular variable to a value representing the line after the suspension

statement.

JumpTo MyProcess::body()

{

/* this switch statement is mandatory */

switch(jumpLine) {

case JUMP_1:

goto JMP_1;

break;

Chapter 11: Rasp: The Implementation 142

case JUMP_2:

goto JMP_2;

break;

};

cout << "Can't" << endl;

hold(3);

return(JUMP_1);

JMP_1: cout << "touch" << endl;

hold(6);

return(JUMP_2);

JMP_2: cout << "this" << endl;

return(NO_JUMP);

}

In this example, body contains two \hold" statements. These statements de�ne the dura-

tion of simulation time that must pass before the next statement after each \hold" command

is to be executed. A return statement must immediately follow each \hold" statement. This

statement enables the process to suspend temporarily its thread of execution. Each return

statement must be provided one argument of type JumpTo. This enumerated type de�nes all

the possible values this argument can receive. The prede�ned enumeration is de�ned in the

base class Process. This argument noti�es the routine as to where it is to continue execution

when it is restored.

The switch statement at the beginning of this routine is used to leap over segments of code.

It enables this routine to believe that all of its \hold" statements are coroutines. It springs over

fragments of code according to the value of the variable jumpLine. This variable is rede�ned

every time a return statement is invoked.

void finish()

This routine will be invoked when a process is to be terminated or extinguished. It should

contain all declarations ending a process' behavior. It is important to note the di�erence be-

tween a terminated and an extinguished process. A terminated process can restart its thread of

execution after re-initialization while an extinguished process can not. Any memory associated

with an extinguished process has been freed up. All references to extinguished processes are

considered to be dangling.

Chapter 11: Rasp: The Implementation 143

11.6.2 Process Ports

There are two ways a process can communicate with its environment. It can explicitly reference

external sources or it can make use of its ports. Although external references provide direct

links with environmental sources, they hinder the development of independent processes. The

formation of dependent links, created by external calls, constrains a process to make strong

assumptions about the environment and the sources it references. These problems are not evi-

dent in processes communicating only through ports. Ports assist in the reduction of dependent

links and direct reference calls. Ports are also very helpful is suspending and restoring the state

of a process.

It is important to note that each method of communication has its own set of relative merits.

There does not exist a straightforward procedure to choose one method over the other. The

selection process is entirely context dependent. As a general guideline, ports are most useful

when a process does not need to be concerned with the source of its external information. When

the value of information is more important than the entity generating it, the port communication

mechanism should be used. However, if the source of information is also very important, direct

referencing may be the better choice.

The ports of a process and the ports of any other object within the toolkit are created in

an identical fashion. Every \in" port requires the address of a class data member and every

\out" port requires the service of an internal class member function. However, port processes

and non-process ports are not completely equivalent. The ports of a process possess extra

functionality not inherent in standard ports. For example, process ports provide additional

query functions. Without these additional routines, it would not be possible to employ all the

capabilities of a process.

Many process-oriented modeling situations require a process to temporarily halt its progress

until it has obtained a particular resource. The process will resume its thread of execution im-

mediately after the resource is freed or found to be available. The following routine exempli�es

a process waiting for a valid value from one of its input ports.

int WaitProcess::body()

{

/* this switch statement is mandatory */

Chapter 11: Rasp: The Implementation 144

switch(jumpLine) {

case JUMP_1:

goto JMP_1;

break;

}

cout << " Waiting... " << endl;

JMP_1: /* waiting for value from port */ ;

if (inPort[IP_VAL].getValue()) {

cout << " Got It! " << endl;

}

else {

hold();

return(JUMP_1);

}

return NO_JUMP;

}

This process will declare itself to be \Waiting...", until it obtains a value for the port

inPort[IP VAL]. Once a value has been obtained, the suspended process will produce the

statement \Got It!". The key feature to note in this example is the if-else clause. The if

expression queries the port to determine if it has obtained a value. If the expression evaluates

true, the process will continue its execution. If not, it will invoke the else clause. This clause

will suspend the process until re-activation. In this case, a re-activation signal will originate

from the port inPort[IP VAL]. This port is automatically noti�ed that it is responsible for

resuming the process when it receives the getValue query and returns a value of \FALSE". It

is important to note that it is not the responsibility of the process to query continually the port

to ascertain if a valid value has been obtained. The process will remain in a waiting state until

noti�ed by the queried port.

11.6.3 Relationship with Activities

The following fragment of code illustrates the relationship between processes and activities.

Process pr1, pr2; /* create two processes */

Activity move1(5, 10); /* activity with duration of 5 units */

move1.addProcess(pr1);

Activity move2(7); /* instantaneous activity */

move2.addProcess(pr1);

Chapter 11: Rasp: The Implementation 145

Processes pr1 and pr2 will terminate di�erently. Assuming the absence of intervention from

external sources, pr1 will expire conjunctively with activity move1 and pr2 will terminate after

it has administered its last command. Note the di�erence in the instantiations of move1 and

move2. The activity move2 has been de�ned to be \instantaneous". An instantaneous activity

does not have the ability to summon the termination of the processes it governs.

Please note that the previous segment of code is not completely correct. Any attempt to

compile the code segment would produce a variety of compiler errors. An intentional mistake

appears in the �rst line. It is not actually possible to instantiate a variable of class Process.

The class Process serves as an abstract class from which \real" processes are to be built. All

legitimate processes must be derived from the class Process. For example,

class MoveProcess: public Process { ... };

class CollisionProcess: public Process { ... };

Processes MoveProcess and CollisionProcess are derivations of the class Process. The

erroneous code segment is presented to de�ne the relationship existing between activities and

processes. It should not be directly incorporated into genuine simulation models.

11.6.4 Example

This chapter concludes with an extensive example illustrating the power of process-based sim-

ulation. The goal of this example is to create a process for \mouse-based" user interaction.

Unlike many simulations which separate the user-interface queries from the simulation model,

this example incorporates the query task directly into the simulation. Users can control the

number and the frequency of user-interaction queries.

The following segment of code is the header �le for the process class GLEventLoop. This

process must be provided an active setting and single-argument procedure to perform correctly.

The one argument procedure will be invoked whenever the process receives a LEFTBUTTON

message from the GL event scheduler.

class GLEventLoop: public Process {

GL_Loop loop;

short val;

long event;

Bool bLoop, (*leftBut)(short);

Chapter 11: Rasp: The Implementation 146

public:

/* manager functions */

GLEventLoop(RaspSetting*);

/* access functions */

void setLeftButton(Bool (*)(short));

/* implementor functions */

void initialize();

void finish();

int body();

};

This next segment of code de�nes the three required routines every user-de�ned process must

declare. The �rst two routines execute the initial and �nal GL device driver routines. These

routines inform the GL event scheduler as to when to initiate and terminate LEFTMOUSE

events. Close examination of the routine body reveals that this process will perform one mouse

inquiry every �ve units of simulation time. It is important to remember that the process will

make no inquires until activated by an external source.

void GLEventLoop::initialize()

{

/* GL calls */

qdevice(LEFTMOUSE);

/* insert procedures into event loop */

evt.insert(LEFTMOUSE, leftBut);

}

void GLEventLoop::finish()

{

/* GL calls */

unqdevice(LEFTMOUSE);

}

int GLEventLoop::body()

{

/* this switch statement is mandatory */

switch(jumpLine) {

case JUMP_1:

goto JMP_1;

break;

};

/* event loop */

while(bLoop) {

JMP_1:if (qtest()) {

event = qread(&val);

Chapter 11: Rasp: The Implementation 147

bLoop = evt.event(event, val);

world->renderAll();

}

hold(5);

return(JUMP_1);

}

return NO_JUMP;

}

This last segment of code de�ne a simple simulation with one user-interaction process. The

mouse query process is activated when the simulation time reaches thirty-three. Since the

process has no terminating mechanisms, the simulation has been explicitly declared to stop at

time 100.

Bool do_leftmouse(short)

{

cout << "MOUSE " << endl;

return TRUE;

}

main()

{

/* create a setting */

RaspSetting world;

/* create a mouse inquire process */

GLEventLoop *loop = new GLEventLoop(&world);

loop->setLeftButton(do_leftmouse);

/* create an activity */

Activity *loopAct = new Activity(33);

loopAct->addProcess(loop);

/* create a procession */

Procession *seq1 = new Procession("GL-EVENTS");

seq1->addActivity(loopAct);

world->addProcession(seq1);

/* run the simulation */

world->endTime(100);

world->run();

}

Chapter 11: Rasp: The Implementation 148

1 1 . 7 R e n d e r e r s

Every data-to-image translation object or image renderer is derived from the base class Ren-

derer. This class determines a collection of "implementor" operations that each derived class

must de�ne. In addition to these "abstract" member functions, Renderer provides a set of

operations to maintain a primitive and geometry list. These "base" operations alleviate each

renderer subclass from asserting their own set of "list" functions.

Renderer's abstract "implementor" functions are divided into two basic sets. Applied to

alter a renderer's state, the �rst group of routines inform a renderer when to begin and ter-

minate the synthesis of a single image. The second set of routines declares an assortment of

commands pertinent to image synthesis. For every geometric primitive there is a corresponding

image construction command. While each new renderer type must re-de�ne every state altering

routine, they are not ordained to rede�ne every primitive drawing command. They are man-

dated to rede�ne only those commands corresponding to the geometric primitives which they

support. A renderer must rede�ne at least one command for each of the items in its primitive

list.

Geometric Primitives

Point Particle Line Polyline Plane Polygon

Triangle Quadrilateral Disk Cone Cube Cylinder

Sphere Square Superquadric Torus Bezier-Patch Elliptic-Cone

Table 11.3: Primitive List

Renderer's "base" operations regulate the primitive and geometric lists for each derived

renderer subclass. It is the duty of every derived renderer to register every primitive it can

support in its associated primitive list. This task is to be accomplished immediately after the

renderer has been initialized. After the primitive list has been completely constructed, users

are free to manipulate its contents at any point during a simulation. This enables users to

produce sequences of animation with frames of di�ering quality. The values of the geometric

list are not de�ned by renderer developers. Users are not required to a�x any statements

Chapter 11: Rasp: The Implementation 149

to their derived renderers to manipulate its contents. Renderer objects inherit commands to

adjust automatically the contents of its geometric list as it receives noti�cation messages from

the toolkit's scene modeling tools.

OptikRendererGLRenderer

GLRenderer2DGLRenderer3D

ISA-derived ISA-Specialized

Renderer

ISA-Specialized ISA-Specialized

Figure 11.6: Renderer Hierarchy

The current toolkit supports three image translator objects: two GL-based renderers and

one Optik-based renderer. The diagram in Figure 11.6 portrays the toolkit's rendering hierar-

chy. The GL-renderers, one for three-dimensions and the other for two-dimensions, are on-line

translators. They directly convert primitive object de�nitions into SGI's graphics language

commands. If available, GL-renderers can be directed to harness all of SGI's hardware en-

hancements. Although these renderers provide users with instantaneous feedback, they do not

have the ability to produce high quality images. The Optik-renderer is a high quality o�-line

renderer. Primitive object de�nitions are used to produce a scene description �le. Each �le

is fed to Optik, a ray-tracing image synthesizer, to produce vivid images. It should be noted

that the toolkit's data-to-image translation technique does not impede the development of an

on-line Optik-based renderer. This task is consigned for future work.

Chapter 11: Rasp: The Implementation 150

1 1 . 8 G e o m e t ry

In the toolkit, there are two types of geometric classes. Geometric form classes, which manage

the properties of a simple physical shapes, and geometric assembly classes, which manage the

construction of complex physical shape. Both geometric types are derived from the abstract

class GeoBase (see Figure 11.8). Serving as an administrator of abstract operations, this

abstract class ensures that all geometric classes are able to interface with rendering classes.

Base operations are also provided by GeoBase to handle basic functions, such as the creation

of ports common to all geometries and the management of important data members.

Geometric form classes derive additional information from the base class Geometry. This

base class de�nes a few operations relevant to simple geometric shapes. In addition, the class

Geometry serves as a classi�cation device to distinguish geometric form classes from geometric

assembly classes.

1 1 . 9 U t i l i t y C l a s s e s

The toolkit de�nes a large collection of additional classes which serve to facilitate the cre-

ation of simulations. Classes organize attributes, create windows (see Figure 11.7), manage

bounding box information, represent points, vectors, arrays, heaps, lights, and colors, provide

user-interface controls, and assist in caching data. Users wishing to further examine these

classes are directed to obtain a copy of the toolkit and peruse its contents.

GLWindow2D GLWindow3D

Window3D

Window

GLWindow

ISA-derived ISA-specialized

ISA-specialized

Figure 11.7: Window Hierarchy

C
h
a
p
te
r
1
1
:

R
a
sp
:
T
h
e
Im

p
lem

en
ta
tio

n
1
5
1

GeoObject

GeoBase

Spline

StrainSpline

DataFitSpline

Cube

GeoPointMatrixPolygonList

Ellipsoid EllipticCone

Cone

Sphere

IdentityInfo

GeoPoints

ISA-specializedISA-specialized

ISA-specialized ISA-specialized
ISA-specialized

ISA-specialized
ISA-derived

ISA-Classified ISA-Classified ISA-Classified ISA-Classified ISA-Classified

ISA-ClassifiedISA-Classified

Geometry

BaseQuadric

ISA-derivedF
ig
u
re

1
1
.8
:
G
eo
m
etry

H
iera

rch
y

Chapter 12

Conclusion

I have seen the future and it works.

- (Joseph) Lincoln Ste�ens, Autobiography, Ch. 18

Simulations are valuable industrial tools. They enable users to emulate and test the be-

haviors of real world applications and to improve the design of previously existing models and

systems. Users' productivity is enhanced when they can reuse and intermix components from

various simulations. Unfortunately, most simulation components are not naturally reusable.

Many are hard to extend or modify. Although many tools, such as simulation languages, envi-

ronments, and systems, have been developed for simulation, their usage has not cultivated the

creation of genuinely reusable components. The failure of these tools to partition clearly the

simulation modeling process, incorporate reusable technologies, and provide well-de�ned tem-

poral modeling mechanisms, hampers the construction of simulations that are easy to reuse,

decipher and decompose.

An attempt to provide users with a clear foundation towards the development of reusable

simulations has been presented in this thesis in the form of the RASP toolkit. Emphasizing

the needs of the computer graphics and robotics community, this toolkit uses object-orient

principles and modern patterns of communication to promote the development of reusable sim-

ulations. The extensibility and tractability of the toolkit's design empowers users to construct a

wide variety of models and systems. The toolkit is highlighted by IMVCD - a modeling frame-

work, the Connection Paradigm - a communication architecture based upon ports, Hierarchical

Temporal Modeling Tools - a set of primitives which establish a clear relationship between time

and state, and Hybrid Object Construction - a design methodology to create graphical models.

IMVCD de�nes a set of design rules for users to observe when designing RASP applica-

tions. Focusing on the architecture of programs, as opposed to the reuse of implementation,

the framework ameliorates users' potentials to create reusable simulations. The simulation

152

Chapter 12: Conclusion 153

modeling process is informally partitioned to highlight the communication paths between sys-

tem components: Models, constructed with Informer objects, are visualized by Viewers; and

Controllers, regulated by Delegators, govern the behaviors of Models.

The Connection Paradigm de�nes a communication architecture which delegates the

responsibilities of creating and maintaining data pathways to a variety of modeling elements.

Based upon unidirectional ports and �rst-class connections, this plan eliminates the need for

models to be concerned with the identity of its communication partners and to be aware of the

nature of environment in which they interact. Models react to events triggered on their ports,

not to messages originating from other models or system components.

Hierarchical Temporal Modeling Tools enable users to describe and organize hierar-

chically the state changes occurring within a simulation. State changes are associated with

temporal values to produce scripted animations and adaptive simulations. Constructed as �rst-

class objects, the tools de�ne a clear relationship between time and state: Processions regulate

the activation of Activities while Activities regulate the activation of Events and Processes.

In addition, the tools endorse the creation of a minimalistic simulation kernel and permit the

development of simulations which incorporate multiple world views.

Hybrid Object Construction delineates a model design methodology which combines a

uni�ed user interface with a rendering architecture. Constructed as �rst-class entities, models

organize collections of feature ports and slots. Adhering to the connection paradigm, feature

ports regulate the contents of slots while slots contain references to feature objects. Feature

objects manage primary functions and regulate model attributes.

1 2 . 1 A s s e s s m e n t o f R A S P

This section assesses the toolkit ability to meet the design goals of Chapter 6 and identi�es the

aspects of the toolkit which establish its uniqueness.

Chapter 12: Conclusion 154

12.1.1 Goals

Framework

RASP's framework delineates a strong foundation for the development of reusable simulations.

It leads users to develop simulations that adhere to a common design. The generality of the rules

of interaction, the clear partitioning of the design process, and the clarity of the communication

architecture permits the development of a wide variety of models and simulations. However,

the framework still requires further enhancement. As yet, the rules of interaction neither

provide regulations that manage the interaction of multiple controllers (see section 12.2) and nor

describe the framework's relationship with the underlying system architecture. Rules are needed

to clarify the role of the simulation kernel and its inuence on the framework components. It

is not clear yet whether the framework's current decomposition is adequate or complete. Sub-

frameworks may be needed to promote greater reusable development, and new frameworks may

be devised to handle alternative modeling designs.

Multiple Temporal Strategies

RASP's multiple interface to discrete-event modeling permits the creation of simulations via

events, conditional activities, and processes. Users intermix all three types to form simulations

that are relatively easy to build, manage, and interpret. The main problem with this approach is

the manner in which conditional activities are speci�ed and examined. To reduce the complexity

of the simulation kernel, contingency tests normally associated with activities are relegated to

the state variables of the simulation. This action burdens variables attached to contingency

tests to signal state change events. It is not clear if this behavior is truly desirable. Future

designs that attempt to allay this burden may require language support.

Time and State

RASP's set of temporal modeling tools standardizes the speci�cation of state changes and the

employment of temporal management methodologies, establishes a de�nitional uniformity of

simulation terms, permits the creation of uneven (variable rate) computing operations, and

Chapter 12: Conclusion 155

minimizes the responsibilities of the simulation kernel.

Three major issues of importance relate to these tools. First, it is not clear whether the

tools are adequately extensible. For example, there is currently only one type of \activity"

provided by the toolkit. Further testing must be performed to determine if another type of

activity is supportable and if the tools need to be redesigned. Second, �rm guidelines must

be established to aid in the decomposition and reuse of the simulation kernel. Although the

kernel possesses minimal responsibilities, users may wish to produce variations of the kernel to

optimize the operations of their simulations1 or to vary the duties and purpose of the kernel.

Third, a clear distinction does not exist between control information and model actions. The

tools must be altered or augmented to permit the speci�cation of model behaviors independent

of the experimental frame under which the models are run.

Geometric Model Construction

RASP's model construction methodology promotes a manageable model architecture by dele-

gating the handling of model attributes and responsibilities to feature objects. Models manage

feature objects via slots and ports to promote an external interface that adheres to the connec-

tion paradigm and permits temporal modeling tools to inuence a model's state. Delegation

is extended to feature objects to form a hierarchical ordering of model attributes and duties.

Alterations to model traits are generated at various levels of detail by modifying the hierarchical

data structure at di�erent ranks.

RASP's model construction methodology supports the interaction between models and ren-

derers by de�ning a communicational protocol for data-to-image translation. Models and ren-

derers support interfaces which enable them to communicate and maintain independent knowl-

edge of their needs and capabilities.

Although C++'s inability to support delegation limited the examination of RASP's model

architecture, two important issues arose during testing. First, the hierarchical ordering of

feature objects and feature ports increased the complexity of simulation models. To support

1Although it was noted in section 6.3.4 that optimizations to the simulation kernel reduces its versatility, this

fact will not stop users from altering the operation of the kernel to enhance the performance of their simulations.

Therefore, it is important to provide rules that guide any modi�cations made to the kernel.

Chapter 12: Conclusion 156

RASP's multiple interface approach to discrete-event modeling, they needed to supply opera-

tions that transmitted information to and obtained information from its immediate predecessors

and successors. Future enhancement need to determine if these operations can be eliminated

via language support or new design. Second, rules must be established to coordinate the com-

munication between two or more feature objects. It is not clear whether information is to be

exchanged via ports, direct message passing, or delegation.

12.1.2 Discussion

Apart from obvious di�erences, the RASP toolkit di�ers from previously designed toolkits in

four major ways. First, object-oriented principles were applied to the toolkit design from its

inception to its current implementation. Objects were created to construct models, coordinate

communication between components, and form simulation frameworks. RASP's construction

process did not encounter problems, such as design speci�cations being far removed from im-

plementation constructs, normally associated with software projects that attempt to objectify

their systems only during the implementation phase of software development. As noted in

[16, 60], the application of object-oriented principles to software design, analysis, and implemen-

tation imposes good software engineering practices, fosters reusability, and promotes structural

continuity.2 Second, the toolkit de�nes a framework for simulation development that empha-

sizes the reuse of design, not just implementation. The relationships and dependencies between

groups of objects are delineated to promote a general architecture for component reuse. Third,

the toolkit endorses a separation of communication and co-ordination from functionality and

computation. Serving only one purpose, tools orchestrate the the interaction among sets of

models or manipulate the attributes or properties of a model. Fourth, the toolkit endorses the

development of models which maintain a loose connection to their environments. Models form

relationships via ports and connections, not via direct associations. This design fosters greater

model reusability and interpretability.

2Classes, objects, properties, and relations described in the design phrase show up in the implementation

phase.

Chapter 12: Conclusion 157

1 2 . 2 F u t u r e W o r k

More experience is needed to evaluate the potential and test the adequacy of the RASP toolkit.

Only through experimentation is it possible to determine if the toolkit's constructs and abstrac-

tions provide enough leeway for users to create a wide variety of simulations. Nevertheless, it is

clear that certain modi�cations and extensions to the toolkit will prove bene�cial. The following

itemization presents a few areas of possible enhancements.

Alternate Language

Although the RASP toolkit was initially designed independent of an implementation, continual

enhancements and modi�cation to the toolkit's design were strongly inuenced by its C++

implementation. The inability of C++ to support delegation, garbage collection, and generic

pointers to class members, and run-time type identi�cation required the toolkit to supply users

with many data structures and constants that enabled them to emulate these missing properties.

Apart from cluttering the toolkit with extraneous structures, these additional tools attenuated

the simplicity and power of the toolkit's design.

An alternate implementation of the toolkit using another language, such as RAVEN[1],

Objective-C[14], or SELF[33], may provide insights concerning the correctness and applicability

of the toolkit's design. The incorporation of new language features may improve the toolkit's

design and its approach to reusability.

Temporal Relations

In the real-world, users do not always de�ne the activation of events and activities in terms

of explicit units of time. Activation times are often expressed in relation to other activation

times. Therefore, it would be extremely bene�cial for RASP to allow users to coordinate the

activation of state changes without explicit references to speci�c points in time. For example,

it would not be extremely di�cult for RASP's design to provide operators which de�ne many

the reference intervals described in [2] and shown in Table 12.4.

By using these reference intervals, it would be possible to represent the relationship between

Chapter 12: Conclusion 158

Relation Symbol Inverse Symbol Pictorial Example

X before Y < > XXX YYY

X equal Y = = XXX

YYY

X meets Y m mi XXXYYY

X overlaps Y o oi XXX

YYY

X during Y d di XXX

YYYYYY

X starts Y s si XXX

YYYYY

X �nishes Y f � XXX

YYYYYY

Table 12.4: Temporal Interval Relations

multiple temporal intervals using constraint propagation, and explicitly handle problems dealing

with relative temporal knowledge.

Interface Applications

Usage of the RASP toolkit requires programming experience. Users must be familiar with pro-

gramming languages, software engineering, and object-oriented principles to construct properly

reusable simulations. To cater to a wider audience and to improve greatly the user-friendliness

of the toolkit, the construction of front-end programs that allow users to build RASP simulation

via a graphical interface or high-level scripting language would be worthwhile. Such programs

could directly interpret the simulation designed by users, or they may yield segments of source

code that compile into RASP simulations.

Controller Interaction

The IMVCD framework dictates that only controllers are to control the dynamic properties

of a simulation. Although this design enhances the development of reusable components, it is

far from complete. The framework fails to provide rules which govern the conduct of multi-

ple controller acting in unison or conict. Rules must be de�ned to resolve conicts among

Chapter 12: Conclusion 159

discordant controllers, to assign semantic relationship between coupled controllers, and to clas-

sify the bindings between controllers and the entities which they control. Previous works by

[43, 47, 98, 65] support the need for such rules.

Temporal Regression

Some simulations, especially computer animations, need to run simulations backwards. Re-

versing the direction of simulated time enables users to test the operation and validity of their

simulations and to examine the e�ects induced by altering the nature of previously transpired

state changes.

Parallelism & Distributed Principles

The bene�ts derived from distributing computations across multiple platforms and conducting

operations in parallel are numerous. Apart from increasing the e�ciency and productivity of

simulations, they enable users to devise architectures which closely resemble real-world scenar-

ios. For example, simulations which try to emulate and test the interactions between robotic

devices may bene�t from a design which distributes each device to a separate computer. There-

fore, it is of interest to determine RASP capabilities to incorporate plans for distributed and

parallel computing. The similarities between RASP and various co-ordination languages, such

as MANIFOLD, suggests that the toolkit's design is amenable to such improvements.

Appendix A

Object Oriented Languages

...objects are classi�ed scienti�cally into three major categories - those that don't

work, those that break down, and those that get lost. -Ibid.

A .1 D e f in i t io n

According to [91], a language is deemed to be object-oriented if it supports three important ele-

ments. First, it supports some notion of \objects". Every object must have a set of operations,

called methods, and a state that is a�ected by these operations. Second, every object belongs

to a class. Objects of the same class have uniform behavior and equivalent operations. Third,

some form of an inheritance mechanism is used to de�ne class hierarchies. Inheritance enables

construction of new objects by extending, reducing, or modifying the functionality of existing

objects.

According to [7], Wegner's de�nition of OOP is too restrictive and unsatisfactory. He

proposes an alternative de�nition based on the properties of object-oriented systems as opposed

to their implementation mechanics. For a system to be considered object-oriented, it must

possess the concepts of encapsulation,1 set-based abstraction, and polymorphism.

Encapsulation Objects are encapsulated if their data structures and procedures are enclosed

within unpenetrable tight boundaries. Only through well-de�ned interfaces can an ob-

ject's internal structures be accessed.

Set-based Abstraction Set-based abstraction requires all entities to belong to sets. Sets

enable clients to abstract common properties among a collection of objects. All sets are

capable of intersection and union. Therefore, it is possible for any object to be part

1It is not universally accepted that encapsulation provides greater programming constructs for OOP. Some

object-oriented languages, such as SIMULA, allow direct access to internal variables. Others, like HSL, support

weak encapsulation structures. Some researchers believe encapsulation reduces the communication abilities

between various objects.

160

Appendix A: Object Oriented Languages 161

of more than one set. Languages which support inheritance and conformance2 support

set-based abstractions.

Polymorphism Polymorphism is the ability of procedures or functions to operate on more

than one data type. Stringent type-checking methods have proven to be too restrictive

to program development.

A .2 C la s s H ie r a r c h i e s

A.2.1 Inheritance

Classes that inherit operations from superclasses and allow their operations to be acquired from

subclasses exhibit inheritance. The ISA relationship, which is formed between a class and its

superclass, can be taxonomised as follows:[85]

� ISA-derived: If it possible to apply a derivation rule to class A to form a subclass B, then

B is de�ned to be derived from A. Although derivation rules come in many forms, they

usually impose restrictions to a class' design. For example, the class TENNIS BALL is

ISA-derived from BALL by applying the predicate condition type=tennis to BALL. ISA-

derived classes do not store additional data structures. They utilize the data structures

of their parent classes to reserve their data.

� ISA-specialized: A subclass that subsumes the properties of its parent class is de�ned

to be a specialized class. Besides exhibiting all the qualities of its parent class, an ISA-

specialized class demonstrates supplementary traits. For instance, class TEAM CAPTAIN

is a specialized class of TEAM PLAYER. Apart from performing the role of a typical

player, a team captain behaves as a leader and instructor. A specialized class stores

only distinctive information within its structures. General information, inherited from its

genitor, is preserved in the parent class.

� ISA-classi�ed: A subclass is ISA-classi�ed from its parent class if its inheritance link

is used purely as a classi�cation device. No additional derived or functional relationship

2Conformance is related to the concept of subtyping. The reader is directed toward [8] for detailed discussions
on subtyping.

Appendix A: Object Oriented Languages 162

exists between the subclass and its parent. ISA-classi�ed classes do not rely on their

parent classes to maintain data structures. Descriptive data is stored within the subclass'

personal structures.

A.2.2 Delegation

Three problems are associated with the class/inheritance approach. First, it is not a precise

method to describe resource sharing in class hierarchies. Second, object-oriented mechanisms

are overloaded in the sense that inheritance is used to implement type checking, binding, and

behavior sharing. Third, classes are used to describe abstract behaviors and attach functionality

to them. Although one might consider the last two problems to be strengths as opposed to

weaknesses, they limit the degrees of freedom implementors need to build sophisticated objects.

Delegation is a better class independent term for dynamic hierarchical resource sharing. By

inheriting state and behavior, delegation makes it possible to change the behavior of object

dynamically. In a delegation-based system, every object behaves as a \prototype" for the

creation of a new object[7]. For example, in inheritance-based languages, such as Smalltalk[26,

34], when an object receives a message, it searches for method in its class. If a method can

not be found, the search is expanded to the class's superclass, and the superclass's superclass,

and so on. This hierarchical look-up mechanism results in subclasses inheriting methods from

their superclasses. However, in delegation-based languages, like SELF[33], methods are stored in

objects, and there are no concepts of classes. After receiving a message, if an object can not �nd

a method within itself, it delegates responsibility to another object to �nd one. The delegated

object can also choose to delegate responsibility to another object if it proves unable to �nd

a suitable method. In the delegation hierarchy, objects inherit methods to which it delegates

messages[38]. The following list enumerates the advantages of delegation over inheritance.

� Simpli�es the programming model.

� Eliminates the complexity associated with metaclasses without removing their power.

� Easier to implement one-of-a-kind objects.

� Easier to the change the behavior of objects.

Appendix A: Object Oriented Languages 163

� Powerful enough to simulate inheritance[49].

Although delegation provide users with a di�erent methodology than inheritance, there

seems to be little di�erence between them in terms of implementation. Recent evidence by [81]

seems to indicate that inheritance and delegation can provide exactly the same facilities.

A .3 L a n g u a g e s

Object-oriented languages come in a variety of forms: commercial products, research projects,

standalone languages, language derivatives, etc. Some languages even support concurrency and

distributed principles. The remainder of this section discusses two important OOP languages,

C++ and SELF. Readers wishing to further explore the area of object-oriented languages are

directed to start with [75].

A.3.1 C++

Created by Bjarne Stroustrup of AT&T Bell Laboratories, C++ was introduced in the early

1980s as an extension to the C programming language developed by Dennis Ritchie. While

remaining compatible and comparable to C in terms of syntax, performance, and portability,

C++ provides data abstraction and object-oriented programming facilities. Besides increasing

the amount of static type checking, C++'s inheritance-based design enables users to de�ne

user-de�ned types that obey identical scope, allocation, and naming rules as built-in types[39].

As powerful as C++ may be, it is not perfect. Currently, C++ does not support accurately

meta-classes, exception handling facilities, typedef identi�cation, run-time creation of new types,

concurrency mechanisms, and persistence - the placement of objects on secondary storage so

that they can exist across multiple platforms and applications.

A.3.2 SELF

SELF[33] is a delegation-based language. Using neither classes nor variables, SELF utilizes a

prototype metaphor for object creation. SELF objects do not obtain state information in the

same manner as objects de�ned in most other object-oriented languages. They send messages

Appendix A: Object Oriented Languages 164

to \self", the receiver of the current message, to attain their current condition. SELF's great

expressive power comes from its inability to distinguish state from behavior and its uniform

capability to access di�erent types of stored and computer data.

The following table provided by [33] compares SELF with class-based systems, such as

SmallTalk.

class-based systems SELF: no classes

inheritance relationships instance of inherits from

creation metaphor build according to plan clone an object

initialization executing a \plan" cloning an example

one-of-a-kind need extra object for class no extra object needed

in�nite regress class of class of class of : : : none required

Table A.5: Class Systems vs. SELF

Appendix B

Software Reusability

It is widely believed that software reusability enhances the productivity and development of

quality software. A library of reusable components provides users with a basic set of well-de�ned

tools to create a wide variety of software applications. A reusable library raises the level of

abstraction to allow users to concentrate on the problem domain. Although great strides have

been accomplished in the �eld of software engineering, the promise of reusability has not yet

been ful�lled. The lack of a standard method of software development and the multifarious

needs of application users have attributed to the limited success of reusable software libraries.

Common problems associated with reusable component development include:

� inability to respond to changing user needs: A component that may be appropriate

during the early stages of development may be unsuitable for the �nal product.

� excessively specialized components: Any component that is di�cult to use or modify

deters users from utilizing it. The software development process may become severely

encumbered if users must spend valuable time deciphering the components of any library.

� missing components: The absence of vital components hinders users from developing

applications with the software library. If continually forced to de�ne important constructs,

users will reject the usage of a set of extraneous components.

� implementation dependence: It is di�cult to de�ne a module that client modules can

rely on without knowledge of the module's implementation. Some users may experience

apprehension when an important component's implementation details are hidden from

them.

� operational problems: Without a clear organizational structure, the e�ective potential

of a component library will diminish as it grows in size and functionality. Components

165

Appendix B: Software Reusability 166

that are di�cult to �nd or troublesome to interpret e�ect the reusability of any library.

� poor early investment: Creating a viable collection of reusable components is a time

consuming task. Careful e�ort must be made to ensure that each module is reliable and

general enough to suit the needs of users.

B .1 R e u s a b i l i t y T e c h n o l o g ie s

There are two main approaches to reusable technology[5]. The �rst major group, composition

technology, is characterized by the idea that all components of a reusable library are atomic

units. Each module behaves as an independent entity. Although components may be modi�ed

for individual needs, this approach emphasizes that components do not need to be changed to

be reused. Using this technology, new applications are developed by combining individual units

into larger components. The UNIX pipe mechanism exempli�es this approach to reusability.

The second major approach, generation technologies, is based upon the idea that reusable

components are the patterns of a generator program. Components are not concrete modules.

They de�ne the underlying structure and body of target programs. Reuse is not a matter of

compositing components together. It is a matter of the execution of component generators.

The Draco[59] approach to reusable component design illustrates this approach.

B .2 O b j e c t -O r ie n t e d A p p r o a c h

The introduction of object oriented programming (OOP) has had a profound e�ect on com-

puter software construction. There are many advantages of OOP over traditional (procedural)

programming languages. Because programming is always structured and modular, the abil-

ity to design, construct, and maintain large scale systems is enhanced. Other bene�ts include

increased software re-usability, improved team project coordination schemes, and enriched facil-

ities for hierarchical design. Based on the theory of data abstraction, this technique introduces

new ideas and constructs not commonly found in modular languages. Unlike classical func-

tional design, object-oriented design does not base the modular decomposition of a software

application on the functions the system performs. Decomposition is generated from the classes

Appendix B: Software Reusability 167

of objects the system manipulates. Applications are decomposed into systems of interacting

objects, not interacting functions.

Independent component design is a fundamental aspect of many object-based systems. Users

build complex systems from the composition of various library modules. However, whenever

a particular module (class) does not explicitly �t users' designs, they may de�ne submodules

(subclasses) that de�ne new operations or rede�ne old operations to suit their needs. This

process is e�ortless in object-oriented languages that support inheritance. Besides facilitating

specialization, inheritance can be used for type checking and component classi�cation. However,

excessive use of inheritance has proven to be deleterious[94, 23, 12]. Apart from reducing the

runtime e�ciency of object oriented applications, large inheritance trees form interdependencies

among large sets of objects. This condition makes it very di�cult to transfer useful submodules

between projects without transferring a large segment of the inheritance tree.

The importance of generation technologies in the development of reusable modules has

guided the development of several key constructs in object-oriented languages. The introduction

of abstract data types, type parameterization, and frameworks have greatly enhanced the design

of reusable libraries.1

B.2.1 Abstract Data Type

An abstract data type (ADT) is a class of objects characterized by its external properties. The

ADT is described by the abstract features of its associated operations. For some languages,

such as C++[84], it is impossible to generate an instance of an ADT because at least one or

more of its operations are always left unimplemented. Users must completely de�ne all the

operations of an ADT before using it. From a hierarchical standpoint, the ADT represents the

superclass (see Appendix A) of user-de�ned classes. The ADT proves an important construct

for developing numerous objects with the same protocol but vastly di�erent implementations.

The abstract data type has three kinds of operations[37]:

� abstract operations: These types of operations are not implemented within the body of

1Although the concepts of abstract and parameterized data types existed before the development of object-

oriented design, few languages provided mechanisms to implement these ideas. The introduction of object-
oriented languages provided users with concrete mechanisms to express these reusable technologies

Appendix B: Software Reusability 168

an ADT but must be de�ned. In a class-based system, abstract operations are declared in

the superclass, but their implementation is to be de�ned in a speci�c subclass. Abstract

operations are part of the speci�cation for all subclasses of the ADT. A variety of languages

use di�erent techniques to ensure that the syntactic part of an ADT's speci�cation is

correctly followed. Some languages, such as C++, inspect for de�nitions of abstract

operations during compile time while other languages, like Smalltalk, delay checking for

de�nitions until the operations are actually used.

� template operations2: An abstract algorithm that is de�ned in terms of one or more

abstract operations is called a template operation. Operations of this type can be in-

terpreted as being partially implemented. The user of the ADT de�nes the abstract

operations within the body of each template operation. The following segment of C++

code illustrates a simple template operation.

Foo::write(Device io)

{

char buffer[255];

this->read(buffer); /* abstract operation */

io->write(buffer);

}

In this example, the algorithm \write" has been de�ned for the abstract class \Foo".

Within this function, the abstract operation \read" is being called. The function "read"

must be de�ned by users of \Foo" if they wish to use the \write" operation.

� base operations: A fully implemented operation of an ADT is de�ned as a base opera-

tion. Although users may rede�ne these operations, they are not required to do so.

B.2.2 Type Parameterization

Languages that support type parameterization enable users to de�ne a type in terms of another,

unspeci�ed type. This feature is especially useful for creating general container types, such as

list and array, where the supported element type is de�ned by a parameter. Used in conjunction

2Template operations are not needed in some object-oriented languages, such as SMALLTALK

Appendix B: Software Reusability 169

with abstract data types, parameterized types are also useful for de�ning generic functions,

such as \min" and \max", for a family of types. Languages such as C++ commonly refer to

parameterized types as templates.3

B.2.3 Framework

A framework is a set of design rules for a collection of collaborating objects. It de�nes how

a system is divided into components and how functions are divided among each of the indi-

vidual groups of objects. This technique of high-level design focuses on the architecture of

programs, as opposed to the reuse of implementation. Frameworks emphasize the communica-

tional paths between objects, not the dataow between them. User-interface design packages,

such as Model/View/Controller (MVC)[45], Interviews from Stanford[50], and MacApp[76],

exemplify the popularity and necessity for frameworks.

Currently, frameworks prove di�cult to de�ne. Models of interaction and the de�nition

of control ow among sets of objects are generally not easy to explain or visualize. Ideally, a

framework would be best described in terms of operational constraints placed on objects in a

system. This scheme facilitates the reuse of code and description of interacting objects. How-

ever, the formal speci�cations of object-oriented systems have not evolved to a mature enough

state to express these ideas. This limitation, however, does not imply that it is impossible to

de�ne successful frameworks. Many popular frameworks, such as the ones mentioned above,

utilize well-de�ned informal methods to express their designs.

3Parameterized \templates" are unrelated to the \template" operations previously de�ned above.

Appendix C

Examples

This appendix presents two simulations created with the RASP toolkit. The �rst simulation

produces a small animation of a spherical object moving along a spline path and then bouncing

freely within a cube. The second simulation produces an application with two concurrently

operating processes. One process manages user-interface events from a \mouse", while the

other simply waits to consume data.

Each simulation was developed on Silicon Graphics machines using SGI's C++ 3.0 com-

piler. Although several GL-based classes and routines are found in both simulations, neither

simulation is GL dependent. Equivalent classes and routines, based on other architectures, may

be freely used as substitutes.

It should be noted that many header �les, extraneous data type de�nitions, and constant

declarations in both simulations were omitted intentionally to reduce clutter. In addition,

several local variables have been de�ned as global variables only to facilitate the decomposition

of large routines into smaller procedures.

170

Appendix C: Examples 171

C .1 B o u n c in g B a l l

In this simulation, a small sphere, which is con�ned within a large rectangular box, travels along

a path determined by a spline from time t = 5 to t = 15. During this interval, the sphere's

position is updated every 2 seconds. From t = 16 to t = 100, the sphere departs from the

spline-based path and alters its position every second according to the \laws of motion". The

sphere's direction changes each time it collides with one of the walls of the enclosing rectangular

box.

Images of this animation are drawn to a display device using a GL-based renderer and stored

as \optik-script" �les using a Optik-based renderer. Images drawn to the display screen are

shown in two windows. One window updates its view each time an event transpires while the

other updates its view every other second during the interval from t = 10 to t = 45.

C.1.1 Main

The global environment is de�ned by the following list of variables, which represent the setting,

three windows, eight models, and eight geometries. For reasons described in section C.1.3, the

enclosing rectangular box is decomposed into six geometric faces.

/* the setting */

RaspSetting *world;

/* windows */

GLWindow *wind, *wind2;

Window *wind3;

/* hybrid model objects */

HybridModel *obj1, *obj2, *obj[6];

/* geometries */

Spline *spl1;

Sphere *sph1;

Cube *cube[6];

The procedure main initializes a setting; invokes functions to create windows, cameras, and

models; calls operations to establish dynamics actions; and informs the simulation when to

begin.

void PROCEDURE main()

Appendix C: Examples 172

{

/* create a setting */

world = new RaspSetting();

/* add objects to the world */

create_windows()

create_cameras()

create_models();

/* set up dynamic qualities of simulation */

script_animation();

create_collision_checker();

world->run();

}

C.1.2 Creating Windows & Cameras

The procedure create windwos creates three windows. The �rst two, wind and wind2, open

windows on a graphical display. The third, wind3, is unlike the �rst two because it does not

cause a window to be drawn anywhere. It is a \generic" window. It is used only to set the

viewing window for the Optik o�-line renderer.

void PROCEDURE create_windows()

{

/* first window */

fRect w(XMAXSCREEN/2.,100.,(float) XMAXSCREEN, (float) YMAXSCREEN/2.);

wind = new GLWindow3D(w, "Test", TRUE);

wind->open_window();

wind->setColor(DARK_GREY);

wind->clear_window();

/* second window */

fRect w2(XMAXSCREEN/2., (float)YMAXSCREEN*2/3., (float) XMAXSCREEN,

(float) YMAXSCREEN);

wind2 = new GLWindow3D(w2, "Test2", TRUE);

wind2->open_window();

wind2->setColor(DARK_GREY);

wind2->clear_window();

/* third window */

fRect w3(0, 0, 100, 100);

wind3 = new Window(w3, ``Test'');

wind3->setColor(DARK_GREY);

}

The procedure create cameras creates one camera for each window de�ned in the previous

procedure create windows. However, this does not imply that every RASP simulation must

Appendix C: Examples 173

create a separate camera for every window it utilizes. One camera could have been used for all

three windows. Separate cameras are created for this simulation so that the viewing parameters

and update times for each of the three windows may vary.

void PROCEDURE create_cameras()

{

/* create renderers */

GLRenderer3D *glRend = new GLRenderer3D();

OptikRenderer *opRend = new OptikRenderer();

/* camera parameter values */

fVector viewup (-1.0, -1.0, 0.);

dAngle fovx = 90., fovy = 90.;

/* set first camera parameters */

Camera *camera = new Camera("MyCamera");

camera->setView(Point3(20,35,110), ORIGIN, viewup, fovx, fovy);

camera->setClipPlanes(.001, 3500.);

camera->associateWindow(wind);

camera->associateRenderer(glRend);

camera->wind_Set_OrthRt(.5);

/* set second camera parameters */

Camera *camera2 = new Camera("SecondCamera");

camera2->setView(Point3(150,0,0), ORIGIN, viewup, fovx, fovy);

camera2->setClipPlanes(.001, 3500.);

camera2->associateWindow(wind2);

camera2->associateRenderer(glRend);

camera2->wind_Set_OrthRt(.5);

camera2->setUpdateEvent(FALSE);

/* set third camera's parameters */

Camera *camera3 = new Camera("OptikCamera");

camera3->setView(Point3(0,30,100), ORIGIN, viewup, fovx, fovy);

camera3->setClipPlanes(.1, 1200.);

camera3->associateWindow(wind3);

camera3->associateRenderer(opRend);

camera3->wind_Set_OrthRt(.5);

/* add cameras to the world */

world->addObject(camera);

world->addObject(camera2);

world->addObject(camera3);

}

Appendix C: Examples 174

C.1.3 Creating Models

The procedure create models creates a variety of hybrid models and one directional light.1

Models are associated with geometries (Informer objects, section 7.2) to create one spherical

object, one spline object, and six at plates (cubes). The at plates form the sides of the box

enclosing the moving sphere. One large box could have been constructed to replace the six

plates but such a scheme would have made it di�cult to determine collisions between the walls

of the box and the sphere.

void PROCEDURE create_models()

{

/* create spline with cubic basis */

Basis *sBasis = new Basis(CUBIC_BASIS);

spl1 = new Spline(10, sBasis, FALSE);

/* set the spline's control point positions */

(*spl1)(0) = Point3(-100, 0, 0);

for(int i=1; i<10; i++)

(*spl1)(i) = (*spl1)(i-1) + Point3(20,Random(50)-25,2);

/* create some spherical geometries */

sph1 = new Sphere(10.);

sph1->setName("redBall");

/* create a light */

DirectLight *dLight = new DirectLight(dVector(1,1,1), BASIC_WHITE);

/* create cubes */

cube[0] = new Cube(Point3(-120, -52, -50), Point3(120, -50, 50));

cube[1] = new Cube(Point3(-120, 52, -50), Point3(120, 50, 50));

cube[2] = new Cube(Point3(-122, -50, -50), Point3(-120, 50, 50));

cube[3] = new Cube(Point3(122, -50, -50), Point3(120, 50, 50));

cube[4] = new Cube(Point3(-120, -50, -50), Point3(120, 50, -52));

cube[5] = new Cube(Point3(-120, -50, 50), Point3(120, 50, 52));

/* create Hybrid objects */

obj1 = new HybridModel(ORIGIN, sph1, RED_BALL);

obj2 = new HybridModel(ORIGIN, spl1, 002);

obj1->set_velocity(dVector(.5, 1, 0));

char name[255];

for(i=0; i<6; i++) {

sprintf(name, "Cube #%d", i);

cube[i]->setName(name);

obj[i] = new HybridModel(ORIGIN, cube[i], i+2010);

}

1A directional light source emanates rays of light in only one direction. Directional lights are usually used to
represent light sources which are in�nitely distant from a scene, such as the sun.

Appendix C: Examples 175

/* add models and lights to the world */

world->addObject(obj1, BASIC_RED);

world->addObject(obj2, BASIC_BLUE);

world->addObject(dLight);

/* add boxes with different colors */

world->addObject(obj[0], BASIC_GREEN);

world->addObject(obj[1], BASIC_GREEN);

world->addObject(obj[2], BASIC_ORANGE);

world->addObject(obj[3], BASIC_CYAN);

world->addObject(obj[4], BASIC_MAGENTA);

world->addObject(obj[5], BASIC_MAGENTA);

}

C.1.4 Scripting Animation

The procedure script animation de�nes three Activitys. The �rst activity, move1, propels a

spherical object along a spline-based path for 10 units of time. This action is accomplished by

passing the maximum parametric value of the spline to the Controller evol, delegating evol

to generate a range of numerical values (parametric positions) for spl1, and delegating spl12

to set the position of the sphere obj1. The second activity, move2, enables obj1's motion to be

governed by Newton's laws of motion[80] from t = 16 to t = 25. This action is manufactured

by creating a Controller (Motion) which is aware of Newton's law of motion and delegating it

to control the sphere's position. The third activity, move3, simply informs the camera \Second

Camera" to generate a new image every other unit of time during the interval t = 10 to t = 45.

void PROCEDURE script_animation()

{

Procession *seq1 = new Procession("Balls", 0, 50.);

/** sphere moving behavior from t=5 to t=15 **/

Activity *move1 = new Activity("SpMoving", 5., 15., 2);

/* Pass the spline's maximum parametric value to the evolution object. */

dEvolve *evol = new dEvolve(0, 0, 10);

Event act0(spl1->outMaxParam(), evol->inFinishVal());

move1->addInitEvent(act0);

/* (a) pass temporal value to evolution.

(b) get value from evolution and pass to spline.

(c) get value from spline and pass to object.

2Although a spline is inherently a geometric entity, it may also control the behavior of other objects. In

RASP, any object may be delegated to be a Controller.

Appendix C: Examples 176

*/

ChainEvent act123;

TimeEvent act1(evol->inCalcValue());

act123.addEvent(act1);

act123.addEvent(evol->outCurVal(), spl1->inParamVal());

act123.addEvent(spl1->outParamPos(), obj1->inSetPosition());

move1->addActEvent(act123);

/** Sphere object follows laws of physics **/

Activity *move2 = new Activity("Free Motion", 16., 25.);

/* (a) pass position, velocity, and acceleration from object to motion

(b) send time to motion.

(c) send new position from motion to object.

*/

Motion *motion = new Motion();

Event act4(obj1->outPosition(), motion->inPosition());

Event act5(obj1->outVelocity(), motion->inVelocity());

Event act6(obj1->outAcceleration(), motion->inAcceleration());

TimeEvent *act7 = new TimeEvent(motion->inDTime());

Event act8(motion->outPosition(), obj1->inSetPosition());

move2->addInitEvent(act4);

move2->addInitEvent(act5);

move2->addInitEvent(act6);

move2->addActEvent(act7);

move2->addActEvent(act8);

/** Update second camera every 2 second from t=10 to t=45 **/

Activity *camUpdate = new Activity("Update Camera", 10, 45., 2);

Camera *camera = (Camera*) world->getCamera("SecondCamera");

TimeEvent camAct(camera->inSnapShot());

camUpdate->addActEvent(camAct);

/** add activities to procession **/

seq1->addActivity(move1);

seq1->addActivity(move2);

seq1->addActivity(camUpdate);

/** add procession to the world **/

world->addProcession(seq1);

}

C.1.5 Collision Checker

The procedure create collision checker induces two primary collision checking activities.

The �rst activity outMove alters the color of any wall struck by the moving sphere, obj1 during

the interval t = 1 to t = 40. This act is accomplished by a�xing the StateEvent state

to obj1's outCollision port. This action forces the Activity condAct to become active

Appendix C: Examples 177

if outCollision ever changes value. The second activity collCheck alters the direction of

the moving sphere each time it strikes a wall. Collision checking is performed by an collision

checking object of type Collide and the procedure alter sphere direction.

Note: The two collision checking activities could have been amalgamated into one large

activity. However, this was not performed so that the usage of various RASP operations and

objects could be shown.

void PROCEDURE create_collision_checker()

{

/** call on Collision reaction tester function **/

Activity *condAct = new Activity("Collision Reaction");

Event condEv(alter_wall_color);

condAct->addInitEvent(condEv);

condAct->assocProcession(seq1, 0.0);

/** if object's collision state changes during the interval t=1 to t=40,

then initiate condAct. **/

Activity *outMove = new Activity("Conditional Activation", 1., 40., 1);

GeoBase *geoInfo = obj1->getGeoBase();

CollisionInfo *collInfo = geoInfo->getCollisionInfo();

StateEvent state(collInfo->outCollision(), condAct);

DisableEvent state2(collInfo->outCollision(), condAct);

outMove->addInitEvent(state);

outMove->addFiniEvent(state2);

/** set collision checking parameters **/

Collide *collider = new Collide();

HybridModel *srcObj = world->getObject(RED_BALL);

collider->addSource(srcObj);

for(i=0; i<6; i++)

collider->addTarget(obj[i]);

/** perform Collision checking from t=10 to t=100. **/

Activity *collCheck = new Activity("CollisionChecking", 10, 100., 1);

CallEvent collEvent(collider->inRun());

collCheck->addActEvent(collEvent);

collCheck->addActEvent(alter_sphere_direction);

/* add new activities to the world */

Procession *seq1 = world->getProcession("Balls");

seq1->addActivity(collCheck);

seq1->addActivity(outMove);

}

The procedure alter wall color is invoked when the sphere's collision state changes. If

the sphere is determined to be in collision with another object (wall), this procedure will alter

Appendix C: Examples 178

the color of the colliding object to light yellow.

void PROCEDURE alter_wall_color()

{

static GeoBase *hitObj = NULL;

GeoBase *newHitObj, *ball = world->getObjectGeometry(RED_BALL);

CollisionInfo *collInfo = ball->getCollisionInfo();

if (collInfo->getCollisionState()) {

newHitObj = collInfo->getCollisionObjAt(0);

if (newHitObj != hitObj) {

Properties *prop = newHitObj->getProperties();

Material *mat = (Material*) prop->getProperty(ATTRIB_MATERIAL_PROPERTY);

ColorBase *col = mat->getDiffuse();

newHitObj->setColor(LIGHT_YELLOW);

hitObj = newHitObj;

}

}

}

The procedure alter sphere direction determines which wall a sphere strikes and alters

the sphere's forward direction accordingly.

void PROCEDURE alter_sphere_direction()

{

HybridModel *box, *sphere;

GeoBase *wall;

dVector vel;

static int lastWall = -1;

GeoBase *ball = world->getObjectGeometry(RED_BALL);

CollisionInfo *collInfo = ball->getCollisionInfo();

if (collInfo->getCollisionState()) {

for(i=0; i<6; i++) {

box = world->getObject(i+2010);

wall = box->get_geometry();

if (collInfo->collisionInfo(wall) && i != lastWall) {

sphere = ball->getOwner();

vel = sphere->get_velocity();

switch(i) {

case 0, 1:

vel.J() = -vel.J();

break;

case 2, 3:

vel.I() = -vel.I();

break;

case 4, 5:

vel.K() = -vel.K();

Appendix C: Examples 179

break;

}

sphere->set_velocity(vel);

Procession *seq1 = world->getProcession("Balls");

Activity *act = seq1->getActivity("Free Motion");

Activity *newAct = new Activity(*act);

seq1->removeActivity("Free Motion");

double time = world->getWorldTime();

newAct->setTiming(time, time+20);

seq1->addActivity(newAct);

lastWall = i;

break;

}

}

}

}

C.1.6 Images

The following set of images (Figures C.1 to C.6) show the views of camera1 and camera2. The

view on the left is updated every time an event occurs, while the the view on the right is

updated every other unit of time from the period t = 10 to t = 45.

Figure C.1: Frame at t = 10

Appendix C: Examples 180

Figure C.2: Frame at t = 12

Figure C.3: Frame at t = 30

Figure C.4: Frame at t = 47

Appendix C: Examples 181

Figure C.5: Frame at t = 75

Figure C.6: Frame at t = 89

Appendix C: Examples 182

C .2 T w o P r o c e s s e s

In this simulation, two concurrent processes operate independently. While one process manages

an event loop for a user-interface mouse, the other waits to consume data. Two geometric

models (spline with control points) are rendered using a two-dimensional renderer to further

illustrate the creation of various models and renderers.

C.2.1 Main

The procedure main initializes a setting; invokes a function to establish the contents of the

world; calls a procedure to compose dynamic actions; and informs the simulation when to

begin.

/* process definition header files */

#include "loop.h"

#include "wait.h"

RaspSetting *world;

GLWindow *wind;

PUBLIC void PROCEDURE main()

{

/* create a setting */

world = new RaspSetting();

/* setup the world and script process behaviors */

init_world();

script_processes();

/* run simulation */

world->run();

}

C.2.2 Creating Windows, Cameras, Models

The procedure init world sets up a 2D renderer, window, and camera; creates two models;

and adds all of them to the world. The second geometry is created to visualize the control

vertices of the spline. Because both geometries reference the same control point data structure,

a modi�cation to one geometry will automatically alter both.

void PROCEDURE init_world()

{

Appendix C: Examples 183

/* create a renderer */

GLRenderer2D *glRend = new GLRenderer2D();

/* create a window */

fRect w(XMAXSCREEN/2.,100.,(float) XMAXSCREEN, (float) YMAXSCREEN/2.);

wind = new GLWindow2D(w, "Test", TRUE);

wind->open_window();

wind->setColor(DARK_GREY);

wind->clear_window();

/* create a camera */

Camera *camera = new Camera("MyCamera");

camera->associateWindow(wind);

camera->associateRenderer(glRend);

camera->wind_Set_OrthRt(.5);

/* create spline model */

Basis *sBasis = new Basis(CUBIC_BASIS);

Spline *spl1 = new Spline(10, sBasis, FALSE);

(*spl1)(0) = Point3(-50.,0,0);

for(int i=1; i<10; i++)

(*spl1)(i) = (*spl1)(i-1) + Point3(15,Random(60)-30,2);

/* create points from spline's control vertices */

GeoPoints *pts = new GeoPoints(10);

pts->setNewPoints(spl1->getCVs());

HybridModel *obj1 = new HybridModel(ORIGIN, spl1, MY_SPLINE);

HybridModel *obj2 = new HybridModel(ORIGIN, pts, MY_CVS);

/* add objects to the world */

world->addObject(camera);

world->addObject(obj1, BASIC_BLUE);

world->addObject(obj2, BASIC_YELLOW);

}

C.2.3 Script Processes

The procedure script process creates two activities. One activity to activate loop and wait

and a second activity to send data to wait during the interval t = 20 to t = 25. The process

loop, which administers the operation of a \mouse", is provided two procedures, do leftmouse

and do rightmouse. The former outputs the position of the mouse while the latter terminates

the simulation.

void PROCEDURE script_process()

{

/* create a procession */

Appendix C: Examples 184

Procession *seq1 = new Procession("GL-EVENTS", 0, 50.);

/** intiate two processes **/

Activity *loopAct = new Activity("Loop", 1, 1);

/* create a mouse process */

GLEventLoop *loop = new GLEventLoop(world);

loop->setLeftButton(do_leftmouse);

loop->setRightButton(do_rightmouse);

/* create a waiting process */

WaitProcess *wait = new WaitProcess(world);

loopAct->addProcess(loop);

loopAct->addProcess(wait);

/** send time value to waiting process during interval t=20 to t=25 **/

Activity *valProcess = new Activity("Give Value to Process", 20, 25);

TimeEvent evt(wait->inValue());

valProcess->addActEvent(evt);

/* add activities to procession */

seq1->addActivity(loopAct);

seq1->addActivity(valProcess);

world->addProcession(seq1);

}

Bool PROCEDURE do_leftmouse(short val)

{

/* get mouse coordinates and print */

fPoint2 pos = wind->getMouseWindCoords();

cout << "MOUSE " << pos << NL;

return TRUE;

}

Bool PROCEDURE do_rightmouse(short val)

{

gexit(); /* quit program */

return FALSE;

}

Appendix C: Examples 185

C.2.4 Process Definitions

The following two segments of code show the class de�nitions for processes GLEventLoop and

WaitProcess. Each process is a subclass of the abstract class Process.

GLEventLoop

Header File

#include <process.h>

#include <gl_utils.h>

/**

process class GL-EVENT-LOOP definition

**/

class GLEventLoop: public Process {

GL_Loop loop;

short val;

long event;

Bool bLoop;

Bool (*leftBut)(short), (*middleBut)(short), (*rightBut)(short);

public:

/* manager functions */

GLEventLoop(RaspSetting*);

/* access functions */

void setLeftButton(Bool (*left)(short)) { leftBut = left; }

void setMiddleButton(Bool (*middle)(short)) { middleBut = middle; }

void setRightButton(Bool (*right)(short)) { rightBut = right; }

/* implementor functions */

void initialize();

void finish();

int body();

};

Appendix C: Examples 186

Member Function De�nitions

#include <device.h>

#include <rw/defs.h>

#include "loop.h"

#include "setting.h"

/**

process class GL-EVENT-LOOP member functions

**/

GLEventLoop::GLEventLoop(RaspSetting *environ): Process(environ)

{

leftBut = middleBut = rightBut = NULL;

bLoop = TRUE;

}

void GLEventLoop::initialize()

{

qdevice(LEFTMOUSE); loop.insert(LEFTMOUSE, leftBut);

qdevice(MIDDLEMOUSE); loop.insert(MIDDLEMOUSE, middleBut);

qdevice(RIGHTMOUSE); loop.insert(RIGHTMOUSE, rightBut);

}

void GLEventLoop::finish()

{

unqdevice(LEFTMOUSE);

unqdevice(MIDDLEMOUSE);

unqdevice(RIGHTMOUSE);

}

int GLEventLoop::body()

{

world->renderAll();

JUMPS2(); /* this jump statement is mandatory */

while(bLoop) {

if (qtest()) {

event = qread(&val);

bLoop = loop.event(event, val);

world->renderAll();

}

if (bLoop) {

PR_HOLD(5, JUMP_1);

JMP_1:

PR_HOLD(4, JUMP_2);

JMP_2:

}

}

return NO_JUMP;

}

Appendix C: Examples 187

WaitProcess

Header File

#include <process.h>

/*** Forward declaration ***/

class IPrPort_Wait;

/**

process class WAIT-PROCESS definition

**/

class WaitProcess: public Process {

typedef enum {

IP_VAL

}; /* inPorts */

IPrPort_Wait *inPort;

Bool bLoop;

double value;

public:

/* manager functions */

WaitProcess(RaspSetting*);

~WaitProcess();

/* implementor functions */

void initialize() {}

void finish() {}

int body();

/* inports */

IPort* inValue();

private:

void inValue(void*);

};

#include "wait.port"

#endif

Appendix C: Examples 188

Member Function De�nitions

#include <rw/defs.h>

#include "wait.h"

#include "setting.h"

/**

process class GL-EVENT-LOOP member functions

**/

WaitProcess::WaitProcess(RaspSetting *environ): Process(environ)

{

bLoop = TRUE;

inPort = new IPrPort_Wait[1];

inPort[IP_VAL].setVarId(RS_DOUBLE);

inPort[IP_VAL].setHandler(this, &WaitProcess::inValue);

}

WaitProcess::~WaitProcess()

{

delete [] inPort;

}

int WaitProcess::body()

{

JUMPS2(); /* this jump statement is mandatory */

while(bLoop) {

JMP_1: /* jump position */ ;

if (inPort[IP_VAL].getValue()) { /* received value */

PR_HOLD(10, JUMP_2);

}

else {

hold();

return(JUMP_1);

}

JMP_2:

}

return NO_JUMP;

}

IPort* WaitProcess::inValue()

{

return (IPort*) &inPort[IP_VAL];

}

void WaitProcess::inValue(void *arg)

{

value = *((double*) arg);

}

Appendix D

RASP Class Library

This appendix presents the complete list of classes found in the RASP toolkit. Classes are

organized into tables according to functionality and purpose. A visual presentation of the

toolkit's inheritance tree is shown in Figure D.1.

D .1 C la s s O r g a n iz at io n

Abstract Class Name Subtype of Comments

IdentityInfo Name and NumId

RaspSetting IdentityInfo

RaspObject IdentityInfo

HybridModel RaspObject

Camera RaspObject

Window IdentityInfo

Yes Window3D

GLWindow Window

GLWindow3D Window3D, GLWindow

GLWindow2D GLWindow

Table D.6: Environmental Classes

Abstract Class Name Subtype of Comments

Yes Port

OPort Port

OutPort<Type> OPort

IPort Port

InPort<Type> IPort

RaspPorts

Connection

Table D.7: Port Classes

189

Appendix D: RASP Class Library 190

Abstract Class Name Subtype of Comments

Chronos Non-User Class

Timing

Activity Timing, IdentityInfo

Yes EventBase

Event EventBase

TimeEvent EventBase

ChainEvent EventBase

StateEvent EventBase

CallEvent EventBase

Process IdentityInfo

Procession Timing, IdentityInfo

Table D.8: Temporal Tools Classes

Abstract Class Name Subtype of Comments

KnotSequence

Basis

Yes GeoBase

Yes Geometry GeoBase

GeoObject GeoBase Composite Geometry

Sphere Geometry

Cube Geometry

GeoPoint Geometry

GeoPoints Geometry

GeoPointMatrix Geometry

PolygonList Geometry

Spline Geometry

strainSpline Spline

dataFitSpline strainSpline

Yes BaseQuadric Geometry

Ellipsoid BaseQuadric

EllipticCone BaseQuadric

Cone EllipticCone

Table D.9: Geometric Classes

Appendix D: RASP Class Library 191

Abstract Class Name Subtype of Comments

Yes PopupMenu IdentityInfo

GLPopupMenu PopupMenu

GLDrawMenu PopupMenu

GLLinearMenu PopupMenu

GLCircularMenu GLDrawMenu

GL Loop

Table D.10: User Interface Classes

Abstract Class Name Subtype of Comments

Yes ColorBase

RGBColor ColorBase

HSVColor ColorBase

HSLColor ColorBase

Yes Light RaspObject

PointLight Light

SpotLight PointLight

LinearLight Light

DirectLight Light

AreaLight Light

Yes Renderer

GLRenderer Renderer

GLRenderer3D GLRenderer

GLRenderer2D GLRenderer

OptikRenderer Renderer

Table D.11: Rendering Classes

Abstract Class Name Subtype of Comments

Evolution<Type>

Yes RefClock

Motion RefClock

ParameterizedData

Trace Debugging Class

OneTrace Trace Debugging Class

Table D.12: Specialized Classes

Appendix D: RASP Class Library 192

Abstract Class Name Subtype of Comments

dAngle

Point2

Point3

Point3List

DerivPoint3List Point3List

Vector<Type>

Array<Type>

MinMaxArray<Type> Array<Type>

MultiArray<Type>

CollectionSet<Type> Array<Type>

Yes CacheTiming

ValueCache<Type> CacheTiming

ArrayCache<Type> CacheTiming, Array<Type>

MultiCache<Type> CacheTiming

Yes HeapBase

Heap<Type> HeapBase

MinHeap<Type> Heap<Type>

MinHeapQueue<Type> MinHeap<Type>

PtrHeap HeapBase

MinPtrHeap<Type> PtrHeap<Type>

MinPtrHeapQueue<Type> MinPtrHeap<Type>

Orientation

Quaternion

Yes QueueBase<Type>

FifoQueue<Type> QueueBase<Type>

LifoQueue<Type> QueueBase<Type>

Rectangle

BinaryTree<Type>

N Ary Tree<Type>

Value<Type>

Table D.13: Utility Classes

A
p
p
e
n
d
ix

D
:
R
A
S
P
C
la
ss

L
ibra

ry
1
9
3

MinMaxArray<Type>

Array<Type>

ArrayCache<Type>

CacheTiming

ValueCache<Type>MultiCache<Type>

MultiArray<Type> OPort

OutPort<Type> InPort<Type>

IPort

Port ConnectionRaspPorts

FifoQueue<Type> LifoQueue<Type>

QueueBase<Type>

OrientationPoint3DList<Type>

DerivPoint3DList<Type>

Point3DMatrix<Type> Point3D<Type> Point2D<Type> Rectangle<Type> dAngleVector<Type> Attribute

Material

Properties

GLPopUpMenu

PopUpMenu

GLCircularMenu GLLinearMenu

GLDrawMenu

Heap<Type>

MinHeap<Type>

MinHeapQueue<Type> GLRenderer3D GLRenderer2D

Renderer

GLRenderer OptikRenderer

GLWindow2D GLWindow3D

Window3DGLWindow

Window

IdentityInfo

ColorBase

HSVColor HLSColorRGBColor

BasisKnotSequence

Motion

RaspBaseRefClock

Evolution<Type>

Event TimeEvent StateEvent CallEvent ChainEvent

EventBase

Process ActivityProcession

IdentityInfo Timing BoundingBase

BoundingSphereBoundingBox

CollideCheckerCollideRange

Rasp Inheritence Hierarchary

Camera

DirectLightPointLightLinearLightAreaLight

SpotLight

Light

RaspObject

IdentityInfo

Cube

Geometry

GeoPoints GeoPointMatrix Sphere

Ellipsoid

BaseQuadric

EllipticCone

Cone

Spline

StrainSpline

DataFitSpline

GeoBase

IdentityInfo

HybridModel

F
ig
u
re

D
.1
:
R
a
sp

In
h
erita

n
ce

T
ree

Bibliography

[1] Acton, D., Coatta, T., and Neufeld, G. The Raven System. Tech. Rep. 92-15,

University of British Columbia, Vancouver, British Columbia, August 1992.

[2] Allen, J. F. Maintaining Knowledge about Temporal Intervals. Communications of the

ACM 26, 11 (November 1983), 832{843.

[3] Arbarb, F., Herman, I., and Spilling, P. An Overview of Manifold and Its Imple-

mentation. Concurrency: Practice and Experience 5, 1 (February 1993), 23{70.

[4] Bezivin, J. Some Experiments In Object-Oriented Simulation. In OOPSLA '87 (1987),

Association of Computer Machinery, pp. 394{405.

[5] Biggerstaff, T., and Richter, C. Reusability Framework, Assessment, and Direc-

tions. IEEE Software 4, 2 (March 1987), 41{49.

[6] Birtwhistle, G. M., Dahl, O. J., Myhrhaug, B., and Nygaard, K. Simula Begin.

Petrocelli/Charter, New York, 1975.

[7] Blair, G. S., Gallagher, J. J., and Malik, J. Generticity vs Inheritence vs Dele-

gation vs Conformance vs... Journal of Object Oriented Programming (Sept/Oct 1989),

11{17.

[8] Bruce, K. M., and Wegner, P. An Algebraic Model of Subtypes in Object-Oriented

Langauges. SIGPLAN Notices 21, 10 (October 1986).

[9] Buxton, J. N. Writing Simulations in CSL. Computer Journal 9, 2 (1966), 137{143.

[10] Carriero, N., and Gelernter, D. Linda in Context. Communications of the ACM

32, 4 (April 1989), 444{458.

[11] Chua, T.-S., Wong, W.-H., and Chu, K.-C. Design and Implementation of the

Animation Language SOLAR. In New Trends in Computer Graphics: Proceedings of

CG International '88 (Berlin, 1988), N. Magnenat-Thalmann and D. Thalmann, Eds.,

Springer-Verlag, pp. 15{26.

[12] Cohen, B., Hahn, D., and Soiffer, N. Pragmatic Issues in the Implementation of

Flexible Libraries for C++. In C++ Conference (Washington, DC, April 1991), USENIX

Association, pp. 193{202.

[13] Comptroller General of the U.S. Ways to Improve Management of Federally

Funded Computerized Models. Tech. Rep. LCD-75-111, General Services Administration,

August 1976.

194

Bibliography 195

[14] Cox, B. Object Oriented Programming: An Evolutionary Approach. Addison-Wesley,

Reading, MA, 1987.

[15] Davis, A. L., and Keller, R. M. Data Flow Program Graphs. IEEE Computer 15, 2

(February 1982), 26{41.

[16] de Champeaux, D., Lea, D., and Faure, P. The Process of Object-Oriented De-

sign. In OOPSLA'92 Conference Proceedings (Vancouver, BC, 1992), The Association

for Computing Machinery, pp. 45{62.

[17] Doi, A., Aono, M., Urano, N., and Uno, S. AVENUE: An Integrated 3-D Animation

System. Computer Graphics Forum 7 (1988), 27{43.

[18] Egbert, P. K. An Object-Oriented Approach to Graphical Application Support. Tech.

Rep. UIUCDCS-R-92-1755, University of Illinois at Urbana-Champaign, Urbana, IL,

1992.

[19] Feiner, S., Salesin, D., and Banchoff, T. Dial: A Diagrammatic Animation Lan-

guage. IEEE Computer Graphics and Applications 2, 7 (September 1982), 43{54.

[20] Fishwick, P. A., and Porr, H.-O. A. Using Discrete Event Modeling for E�ective

Computer Animation control. Tech. Rep. TR-005, University of Florida, Gainesville, FL,

1991.

[21] Fiume, E., Tsichritzis, D., and Dami, L. A Temporal Scripting Language for Object-

Oriented Animation. In Eurographics '87 (North-Holland, 1987), Eurographics Associa-

tion, Elsevier Science Publishers B. V., pp. 283{294.

[22] Fleischer, K., and Witken, A. A Modeling Testbed. In Graphics Interface '88

(1988), Graphics Interface, pp. 127{137.

[23] Fontana, M., and Neath, M. Checked Out and Long Overdue: Experiences in the

Design of a C++ Class Library. In C++ Conference (Washington, DC, April 1991),

USENIX Association, pp. 179{191.

[24] Gehani, N. H., and Roome, W. D. Concurrent C++: Concurrent Programming with

Class(es). Software - Practice and Experience 18, 12 (December 1988), 1157{1177.

[25] Getto, P., and Breen, D. An Object-Oriented Architecture for a Computer Anima-

tion System. The Visual Computer 6, 2 (March 1990), 79{92.

[26] Goldberg, A. Introducing the Smalltalk-80 System. Byte Magazine (August 1981),

14{26.

[27] Gomez, J. E. Twixt: A 3D Animation System. In Eurographics '84 (North-Holland,

1984), Eurographics Association, Elsevier Science Publishers B. V., pp. 121{133.

[28] Graphics Standards Planning Committee. Status Report of the Graphics Stan-

dards Planning Committee. Computer Graphics 13, 3 (August 1979).

Bibliography 196

[29] Hall, R. A., and Greenberg, D. P. A Testbed for Realistic Image Synthesis. IEEE

Computer Graphics and Applications 3, 11 (November 1983), 10{20.

[30] Herath, J., Saiko, N., and Yuba, T. Dataow Computing Models. IEEE Transac-

tions on Software Engineering 14 (1988), 1805{1828.

[31] Hills, P. R. SIMON - A Computer Simulation Language in ANGOL. In Digital Simu-

lation in Operations Research, S. H. Hollingdale, Ed. Elseview North Holland, New York,

1967.

[32] Hoare, C. Communicating Sequential Processes. Prentice-Hall International Series in

Computer Science, New Jersey, 1985.

[33] Holzle, U. The SELF Papers. Tech. Rep. CIS 209, Stanford University, Palo Alto,

California, 1987.

[34] Ingalls, D. H. H. Design Principles Behind Smalltalk. Byte Magazine (August 1981),

286{298.

[35] International Standards Organization. International Standard Infromation Pro-

cessing Systems - Computer Graphics - Graphical Kernel System for Three Dimensions

(GKS-3D) Functional Description. Tech. Rep. ISO Document Number 8805:1988(E),

American National Standards Institute, New York, 1988.

[36] Jayaraman, R., and Levas, A. AWorkcell Application Design Environment (WADE).

In CAD Based Programming for Sensory Robots, B. Ravani, Ed. Springer-Verlag, Berlin,

1968, pp. 91{120.

[37] Johnson, R. E., and Russo, V. F. Reusing Object-Oriented Designs. Tech. Rep.

UIUCDCS-R-91-1696, University of Illinois, Urbana-Champaign, Illinois, May 1991.

[38] Johnson, R. E., and Zweig, J. M. Delegation in C++. Journal of Object Oriented

Programming (Nov/Dec 1991), 31{34.

[39] Jordan, D. Implementation Bene�ts of C++ Language Mechanisms. Communications

of the ACM 33, 9 (September 1990), 61{64.

[40] Kalra, D., and Barr, A. H. Modeling with Time and Events in Computer Anima-

tion. In Eurographics '92 (Cambridge, England, August 1992), Eurographics Association,

Blackwell Publishers, pp. 45{58.

[41] Kass, M. CONDOR: Constraint-Based Dataow. In Computer Graphics (Chicago, IL,

July 1992), SIGGRAPH, Association of Computing Machinery, Inc., pp. 321{330.

[42] Kaviat, P. J., Markowitz, H. M., and Villanueva, R. SIMSCRIPT II.5 Program-

ming Language. CACI, Los Angeles, 1983.

[43] Kazman, R. HIDRA: An Architecture for Highly Dynamic Physically Based Multi-Agent

Simulations. International Journal in Computer Simulation (1993). (To appear).

Bibliography 197

[44] Kerridge, J., and Simpson, D. Communicating Parallel Processes. Software - Practice

and Experience 16, 1 (January 1986), 63{86.

[45] Krasner, G. E., and Pope, S. T. A Cookbook for Using the Model-View-Controller

User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1, 3

(August/September 1988), 26{49.

[46] Kubota Pacific Computer, Inc. Dore Programmer's Guide, 5 ed., Sept 1993. Dore

Graphics Library.

[47] LaLonde, W. R., White, P., and McGuire, K. Coordinators: A Mechanism for

Monitoring and Controlling Interactions Between Groups of Objects. Tech. Rep. SCS-

TR-190, Carleton University, Ottawa, Ontario, April 1991.

[48] Li, Q., and Mackey, W. Object-Oriented Discrete Event Simulation using Ada. In

Object-Oriented Simulation 1991 (San Diego, CA, 1991), R. K. Ege, Ed., The Society of

Computer Simulation (SCS), pp. 51{56.

[49] Lieberman, H. Using Prototypical Objects to Implement Shared Behavior in Object

Orient Systems. In OOPSLA '86 Proceeedings (September 1986), ACM, pp. 214{248.

[50] Linton, M. A., Vlissides, J. M., and Calder, P. R. Composing User Interfaces

with InterViews. Computer 22, 2 (February 1989), 8{22.

[51] Lippman, S. B. C++ Primer, 2 ed. Addison-Wesley Publishing Company, Reading,

Mass, 1991.

[52] Magnenat-Thalmann, N., and Thalmann, D. Use of High-level 3-D Graphical

Types in the MIRA Animation System. IEEE Computer Graphics and Applications 3, 9

(December 1983), 9{16.

[53] Magnenat-Thalmann, N., and Thalmann, D. Three-Dimensional Computer An-

imation: More an Evolution Than a Motion Problem. IEEE Computer Graphics and

Applications 5, 10 (October 1985), 47{57.

[54] Maiocchi, R., and Pernici, B. Directing an Animated Scene with Autonomous Actors.

The Visual Computer, 6 (Decemeber 1990), 359{371.

[55] Mak, V. W. DOSE: A Modular and Reusable Object-Oriented Simulation Environment.

In Object-Oriented Simulation 1991 (San Diego, CA, 1991), R. K. Ege, Ed., The Society

of Computer Simulation (SCS), pp. 3{11.

[56] McLachlan, D. R. CORY: An Animation Scripting System. Tech. Rep. 85006, Rens-

selaer Polytechnic Institute, 1985. Master's Thesis, Rensselaer Design Research Center.

[57] Nance, R. E. The Time and State Relationship in Simulation Modeling. Communica-

tions of the ACM 24, 4 (April 1981), 173{179.

Bibliography 198

[58] Neelamkavil, F. Computer Simulation and Modeling. John Wiley & Sons, Chichester,

1987.

[59] Neighbors, J. M. The Draco Approach to Constructing Software from Reusable Com-

ponents. IEEE Trans. Software Engineering (Sept 1984), 564{574.

[60] Nerson, J.-M. Applying Object-Oriented Analysis and Design. Communications of the

ACM 35, 9 (September 1992), 63{74.

[61] Newell, W. M. The Utilization of Procedure Models in Digital Image Synthesis. PhD

thesis, University of Utah, 1975. Department of Computer Science.

[62] O'Donnel, T., and Olson, A. GRAMPS - A Graphics Language Interpreter for Real-

time, Interactive, 3-Dimensional Picture Editing and Animation. In Computer Graphics

(Dallas, Texas, August 1981), SIGGRAPH, Association of Computing Machinery, Inc.,

pp. 133{142.

[63] Paeth, A. W., and Booth, K. S. Design and Experience with a Generalized Raster

Toolkit. In Graphics Interface '86 (1986), Graphics Interface, pp. 91{97.

[64] Pai, D., and Leu, M. C. Ine�abelle - An Environment for Interactive Computer Graphic

Simulation of Robot Applications. Proceedings of IEEE International Conference on

Robotics and Automation (1986), 897{903.

[65] Pai, D. K. Least Constraint: A Framework for the Control of Complex Mechanical

Systems. In Proceedings of the American Control Conference (1991), pp. 1615 { 1621.

[66] Palmer, R. S., and Cremer, J. F. SIMLAB: Automatically Creating Physical Systems

Simulators. Tech. Rep. TR91-1246, Cornell University, Ithica, NY, November 1991.

[67] Pegden, C. D. Introduction to SIMAN. In The 1986 Winter Simulation Conference

(Washington, D.C., Dec 8-10 1986), J. R. Wilson, J. O. Henrikson, and S. D. Roberts,

Eds., Institute of Electrical and Electronic Engineers, pp. 95{103.

[68] Potmesil, M., and Hoffert, E. M. FRAMES: Software Tools for Modeling, Render-

ing, and Animation of 3D Scenes. In Computer Graphics (1987), SIGGRAPH, Association

of Computing Machinery, Inc., pp. 85{93.

[69] Pratt, D. B., Farrington, P. A., Basnet, C. B., Bhuskute, H. C., Kamath, M.,

and Mize, J. H. A Framework for Highly Reusable Simulation Modeling: Separating

Physical, Information, and Control Elements. In The 24th Annual Simulation Symposium

(New Orleans, Louisiana, 1991), IEEE Computer Society Press, pp. 254{261.

[70] Pritsker, A. A. B. Introduction to Simulation and SLAM II. Systems Publishing

Corp., West Lafayetter, IN, 1986.

[71] Pritsker, A. A. B., and Pegden, C. D. Introduction to Simulation and SLAM.

Halstead Press, New York, 1979.

Bibliography 199

[72] Reynolds, C. Computer Animation with Scripts and Actors. In Computer Graph-

ics (Boston, Mass, July 1982), SIGGRAPH, Association of Computing Machinery, Inc.,

pp. 289{296.

[73] RogueWave. Roguewave. RogueWave Associates, Inc., XXX, 1900.

[74] Sanderson, D. P., Sharma, R., Rozin, R., and Treu, S. The Hierarchical Simula-

tion Language HSL: A Versatile Tool for Process-Oriented Simulation. ACM Transactions

on Modeling and Computer Simulation 1, 2 (April 1991), 113{153.

[75] Saunders, J. H. A Survey of Object-Oriented Programming Languages. Journal of

Object-Oriented Programming 1, 5 (March/April 1989), 5{11.

[76] Schmucker, K. J. Object-Oriented Programming for the Macintosh. Hayden Book

Company, 1986.

[77] Schriber, T. J. Simulation Using GPSS. Wiley, New York, 1974.

[78] Schriber, T. J. An Introduction to Simulation Using GPSS/H. Wiley, New York, 1990.

[79] Schwetman, H. CSIM: A C-based, Process-Oriented Simulation Language. In The

1986 Winter Simulation Conference (Washington, D.C., Dec 8-10 1986), J. R. Wilson,

J. O. Henrikson, and S. D. Roberts, Eds., Institute of Electrical and Electronic Engineers,

pp. 387{396.

[80] Sears, F. W., Zermansky, M. W., and Young, H. D. University Physics, 6th ed.

Addison-Wesley Publishing Company, Reading, Mass, 1982.

[81] Stein, A. L. Delegation Is Inheritance. In OOPSLA '87 Proceeedings (October 1987),

ACM, pp. 138{146.

[82] Stern, G. BBOP: A System for 3D Keyframe Figure Animation. In Siggraph '83

Tutorial Notes on Computer Animation. Association for Computing Machinery, 1983,

pp. 240{243. Vol. 7.

[83] Strauss, P. S., and Carey, R. An Object-Oriented 3D Graphics Toolkit. In Computer

Graphics (Chicago, IL, July 1992), SIGGRAPH, Association of Computing Machinery,

Inc., pp. 341{349. SGI Inventor Toolkit.

[84] Stroustrup, B. Parameterized Types for C++. In Proc. of C++ Conference (Denver,

CO, October 1988), USENIX Association, pp. 1{18.

[85] Teo, P. K. An Entity-Relationship Based Object-Oriented Data Model. Master's thesis,

University of Singapore, 1992.

[86] Terzopoulos, D., and Witkin, A. Physically-based models with rigid and deformable

components. In Graphics Interface '88 (June 1988), pp. 146{154.

Bibliography 200

[87] Trumbore, B., Lytle, W., and Greenberg, D. P. A Testbed for Image Synthesis.

In Eurographics '91 (North Holland, 1991), Eurographics Association, Elsevier Science

Publishers, pp. 467{480.

[88] Upstill, S. The RenderMan Companion. Addison-Wesley, Redwood City, Ca, 1990.

[89] van Dam, A. PHIGS+ Functional Description, Revision 3.0. Computer Graphics 22, 3

(July 1988), 125{218.

[90] Vaughan, P. W., Newton, D. E., and Johns, R. P. PRISM: An Object-Oriented

System Modeling Environment in C++. In Object-Oriented Simulation 1991 (San Diego,

CA, 1991), R. K. Ege, Ed., The Society of Computer Simulation (SCS), pp. 32{39.

[91] Wegner, P. Dimensions of Object-Based Language Design. SIGPLAN Notices 22, 12

(October 1987), 168{182.

[92] Wisskirchen, P. Object-oriented graphics : from GKS and PHIGS to object-oriented

systems. Springer-Verlag, Berlin, 1990.

[93] Woodside, C. M., and Cavers, J. Block DiagramComputer Language for Educational

Animations. IEEE Trans Educ 19, 4 (November 1976), 133{139.

[94] Wybolt, N. Experiences with C++ and Object-Oriented Software Development. In

C++ Conference (San Fransisco, CA, April 1990), USENIX Association, pp. 1{9.

[95] Wyvill, B., McPheeters, C., and Novacek, M. Specifying Stochastic Objects in

a Hierarchical Graphics System. In Graphics Interface '85 (1985), Graphics Interface,

pp. 17{20.

[96] Zeigler, B. P. Theory of Modelling and Simulation. John Wiley & Sons, New York,

1976.

[97] Zeigler, B. P. Multifaceted, Multiparadigm Modeling Perspectives: Tools for the 90's.

In The 1986 Winter Simulation Conference (???, Dec 8-10 1986), J. Wilson and ???, Eds.,

Association of Computer Machinery, Association of Computer Machinery, pp. 708{712.

[98] Zeleznik, R. C., Conner, D. B., Wloka, M. M., Aliaga, D. G., Huang, N. T.,

Hubbard, P. M., Knep, B., Kaufman, H., Hughes, J. F., and van Dam, A. An

Object-Oriented Framework for the Integration of Interactive Animation Techniques. In

Computer Graphics (Las Vegas, Nevada, July 28 - August 2 1991), SIGGRAPH, Associ-

ation of Computing Machinery, Inc., pp. 105{111.

[99] Zeltzer, D. Knowledge-based Animation. In SIGART Interdisciplinary Workshop on

Motion (Toronto, 1983), ACM Siggraph, pp. 187{192.

[100] Zeltzer, D. Towards An Integrated View of 3-D Computer Character Animation. In

Graphics Interface '85 (1985), Graphics Interface, pp. 105{115.

Glossary

Abstract Class - a class that serves a prototype for its subclasses. It is not usually possible

to create an instance of an abstract class.

Activity - the state of an model over an interval. Delimited by two successive events, an

activity represents a period of inactivity or period of static actions.

Activity Scanning - a discrete event methodology where the actions of a simulation are

partitioned into activities. Activities, maintained by a conditions-list, are executed when

their associated contingency tests are satis�ed.

Base Class - a class that adds properties and functionalities to its subclasses. Base classes

do not serve as prototypes, are always possible to instantiate, and are usually situated at

the top of an inheritance tree.

C++ Class - a prototype for user-independent data types. Classes consist of a set of data

members and member functions. Class instantiations are �rst-class objects.

C++ Method function - operation applied to a class' data members to induce changes to

an object's state.

Connection Paradigm - a design approach based upon the idea of structuring models and

systems as sets of interconnected components. Components are joined via links and ports.

Control Mode - a method used to describe the behavior of animated objects. Computer

animation are labeled as guiding, animator level, or task-level according to their control

mode(s).

Controller - a thing that controls or regulates the attributes and behaviors of another entity.

In turn, controllers may also be governed by other controllers.

Data to Image Translation - the act of interpreting geometric data possessing physical at-

tributes into a form usable for the generation of computer images.

Delegation - a term for dynamic hierarchical resource sharing. Delegation is the act of em-

powering or giving authority to others to perform some operation or function.

Discrete Event - a temporal progression technique characterized by state changes occurring

in discontinuous jumps and events arbitrarily separated from each other. All actions

within a simulation are executed at speci�c event times.

Display List - a hierarchical data structure used in many computer graphics toolkits to asso-

ciate physical information with geometric primitives. Its organizational structure accom-

modates the design image renderers.

201

Glossary 202

Event - an important happening that instantaneously alters the state of a simulation. When

an event is activated, time is suspended. Time is resumed immediately after the event

induces it state altering modi�cations.

Event List - an ordered data structure used in next event simulation to organize the activation

of events. Events, ordered according to their activation times, are dynamically added and

removed from the event list during the course of a simulation.

Event Scheduling - a discrete event methodology where the scheduling of events is controlled

by an event list. As a simulation progresses, events are placed, executed, and removed

from the event list.

Feature Ports - �rst class entities which govern the slots of a hybrid model.

First-Class Conditional - contingent predicate constructed as �rst-class object with sets

of \input" and \output" ports. The values of output ports are altered each time the

conditional object perceives a change in its input ports.

First-Class Object - an object which retains state and can react to messages.

Global State - the condition of the elements in a simulation which de�ne the environment.

A simulation's global state is de�ned by the values of its environmental state variables.

Hybrid Model - model design based on slots and ports that promotes an uni�ed user-interface

and a rendering supportive architecture.

Interface - a communication technique used to bring two or more things together in an associa-

tion. An interface describes the type, quality, and nature of the patterns of communication

between distinct entities.

IMVCD Pentad - an object-oriented framework for the construction of time-varying simula-

tions. Pentad components include model, informer, viewer, controller, and delegator.

Key-framing - a computer animation technique in which users specify the values of variables

at key points in time while the computer �lls the temporal gaps with intermediate values.

Link - anything that joins together or passes information between two connection points. In

RASP, links are used to transfer information from \out" ports to \in" ports.

Model - a thing which imitates an entity worth copying. A simulation is comprised of a set

of interacting models.

Model Speci�cation - the act of specifying the detailed description of a model in a simulation.

The type and behavioral patterns of models are de�ned during this act.

Modeling - the act of creating the various parts of a simulation. This action entails users to

describe the models of a simulation and to characterize each model's behavior.

Glossary 203

Motion Speci�cation - the act of specifying a change in movement of physical things. Key-

framing and scripting techniques are common paradigms of motion speci�cation.

Multiple Interface - a communication technique involving many interfaces. Communication

between various entities is accomplished in a variety of manners.

Next Event Simulation - a simulation using event scheduling to control the activation of

state changes and the progression of time.

Object Modeling - the act of de�ning the attributes, characteristic traits, and behaviors of

simulation models.

Object-Oriented Framework - a set of design rules for a collection of collaborating objects.

If de�nes how a system is divided into components and the manner that functions are

divided among each of the individual groups of objects.

Object-Oriented Programming - a programming technique characterized by the develop-

ment of �rst-class objects and object-oriented systems.

Object-Oriented System - a set of �rst-class objects working together to form a whole. In

an object-oriented system, objects communicate via message passing and exhibit poly-

morphism.

Occurrence - an action occurring over a �nite length of time. The continual activation of a

single event over a �nite length of time de�nes an occurrence.

Port - unidirectional data monitors which observe and regulate the ow of information \in"

and \out" of a host entity.

Process - an \independent" program or procedure that uses the resources of a system to ful�ll

its goals. A process' routine can be explicitly describe in terms of time ow.

Process Interaction - a discrete event methodology which stresses the interaction between

the entities of a simulation. The behavior of a simulation is governed by the ow of

processes through time.

Reusable code - segments of programming code which may be used again. The use of reusable

code facilitates the rapid development of new computer programs.

Robotics Application - a computer program simulating the motion of articulated �gures.

Robotics applications are generally developed to design and test new articulated con�g-

urations before they are actually physically built.

Scenario Modeling - the act of de�ning the environment of a simulation.

Scripting Language - a special vocabulary or notation used to describe the dynamic changes

occurring in a computer animation.

Glossary 204

Second-Class Object - an object which does not retain state and can not react to messages.

Objects of this type usually perform one function and are hard to modify.

Simulation - a device to reproduce or represent test conditions likely to occur in real situations.

A simulation emulates and analyzes the behaviors of its simulated conditions.

(Simulation) Environment - all the conditions and surrounding inuences that a�ect the

behavior and development of a simulation. The models of a simulation exist and interact

in an environment.

Simulation Kernel - a central part of a simulation. It controls the progression of time and

ensures that every model is aware of the global state.

Simulation Language - a set of high-level expressions which facilitate the speci�cation of

a computer simulation. Expressions, assembled into meaningful phrases by users, are

interpreted (by a computer's compiler) to construct, coordinate, and manage the dynamic

changes occurring in a simulation.

Simulationist - an individual who creates simulation tools, such as toolkits, languages, and

simulators. Users utilize the tools created by simulationists to create simulations.

Simulator - a thing, such as a computer, that simulates. Simulations are devised and per-

formed on simulators.

State - the condition of a model or thing at a certain time. The state of a model is de�ned by

the value of its state variables.

State Variable - descriptive thing or quality that characterizes the range of states and types

of behaviors a model can achieve.

Time Structure - the unit of measurement for a temporal system. Time can be mapped to

the set of rational number, oating point numbers, or integer numbers.

Time-varying Simulation - a simulation whose behavior is strongly dependent upon the

value of simulated time. References to explicit temporal values are integral elements of

the simulation.

Transitional Structures - programming constructs that enable users to de�ne runtime changes

to an entity's state. Events, activities, and processes are exemplary transitional struc-

tures.

World View - the viewpoint from which users develop simulations. The world view embodied

by a simulation strategy establishes the methodology users use to specify the components

of a simulation and their interactions.

