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Abstract

Ubiquitous and captivating, 
uid|gaseous and liquid|motion is often desired in computer

animation. For example, rives, lakes, and clouds enhance 
ights simulations. Realizing realistic


uid behaviour, however, can be di�cult and laborious using traditional computer animation

methods. Ad hoc kinematic models of 
uid motion have been presented to facilitate the ani-

mation of 
uids, but it is not clear how to extend or integrate these models to describe more

general 
uid motion. Simple dynamic models have been presented, but it is di�cult to con-

trol the dynamic simulation to achieve the desired e�ect. To address this problem, a simple,

hydrodynamically-based framework for realistically integrating models of 
uid 
ow for com-

puter animation purposes is presented. This framework is based on the continuity equation for

incompressible 
ow, and allows 
ow �elds to be linearly combined, regardless of whether they

are interactively modeled or computed by dynamic simulation. Novel interactive 
ow �eld mod-

eling methods are introduced to allow the animator to manipulate spline curves that correspond

to streamlines in the 
ow �eld. The spline-based 
ow �elds can be computed at interactive

speed on standard graphics workstations. Many dynamic simulations produce 
ow �elds that

satisfy the continuity equation, and these can be linearly combined with the modeled 
ow �eld

to de�ne a mean 
ow �eld which is sampled at the nodes of a lattice. Turbulence is modeled by

advecting stochastic distributions of models of vortex 
ow with the mean 
ow, allowing in�nite

resolution for small-scale complexity. Geometric models are advected using the �nal resulting


ow �eld. A simple animation system incorporating the interactive 
ow modeling methods

was implemented and shows this approach to be a promising and easily extendable method of

realistically animating 
uids.
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C h a p t e r O n e

Introduction

Water, water, every where,

And all the boards did shrink;

Water, water, every where

Nor any drop to drink.

|Samuel Taylor Coleridge

Steam wisping o� a rain-soaked tree warming in the sun, bathwater whirling down a drain, a

waterfall cascading down a cli�|
uid motion is complex, mysterious, and beautiful. For ages,

artists have been trying to capture this beauty, and scientists have been trying to model this

motion. Recently, computer animators|both artists and scientists|have attempted to realize

the motion of 
uids. But while computer animation methods have proven to be a powerful tool

for visually representing rigid, human-constructed objects and are routinely used in industry,

animating 
uids has proven more di�cult (Wyvill et al., 1986).

1.1 Motivation

Given the sheer ubiquity of 
uids (gases and liquids), the computer animation of 
owing 
uids

has almost as many applications as computer animation itself. When the captivating motion of


uids is also considered, the computer animation of 
uids needs little justi�cation. Applications

include:

� design of fountains, arti�cial waterfalls and streams,

� adding models of rivers, lakes, and clouds to visualizations of geographic databases,

� enhanced realism in simulation systems such as 
ight simulators,

� artistic tools,

1



Chapter 1: Introduction 2

� creating television and motion picture visual e�ects, and

� visualization of 
uid phenomena in general.

The wide range of applications motivate the development of animation tools to assist the anima-

tor in creating animations of 
uid 
ow. These applications|besides justifying the problem|

help de�ne the problem, i.e., motivate criteria for such animation tools.

1.2 Defining the Problem

Creating a computer animation can be loosely divided into two steps: modeling, building ge-

ometric models and designing their movement and rendering, the synthesizing of images from

these geometric models using an illumination model, a model of how light interacts with the

geometry. Many challenges remain in both the modeling and rendering of 
uids. This thesis

addresses the motion modeling aspect of animating 
uids. In general, geometric modeling and

motion modeling cannot be decoupled as the geometry may constrain the possible motions (if

realistic motion is desired). However, 
uids are continuously deformable, and thus lack any

geometric constraints on their motion.

Modeling 
uid motion is an extremely broad problem. The range of 
owing 
uid phenomena

can be di�cult to encompass: 
owing 
uids include dripping honey, clouds blowing in the

wind, tsunamis, rain, �re, 
owing beer, and galaxy formation. Yet, a common set of physical

principles underlie these phenomena and motivate a uni�ed approach to modeling their motion.

To make the problem addressed by this thesis concrete and tractable without narrowing its

scope, criteria for an ideal solution are de�ned, a framework for this solution is presented, and

the aspect of this framework addressed by this thesis is discussed.
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1.2.1 Modeling Motion

The classic method of motion modeling in computer animation is keyframing where the positions

of geometric models are positioned at particular frames (keyframes), say frame one and frame

ten, and the positions at frames two through nine are computed by interpolation. Realistically

animating complex 
uid motion such as a breaking wave this way would be extremely di�cult.

Another traditional method of modeling motion is to design motion paths, often using cubic

B-splines, that specify the path an object follows. Motion paths are often adequate for models

of rigid bodies, but become more di�cult for deformable models, and impractical for 
uids.

An alternative to keyframing and using motion paths is to use functions that describe the

shape of the object over time. For example, traveling sine waves can be used to approximate

water waves. Computer graphics researchers have presented ad hoc models for particular 
uid

motions, but these approaches are limited when more general motion is desired as ad hoc models

cannot in general be combined in a straightforward fashion.

A more recent approach to modeling motion is dynamic simulation: forces are modeled, and

from Newton's second law of motion, f = ma, the acceleration is computed and integrated to

describe the motion of the geometric model. For example, classical mechanics has been used

to animate rigid bodies (Hahn, 1988). This approach has been quite successful, since it gives

the animator a high-level control over the motion: the forces. The basic challenges of so-called

\physically-based modeling" are developing a dynamic model, �nding an e�cient method of

solving it, and developing some method of controlling the motion. Motion control is essential

since dynamic simulation usually de�nes an initial-value problem that is time-evolved, and

realizing a desired motion requires guessing the proper initial conditions and speci�cation of

external forces.

The problem with a physically-based model for 
owing 
uid is that while very good models

of 
uid motion exist, e.g., the Navier-Stokes equations, the numerical solution is generally

computationally intensive and often di�cult to set up, especially for free-surface 
ow problems.
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Computer graphics researchers have opted for simpli�ed dynamic models. Perhaps owing to the

complexity of 
uid motion, relatively little work has been done: a general method of animating


uids remains a challenging problem.

1.2.2 Criteria for an Ideal Method

To alleviate this di�culty, criteria are de�ned for an ideal method that allows di�erent motion

models to be integrated. The applications of the computer animation of 
uids motivate the

following criteria for such a method:

� realism, the motion should be realistic at the relevant scale,

� e�ciency, the method should be fast enough to be useful,

� controllability, the motion computed by dynamic simulation should be easily controlled

by the animator, and

� generality, the method should not be ad hoc.

The realism criterion, dictated by applications such as 
ight simulation, means the animation

method should allow the creation of 
uid models that appear to behave like real 
uids at the

relevant scale. In other words, there is no need for the motion to be in agreement with real


uids beyond what can be perceived in the computer animation. Formally de�ning a metric

for realism, however, is a complex psychophysical problem that has not been fully addressed.

The e�ciency criterion means the method should be fast enough to allow interactive animation

on standard graphics workstations. As rendering algorithms such as raytracing and radiosity

cannot run at interactive rates on most graphics workstations, interaction will have to occur

in a \preview mode" using a simple rendering method. Of course, the actual speed is highly

dependent on the type of machine, network load, swap space, and other variables. A possible

heuristic is that on the order of hundreds of samples used to represent the 
uid (vertices, control

points, particles) should be animated at interactive rates (certainly no slower than one frame



Chapter 1: Introduction 5

per second). Implicit in this criterion is that any numerical solution method also be stable

over relatively long time steps (on the order of 1/30 second, a typical time between animation

frames): a fast method that requires very short time steps to be stable is not e�cient.

The controllability criterion means the animation method should allow the animator to easily

create 
uid 
ow where it is desired and control it at will. This criterion addresses an often

noted problem with physical simulation for computer animation: the equations describing the

physical phenomena are usually time-evolved from initial conditions and thus getting the desired

behaviour can require numerous simulation trials.

The generality criterion means the animation method should be 
exible, open-ended, and allow

di�erent motion models to be realistically integrated. Consider creating a computer animation

of a fountain. A liquid jet might emerge upward, continuous at �rst, then breaking into discrete

parts, then into drops and mist, falling back on itself, and then into a pool where circular

waves emanate from each drop, interfere with another, refract with changes in depth, and

re
ect o� boundaries. While ad hoc models could cover separate parts of the modeling, e.g.,

circular wave motion or drops moving under a gravitational force, ad hoc models are often

di�cult to integrate, and while two models may be physically valid, there may be no guarantee

that their combination is also physically valid. Ideally, we would like models that describe as

many di�erent phenomena (waves, jets, spray) as possible to minimize the number of tools the

animator must become familiar with and use to create any particular animation.

1.2.3 A Framework for Animating Fluids

The criteria just de�ned pose a large and challenging problem. Rather than introduce another

ad hoc model for a speci�c 
uid phenomena, a framework for solving the general problem is

proposed and a subset of this framework is addressed by this thesis.

The framework consists of three major components: dynamic simulation, interactive 
ow �eld

modeling, and turbulence modeling (Figure 1.1). A 
ow �eld computed by dynamic simulation
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Superposition of ‘‘flow primitives’’

Flow field from interactive modeling

Interactive Flow Field Modeling

Final flow field

Advect geometric models

Numerical solution of a dynamic model

Dynamic Simulation

Discretization of fluid domain

Flow field from dynamic simulation

Geometric modeling

Interactive blending

Mean flow field

Superposition of turbulence

Figure 1.1: Framework for an ideal animation method for 
uids.

and a 
ow �eld interactively model are blended to de�ne a mean 
ow �eld. A turbulent 
ow

�eld is superimposed on the mean 
ow �eld.

This thesis presents new methods for interactive 
ow �eld modeling using \
ow primitives"

based on cubic B-splines rather than point primitives and presents a method for using these


ow �elds to control the 
ow �elds computed by dynamic simulation. A novel turbulent 
ow

modeling method is also introduced.
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1.3 Thesis Overview

Chapter two reviews previous work in modeling 
owing 
uid phenomena. Chapter three brie
y

discusses basic principles of 
uid mechanics to provide a background for subsequent chapters.

In chapter four, interactive 
ow �eld modeling methods are presented. They are based on the

law of conservation of mass as expressed by the continuity equation for incompressible 
ow.

Solutions of this equation are known as \
ow primitives" and can be linearly combined. Point

primitives (e.g., source, sink, vortex) are reviewed, and novel 
ow primitives based on cubic

B-splines are introduced. Also within this framework, a new method of modeling turbulent 
ow

is introduced as well as a method of controlling the dynamic simulation of 
uid 
ow. In chapter

�ve, a simple animation system incorporating these integrated models is described, and resulting

animations are presented. And �nally, in chapter six, the advantages and disadvantages of this

method are discussed and possible future work is suggested.
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Previous Work

GUARD: 'Allo. 'Oo is it?

ARTHUR: It is King Arthur, and these are my Knights of the Round Table: : :Go

and tell your master that we have been charged by God with a sacred quest. If he

will give us food and shelter for the night, he can join us in our quest for the Holy

Grail.

GUARD: Well, I'll ask 'im but I don't think 'e'll be very keen: : :Uh, 'e's already got

one, you see?

ARTHUR: What?

LANCELOT: He says they've already got one!

ARTHUR: Are you sure he's got one?

GUARD: Oh yes, it's ver' nice: : :

|from Monty Python's The Holy Grail

Computer graphics researchers have modeled a variety of 
uid phenomena. Early work focused

on water waves, using simple stochastic models for rough ocean surfaces (Perlin, 1985) and sim-

ple kinematic models such as traveling sinusoids for progressive waves (Max, 1981). Later work

introduced more sophisticated models for water waves including a stochastic model employing

an empirical model of the power spectrum of a rough sea (Mastin et al., 1987), kinematic mod-

els describing changes in the shape of waves with varying ocean depth. (Fournier and Reeves,

1986; Peachey, 1986; T'so and Barsky, 1987), and a dynamic model describing wave re
ection

and net transport of water (Kass and Miller, 1990). More recently, particle systems (Reeves,

1983) where the particles are point masses that do not interact with each other have been used

to model ship wakes (Goss, 1990) and waterfalls (Sims, 1990). Interacting particle systems,

where the interaction is based on molecular dynamic models, have been used to model highly

viscous liquids (Miller and Pearce, 1989; Terzopoulos et al., 1989; Tonnesen, 1991). Despite

considerable success with these approaches, animating 
uids in general remains a challenging

problem.

8
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2.1 Water Waves

Water waves have been modeled by stochastic, kinematic, and dynamic models. Stochastic

motion models use random or probabilistic methods to add complexity where deterministic

motion is not required. The small scale (relative to the image) of the waves often allows

stochastic techniques to be used to bump map a surface model, possibly driven by a kinematic

or dynamic model.

Perlin (1985) modeled ocean waves by stochastically perturbing surface normals (bump map-

ping) according to a superposition of randomly distributed spherical wavefront sources. A

random spatial frequency f is assigned to each spherical wavefront source. The amplitude of

the wavefronts are 1=f , and the phase of the sources is modulated by a function of
p
f .

Mastin, Watterberg, and Mareda (1987) used Fourier synthesis with an empirically-based model

of the power spectrum of a fully-aroused ocean surface. The algorithm consists of the following

steps:

1. Generate a white-noise image.

2. Fast Fourier Transform (FFT) the image.

3. Modulate spatial frequencies based on an empirical model of the power spectrum.

4. Inverse FFT the image.

5. Generate a height �eld based on image values.

The anisotropic �lter attenuates frequencies in one direction and passes frequencies in a per-

pendicular directions, giving long-crestedness. Motion is simulated by manipulating the FFT

phase.

An alternative approach to modeling water waves is to use a model of the changing geometry of

the liquid surface. For the following review, a common notation is used: the XY plane models
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the ocean at rest and the positive Z axis points out of the earth. When height �elds are used,

�(x; y; t) = z is the height of the ocean.

Max (1981) used superimposed traveling sinusoids

�(x; y; t) =
nX
i=1

ai sin(pix+ qiy � !it)

where (pi; qi) is related to the direction of sinusoid i. Linear small-amplitude wave theory gives

a (traveling) sine wave as a solution of the linearized equations. The animator speci�es the

free parameters. Ts'o and Barsky (1987) extended Max's approach to include the e�ects of

wave refraction by means of \wave-tracing", i.e., pre-computing the e�ect of refraction due to

changing depth using Snell's law for a given sinusoid and direction.

Peachey (1986) used a similar model but changed the shape of the wave according to wave

steepness and ocean depth. The height is given by

�(x; y; t) =
nX
i=1

aiwi(fraction [�i(x; y; t)])

where wi is a linear waveform with amplitude ai. The phase function is

�i(x; y; t) = �i(x; y; t0)�
t� t0

Ti
.

It depends on the cumulative e�ects of the depth of the water from the wave origin; these e�ects

are calculated using numerical integration of a function relating the phase to variable depth.

The wave pro�le function,

wi(u), 0 � u < 1,

wi ranges over the interval [�1; 1], with the crest at wi(0) = 1. The wave pro�le function is

linearly blended between a sinusoidal function,

wi(u) = cos(2�u),
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and a quadratic function,

wi(u) = 8ju� 1

2
j2 � 1,

based on wave steepness, S = H=L. When the depth is small, the parameter u is exponentiated

to shift its values toward zero. This has the e�ect of steepening the front of the wave crest

and stretching out the back of the crest (for waves beginning to break). Spray is modeled with

particle systems.

Fournier and Reeves (1986) modeled the ocean surface as a parametric surface and modeled

wave motion by orbital motion of points on the surface. Unlike a height �eld representation,

the parametric surface representation allows waves to curl over. The equations of the motion

of a particle are

x = x0 + r sin(�)

z = z0 � r cos(�)

where the phase angle is � = �x0 � !t. To model the e�ect of wind on top of the crests, the

phase angle is modi�ed as

� = �x0 � !t � ��z�t

where �z is the height of the wave above the sea level at rest, �t is displacement in time, and

� is a constant of proportionality. This modi�cation causes a given point to accelerate at the

top of the orbit and decelerate at the bottom. Accounting for depth allows for refraction of

wavefronts so that waves approaching a beach (with a shallow bottom) take the shape of the

shore. The model relates wavelength to the depth h by:

� =
�
1p

tanh (�
1
h)

.

The e�ects of depth on the orbit of a point depend on the e�ects of depth of all other points

before that point: the phase delay is cumulative. It is modeled by:

� = !t +
x0X
0

�
1p

tanh (�
1
h(x))

�t
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Breaking waves are modeled using

x = x0 + r cos�Sx sin�+ sin�Sz cos�

z = z0 + r cos�Sz cos�+ sin�Sx cos�

where

Sx =
1

1� e��xh

Sz = Sx

�
1� e��zh

�

causing the orbits to become elongated in the direction of the wave motion. Stochastic bump

mapping is used to model small-scale waves. Foam and spray are modeled by non-interacting

point masses, with initial position and velocity based on the wave shape and celerity (speed)

according to a physically-based model. Both are time-evolved according to Newton's second

law with a gravitational force.

Deterministic motion can also be described dynamically, i.e., describing the forces and com-

puting the change in the shape of the liquid surface using Newton's second law of motion.

This means only the initial conditions (mass, position, and velocity) and the forces need to be

speci�ed.

Kass and Miller (1990) model 
uid 
ow by simplifying hydrodynamic equations to the two-

dimensional wave equation and then numerically solving it to animate a height �eld. This

model describes wave refraction, re
ection, and net transport of the liquid. The model also

describes changing topology subject to the limits of a height �eld representation.

To make the model amenable to a rapid and stable numerical solution, a number of assumptions

are made:

� The liquid surface can be represented by a height �eld.

� The vertical component of the liquid velocity can be ignored.
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� The horizontal component of the liquid velocity is small and approximately constant.

� The depth varies slowly.

With these assumptions, hydrodynamic equations of motion and continuity can be approxi-

mated by the two-dimensional wave equation

@2h

@t2
= gdr2h (2:1)

where z = h(x) is the height of the liquid surface, z = b(x) is the height of the ground,

d(x) = h(x)� b(x) is the water depth, and g is gravitational acceleration. Waves have celerity
p
gd.

Equation (2.1) is discretely approximated (in the x-direction) using �nite di�erences by

@2hi

@t2
= �g

 
di�1 + di

2 (�x)2

!
(hi � hi�1) + g

 
di + di+1

2 (�x)2

!
(hi+1 � hi)

and numerically integrated using a �rst order implicit method where

�hn =
_hn � _hn�1

�t

_hn =
hn � hn�1

�t

giving a system of linear equations with a simple tridiagonal matrix form that can be quickly

solved. The linear nature of the problem and the implicit integration scheme make the solution

method quite stable. The two-dimensional problem is solved by alternately solving the one-

dimensional problem in the x and y directions using the alternating direction implicit (ADI)

method.
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2.2 Ship Wakes

Ship wakes|actually the foam and spray of ship wakes|have been simulated in real time using

standard particle systems (Goss, 1990). New particles are periodically generated with initial

positions and velocities determined by ad hoc kinematic and stochastic models of the bow and

stern wakes.

Khan (1994) is modeling ship wakes by developing a function that describes the the shape of

the water surface is response to ship position, direction, and speed. This kinematic function is

based on 
uid dynamic models.

2.3 Waterfalls

Sims (1990) animates a waterfall and other liquid phenomena by using thousands of motion-

blurred particles, point masses that move under the in
uence of gravity. E�ciency is achieved

by the use of a parallel implementation of Reeves's (1983) particle systems. The particles do

not interact and can pass through each other.

2.4 Highly Viscous Liquids

Highly viscous liquids have been modeled as a collection of interacting particles (Miller and

Pearce, 1989; Terzopoulos et al., 1989; Tonnesen, 1991). By simulating molecular forces between

pairs of particles, the system of particles as a whole behaves like a highly viscous liquid, e.g., lava,

mud, and slime (Miller and Pearce, 1989). In general the simulated force fij between particle

i at position xi and particle j at position xj is repulsive at shorter ranges and attractive at

longer ranges for surface tension (cf. section 3.6). In particular, Miller and Pearce (1989) used

fij = (xi � xj)

�
sr

�
�

dn
� �

dm

��
,
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whereas Terzopoulos et al. (1989) used

fij = mimj (xi � xj)

�
�

dn
� �

(d+ �)m

�
,

where � is how close the particles are allowed to be. Tonnesen (1991) incorporated thermal

energy � as

fij = (xi � xj)
��m + �

n�m

�
nm

dn0
dn+1

� nm
dm0
dm+1

�
,

where d = jxi�xj j is the distance between the particles, � and � are constants of proportionality

for the attractive and repulsive forces, and typically n = 12 and m = 6. Damping is added by

the use of a force that is a function of the velocity and opposite in its direction.

While the straightforward algorithm for computing the interparticle forces is O(n2) for n par-

ticles (the force on each particle depends on all other particles), the range of in
uence of the

interparticle force can be limited and by using spatial subdivision methods, the computational

complexity of this approach can be reduced. Time-evolving dynamic equations of interacting

point masses using a purely explicit numerical solution methods is more appropriate for \soft

collisions" between particles, since in other cases stability problems emerge unless very small

time steps are used (Miller and Pearce, 1989). Attaching �eld functions to these particles and

rendering an isosurface of this �eld (blobbies) provides a way to model a liquid surface with

changing topology.

2.5 State of the Art

To summarize the state of the art in modeling 
uids for computer animation:

� Stochastic models of waves are relatively advanced and convincing and can be superim-

posed (via bump mapping) onto surface models controlled by kinematic and dynamic

models for small-scale complexity.
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� Kinematic models of waves are also quite convincing, and are usually e�cient and easy

to control, but require speci�c models for speci�c motions.

� Dynamic models describe motion at a higher level (in terms of forces|not velocity or

position, both of which, of course, can be derived from forces) and hence are more general,

but are hard to control, and can be ine�cient, unstable, and inaccurate.

� Most wave models do not account for the changing topology of breaking waves. However,

using particles as the control points for an implicit surface easily handles topological

changes in the isosurface.

� Most models are ad hoc and di�cult to integrate to describe more general 
uid phenom-

ena.

Going back a few centuries to the �rst principles of 
uid dynamics for underlying and unifying

concepts of 
uid 
ow will address some of these di�culties.



C h a p t e r T h r e e

A Few Fundamentals of Fluid Flow

SECRET SACREDWARS ROACH: So many forces at work...so many cross-overs...so

many tie-ins...I need more character!

FLEAGLE ROACHES: Uh-oh.

SECRET SACRED WARS ROACH: And we all know the only way to create char-

acter...don't we?

|from Dave Sim's Cerebus

This chapter brie
y reviews some basic concepts of 
uid mechanics necessary for the interactive


ow �eld modeling methods of the next chapter.

3.1 Introduction

Fluid 
ow has been studied for centuries. The challenge is to select an appropriate framework

for computer animation purposes, i.e, one that satis�es the accuracy, e�ciency, controllability,

and generality criteria de�ned in the �rst chapter. An early consideration is whether to look to

molecular dynamics or to hydrodynamics. As mentioned in the previous chapter, point masses

governed by molecular forces have been used to model viscous liquids (Miller and Pearce,

1989; Terzopoulos et al., 1989; Tonnesen, 1991). However, at a macroscopic scale, the scale of

hydrodynamics and human perception, a liquid is considered to be continuous and essentially

incompressible; at a microscopic scale, the scale of molecular dynamics, compressible behaviour

can be observed, as molecules attract and repel one another. Conservation of liquid volume

is not guaranteed. Also, it is unclear what constitutes the liquid boundary when simulating

a liquid with a relatively small number of point masses. A macroscopic description of 
uid,

i.e., a hydrodynamic model, seems more appropriate than a model based on dynamics at the

molecular level as it inherently alleviates most of the above problems.

17
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To establish a background for the framework for integrating 
ow models for computer anima-

tion, the fundamentals of 
uid mechanics are brie
y reviewed1.

3.2 Eulerian and Lagrangian Frames

In the �eld of hydrodynamics, the motion of liquids is described in two ways: Lagrangian and

Eulerian. In the Lagrangian approach, the motion of each 
uid particle is followed as it moves

through space. Fluid velocity in a Lagrangian description vi(t) = ûi+ vĵ+ wk̂ (̂i, ĵ, and k̂ are

the unit vectors and t is time) is given in terms of the velocity of a particular particle i, and


uid acceleration is simply the change in the particle's velocity over time.

In the Eulerian approach, the motion of 
uid particles at a given point in space is described.

A Eulerian description of 
uid velocity in Cartesian coordinates is given by:

v(x; y; z; t) = u(x; y; z; t)̂i+ v(x; y; z; t)̂j+ w(x; y; z; t)k̂.

The acceleration in Eulerian terms is not simply the change in 
uid velocity over time at a

given point, but rather the change in 
uid velocity of a 
uid particle moving through a given

point. It is given by the Stokes (or substantial or total) derivative of the velocity:

Dv

Dt
=

@v

@t
+ (v � r)v =

@v

@t
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z
.

Note that if a 
uid particle is moving in a circle, for example, @v=@t = 0 whereas Dv=Dt

is nonzero. An Eulerian frame is generally more convenient for work in 
uid mechanics. An

Eulerian description of liquid motion can be converted to Lagrangian terms by taking the Taylor

series expansion of the Lagrangian velocity, which to �rst order is

va(t) = vE(a; t) +

�Z t

0

va(t)dt

�
� ravE(a; t).

1The interested reader is referred to the following books for a more detailed treatment of hydrodynamics:

Crapper (1984), Feynmann et al. (1964), Kinsman (1984), Lamb (1945), Newman (1977), O'Neill (1986), Potter
(1975), Rouse (1959), Roy (1988), Sabersky (1964), and Stoker (1987).
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where va is the Lagrangian velocity of a 
uid particle at point a at time t = 0 and vE is the

Eulerian velocity.

3.3 Equations of Motion

While the equations of motion for 
uids may be complex, they are simply versions of Newton's

second law of motion, as stated in the Principia:

the change of motion is proportional to the motive force impressed and is made in

the direction of the right line in which that force is impressed,

or

f = ma,

where the massm is the constant of proportionality. Note that the equations of motion express

conservation of momentum: the change in momentum over time equals the applied forces.

The well-known Navier-Stokes equation is:

�

�
@v

@t
+ (v � r)v

�
= �f �rp� 2

3
r (�r � v) ,

where � is the density, p is the pressure, f is the external force including gravity, and � is the

coe�cient of dynamic viscosity. The Navier-Stokes equation can be simpli�ed by assuming the


uid is inviscid (or ideal), i.e., the viscosity, the friction between 
uid particles, is zero. The

velocity of a 
uid next to a boundary is zero: notice the dust on the blades of a fan. The

velocity just a short distance away can be quite large, and the viscosity can have a dominate

e�ect on the liquid behaviour at this boundary layer, creating vorticity which, depending on

the geometry and Reynolds number (ratio of inertial to viscous forces), may cause a negligible

disturbance or may expand until it drastically a�ects the entire 
ow pattern causing turbulent


ow where the velocity at a given point varies erratically. Turbulent 
ow is usually contrasted

with laminar 
ow where the 
ow is steady near boundaries. Away from the boundary layer the
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e�ects of viscosity are generally negligible, and in the study of water waves, viscosity is usually

ignored, i.e., the liquid is assumed to be inviscid.

If the 
uid is assumed to be inviscid, then the Navier-Stokes equations of motion reduce to the

Euler equations of motion, which in Eulerian terms are

ut + uux + vuy + wuz = �1

�
px

vt + uvx + vvy + wvz = �1

�
px � g

wt + uwx + vwy + wwz = �1

�
px

9>>>>=
>>>>;

(3:1)

or in vector form

�
Dv

Dt
= �rp� �g . (3:2)

In Lagrangian terms, the Euler equations of motion are

�ax = �px
�ay = �py � g

�az = �pz

9>>>>=
>>>>;

(3:3)

or in vector form

�a = �
dv

dt
= �rp� �g (3:4)

where v(t) is the velocity in Lagrangian terms.

3.4 Kinematic Boundary Conditions

Fluid does not 
ow through solid boundaries, of course; this constraint is express by the kine-

matic boundary condition. For inviscid 
ow, if the 
uid is in contact with a rigid boundary,

the component of the velocity in the direction of the normal out of the 
uid must match the

normal component of the velocity of the boundary, u,

v � n = u � n. (3:5)



Chapter 3: A Few Fundamentals of Fluid Flow 21

For a �xed boundary this reduces to:

v � n = 0.

For viscous 
ow, there is a no-slip condition on the tangential component of the 
uid velocity.

3.5 Bernoulli Equation

Often the Euler equations of motion (3.2) are more useful when they are integrated to give a

form of Bernoulli's equation. Here we derive Bernoulli's equation for irrotational and possibly

unsteady 
ow (as opposed to the other, perhaps more familiar forms of Bernoulli's equation for

steady 
ow).

Euler's equation can be written as

@v

@t
+ (v � r)v = �rp

�
� g. (3:6)

De�ning the 
uid speed as

v = jvj =
s
@�

@x
+
@�

@y
+
@�

@z
,

where v = r� and using the vector analysis identity

r
�
1

2
v2
�
= v � (r� v) + (v � r)v,

allows the left-hand side of equation (3.6) to be written as

@v

@t
+ (v � r)v =

@

@t
(r�) +r

�
1

2
v2
�
� v� (r� v) . (3:7)

Since the 
uid is assumed to be irrotational,

r� v = 0,
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and since �gz = g, equation (3.7) can be reduced to

r
�
@�

@t
+
1

2
v2 +

p

�
+ gz

�
= 0.

Integration gives Bernoulli's equation for irrotational but possibly unsteady 
ow

@�

@t
+
1

2
v2 +

p

�
+ gz = C(t). (3:8)

As the constant of integration C(t) is a function of time only and has no e�ect on any spatial

gradient it is usually taken to be zero.

Often equation (3.8) is linearized and applied at the �xed surface z = 0:

@�

@t
+ g� +

p

�
= 0 at z = 0 (3:9)

where z = �(x; y; t) is the height of the free surface.

3.6 Surface Tension

Molecules throughout a liquid experience attractive molecular forces, but these forces cancel

out in the interior of a liquid. On the surface of a liquid, however, a molecule experiences a net

attractive force towards the interior of the liquid. Thus, molecules in the surface layer have a

higher potential energy than molecules in the interior of the liquid, and since a liquid tends to

minimize its potential energy, it tends to minimize its surface area. The resultant behaviour|

as if the surface were a stretched membrane|produces what is called surface tension. Surface

tension is typically modeled by constraining the curvature of the liquid surface.
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3.7 Equation of Continuity

While the equations of motions express conservation of momentum, they do not express the

conservation of mass. Considering the conservation of mass gives rise to another equation, the

continuity equation. The continuity equation states the divergence of the density 
ux must be

equal to the time change in density,

r � (�v) = �@�
@t
.

This equation can be simpli�ed by assuming the 
uid is incompressible, i.e. the 
uid volume

does not change with changes in applied pressure. This approximation is often made in the

study of 
uid 
ow, and is quite reasonable for computer animation purposes. For example, the

density of water increases by no more than 0.5% when the pressure applied is increased by 100

atmospheres for constant temperatures (Stoker, 1957). And while gaseous 
ow may seem to be

compressible 
ow, almost all examples of compressible behaviour of a gas occur with respect

to a closed volume|when the gas is free to move, it simply moves without being compressed

(Potter, 1975).

The assumption that the 
uid is incompressible allows the continuity equation to be simpli�ed

to

r � v = 0. (3:10)

Thus, perhaps surprisingly, conservation of mass is expressed without a term for mass. For

constant density2, the continuity equation also expresses conservation of 
uid volume. Any

surface advected with the 
ow has no 
ow through it and conserves the mass of the domain

it bounds. The vector form of the continuity equation can be written out in in three common

coordinate systems that will prove convenient: Cartesian, cylindrical and spherical. In Cartesian

2Note that technically incompressible does not necessarily mean the density is constant. A necessary and

su�cient condition for a 
uid to be incompressible is that the Stokes derivative of the liquid density be zero, i.e.,

D�=Dt = 0, so while the density is constant along streamlines, it is not necessarily constant at all points of the

uid. However, this distinction is often ignored.
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coordinates the continuity equation is:

@vx(x; y; z)

@x
+
@vy(x; y; z)

@y
+
@vz(x; y; z)

@z
= 0 (3:11)

In cylindrical coordinates the continuity equation is:

@(rvr(r; �; z))

r@r
+
@v�(r; �; z)

r@�
+
@vz(r; �; z)

@z
= 0 (3:12)

In spherical coordinates the continuity equation is:

@(vR(R; �; �)R2)

R2@R
+
@(v�(R; �; �) sin�)

R sin �@�
+
@v�(R; �; �)

R sin �@�
= 0 (3:13)

For irrotational 
ow, i.e., when the curl of the velocity is zero, the velocity �eld can be repre-

sented as the gradient of a scalar potential �eld:

r�(x; y; z; t) = v(x; y; z; t)

which when substituted into the continuity equation for incompressible 
uid 
ow gives the

potential (Laplace) equation:

r2�(x; y; z) = 0.



C h a p t e r F o u r

Interactive Flow Field Modeling

in-
u-ence [ME, fr. MF, fr. ML in
uentia, fr. L in
uent-, in
uens, prp. of in
uere

to 
ow in, fr. in- + 
uere to 
ow { more at FLUID] 1a: an ethereal 
uid held to


ow from the stars and to a�ect the actions of humans

|Webster's 7th Dictionary

While dynamic simulation of 
uid motion can be done e�ciently enough for computer animation

purposes under restrictive conditions (Kass and Miller, 1990), in general dynamic simulation of


uid 
ow appears to be too computationally expensive to be appropriate as a general tool for

realistically animating 
uids. Using straight dynamic simulation of hydrodynamic models as a

method for animating 
uids begs the following problems:

1. How are initial conditions realistically modeled?

2. How are turbulent e�ects created and controlled?

3. How is the motion controlled in general?

In this chapter interactive 
ow �eld modeling methods are presented to address these problems.

4.1 Overview

Fluids present several challenges for computer animation stemming from their continuously

deformable nature. To date, these challenges have not fully addressed by dynamic simulation

methods. Consider using dynamic simulation to animate water 
owing out of hose, making a

loop, and 
owing into a bucket. Hydrodynamic simulation can describe 
uid motion in response

to the forces acting on the 
uid. These forces can be modeled (Sims, 1990), but would require

the animator to guess what forces are required to have the water make a loop and 
ow into

25
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the bucket. While the dynamic simulation of articulated solid objects can be controlled using

kinematic constraints and inverse dynamics (Barzel and Barr, 1988; Isaacs and Cohen, 1987;

Platt and Barr, 1988; Witkin and Kass, 1988), with 
uids the number of degrees of freedom is

essentially in�nite, so these constraint methods do not appear to be applicable. A priori, 
ow

�eld modeling appears more appropriate. Sims (1990) presented ad hoc \velocity operators"

for controlling the motion of particle systems. Ebert et al. (1993) used a combination of three-

dimensional grids and ad hoc 
ow �eld functions to model 
ow �elds. In these methods, the

task of ensuring realism is left to the animator. A more accurate method is to use superposition

of simple solutions to the potential equation such as those corresponding to source, sink, and

vortex 
ow to model more complex 
ow �elds (Haumann, 1991a; Haumann, 1991b; Wejchert

and Haumann, 1991; Haumman and Hodgins, 1992).

Using just these point source, sink, and vortex \
ow primitives", however, makes certain mod-

eling tasks di�cult, e.g., modeling a path for the 
uid to follow. To allow more control in

modeling 
ow �elds, a 
ow primitive based on a cubic B-spline is introduced. A new method

of modeling turbulent 
ow is presented that gives the animator greater control over the turbu-

lence. Finally, a simple method of blending interactively modeled and dynamically simulated


ow �elds is presented.

4.2 Principle of Superposition

The point 
ow primitives, the spline-based 
ow primitives, the turbulence modeling, and the

contol method for dynamic simulation are all integrated by a common framework: the conti-

nuity equation for incompressible 
ow (3.10). For partial di�erential equations that are both

linear and homogeneous, such as equation (3.10), the principle of superposition applies: if

v1;v2; : : : ;vn are solutions to equation (3.10) and c1; c2; : : : ; cn are scalars, then a linear com-

bination of these solutions

c1v1 + c2v2 + � � �+ cnvn
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is also a solution. Thus, 
ow �elds sastifying the continuity equation for incompressible 
ow

can be arbitrarily scaled and summed and result in a 
ow �eld that satis�es the continuity

equation. This principle is the basis of all the methods in this chapter.

4.3 Basic Flow Fields

A number of simple 
ow �elds that satisfy the continuity equation for incompressible 
ow are

well-known. Such 
ow �elds include those corresponding to uniform, point source, point sink,

point dipole, and continuous straight-line vortex 
ows. A well-known method of constructing

more complex 
ow �elds is to superpose a number of these \basic" 
ow �elds.

4.3.1 Uniform

The simplest 
ow pattern is uniform 
ow where the 
uid velocity at every point is the same,

âi + b̂j+ ck̂. This clearly satis�es the continuity equation for incompressible 
ow:

@vx

@x
+
@vy

@y
+
@vz

@z
=

@a

@x
+
@b

@y
+
@c

@z
= 0

Note that a linear combination of uniform 
ow �elds will simply result in another uniform 
ow

�eld.

More generally,

v = (a+ f(y; z))̂i+ (b+ f(x; z))̂j+ (c+ f(x; y))k̂

satis�es the continuity equation for incompressible 
ow.

4.3.2 Point Source and Sink

Another basic 
ow �eld is one corresponding to the 
ow from a point source located at the

origin (Figure 4.1).
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Figure 4.1: Flow �eld of point source.

In spherical coordinates (R; �; �) this 
ow �eld is given by:

v =
m

R2
î. (4:1)

Note that there is a singularity at the origin. The constant m is called the strength of the

source: the discharge through any closed surface surrounding the origin is 4�m.

It can be easily seen that equation (4.1) sasti�es the continuity equation by recalling the con-

tinuity equation in spherical coordinates:

@(uR2)

R2@R
+
@(v sin �)

R sin �@�
+

@w

R sin �@�
= 0.

Negating equation (4.1) gives

v = � m

R2
î,
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Figure 4.2: Flow �eld of point sink.

which represents the 
ow towards a point sink at the origin (Figure 4.2).

4.3.3 Vortex

Using cylindrical coordinates (r; �; z), the 
ow �eld corresponding to straight-line vortex is given

by:

v =
k

r
ĵ. (4:2)

Figure 4.3 shows the 
ow �eld for a vortex.

4.4 Spline-Based Flow Field Modeling

While these basic 
ow �elds (point 
ow primitives) can be linearly combined to produce more

complex 
ow �elds that also satisfy the continuity equation for incompressible 
ow, it is di�cult
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Figure 4.3: Flow �eld of line vortex.



Chapter 4: Interactive Flow Field Modeling 31

to obtain speci�c motion, e.g., directed motion along a given path, using only these basic 
ow

�elds. A more powerful 
ow primitive is desired.

4.4.1 Overview

An interactive 
ow �eld modeling method should minimize the e�ort required by the animator

to realize the desired 
ow �eld. An intuitive approach would be for the animator to design

the general 
ow pattern by specifying some streamlines in the 
ow �eld. Streamlines are lines

that are tangential to the 
uid velocity; for steady 
ow, they are the lines a 
uid particle will

follow. The method would then automatically compute a realistic 
ow �eld that contains those

streamlines. This computation could be accomplished by a relaxation method or some other

numerical solution method given that a well-de�ned problem could be developed. However,

such a method would require solving a partial di�erential equation over three dimensions which

probably would not be fast enough for interactive work on standard graphics workstations. A

simpler and much more e�cient approach is to use 
ow primitives based on curves, say cubic B-

splines, that have 
ow �elds where the streamlines follow the shape of the curve and attenuate

in magnitude away from the spline. Superposition of these spline-based 
ow primitives would

then automatically give blending between the primitives where each primitive could be weighted

for either local or global e�ect.

As will be shown, such a spline-based 
ow primitive can be developed by integrating a special

point primitive along a spline. This point primitive|call it a directed 
ow primitive|has

a speci�ed velocity at a given point (say the origin) that attenuates in magnitude moving

away from this point yet maintains the same direction as much as possible while satisfying

the continuity equation. This directed 
ow primitive can then be continuously distributed

(integrated) over a spline such that the direction of each directed 
ow primitive on the spline is

always tangential to the spline, giving a 
ow �eld where the streamlines of the 
ow correspond

to the shape of the spline and attenuate radially in magnitude away from the spline.
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4.4.2 A Directed Flow Primitive

More speci�cally, the directed 
ow primitive should have a 
ow �eld with the following prop-

erties:

� The velocity is a maximum at the origin and is oriented in the direction of the positive z

axis.

� The magnitude of the velocity goes to zero moving away from the origin.

� The direction of the velocity everywhere is close to the direction at the origin, more so

where the magnitude of the velocity is greater.

� The magnitude of z coordinate of the velocity can be an arbitrary function of the radial

distance from the z axis.

� The 
ow �eld satis�es the continuity equation.

Together, these properties ensure when this 
ow �eld function is integrated along a curve, the

streamlines of the resulting 
ow �eld correspond to the shape of the curve and the 
ow is

strongest near the curve.

Such a 
ow primitive was derived in cylindrical coordinates (Figure 4.4):

v = vr î + v� ĵ+ vzk̂ (4:3)

where

vr(x; y; z; t) =
cz

(a+ z2)2 (b+ r2)
, (4:4)

v�(x; y; z; t) = 0, (4:5)

and

vz(x; y; z; t) =
c

2(a+ z2)

�
1

r(b+ r2)
� 2r

(b+ r2)2

�
+ f(r) (4:6)
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Figure 4.4: Flow �eld for integration over spline.
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-10 -5 0 5 10

Figure 4.5: A plot of the vz component of the directed 
ow primitive for a �xed r.

where a; b; c are constants. Figure 4.5 shows vz for a �xed r. A plot of vr for a �xed z would

be similar.

This 
ow �eld can be shown to satisfy the continuity equation which in cylindrical coordinates

is:
@ (rvr(r; �; z))

r@r
+
@v�(r; �; z)

r@�
+
@vz(r; �; z)

@z
= 0 (4:7)

as
@ (rvr)

r@r
=

@

r@r

 
crz

(a+ z2)2 (b+ r2)

!
=

cz

(a+ z2)2

�
1

r(b+ r2)
� 2r

(b+ r2)2

�

and

@vz

@z
=

@

@z

�
c

2(a+ z2)

�
1

r(b+ r2)
� 2r

(b+ r2)2

�
+ f(r)

�
=

�2cz
2(a+ z2)2

�
1

r(b+ r2)
� 2r

(b+ r2)2

�
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4.4.3 A Spline-Based Flow Primitive

In this section various 
ow �eld modeling \tools" are developed based on cubic B-splines.

Cubic B-splines are chosen as a basis of a 
uid motion modeling tool because of the popularity

of cubic B-splines in motion modeling in general, are inherently smooth (C2 continuous), have

local control, and are available in common graphics software libraries such as Silicon Graphics

Graphics LibraryTM which supports NURBS curves (Silicon Graphics, 1991).

Cubic B-splines are a type of parametric piecewise cubic curves that approximate a series of

m+ 1 control points P0; P1; : : : ; Pm; m � 3, with a curve consisting of m� 2 cubic polynomial

segments Q3; Q4; : : : ; Qm. The parameter range on which Qi is de�ned is ti � t < ti+1 for

3 � i � m. For each i � 4, there is a join point or knot between Qi�1 and Qi at the parameter

value ti (the knot value). The initial point at t3 and �nal point at tm+1 are also knots, for a

total of m� 1 knots.

The uniform nonrational B-spline formulation for curve segment i is

Qi(t) =

�
xi(t) yi(t) zi(t)

�
= TiMBsGBsi ti � t < ti+1 (4:8)

where

T =

�
(t� ti)

3 (t� ti)
2 (t� ti) 1

�

and the B-spline basis matrix is

MBs =
1

6

2
66666664

�1 3 3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
77777775

(4:9)
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and the B-spline geometry vector is:

GBSi
=

2
66666664

Pi�3

Pi�2

Pi�1

Pi

3
77777775

(4:10)

Expanding equation (4.8) out gives:

Qi(t� ti) =
(1� t)3

6
Pi�3 +

3t3 � 6t2 + 4

6
Pi�2 +

3t3 + 3t2 + 3t+ 1

6
Pi�1 +

t3

6
Pi (4:11)

for 0 � t < 1 and 3 � i � m.

Nonuniform nonrational B-splines are given by:

Qi(t) = Pi�3Bi�3;4 +Pi�2Bi�2;4 +Pi�1Bi�1;4 +PiBi;4 (4:12)

for 3 � i � m and ti � t < ti�1 where

Bi;1(t) =

8><
>:

1 ti � t < ti+1

0 otherwise
(4.13)

Bi;2(t) =
t � ti

ti+1 � ti
Bi;1(t) +

ti+2 � t

ti+2 � ti+1
Bi+1;1(t) (4.14)

Bi;3(t) =
t � ti

ti+2 � ti
Bi;2(t) +

ti+3 � t

ti+3 � ti+1
Bi+1;2(t) (4.15)

Bi;4(t) =
t � ti

ti+3 � ti
Bi;3(t) +

ti+4 � t

ti+4 � ti+1
Bi+1;3(t) (4.16)

Integration over a parametric curve C with parameter t and arc length s is given by:

Z
C

f(t)
ds

dt
dt.
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The the arc length for parametric curves in three dimensions s is

s =

Z b

a

s�
dx

dt

�2
+

�
dy

dt

�2
+

�
dz

dt

�2
dt

and so integrating basic 
ow �elds over splines takes the form:

Z
Q

v (x; y; z; a(t); b(t); c(t))

s�
da

dt

�2
+

�
db

dt

�2
+

�
dc

dt

�2
dt (4:17)

Gaussian quadrature can be used to approximate the integral:

Z b

a

W (x)f(x)dx �
NX
i=1

wif(xi)

When W (x) = 1, the numerical integration procedure is known as Gauss-Legendre integration,

and there are procedures to calculate the weights and abscissas (Press et al., 1988).


ow �eld correspond to the shape of the spline (Figures 4.6 and 4.4.3). Figure 4.8 shows the


ow �eld resulting from two spline 
ow primitives.

When kinematic control over the changes in the 
ow �eld are desired, time-varying 
ow primi-

tives can be used. The existence, strength, position, and orientation (when signi�cant) of these

primitives can vary in time. Note that the rate of change of the strength of the 
ow primitives

is directly related to a force acting on the 
ow �eld. These changes can be made explicitly by

the animator or a wide range of models can be used, e.g., the 
ow primitives could be advected

by a 
ow �eld modeled by the methods of this chapter.

4.5 Turbulence

Turbulent 
ow produces much of the visual complexity of 
uid motion. A number of computer

graphics researchers have developed models of turbulent 
ow �elds that can be used (Shinya

and Fournier, 1992; Ebert, 1993; Stam and Fiume, 1993). These 
ow �elds are modeled using
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Figure 4.6: A spline 
ow primitive.

Figure 4.7: Another view of spline 
ow primitive.
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Figure 4.8: Flow �eld of two spline 
ow primitives.

Fourier synthesis, i.e., modifying a white noise spectrum in the frequency domain and then

taking the inverse FFT of it. This approach presents several di�culties for animating the

turbulent motion of 
uids:

� The 
uid has no e�ect on the turbulent �eld.

� It is not clear how to localize turbulent motion in space or time.

� Uniform grids are generally required, limiting resolution.

For example, it is unclear how to use these methods to create an animation of a rock in a river

creating turbulent motion that di�uses downstream.

An alternative approach is suggested based on a concept used in 
uid dynamics: describing

turbulent 
ow in terms of vortices of various shapes, size, and rotational speeds being carried

along by the mean 
ow (Rouse, 1959). Flows corresponding to vortex 
ow can be generated

where stochastic motion is desired and these 
ows can be advected with the mean 
ow �eld. The
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Turbulent 
ow.

stochastic distribution (in space and time) of these vortices can be based on power spectrums

introduced in graphics or from the study of turbulent 
ow or be speci�ed by the animator.

Further, the attributes of these vortices can change over time, and the vortices themselves

can eventually dissipate according to parameters de�ned by the animator. Besides interactive

approaches to modeling the generation of turbulence, models of the formation of turbulence can

be used. Turbulence can always safely be assumed to be present in 
ows previously or currently

in a state of shear at moderate to high Reynolds numbers (ratio of inertial to viscous forces).

Figure 4.9 shows frames from an interactive animation of turbulent 
ow. A uniform 
ow �eld is

used as the mean 
ow �eld. Particles are advected upwards from a 
uid source at the bottom

of the frames. Part of the way up, a turbulent source generates vortices for a simulation of, for

example, smoke from a recently extinguished candle.
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4.6 A Continuum of Control

As discussed, the continuity equation for incompressible 
ow (3.10) can be used as a basis

for the framework for integrating 
ow models for computer animation discussed in the �rst

chapter. This equation completely and kinematically describes an incompressible 
ow �eld and

is independent of the equations of motion being used.

In the framework, 
uid 
ow is modeled in an Eulerian frame, and the 
ow is de�ned everywhere.

The 
ow is decomposed into two main components, mean 
ow and turbulent 
ow. The mean


ow is further decomposed into 
ows interactively modeled using kinematic methods and 
ows

derived from dynamic simulation. The mean 
ow can be computed on a grid to make it more

e�cient; the turbulent 
ow is described by continuous functions for detail at small-scales.

Using dynamic models that describe changes in the 
ow �eld, such as the Navier-Stokes

equations, dynamic simulation methods can be used to describe a time-dependent 
ow �eld

vd(x; y; z; t).

The 
ow primitives presented in this chapter can be arbitrarily superposed and linearly weighted

in time as:
nX
i=1

ci(t)vi(x; y; z; t)

where
dci

dt
(4:18)

is directly related to a force on the 
uid, but unlike modeling forces, modeling the 
ow �eld

allows the animator to deal directly with the motion of the 
uid and not with the changes in

the motion of the 
uid.

And �nally, turbulence can be modeled by using a turbulent 
ow �eld, vt. This 
ow �eld can

be computed using the methods of Stam and Fiume (1993), Shinya and Fournier (1992), or the

methods introduced in this chapter.
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These 
ow �elds can be trivially integrated by superposition:

v = cdvd(x; y; z; t) +
nX
i=1

ci(t)vi(x; y; z; t) + ctvt(x; y; z; t) (4:19)

while sastifying the continutiy equation for incompressible 
ow:

r �
 
cdvd(x; y; z; t) +

nX
i=1

ci(t)vi(x; y; z; t)+ ctvt(x; y; z; t)

!
= 0. (4:20)

Thus, the animator can arbitrarily weight the e�ects of the 
ow �eld from dynamic simulation

and the interactively modeled 
ow �eld, providing a continuum of control from letting dynamic

simulation run free to an explicitly modeled 
ow pattern. Further, turbulent motion can be

superposed on the resulting 
ow �eld at will.
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Implementation and Results

Those are my principles. If you don't like them I have others.

|Groucho Marx

In this chapter, the implementation of a small animation system incorporating the interactive


ow �eld modeling methods of the previous chapter is described. The use of this system and

the 
ow modeling methods are discussed.

5.1 Implementation

In order to test the framework and 
ow modeling methods, it was necessary to implement a

relatively small animation system (about 10,000 lines of code). While various toolkits exist to

assist the development of animation systems, 
uid 
ow does not mesh well with the currently

popular object-oriented paradigm of such toolkits, and thus an animation system had to be

written from scratch. Using the C programming language, the workhorse of the computer

graphics community, and Silicon Graphics' Graphics Library (GL) [cite], the animation system

FLOW was implemented. FLOW allows the interactive modeling and visualization of 
ow

�elds and provides a testbed for the methods of the previous chapter. Geometric models, from

particles to complex polyhedrons, can be advected in the 
ow �eld. Animation scripts for the

renders Rayshade [cite] and Optik [cite] can be automatically generated.

5.1.1 Interaction

A large part (roughly a third) of the implementation concerns the user interface. The interface

toolkit FORMS (cite) greatly simpli�ed this task.

43
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The user can position 
ow primitives using the mouse to model the mean 
ow �eld and then

place turbulent sources in this 
ow �eld. Geometric models can be interactively positioned in

the 
ow �eld. Most modeling parameters can be interactively adjusted.

5.1.2 Flow Visualization

Visualization of vector �elds is an active area of computer graphics research. Two standard

techniques were found to be e�ective, though not ideal: particle traces and vector arrows. With

particle traces (for steady 
ow, these are streamlines) the user can position a cursor in the 
ow

�eld, and from a disc normal to the velocity at that point, particles are advected by means

of Runge-Kutta numerical integration for an user-given distance. With vector arrows, a grid

is constructed where the nodes have arrows representing the magnitude and direction of the

velocity at that point.

5.1.3 Rendering

For interactive work, geometric primitives are advected with the 
ow using standard graphics

library routines. Several thousand particles can be advected at interactive rates on a Silicon

Graphics Crimson workstation. For producing the �nal animation, scripts are output that can

be used by the raytracers Optik and Rayshade to produce high-quality images.

5.2 Using FLOW

To create an animation using FLOW, the following steps are taken:

1. Using point and spline 
ow primitives, a 
ow �eld is constructed.

2. Interactively using one of the 
ow the visualization methods, the 
ow �eld is inspected

and modi�ed.
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3. Geometric models are interactively placed into the 
ow �eld and advected by it.

4. When a satisfactory sequence has been obtained, the results are recorded as a series of

Optik or Rayshade scripts.

Flow �elds from dynamic simulations can be imported into FLOW, but this has not been

tested.

5.3 Results

Using cubic B-splines as 
ow primitives is a promising method of designing 
ow �elds, but

more work is required to re�ne this primitive to make it a useful animation tool. The number

of degrees of freedom available to the animator is quite high: the animator is responsible for

controlling the magnitude and radial in
uence of the 
ow along each spline. The turbulent 
ow

modeling methods were surprisingly e�ective, and a small number of vortices were required to

give good results. The simplicity of this method is attractive to the animator.

Flow around objects can be simulated by the using of point sources. A simple example is a

single point source used to create 
ow around a sphere (see �gure 5.1). In general a distribution

of point sources and sinks can be used to simulate 
ow around an object. For example, in the

plane, a source-sink pair is known as a Rankine oval as it gives the 
ow pattern around an oval-

shaped object. Realizing accurate 
ow patterns around complex objects using distributions of

point primitives is a nontrivial task. For computer animation, often crude approximations to

the actual 
ow pattern are adequate.

A short animation called Liquid Skull was produced to demonstrate how a polygonal object

can be advected in an animator-designed 
ow �eld (see �gures 5.2 to 5.3). This animation

represents X-rays of an overly ambitious graduate student's skull as he tackles a thesis topic

that is much too large.
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Figure 5.1: Flow around object.
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Figure 5.2: Frame one from Liquid Skull Figure 5.3: Frame two from Liquid Skull

Figure 5.4: Frame three from Liquid Skull Figure 5.5: Frame four from Liquid Skull
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Figure 5.6: Frame �ve from Liquid Skull Figure 5.7: Frame six from Liquid Skull

Figure 5.8: Frame seven from Liquid Skull Figure 5.9: Frame eight from Liquid Skull
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Figure 5.10: Frame nine from Liquid Skull Figure 5.11: Frame ten from Liquid Skull

Figure 5.12: Frame eleven from Liquid Skull Figure 5.13: Frame twelve from Liquid Skull
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Figure 5.14: Frame thirteen from Liquid Skull Figure 5.15: Frame fourteen from Liquid Skull

Figure 5.16: Frame �fteen from Liquid Skull Figure 5.17: Frame sixteen from Liquid Skull
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Conclusions and Future Work

Don't let it end like this. Tell them I said something.

|Last words of Pancho Villa

6.1 Conclusions

A general framework based on �rst principles of 
uid mechanics, in particular the conservation of


uid mass, was presented. This simple framework, using linear combinations of solutions to the

continuity equation for incompressible 
ow, allows the realistic blending of animator-modeled


ow �elds and 
ow �elds resulting from dynamic simulation. Numerical solution of even the

simplest hydrodynamic models for the types of 
ows of interest to computer animation|three-

dimensional, free-surface 
ow with changing topologies|remains an active area of computa-

tional 
uid dynamics research. Thus, most of the e�ort was focused on novel interactive 
ow

�eld modeling methods based on the manipulation of splines that in
uence the 
ow and roughly

correspond to streamlines in it. These 
ows can be superimposed with the well-known source,

sink, dipole, and vortex 
ows. Turbulence is modeled by using stochastic distributions of vor-

tices that are advected with the mean 
ow. This has several advantages, since the turbulence

has a small-scale e�ect and is continuously de�ned by functions whereas the mean 
ow can

be given on a three-dimensional grid. The use of 
ow �elds allows any geometric model to be

advected with the 
ow. The 
ow �elds can also be used three-dimensional textures. These 
ow

�elds realistically model the motion of 
uids: the animator can specify the general motion of


uid without worrying about collision detection within the 
uid, maintaining constant volume,

or the details of the motion. The result is a method of designing and controlling 
uid motion

for computer animation that is part of a general, e�cient, and realistic method of animating


uids.
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6.2 Future Work

A main goal of this thesis is to avoid the ad hoc methods of previous work, and every e�ort was

made to make the methods introduced amenable to easy re�nement and extension. It is hoped

that the integrated approach of this thesis along with the general hydrodynamic framework

invite future work.

The framework was designed to easily integrate 
ow �elds produced by dynamic simulation.

Considerable e�ort went into exploring many rapid and stable numerical solution methods for

simple hydrodynamics, but even the simplest hydrodynamic models present formidable chal-

lenges. One potentially fruitful avenue of future work: modeling liquid geometrically by oriented

particle systems and using the boundary element method to solve the relevant equations. While

the boundary element method is currently too slow for computer animation purposes, it may be

made more e�cient in the near future. Another approach is to use Smoothed Particle Hydro-

dynamics (SPH) which involves using particles that are �ltered point samples. A di�culty with

SPH for incompressible free-surface 
ow is to propose a well-de�ned problem and derive a stable

numerical solution method for it|initial-boundary value problems are notoriously subtle.

Other possible extensions include compressible 
ow and reactive 
ow, allowing, for example,

�re. Also, closely related to 
uid motion is the motion of elastically deformable models. The

boundary element method is also applicable to these models. Ultimately, the goal is a uni�ed

approach to the modeling of natural phenomena. This thesis is one step on the long path to

this goal.



Glossary

advection the 
ow of a current of 
uid or transport by such a 
ow

Bernoulli equation

boundary layer a region of retarded 
uid near the surface of a body which moves through a

uid or past which a 
uid moves

compressible 
ow

continuity equation

Euler equations equations of motion under the assumptions of inviscid 
ow

Eulerian frame

inviscid zero viscosity

irrotational 
ow 
ow without vortices (zero vorticity). More precisely, the curl of the 
uid
velocity is zero. Intuitively, 
uid particles do not spin in irrotational 
ow.

incompressible 
ow 
ow where

Lagrangian frame

laminar 
ow 
ow that is steady near boundaries contrasted with turbulent 
ow

Navier-Stokes equations

potential equation

potential 
ow

Reynolds number ratio of viscous to inertial forces. Flow becomes turbulent as increases?

steady 
ow 
ow where the 
uid velocity does not change with time

Stokes derivative

streamline line tangential to 
uid velocity. For steady 
ows, a 
uid particle follows a stream-
line.

turbulent 
ow

53
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uniform 
ow 
ow where the 
uid velocity is the same at all points in the 
uid

unsteady 
ow 
ow where the 
uid velocity changes with time

viscosity 2: the property of a 
uid or semi
uid that enables it to develop and maintain an
amount of shearing stress dependent upon the velocity of 
ow and then to o�er continued
resistance to 
ow 3: the ratio of the tangential frictional force per unit area to the
velocity gradient perpendicular to the direction of 
ow of a liquid { called also coe�cient
of viscosity

vorticity measure of vortical motion; esp: a vector measure of local rotation in a 
uid 
ow
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