
SHADING AND INVERSE SHADING

FROM DIRECT ILLUMINATION

By

Pierre Poulin

M.Sc., University of Toronto, 1989

B.Sc., Universit�e Laval, 1986

a thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

the faculty of graduate studies

department of computer science

We accept this thesis as conforming

to the required standard

: :

: :

: :

: :

the university of british columbia

December 1993

c Pierre Poulin, 1994

Abstract

An understanding of light and its interaction with matter is essential to produce images. As the

modeling of light sources, light transport and light reection improves, it becomes possible to

render images with increasing realism. The central motivation behind this thesis is to improve

realism in computer graphics images by more accurate local shading models and to assist the

user to obtain the desired lighting e�ects with these more complex models.

The �rst part of the thesis addresses the problem of rendering surfaces illuminated by

extended (linear and area) light sources. To compute the light reected by a surface element in a

given direction, one needs to determine the unoccluded regions (shadowing) of each light source

and then to compute the light reection (shading) from each of these regions. Traditionally,

point light sources are distributed on the lights to approximate both the shadowing and the

shading. Instead, an e�cient analytical solution is developed for the shading. Shadowing from

extended light sources is a fairly expensive process. To give some insights on the complexity of

computing shadows, some properties of shadows and algorithms are presented. To reduce the

cost of computing shadows from linear light sources, two acceleration schemes, extended from

ray tracing, are introduced and evaluated.

The second part of this thesis addresses the problem of achieving a desired shading e�ect

by building up systems of constraints. This approach is called inverse shading. It allows a user

to obtain a desired lighting e�ect by interacting directly with the scene model. An interactive

modeling system has been built to study the introduction of rendering issues into the modeling

process itself. Two rendering aspects are considered: shading and shadows. By specifying a

highlight position and size, the unique direction of a directional light source as well as the

surface glossiness are determined. Interactively moving this highlight on the surface rede�nes

the light direction while changing its size rede�nes the surface glossiness. By manipulating

shadow volumes (the volume within which a particular light cannot be completely seen), the

light source de�nition and position can be modi�ed. By assigning colours to various points in a

3D scene, information about the colour of a surface as well as other surface characteristics can

be deduced. This relatively new concept of de�ning the causes by manipulating the e�ects is

expected to have a major impact on the design of future computer graphics modeling systems.

It begins a new family of tools for the design of more intuitive user interfaces.

ii

Acknowledgement

As I am writing these lines in the middle of the night, it is hard to believe this part of my life is

going to be over soon. It seems just like yesterday, I was this poor Qu�eb�ecois, driving through

Canada in my old Lynx (may it rust in peace), so eager to discover...

My supervisor, Alain Fournier, is by far the most predominant �gure in my graduate years.

His guidance, enthusiasm, friendship, generosity and strength are remarkable. He taught me so

much more than what could ever appear in a thesis. It is with pride that I will always remain

\one of Alain's students". Kelly Booth and Dave Forsey with their \almost Dr. Poulin" treated

me as an \almost junior faculty" and I really appreciated their support.

I thank the members of my supervisory committee: Uri Ascher, David Forsey, G�unther

Schrack, Jack Snoeyink, and Robert Woodham, for their comments and support. Also Kellogg

Booth, Dale Rolfsen and Tomoyuki Nishita for their role on the examination committee.

My friend, Juancho Buchanan, deserves special thanks. Together, \We came, we saw, we

conquered!" His friendship means a lot to me. Even so far apart, we will still share. For

instance, there are these -40oC's. So many other friends made these years so enjoyable... We

started a graphics lab from scratch with the great support of Maria Klawe. This lab very

quickly exploded with many great people. Everybody contributed one way or another to this

thesis, but to name a few: Atjeng Gunawan, Chris Romanzin, Chris Healey, Vishwa Ranjan,

Peter Cahoon, and Rob Scharein. Bob Lewis helped satisfying the library requirements while I

was back in Montr�eal. Without him, the thesis might have never made it. Then there are the

cool guys (Chris, Deb and Tien), the kids (Gene, Torre, Larry, Bill, Kevin, et cie), the system

guys (and ze solo numerical analist guy), the sta� people, the softball, soccer and ballhockey

teams, the babies from the next graphics generations, the old generation of DGPers (Andrew,

George, Johnny, Eugene, Marc, ...) and so many others with whom I spent long hours chatting.

So many...

Mikio Shinya lit up many of my original thoughts on inverse shading during a great visit of

his lab at NTT, Japan. Michael Gleicher and Paul Heckbert discussed some of their ideas with

me. Pat Hanrahan, Michael Cohen and the graphics students of Princeton helped me on some

of my latest work while on leave for my pre-postdoc.

Deborah Wilson, Caroline Houle, Marie-Claire Forgue, Adrienne Drobnies, and Ying Li kept

the sun shining under the cloudy days. They made me laugh and they listened to me. Ariel

Fournier delighted me with her childhood life. Precious moments of my days...

Finally, the last and most important thanks go to my family, whom I love very much and

am so proud of.

iii

Table of Contents

Abstract ii

Acknowledgement iii

1 Introduction 1

1.1 Light Sources : 2

1.2 Lighting Design : 3

1.3 Organisation : 5

2 Local Illumination 6

2.1 Quantitative Measures of Light : 7

2.2 Human Visual System : 9

2.3 Perception and Realism : 9

2.4 Local Shading in Computer Graphics : 10

2.4.1 Spectral curves : 14

2.4.2 Wave Propagation : 15

2.4.3 Average Approximations of BRDF : 15

2.4.4 More Sophisticated Physical Models : 16

2.5 Failures of Current Reection Models : 17

3 Shading with Extended Light Sources 19

3.1 Concepts and Related Work : 19

3.1.1 Directional Light : 20

3.1.2 Point Light : 21

3.1.3 Linear Light : 22

3.1.4 Area Light : 24

3.2 Linear Light : 26

3.2.1 Our Solution : 26

3.2.1.1 Di�use Integral : 26

3.2.1.2 Specular Integral : 27

3.2.2 Extending the Shading Model : 30

3.2.3 Results of Shading with Linear Light : 31

3.3 Area Light : 33

3.3.1 The Di�use Integral : 33

3.3.2 The Specular Integral : 33

iv

3.4 Conclusion : 37

4 Shadows 38

4.1 De�nitions : 39

4.2 Properties of Shadows : 39

4.2.1 Directional and Point Light : 39

4.2.2 Linear Light : 39

4.2.2.1 One Light and One Blocker : 40

4.2.2.2 One Light and Many Blockers : : : : : : : : : : : : : : : : : : : 43

4.2.3 Area Light : 44

4.2.3.1 One Light and One Blocker : 44

4.2.3.2 One Light and Many Blockers : : : : : : : : : : : : : : : : : : : 45

4.3 Shadowing with Linear Light : 48

4.3.1 Primitive-based Shadowing : 49

4.3.2 Light Triangle 3D Scan Conversion : 51

4.3.3 Linear Light Bu�er : 51

4.3.4 Results of Shadowing with Linear Light : : : : : : : : : : : : : : : : : : : 52

4.3.5 Conclusion on Shadowing with Linear Light : : : : : : : : : : : : : : : : : 54

4.4 Shadowing with Area Light Sources : 55

4.4.1 Sampling the Light : 55

4.4.2 Extended Rays : 55

4.4.3 Characterising Regions : 56

4.5 Conclusion : 58

5 Lighting Design by Shading and Shadows 59

5.1 A Parallel with Computer Vision : 60

5.2 De�ning and Manipulating Light Sources : 61

5.2.1 Lights from Di�use Reections : 62

5.2.2 Lights from Highlights : 63

5.2.3 Lights from Shadows : 67

5.2.4 Results : 72

5.3 De�ning Surface Characteristics : 75

5.3.1 Painting Systems : 77

5.3.2 Painting Scenario : 78

5.3.3 Painting: Solving a System of Equations : : : : : : : : : : : : : : : : : : : 80

5.3.4 Painting: An Optimisation Problem : 82

5.3.5 Painting: A Fitting Problem : 85

5.3.6 Results : 86

5.3.7 Inverse Shading in Global Illumination : 86

5.3.8 Extensions : 87

v

5.4 Conclusion : 87

6 Conclusion 89

Bibliography 91

vi

Chapter 1

Introduction

Computer graphics creates images to provide information or to induce emotions. These images

are made to be looked at. Because we live in a 3D world, it is often e�cient to draw from

our experience of our world to convey information. Although realism is not always necessary,

or even the best way to convey the information, it can help in many situations. Sometimes,

realism is the application. For instance, when computer generated objects are merged with real

objects to produce a realistic combined image, the rendered objects must be undistinguishable

from the real ones to achieve the desired e�ect.

What we see originates from the interaction of light with our environment. Emitted light is

absorbed, reected and refracted by the objects in the environment. The spectral and spatial

distributions of the light can be altered at every step in the paths taken by the light. These

changes in the nature of light allow us to see in our world.

In order to graphically simulate parts of our world, understanding light and its interaction

with matter is essential. The better we can approximate light's behaviour, the closer we can

get to capturing the richness of our world in realistic computer graphics images. The factors

inuencing the way light is reected include the nature of light itself and the nature and

geometry of the surfaces of objects in an environment.

Physics explains light as both a massless particle of energy (photon) and an electromagnetic

wave. When a photon strikes an atom on a surface, its energy is absorbed and parts of it may be

reemitted as light. Fortunately for us, this atomic rendering is not necessary to accurately ap-

proximate the behaviour of light in most applications. In fact, in many applications, geometric

optics provides a su�cient basis to correctly render most surfaces.

Unfortunately, while geometric optics simpli�es the nature of the light, it does not reduce

the complexity of our world enough. Take a single tree as an example. Light is reected from

every branch and leaf. But it is also reected di�erently on the various parts of a single leaf

because of the changing concentrations of materials in the leaf. To properly render the reection

from one leaf, one would need to model these various parts. Our tree is made of thousands of

di�erent leaves. A forest is made of thousands of di�erent trees. A forest is also made of grass,

owers, hills and many other complex objects. Very quickly, this hierarchy of objects and details

explodes in an overwhelming complexity. Because we are only interested in the light reection

from these objects, it becomes important to �nd reection models that can approximate the

reections for the levels of complexity that an application requires.

To reduce the complexity of reection models, we can also study the medium on which the

1

Chapter 1. Introduction 2

images will ultimately be reproduced. Computer graphics images are rendered to be viewed

on CRT monitors, prints or through projections. Most of these media can reproduce only a

subset of the visible colour space (the gamut of the device). So we have to think of realism

of rendered 3D scenes as photorealism within the gamut of the device. The limitations of the

display system as well as computational costs can force us to reevaluate our simulation of light

to acceptable approximations, where acceptable is determined by the application for which the

image is computed.

1.1 Light Sources

One simpli�cation often used in current reection models applies to the light emitter. Repre-

senting a light as an in�nitely distant source (directional light) reduces the problem of illumi-

nation to a series of parallel light rays. Representing a light as a 3D point from which the light

rays emanate (point light) allows for some simpli�cations, but not as many. In fact, for many

applications where all surfaces form together a small solid angle as seen from a distant light,

a directional light is very e�cient and quite adequate. When the light emits equally in every

direction and when the light forms a small solid angle from each surface element, a point light

is very e�cient. However, our world is largely made of higher dimensional light emitters, so

when the small solid angle assumption is broken, we must compute the reection originating

from such a higher dimensional light.

The �rst part of this thesis is concerned with improving the shading of surfaces illuminated

by extended (linear and area) light sources. In many rendering systems, linear and area light

sources are modeled with a series of point light sources. This is done because point light

sources are simple to use and can approximate the light emission from a light source of any

shape. Unfortunately, the large number of points necessary to approximate a light1 can require

considerable computing resources to produce realistic looking results. In this thesis, a general

analytic solution for shading surfaces illuminated by a linear light source is proposed. A linear

light approximates a light that is long and narrow. Fluorescent and neon tubular lights are two

examples of such light sources in our world. A solution for the di�use component of reection

is derived for linear lights. By assuming a simple specular reection component (Phong),

inexpensive yet convincing images are produced with the use of a polynomial approximation

for the specular reection curve. An extension of the solution for shading with linear light

to shading with area light is also presented. The introduction of these illuminants and their

integration in a commonly used reection model broaden the range of realistic scenes that can

be e�ciently rendered.

The presence of shadows forms another aspect of realism in computer graphics imagery.

Shadows can provide additional information about the shape of an object, its nature (if it

exhibits some degree of transparency), its relative position with respect to other objects and

1Such an approximation is based on the solid angle the light forms from the surface element to shade.

Chapter 1. Introduction 3

light sources, and even about the light sources themselves. Shadowing from a directional or a

point light source is a binary decision. A point in a scene is or is not illuminated by a directional

or a point light source. Shadowing from an extended light source is more complicated because

a point in a scene can be illuminated by the entire source, not illuminated at all or be partially

illuminated. The information about the shading then depends on the portion of the light

that is visible from the point being shaded. Determining this portion can be computationally

expensive. We present some properties of shadows from extended lights and show how this

information has been used to more e�ciently compute shadows. This should help to put in

perspective the complexity of correctly computing shadows. In the particular case of linear

light sources, it becomes possible to reduce the average cost of computing shadows. Two new

acceleration schemes are evaluated. They both take advantage of the 2D nature of the shading

problem of a point illuminated by a linear light source. Each technique processes information

about the geometry of a scene in order to test only a subset of the objects for shadowing.

The increase in cost due to analytically solving the light reection from extended lights and

computing their shadows is substantial compared to a simple directional or point light source.

However, this increase is usually a fraction of the cost of using a series of point light sources to

simulate the same extended light to the degree to which the shading e�ects can be considered

realistic.

1.2 Lighting Design

Better reection models and illuminants can greatly improve the realism of computer generated

images. However, a model is only as good as the designer using it. It is therefore essential to

provide a designer with a set of intuitive parameters that allow one to create the desired lighting

e�ects. Unfortunately, when the number of parameters and their inter-relationships grow, a

designer has to understand all of them in order to create the �nal look of a picture. For instance,

once the geometry of a scene has been built, the designer has to position the lights and assign

them intensities in order to cast a shadow here or get a highlight there. The designer must also

determine values for all of the parameters of every surface so that each highlight will have the

proper size and so that the surface colours will approximate well enough what the designer had

in mind when building the scene. Changing the intensity of one light can a�ect the shading of

every surface. Moving a light can make a highlight disappear or can cast undesirable shadows

or can completely over-saturate the colour of a surface. With current modeling systems, the

designer must either compute in her head the inverse shading in order to obtain a certain e�ect

or attempt to achieve the desired e�ect through trial and error. Even for a simple scene, this

process is very di�cult. Typically, the designer will have to iterate between adjusting the values

of the parameters and rendering the entire scene. Depending on the experience of the designer

(i.e. how well she can perform mental inverse shading) and the time required to perform the

rendering, this iteration will continue until all the desired e�ects are achieved or until the

frustrated designer decides to stop and accept the current image as partially satisfying. The

Chapter 1. Introduction 4

second part of this thesis addresses the problem of achieving a desired shading e�ect. A system

of constraints is employed to bring the user a desired e�ect by letting her interact directly with

speci�c features in the scene model, rather than indirectly, as is current done in most computer

graphics modeling systems.

Instead of observing the results of lighting only after the rendering stage, we introduce some

rendering considerations directly into the modeling process. In our system, a user interacts

directly with the computer graphics model. Constrained by a system of equations, the user can

alter the shading of a surface leaving the remaining unknowns to be solved automatically by

the system. We investigate two rendering e�ects: shading and shadows. The user can control

the direction of a directional light by selecting a point on a surface. If this point represents the

point of highest di�use reected intensity, it identi�es a unique direction for the light. If instead

it represents the point of highest specular reected intensity, it gives another direction to the

light. The specular intensity corresponds to the highlight region. The user can specify a size

for this highlight and by doing so, it becomes possible to identify a unique value for the surface

roughness2 that would create the highlight. The highlight can be moved interactively to specify

a new light direction. The size of the highlight can be changed as well, which determines a new

value to the roughness coe�cient.

Another technique to de�ne and manipulate light consists of manipulating the shadow

volume (the semi-in�nite volume within which points cannot completely see the light) of a point,

linear or area light source. In this way, the shadow is interactively modi�ed and automatically

speci�es a light that would produce the shadow.

Finally, the user can paint colours on a surface and the modeler will attempt to determine

appropriate surface characteristics for which the colour points would retain their colour (within

a certain tolerance) when the surface is �nally shaded. The under-constrained systems that

result from these manipulations are solved via a nonlinear constrained optimisation while the

over-constrained systems are solved via a weighted least-squares approximation with penalty

functions to constrain the values of some surface parameters. Surface attributes such as surface

colour, quantity of ambient, di�use, and specular reections and the ratio of dielectric and

conductor properties are therefore automatically determined as the user adds colour points and

interactively moves them on the surface.

This relatively new concept of de�ning the causes by manipulating the e�ects is expected to

have a signi�cant impact on the design of future computer graphics modeling systems. It leads

to a new family of tools for the design of more intuitive user interfaces by freeing the designer

from solving mentally many of the inverse shading problems.

2The surface roughness in Phong and Blinn shading models determines the surface glossiness. This term will

be de�ned in the next chapter

Chapter 1. Introduction 5

1.3 Organisation

The thesis is organised as follows. In the next chapter, light and the radiometric terms used to

measure it are explained with an example. Then the light actually captured by the human visual

system is described and we briey discuss the perception of the visual signal and how realism

is related to perception. Finally, we present and analyse various reection models previously

introduced in computer graphics.

In Chapter 3, we review the formulations for computing the reection from directional,

point, linear and area lights. We then present our analytical solution for shading with a linear

light and how our solution has been derived to shade with a polygonal light.

Because extended lights can produce shadows with both umbra and penumbra regions, we

present in Chapter 4 some properties of these regions for both linear and polygonal lights.

Two acceleration schemes for shadowing with linear lights are then presented and evaluated.

Algorithms for shadowing with polygonal lights are also presented.

In the last chapter, we investigate how to help a lighting designer to e�ciently obtain a

desired shading e�ect by indirectly controlling the lights via the position of points of maximum

di�use reection, highlights and shadows. We also discuss a system in which the designer

interactively speci�es surface characteristics by simply applying colour points on a surface.

Chapter 2

Local Illumination

Light illuminates objects and makes them visible to humans. This role of light in our daily

life is the predominant factor in our appraisal of realism in computer graphics imagery. It is

therefore imperative to understand how light interacts with surfaces and how our visual system

perceives the results of this interaction. This chapter starts by giving a brief introduction about

light and its interaction with matter. The next section will briey describe how this interaction

is perceived by the human visual system. Once this base is established, we enter into the world

of computer graphics. In reality, light interaction with matter is very complex. Simplifying

this reality is our only practical approach to simulating light interaction in computer generated

pictures. We review the various illumination models used in computer graphics and show how

far the underlying assumptions depart from realism. Unfortunately, the trade-o� with realism is

not only a question of computational cost, but also of ease of use. We conclude this chapter with

a discussion of ease of use, computational load and realism to justify our choice of illumination

models in subsequent chapters.

Before delving into the nature of light, we must clarify a few points. In computer graphics,

we always consider the light reection o� surfaces. In reality light can penetrate the surface

and interact with the atoms within the surface. However, for simplicity's sake and because a

very important factor governing the reection depends on the orientation of the surface, we

model light reection only as reection from the surface.

A surface element is de�ned as an in�nitesimal portion of a surface. Sometimes, we also

refer to a surface element as a point on the surface that has exactly the same properties as the

surface element. There is a surface normal at the point and the radiance at the point represents

the radiance at the surface element. This analogy will often simplify our explanations.

Finally, there is the distinction between global illumination and local illumination. Consider

a single illuminated surface element. Light comes into contact with the surface element. Some

portion of this incoming light is absorbed, another portion is directly reected, while yet another

portion interacts with the surface (due to interreections between surface bumps or interactions

with colour pigments within the surface) before being reected back into the environment. This

whole phenomenon is called local reection. The radiance of this surface element once projected

onto a pixel produces the local shading. If light comes only from light sources, we are dealing

with local illumination or direct illumination. However, this phenomenon does not describe

the full behaviour of light. Once light reects o� a surface, it can illuminate other surfaces

and reect from one surface to another an in�nity of times. This phenomenon is called global

6

Chapter 2. Local Illumination 7

illumination because the reected light is potentially a function of every surfaces in a scene. This

distinction is a matter of scale. In fact, the interreections between micro-facets of a surface

can be considered as a global illumination phenomenon at the scale of the micro-facets. To not

confuse these concepts any further, we restrict our de�nitions of local and global illuminations

to the geometric level at which the objects are de�ned.

In this thesis, we concentrate our e�orts on local illumination issues. The results, however,

can have a direct impact on global illumination because local light reection is an underlying

part of global illumination.

2.1 Quantitative Measures of Light

In this section, we will look at light as a physical phenomenon measured independently of the

observer. In order to simulate the behaviour of light, it is important to understand how light

propagates and how it is measured.

Light has the dual nature of a massless particle of energy (photon) traveling as an electro-

magnetic wave. As photons hit a surface, some energy is absorbed by the atoms at the surface

and is re-emitted later in the form of radiation. If the re-emitted radiation is within the narrow

band between 380nm and 770nm, this radiation is within the visual range of the human visual

system. It is then called light.

Radiometry is concerned with measuring radiant energy as a function of the wavelength

�. The following de�nitions of the most relevant radiometric terms are from Nicodemus et al.

[nico77]. The characters in parenthesis () represent the symbols used to refer to these concepts

while characters in square brackets [] represent their units in the system international (SI).

Figure 2.1 de�nes the polar coordinates used throughout the thesis.

φ

θ

X

Z

Y

Figure 2.1: Polar coordinate systems

Radiant Energy (Q) [Joules | J]

The radiant energy is the energy propagated in the form of electromagnetic waves or

streams of particles (quanta or photons).

Chapter 2. Local Illumination 8

Radiant Power or Flux (�) [Watts | W]

The radiant power or ux is the radiant energy emitted, transferred, or received through

a surface, in a unit time interval.

� =
dQ

dt

Radiant Exitance (M) [Watts per square meter | W=m2]

The radiant exitance at a point of a surface is the quotient of the radiant power emitted by

an in�nitesimal surface element containing the point, over the area of that surface element.

M =
d�

dA

Irradiance (E) [Watts per square meter | W=m2]

The irradiance at a point of a surface is the quotient of the radiant power incident on

an in�nitesimal surface element containing the point, over the area of that surface element.

E =
d�

dA

Radiant Intensity (I) [Watts per steradian | W=sr]

The radiant intensity of a source in a given direction is the quotient of the radiant power

emitted by the source in an in�nitesimal element of solid angle containing the given di-

rection, over the element of solid angle.

I =
d�

d!

Radiance (L) [Watts per steradian per square meter | W=(m2 � sr)]

The radiance in a given direction at a point on the surface of a source or a receiver, or at

a point on the path of a beam, is the quotient of the radiant power leaving, arriving at, or

passing through an element of surface at this point and propagated in directions de�ned

by an elementary cone containing the given direction, over the product of the solid angle

of the cone and the area of the orthogonal projection of the surface element on a plane

perpendicular to a given direction.

L =
d2�

(dA cos � d!)

BRDF (fr) [inverse steradian | sr�1]

The bidirectional reectance-distribution function (BRDF) is de�ned to be the fraction of

Chapter 2. Local Illumination 9

the incident radiation coming from the direction (�i; �i) that is re-emitted in the direction

(�r; �r). The BRDF is expressed as fr(�i; �i; �r; �r).

fr =
dLr

dEi

2.2 Human Visual System

Illumination concerns us only so long as we can see its e�ects in our environment. Although

this is not primordial in the framework of this thesis, it is important to never forget that the

end result of our light simulation is the transmission of information to a viewer. Understanding

the human visual system can help in simplifying the illumination computations while retaining

the properties of most signi�cance in the human visual system.

Light goes through the human eye and is detected by two types of receptor cells: the rods

and the cones. The rods are the most sensitive to light and are responsible for our vision under

dim illumination (night vision). The cones are responsible for most of our daylight vision and

for our vision of colour. Each receptor cell has a di�erent sensitivity to light of a particular

wavelength. The spectral luminous e�ciency curves of each receptor cell resemble a Gaussian

distribution with its peak at 555 nm and 507 nm for the cones and the rods, respectively. These

measure the response of the human visual system to light as a function of the wavelength.

Photometry studies light measurements as experienced by the human visual system. Human

eye characteristics vary from one human to another, and even from one eye to the other in the

same person. However many photometric measurements have been performed on many persons

and a set of accepted standard values exists.

We conclude this brief incursion into the properties of the human visual system by stating

that for each radiometric quantity, there exists a photometric one [wysz82]. Therefore it is

always possible to convert a radiometric value into its equivalent photometric one by convolution

with the appropriate spectral luminous e�ciency curve. To avoid any confusion in the remainder

of this thesis, we always use radiometric terms.

2.3 Perception and Realism

Of all the light being reected in our environment, only the very small portion impinged upon

our visual system is of potential visual signi�cance. Somehow, the human brain interprets the

spectral composition and spatial distribution of the signals it receives from the visual system. It

is unclear how the information is extracted from the visual signals. Moreover, this information

can be interpreted in highly di�erent ways from one person to another.

To produce realistic images (photorealistic experience), an artist must face several dilemmas.

An image conveys conicting information because of its duality as a scene with 3D visual cues

Chapter 2. Local Illumination 10

and as a at 2D representation of this scene. Pictures generally occupy only a small portion of

our �eld of view. They are computed from a single point of view and do not allow for di�erent

depths of �eld. They are also subject to illumination from where they are observed. Moreover,

the display media currently used exhibit a much smaller dynamic range than what our visual

system transmits to us of our world.1 So it is likely that the visual experience of looking at

reality will be di�erent than looking at a 2D representation of this same reality. The knowledge

accumulated by the viewer will lead to di�erent perceptions of this reality.

Nevertheless, constructing an image closer to reality provides us with the possibility of

reaching more people who have experienced similar structures that will lead to similar inter-

pretations. For instance, hidden surface removal in line drawings removes some information

about the occluded structures, but the disambiguation of the spatial relationships often makes

an image much easier to interpret. Similarly, the gradient of the shading on a surface can reveal

important information about the shape of the surface. Additional cues like shadows, textures,

reections, transparencies, light interreections, material properties, and motion blur are all

examples of contributions that make the experience of looking at a computer graphics image

more real because they simulate what we experience in our world. Therefore, even though we

cannot quantify the realism within an image, we can judge if the presence or absence of certain

features in an image contributes to making the image closer to our experience of our world. It

is this unscienti�c feeling we will be relying on when arguing that a technique leads to more

convincing photorealistic images.

2.4 Local Shading in Computer Graphics

For many years now, simple local illumination models such as those introduced by Phong

[phon75], Blinn [blin77] and Cook [cook82] have been successfully used to render 3D scenes

with a certain degree of realism. Improvements for these basic models have been proposed, but

somehow they have had a limited impact within the 3D graphics community.

In this section, we analyse some of the proposed improvements and try to determine why

they are not widely used today. With this background, we establish some criteria that should

be considered when developing a new reection model. These criteria help us justify our choices

for local illumination models in subsequent chapters.

As we already know, shading in computer graphics is an essential part of realism. Shading

carries information about the geometry of objects, the orientation of lights and the nature of

surfaces. In the late 1970's and early 1980's, most of the currently used local illumination

models were introduced into computer graphics. Work by Phong [phon75], Blinn [blin77] and

Cook [cook82] paved the way to well accepted and commonly used illumination models. We

1Barbour and Meyer [barb92] describe some of these dilemmas in more details and explain some techniques

that can be used to remedy some of these limitations. They base their work on a large body of literature in

psychology, photography, art, optics and computer graphics. The interested reader is referred to their paper and

its references for a more exhaustive enumeration and treatment of pictures as representations of reality.

Chapter 2. Local Illumination 11

can summarise the various formulations into a single generalised equation:

Lpixel = fraLia� +
mX
i=1

Z
!i

frd(�i; �i; �r; �r)Li cos �i d!i + (2.1)

mX
i=1

Z
!i

ksFs(�i; �i; �r; �r)Li d!i

Lpixel is the radiance reected by the surface element in the direction of the pixel of interest.

Therefore, if more than one surface element reects light in the direction of a given pixel, the

total radiance in this pixel direction will be a weighted average of the radiance of all these

surface elements. The weight of a given surface element corresponds to the visible area this

surface element projects onto the pixel.

The reected radiance from m light sources is subdivided into three terms: ambient, di�use

and specular. Figure 2.2 shows how a combination of each of these three reections can provide

a more complete surface shading.

Figure 2.2: Ambient, Di�use and Specular Terms

The �rst term corresponds to the ambient reection. In early reection models, interreec-

tion between surfaces was very crudely approximated by this term. It assumes that the indirect

light comes to the surface element equally from every directions in the hemisphere above it.

This means that a surface element shaded with only ambient reection will always reect the

same radiance whatever its orientation and its position (as long as it is visible through a pixel).

Lia is the ambient radiance of a scene. It is assumed constant at any point on a surface. If we

integrate this ambient radiance over the entire hemisphere above the surface element, we get

Z �

��

Z �

2

0
Lia cos � sin �d�d� = Lia�

fra is the ambient BRDF associated with the surface element. Normally, there should be only

one BRDF fr associated with a surface. Dividing it into a summation of three functions fra, frd

Chapter 2. Local Illumination 12

and frs for the three types of reection provides the possibility to simplify each one individually.

Usually in computer graphics, ka replaces fra � �.

The second term captures the di�use reection. Di�use reection occurs when light hits

an ideal di�use surface (also known as a Lambertian surface). A di�use surface element will

appear equally bright from whatever angle it is looked at. This phenomena is a function of

cos �i = (~N � ~L), i.e., it is proportional to the inner product between the surface element normal

(~N) and the light direction (~L) from the surface element.2 Li (not vectorised) is the light source

radiance in the direction of the surface element and d!i is the solid angle formed by the light

from the surface element. These values must be computed and summed for each of the m lights

in the scene. For a perfectly di�use surface, it turns out that frd is constant and therefore

Lpixel = frd

Z
!i

Li cos �i d!i

= frdEi

which means that the di�use reected radiance is proportional to the irradiance on the surface.

Usually in computer graphics, frd is simply called kd. Surfaces covered by matte paint or chalk

dust are two examples of real surfaces that radiate light mostly in a di�use way. Two models

can explain the di�use reection. In one, light reects from a surface made of a multitude of

mirror-like micro-facets before leaving the surface. In the other model, light penetrates the

surface and is scattered internally onto colour pigments before emerging out of the surface.

Figure 2.3 illustrates these two models.

Figure 2.3: Two models for di�use reection

The third and last term simulates the specular reection. Some surfaces reect light more

around one direction. This reection is associated with what is usually perceived as a highlight.

For a perfect mirror surface, light coming from direction (�i; �i) will reect in direction (�i; �i+

�), where � is the azimuthal angle of the light direction. To capture this behaviour, we need

to use the Dirac delta function �(�i � �)�(�i � (� + �)) which is non-zero (i.e., 1) only when

2Please note that all through this document, vectors are identi�ed by a capital letter crowned by an arrow
(~A) and are all assumed normalised unless otherwise speci�ed.

Chapter 2. Local Illumination 13

� = �i and � + � = �i. The reected radiance Lr(�r; �r) in the perfectly reected direction

must therefore satisfy

Lr(�r; �r) =

Z �

��

Z �

2

0
FsLi(�i; �i) sin �id�id�i = Li(�r; (�r + �)):

This is achieved when frs is expressed as

Fs =
�(�i � �r)�(�i � (�r + �))

sin �i
= �(cos �i � cos �r)�(�i � (�+ �)):

Phong [phon75] observed that for a mirror, the specular direction corresponds to the perfectly

reected light direction (~RL) around the normal at the surface. See Figure 2.4. Only when a

P

L
N

R

E

θ θ

L

RE
θ

θE

L L

E

Figure 2.4: General Reection

viewer (~E) is positioned along (~RL), should she see the specular reection. However, most real

surfaces are non-ideal specular reectors and some light is also reected slightly o� axis from

the ideal reected light direction ~RL. A possible explanation for this phenomena is that a real

surface is never perfectly at but contains microscopic deformations. To simulate the decay

of radiance reected o� axis, Phong controlled the specular term by raising the inner product

between the eye direction (~E) and the perfectly reected light direction (~RL) to a certain power

n. In this model, n is a positive real number which is a function of the surface roughness. Later,

Blinn [blin77] incorporated various distributions, D, of these microscopic deformations. Blinn

also included in his model other surface parameters like geometric attenuation, G, due to self-

blocking, and the Fresnel coe�cient, F , for grazing angle e�ects. To incorporate these factors,

Fs is expressed as

Fs =
DGF

cos �r
:

Chapter 2. Local Illumination 14

The factor (~N � ~H)n provides a distribution approximating the specular reection model proposed

by Phong, although with more sound physical bases. Here, ~H is the bisector direction between

the eye ~E and the light ~L directions.

The reader familiar with the traditional nomenclature of the reection models in computer

graphics will notice that Equation 2.1 departs from it in many symbols, although the equivalent

graphics terms can easily be substituted. The connexion between fr and the standard graphics

formulation [lewi93] corresponds to

fr(�i; �i; �r; �r) = kd + ks
Fs(�i; �i; �r; �r)

cos �i

We do so because of the need to use proper radiometric values and units. This can help

avoid inconsistencies when going from one reection model to another, whether that model is

developed in computer graphics, computer vision or optics. In this thesis, the radiometric terms

are used.

Several improvements to the basic reection model described above have been proposed.

The parameters controlling the specular reection have also been applied to refraction [hall83]

[hall89]. Even energy conservation formulations have been presented for many of the popular

models [lewi93]. Each of these improvements was justi�ed as a method to render scenes with a

higher degree of realism. We will examine in more detail some other improvements in the next

sections.

2.4.1 Spectral curves

Many of the terms in Equation 2.1, reection and emission, are actually functions of the

wavelength �. Much e�ort has been devoted to representing and e�ciently computing this

wavelength dependency [cook82] [meye88] [yuan88] [glas89] [musg89] [gart90] [raso91] [meye91]

[borg91] [peer93]. Although physical accuracy requires that computations be carried out over

the entire visible spectrum, most of the renderers in use today simply sample this spectrum

in the red, green and blue regions. This is done for several reasons. There is no generally

accepted representation for the spectral curves. While surface reectance spectral curves are

rather smooth [raso91], light emittance spectral curves can be noisy and exhibit strong, narrow

peaks (e.g., uorescent light) [wysz82]. One can always use a very accurate representation, but

at the cost of an increase of computation and storage. The unavailability of spectral data makes

it unappealing to any neophyte in colour science. Meyer and Hale [meye91] measured the spec-

tral properties (reectance, emittance, absorption and transmittance) of some materials and

proposed to build a spectral database for surface rendering. Such a database would certainly

help in spreading the use of spectral curves.

Chapter 2. Local Illumination 15

2.4.2 Wave Propagation

One can also treat light propagation as a wave. Moravec [mora81] proposes to simulate this

form of light transport by using wave fronts rather than light rays. However, computing these

wave fronts as they progress through the environment and reect o� surfaces is a very expensive

process. Some of the e�ects produced can fortunately be simulated using the simpler ray model

for light propagation. This simple model has even been used to simulate the interference of

reected light [�rb85] [smit89] [dias91]. Wol� and Kurlander [wolf90] present a model for ray

tracing surfaces lit by polarised light.

2.4.3 Average Approximations of BRDF

The experimental approach to reectance accuracy involves measuring the light reected in all

directions for all possible directions of the incoming light. A BRDF is de�ned over in�nitesimal

intervals and therefore cannot be measured directly. However, average values over �nite inter-

vals can be measured and used as an approximation to a BRDF. Such approximations have

been measured [krin47] into tables for various earth surfaces (wheat �elds, ocean and forest)

as viewed from an airplane. Cabral et al. [cabr87] compute reectance tables for computer

generated height �elds.3 They consider shadowing and masking e�ects over a triangular mesh

representation of the height �eld, but, they neglect interreections between surface elements.

They discretise the reectance hemisphere (hemisphere above the height �eld) into bins in order

to accelerate the computations.

These measurements should lead to very accurate reectance functions if the sampling is

done at a su�ciently �ne discretisation. Unfortunately, the obvious drawback of this approach

lies on the huge amount of data needed. At a 5o precision in both � and �, we have a four

dimensional table with more than 1.5 million entries. And all of this for only a single surface.

To reduce the amount of data, Westin et al. [west92] use samples to de�ne spherical harmonics

as do Sillion et al. [sill91b] to represent BRDFs for global illumination. Both techniques con-

serves energy (important in global illumination) and their representation is suitable for �ltering

between geometric levels of details. Unfortunately for irregular BRDFs with long and narrow

spikes, even spherical harmonics require a very large number of coe�cients to accurately ap-

proximate the BRDFs. Westin et al. give a few tricks to reduce the number of coe�cients but

never provide any kind of description of the order of magnitude of storage their representation

requires.

Fournier [four92a] [four92b] introduces the concept of a distribution of surface normals

to capture reections from the microscopic level (Phong, Blinn, Cook) to the macroscopic

(geometric) level. A distribution of surface normals is represented by a few directions (main

normals) around which the micro-facets of a surface are mostly oriented. The distribution of

the normals around each direction is controlled by a Gaussian function. Fournier establishes

3A height �eld is de�ned as a function de�ned over a surface

Chapter 2. Local Illumination 16

a parallel between the standard BRDFs and these distributions. He uses them to produce

simple de�nitions for complex surfaces and explains how to render the surfaces e�ciently. His

approach leads to important savings because only a two-dimensional distribution of surface

normals needs to be stored instead of a four-dimensional table.

Becker and Max [beck93] also allow surfaces to be viewed at di�erent geometric levels

(BRDF, bump map and displacement map). A smooth transition is provided between the

BRDF, the redistributed bump map (corrected to produce the same average reected radiance

as the other levels) and the displacement map. Their technique still requires the use of several

large tables.

Ward [ward92a] [ward92b] introduces a di�erent shading model to address the issue of data

size. He designed a new physical device to simplify the measurement of BRDFs. An external

light illuminates the surface being measured. The light reects onto an hemispherical reective

dome covering the surface. A CCD camera, positioned in the dome, measures the reected

radiance on the dome. Ward thereby reduces the measurements to only one array of intensities

for each di�erent light direction (a reduction from 4D to 2D). One drawback is that his device

lacks accuracy when the light or its reection are at an angle larger than 60o to the surface

normal of the sample. The radiances measured are currently restricted to values between 0

and 255 (CCD resolution). Ward observed in his measurements that the reconstructed BRDFs

could be approximated by two elliptical Gaussians, perpendicular to each other. He therefore

reduces to only a few parameters the huge tables of Cabral et al., the large number of spherical

harmonics of Westin et al., or the distribution of normals of Fournier. One can, however, wonder

how many surfaces his model can represent with su�cient visual accuracy.

2.4.4 More Sophisticated Physical Models

He et al. [he91] introduce a more sophisticated reection model based on a more complete

description of surface characteristics. To derive their model, they introduce several variables

that capture certain previously neglected aspects of actual reection. Their model includes

polarisation of light, height, slope and statistical connection of the surface bumps, and a notion

of e�ective roughness. Although their model has been demonstrated to be close to actual surface

reectance for certain materials, the number of parameters is disconcerting. The situation is

further complicated because each variable may be dependent on the others and the e�ect of

any one parameter on the �nal shading is not obvious.

Hanrahan and Krueger [hanr93] propose a model to simulate reection o� layered surfaces.

Their model replaces the di�use term approximated by Lambert's cosine law (~N � ~L) by a

much more complete model where light penetrates the surface and is scattered between the

various layers before being reected o� the surface. They present applications of their model

to rendering human skin and tree leaves.

All the values for the variables in the models of He et al. and Hanrahan and Krueger could

be provided in a special library of surfaces for photorealistic rendering. However, measuring all

Chapter 2. Local Illumination 17

these values is a very di�cult task requiring much more equipment, time and expertise than

most computer graphics laboratories can a�ord.

2.5 Failures of Current Reection Models

In the previous sections, we reviewed some proposed improvements to the basic reection mod-

els. None of these improvements really succeeded in making any of the commonly used reection

models obsolete. They each contribute to the creation of more realistic rendering of surfaces,

but somehow the improvements were not worth the costs involved.

We identify a few important qualities necessary for a reection model to be accepted. First,

the model must produce realistic looking surface shadings and and it must be consistent. Vary-

ing the direction of the light sources should create continuous changes in the shading (no

unexpected discontinuities). The model must be easy to use and intuitive. The model must

also be exible, so that it produces a wide variety of shading e�ects. Finally, it should be

reasonably fast to compute, it should be memory e�cient and, it should be relatively simple to

implement.

Naturally, choosing a shading model is also a function of the application domain. In global

illumination, conservation of energy is very important, while in the entertainment business,

achieving a desired e�ect is the only issue that matters.

A new reection model recently proposed by Schlick [schl93] seems to ful�ll well many

of the criteria listed above. His model is an interesting compromise between the theoretical

accuracy and simplicity of use. It is controlled by only a few intuitive parameters. Moreover,

his parameters can be associated to measurable physical surface characteristics. While it is still

too early to evaluate the impact this approach will have on the models currently used, Schlick's

new model is a step forward in a very interesting direction.

Because we would like the techniques developed in this thesis to be accepted and widely

used by the graphics community, we concentrate our e�orts around Phong's and Blinn's shading

models. As we have seen, this is not a physically accurate but it has proven to satisfy a wide

variety of applications. Equation 2.1 can be rewritten with the specular reection from Blinn

as

Lpixel = fraLia� +
mX
i=1

Z
!i

frd(~N � ~Li)Li d!i + (2.2)

mX
i=1

Z
!i

ksF
0

s(�i; �i; �r; �r)(
~N � ~Hi)

nLi d!i

In the case of Blinn's full formulation,

F 0

s =
GF

cos �r
:

Chapter 2. Local Illumination 18

In the general formulation of Phong, the Fresnel term, F , and the geometric attenuation func-

tion, G, are not considered and F 0

s is taken to be constant. We will write it as Fs. Equation 2.2

is the shading equation on which we base our techniques. This formulation is quite popular.

However, it is our hope that the techniques developed in this thesis will somehow transcend the

shading model used.

Chapter 3

Shading with Extended Light Sources

In the production of computer graphics images, after designing the 3D geometry of a scene

the artist must choose the number, position, and emitted radiance of the illuminants. Of

equal importance are the values assigned to the various reection properties of each surface.

Together, the illuminants and the characteristics of the surfaces determine the �nal appearance

of the scene once it is rendered.

In the previous chapter, we reviewed some of the reection models proposed to simulate the

optical properties of a wide variety of surfaces. In this chapter, we look at the various types of

light sources used in computer graphics and integrate the properties of lights (in radiometric

terms) into the basic reection models of Phong and Blinn.

One of the requirements for generating realistic images is the capability to simulate a wide

variety of light sources. Small changes in the emitted radiance of illuminants can signi�cantly

a�ect the appearance of a scene. To get the desired shading e�ect, an artist may add dozens

of lights of di�erent types. In computer graphics, the two most commonly used light sources

are the directional light and the point light. They are simple to use and the irradiance they

produce on a surface is relatively easy to compute. However, they are of limited use in the

simulation of the irradiance patterns of real lights such as uorescent light or neon tube light.

Neither do they capture the shading gradients of area lights. Both types of lights are part of

our everyday existence and so, to be complete, computer rendered scenes should be able to

handle these types of illuminants.

After reviewing the models developed to simulate these extended lights, we present our

analytical solution to shading with a linear light. Our model allows us to simulate the emission

of a neon tubular light where each point in the light radiates light equally in every direction.

This model is extended to simulate uorescent tubular lights where each point on the surface

of the tube radiates light mostly in the direction perpendicular to the main axis of the tube.

We also show how our solution was used by Tanaka and Takahashi [tana91b] to simulate light

emitted from polygonal lights.

3.1 Concepts and Related Work

In the next sections, we will describe the related work in function of each type of light source.

19

Chapter 3. Shading with Extended Light Sources 20

3.1.1 Directional Light

The simplest light source in use in computer graphics is the directional light source. It models

parallel light rays coming from an in�nitely distant light source of in�nite power.

Assume that a directional light shining from (�0; �0) produces an irradiance E0 on a surface

oriented perpendicularly to the light direction. The irradiance in this case is expressed as

E0 =

Z �

��

Z �

2

0
Li cos �i sin �id�id�i:

Because the surface is perpendicular to the light direction, cos �i = 1. Obviously, the radiance

Li of this light is zero except in the light direction. We use the Dirac delta function �(�i �

�0)�(�i��0) to ensure that the light radiance Li is non-zero only in the direction (�0; �0). The

normalisation factor to express E0 as a function of Li is simply

E0 =

Z �

��

Z �

2

0

�(�i � �0)�(�i � �0)

sin �0
Li sin �id�id�i

=

Z �

��

Z �

2

0
�(cos �i � cos �0)�(�i � �0)Lid�id�i

By integrating, we can determine the radiance of the directional light that would produce an

irradiance E0 on a surface oriented perpendicularly to the light direction as

Li =
E0�(�i � �0)�(�i � �0)

sin �0
= E0�(cos �i � cos �0)�(�i � �0):

We can use this radiance in the reection model of Equation 2.2 described in the previous

chapter. To simplify the equations, we do not consider in this section the ambient reection,

which can be added directly to any formula because it does not depend on the light de�nition

or position.

The radiance of a surface element in the direction of a given pixel while illuminated by a

directional light is

Lpixel = kd

Z
!i

(~N � ~Li)Li d!i+

ks

Z
!i

Fs(~N � ~Hi)
nLi d!i

= kd

Z
!i

(~N � ~Li)E0
�(�i��0)�(�i��0)

sin �0
d�id�i+

ks

Z
!i

Fs(~N � ~Hi)
nE0

�(�i��0)�(�i��0)
sin �0

d�id�i:

The radiance of the surface element becomes simply

Lpixel = kd(~N � ~Li)E0 + (3.3)

ksFs(~N � ~Hi)
nE0: (3.4)

Chapter 3. Shading with Extended Light Sources 21

There are several reasons for the popularity of the directional light model. First, the vector
~L that points to the light source is constant and does not have to be computed at each point

to shade. This vector, in fact, de�nes the directional light source. Because the vector ~L is

constant, the shading computation for polygons is simpli�ed. Thus many computations can be

removed from the inner loops of the shading computations [phon75]. The radiance of the light

source is constant and independent of the position of an object in space. Therefore, to make a

surface radiance twice its value, one can simply double the light radiance.

3.1.2 Point Light

The second most popular light source is the point light source, which is de�ned geometrically

by a point in space radiating light equally in every direction. Such a point light source emits

light over the entire sphere. Its radiant intensity is

I =
�p

4�
:

The solid angle subtended by a surface element dA as seen from the point light source corre-

sponds to

d! =
dA cos �

r2
;

where � is the angle between the surface element normal and the direction to the point light

source and r is the distance between this surface element and the point light source.

The irradiance of the point light source onto a surface element is computed as

E =
I d!

dA
=

�p cos �i

4�r2
:

The radiance of a surface element in the direction of a given pixel illuminated by a point light

is

Lpixel = kd
�p(~N � ~Li)

4�r2
+ (3.5)

ksFs
�p(~N � ~Hi)

n

4�r2
: (3.6)

The directional and point light sources are generally included in most rendering systems due

to their simplicity. In fact, many graphics hardwares implement only these two types of light

sources. Modi�cations to the radiant intensity distribution of point light sources can give the

designer more creative freedom. Warn [warn83] attempts to create more realistic light sources

by simulating the lights used by photographers. His extensions include making the radiant

intensity of the point light sources a function of direction to produce spotlights and providing

aps that can cut o� the light in certain directions. Verbeck and Greenberg [verb84] and

Nishita et al. [nish85] extend Warn's work of by providing more sophisticated lighting design

Chapter 3. Shading with Extended Light Sources 22

tools. They allow the user to specify the shape of the radiant intensity distribution by drawing

goniometric diagrams.1

3.1.3 Linear Light

Linear light sources simulating tubular lights (neon and uorescent) open a new dimension of

shading e�ects.

We express the radiant ux �l of a linear light in terms of watt per unit length (W=m).

Assume that every point on a linear light radiates light equally in every direction. The irradiance

of a linear light source onto a surface element is extended from the formula developed for a

point light source. It corresponds to

E =

Z
L

�l

4�

cos �

r2
dl =

�l

4�

Z
L

cos �

r2
dl:

where L is the length of the linear light and �l is assumed constant over every part of the light.

θ
L

N
r

Linear Light

Figure 3.5: Irradiance of a linear light

The radiance of a surface element in the direction of a given pixel illuminated by a linear

light is

Lpixel = kd
�l

4�

Z
L

(~N � ~Li)

r2
dl+ (3.7)

ksFs
�l

4�

Z
L

(~N � ~Hi)
n

r2
dl: (3.8)

Linear light sources are modeled by Verbeck and Greenberg [verb84] using a series of collinear

point light sources. By only sampling the radiant intensity of the linear light at discrete po-

sitions, artifacts in the form of discrete regions may appear in the di�use reection, in the

1Goniometric diagrams specify relative intensity as a function of direction. See the IES Lighting Handbook
[kauf81] for a good source of lighting de�nitions.

Chapter 3. Shading with Extended Light Sources 23

specular reection, and in the shadows. These artifacts are mostly apparent on surfaces with

sharp specular highlights and in the shadows cast from this linear light. To alleviate these

sampling problems, it is always possible to add more point light sources. However, this is done

at an important increase in cost because each new point light contributes to a very signi�cant

portion of the entire rendering process. Moreover, it is very di�cult to estimate the best num-

ber of point light sources that would be cost e�ective while still producing images exempt of

major shading artifacts. This number depends on the distribution of objects around the linear

light in the scene, the type of surfaces (di�use vs. highly specular), the viewer position, the

positions of the shadows and the contrasts in the �nal image. It is conceivable that for each

frame of an animation sequence, the number of point light sources needed to approximate a

simple linear light could vary. Since many of these factors are geometric or are a function of

some mathematical model, one could develop some heuristics to estimate the number of point

light sources by which a linear light could be approximated with limited shading artifacts, but

there is always the concern that changing the number of point light sources might produce

temporal aliasing. However, as it will be argued later in this chapter, an analytical solution

proposed will provide perfect shadings at a relatively low cost.

Nishita et al. [nish85] simulate a uorescent light where each point on the light emits light as

a cosine function around the direction perpendicular to the linear light. They derive an analytic

solution for the di�use reection when the linear light source is parallel or perpendicular to the

surface. For the general case, where the surface element is neither parallel or perpendicular to

the linear light, they transform the light and the surface element to a new coordinate system

(2D) where they perform a numerical integration via increments. Multiple point light sources

are used to approximate the specular integral with possibly the exact same problems that can

appear in Verbeek and Greenberg [verb84] (i.e. discrete regions in the highlight). In subsequent

work, Nishita et al. [nish92] simulate linear lights in a similar way to their earlier work [nish85],

although the di�use integral is performed over a long thin rectangle instead of a line. The

specular integral is still approximated by point sampling the line as before [nish85]. However,

by assuming that the linear lights all reside on a plane (the ceiling of classroom for instance),

they present techniques to speed up shadow computation using a scanline approach.

Picott [pico92] simulates a linear light where each point radiates light equally in every

direction. He solves the di�use reection analytically but replaces the entire specular integral

by a single sample point. This point on the linear light represents the point of highest specular

reected radiance from the point being shaded for the eye position under consideration. This

crude approximation of the specular integral can produce satisfactory results as long as the

roughness coe�cient of the surface is very high (the intensity curve then exhibits a single

narrow peak) and as long as the angle formed by the end points of the linear light at the point

being shaded is relatively small. Breaking any of these assumptions leads to aliasing artifacts

in the highlight regions. To reduce this aliasing, Picott proposes to sample the linear light

around the point of highest specular reected intensity. This sampling is done according to the

Chapter 3. Shading with Extended Light Sources 24

roughness coe�cient of the surface. However, as will be demonstrated with our formulation,

computing analytically this entire integral costs the equivalent of just a few samples but avoids

sampling artifact altogether.

Bao and Peng [bao93] present analytic solutions for both di�use and specular reections of

linear lights. They derive their solutions in Cartesian 3D space. The analytic solution for the

specular reection is reduced to evaluating a series of
m(m+1)

2
simple polynomials of degree up

to m, where m = n+3
2

is a function of the surface roughness n. This solution is valid only if n

is an odd integer. This limitation on n mainly a�ects the rough surfaces for which n is small.

As the surface becomes smoother (a large value for n), the function cosn � behaves more and

more like a delta function and the requirement that n be an odd integer is not as restrictive.

However, for large n, the computational cost of evaluating
m(m+1)

2
polynomials of degree up to

m can quickly become prohibitively expensive.

3.1.4 Area Light

Nishita and Nakamae [nish83] were the �rst in computer graphics to present a solution to the

di�use integral for polygonal and polyhedral light sources. By assuming a Lambertian light

(each light element emits light equally in every direction), the radiance falling on a surface

element is proportional to the solid angle subtended by the light. For a polygonal light, this

corresponds to:

Lpixel = kd
L

2�

mX
i=1

�i cos �i (3:9)

where P is a point on the surface element being shaded

kd is the proportion of di�use reection of the surface

L is the light radiance

m is the number of vertices of the polygonal light

�i is the angle formed by two adjacent light vertices

�i is the dihedral angle between the plane at P and the plane of the face

formed by the segment on the light and P .

These variables are illustrated in Figure 3.6.

A parallel can be drawn between the irradiance and the radiosity, which is also called

radiant exitance. If we neglect the presence of the radiance, the surface BRDF and the di�use

coe�cient, the formula of Equation 3.9 is what is called in global illumination the form-factor

between a surface element and a polygon. The concept of form-factor is the basis of most global

illumination algorithms in use today.

Some techniques that simulate linear light sources have also been adapted to deal with

the specular integral of area light sources. It is fairly simple to see how the approaches of

Verbeck and Greenberg [verb84] and Picott [pico92] can be extended for area light sources. In

fact, several other techniques have addressed various issues in sampling the radiance of area

Chapter 3. Shading with Extended Light Sources 25

δ
i

P

βi

Light

Figure 3.6: The geometry describing di�use shading from an area light

light sources [cook84b] [shir91]. Houle [houl91] represents her area lights as radiance direction

distributions and uses a pyramidal approach to �lter the light radiance.

Bao and Peng [bao93] also derived a solution for shading with an area light source. An

alternate solution to Equation 3.9 is developed to compute the di�use reection. To approximate

the specular reection, they use a Taylor expansion of their formula with only a few terms. A

better solution is obtained by adding more terms from the Taylor's series.

Some algorithms have been proposed to treat specular surfaces within the radiosity algo-

rithm. These techniques can be applied to compute the reected radiance o� a surface illumi-

nated by a polygonal light. They have the advantage of conserving energy but unfortunately

rely on discretisations of every surface. Immel et al. [imme86] add discrete directions to each

patch and compute the radiosity solution with these directions. Sillion et al. [sill91a] repre-

sent the reected radiance with spherical harmonics at discrete points on each patch, assuming

that the radiance should remain uniform within neighbouring points. Rushmeier and Torrance

[rush90] and Hall and Rushmeier [hall93] assume fewer surfaces are specular in a scene and

thus reduce the number of form-factors required for treating specular surfaces. Aupperle and

Hanrahan [aupp93] automatically subdivide all patches according to the three point transport.

They use a variation of the Torrance-Sparrow [torr67] specular term.

Other rendering techniques have also been reported to simulate di�erent types of area light

sources. In cone tracing [aman84], Amanatides renders images illuminated by spherical lights.

In pencil tracing [shin87], Shinya et al. introduce the paraxial approximation theory to ray

tracing, substituting a single ray by a pencil of rays, thus keeping information about the pencil's

concentration or expansion. With this concept, it is possible to render scenes illuminated by

area light sources. Unfortunately, the inclusion of these specialised rendering techniques into

more conventional techniques requires extensive revisions of the algorithms that are not always

possible or desirable.

Chapter 3. Shading with Extended Light Sources 26

3.2 Linear Light

3.2.1 Our Solution

As discussed in the previous sections, some attempts to simulate linear light sources have been

proposed but no general solution other than sampling (apart from later development by Bao

and Peng [bao93]) has ever been proposed for approximating the specular integral. In the next

two sections, we develop a formulation of the problem that lends itself to a simple solution for

both di�use and specular terms.

3.2.1.1 Di�use Integral

The problem of shading a surface illuminated by a linear light source can be considered in 2D.

We transform the coordinate system such that P , the point representing the surface element to

be shaded, is at the origin and the light source lies on the plane Z = 0. The di�use integral of

Equation 3.7 can be expressed in this system as

Z
L

(~N � ~Ll)

r2l
dl = (~N � ~Np)

Z
L

(~Np � ~Ll)

r2l
dl

where L is the length of the linear light and ~Np is the projection of ~N onto the plane Z = 0.

Consider an in�nitely small segment dl on the light source. The projected length of dl in

the direction of P is dq = dl cos�, where � is the angle between the direction perpendicular to

dl and the direction from dl to P . On the other hand, consider a circle of radius rl centered at

the origin. The length of the arc of d� is dq = rl d�. By combining these two equations, we can

express dl as a function of d� as

dl =
rl d�

cos �
:

We can replace the integral along the length of the light source by an integral along the

angle subtended by the light source at P . If is the angle made by joining the two end points

of the light source to P (two light vectors) and � is the angle between ~Np and the closest light

vector2, the integral becomes

(~N � ~Np)

Z �+

�

cos�

r2l

rl

cos �
d�

Figure 3.7 illustrates this situation. Expressing rl as a function of � gives rl =
d

cos� , where d is

the distance between the supporting line of the linear light source and P .

This formulation is valid for modeling a linear light source as an in�nity of point light

sources where each point on the light source radiates light equally in all directions. The �nal

di�use integral is simply

2If ~Np is within , we can take any end points light vector. In such a case, � is negative.

Chapter 3. Shading with Extended Light Sources 27

P

0φ
Source

Light

Linear

p

d

N

N

θ
γ

β

Figure 3.7: Integrating over the angle

kd
�l

4�

(~N � ~Np)

d

Z �+

�

cos� d�: (3:10)

3.2.1.2 Specular Integral

By substituting the popular Phong specular term (~RE � ~L)
n instead of the Lambertian formu-

lation (~N � ~L) in the di�use term,3 we obtain the following expression for the specular integral

ksFs
�l

4�

(~RE � ~REp)
n

d

Z �+

�
cosn � d�: (3:11)

It is important to note that if P is along the supporting line of the light source, the formu-

lation of our integral is indeterminate as and d are both zero. In this situation, the integral

can be easily handled as a special case. Take the original formulation to beZ
L

(~N � ~L)

r2l
dl:

Since P is on the supporting line of the linear light, (~N � ~L) is constant over the entire integral

unless P is actually right on the linear light. An analytical solution

(~N � ~L)

Z
L

0

1

(l + b)2
dl = (~N � ~L)

L

b(L+ b)
;

exists, where b is the distance to the closest end point of the linear light. If P is on the linear

light, the solution to this integral is in�nity.

The integral for the di�use term in Equation 3.10 has an exact solution that is easily solved.

However, the integral for the specular term is harder to integrate exactly in an e�cient manner.

An alternative is to approximate cosn � between 0 and �
2 . Figure 3.8 illustrates a few exam-

ples of cosn � for di�erent values of n. This family of curves is relatively smooth, monotonically

3 ~RE replaces ~N and ~REp replaces ~Np

Chapter 3. Shading with Extended Light Sources 28

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

n=1
n=10
n=100

n=1000

Figure 3.8: cosn � for (right to left) n = 1, 10, 100, and 1000 and � 2 [0; �2]

decreasing, and can e�ciently be approximated by polynomials which in turn are simple to

integrate analytically. Several approximation techniques can be used. For a similar problem,

Poulin and Fournier [poul90b] studied the use of Chebyshev polynomial approximation, piece-

wise splines and the Parzen window. Because the formulation of Phong specular reection is

just an approximation based on no physical surface properties other than observation, we can

approximate this function by various other functions with a similar behaviour. Blinn [blin77]

reported various such functions. Bishop and Weimer [bish86] use a truncated Taylor expension

of the Phong function.

The pseudo-code of Figure 3.9 computes the Chebyshev polynomial approximating the

function cosn �, where � 2 [0; xM]. The array a[0::D(a)] will contain the coe�cients of the

polynomial approximating the curve. Note that this pseudo-code has been provided here to

explain how to compute the approximation. Tables can easily be used to speed up many of

these computations.

In order to reduce the degree of the polynomial approximating the function, we cut o� the

function cosn � at the angle where the function is less than a chosen �. Looking at the curves

of Figure 3.8, one can observe that as n becomes larger the area under the curve tends to be

very small for the angles larger than a certain angle xM . We can compute for given n and �

the value for xM such that

xM = (cos�1 �)
1

n :

When the curve is evaluated at an angle � higher than this value of xM , it is considered zero.

Choosing a value for � depends on the light radiance, the surfaces characteristics, the geometry

of the scene, the contrasts in the �nal rendering and other variables. In practice, we have

found that a polynomial of degree 6 approximates within � = 1
250 the cos

n � curve and we never

observed shading artifacts in any of the images we rendered with this value for �. The degree

of the polynomial can be reduced further if � is larger.

Chapter 3. Shading with Extended Light Sources 29

Approximate (n; xM ; D(a); a[])

/* n is the degree of the function cosn � */

/* xM is the maximum angle of the approximation */

/* D(a) is the degree of the polynomial approximation */

/* a[] contains the coe�cients of the polynomial approximation */

for i = 0 to D(a)

sum = 0;

for k = 0 to D(a)

xcheby = cos(k�=D(a))

x = xM � (xcheby + 1)=2

if (k = 0 or k = D(a))

sum = sum + 0:5 cosn(x)� Cheby(i; xcheby)

else

sum = sum + cosn(x)� Cheby(i; xcheby)

endfor k

b[i] = 2=D(a)� sum

endfor i

for i = 0 to D(a)

if (i = 0 or i = D(a))

a[i] = 0:5b[i]� Cheby(i; xcheby)

else

a[i] = b[i]� Cheby(i; xcheby)

endfor

Cheby (degree; x)

if (degree = 0) return (1)

if (degree = 1) return (x)

return (2x Cheby(degree� 1; x) � Cheby(degree� 2; x))

Figure 3.9: Pseudo-code for the Chebyshev approximation

Chapter 3. Shading with Extended Light Sources 30

Once as preprocessing, and for each of the coe�cients n in a scene, the Chebyshev polyno-

mials are computed and stored. They are used in the rendering stage to e�ciently approximate

the specular integral.

3.2.2 Extending the Shading Model

If each point on a linear light source does not radiate light equally in every direction, a new

model can be developed from the previous one. One such model assumes that a point radiates

light with a cosine distribution from the directions perpendicular to the linear light source

[nish85]. The modi�ed di�use integral is simply rewritten as

(~N � ~Np)

Z
L

(~Np � ~Ll)

r2l
cos� dl:

� is expressed as (�0��) where �0 is the angle between ~Np and the vector formed by P and the

closest point on the supporting line of the linear light. These variables are shown in Figure 3.7.

The di�use integral becomes

(~N � ~Np)

d

Z �+

�

cos� cos(�0 � �) d�

which can be integrated analytically. The specular integral is solved as before a the Chebyshev

polynomial approximation.

If a point on the linear light emits even less in the directions further away from the direction

perpendicular to the light, we can replace the previous distribution by cosm � instead. The

same polynomial approximation technique can be used for this distribution. In the case of the

specular intensity, we evaluate the product of two polynomials.

(~RE � ~REp)
n

d

Z �+

�

cosn � cosm(�0 � �) d�

Just like the extensions of Warn [warn83] for point light sources, the same types of extensions

can be applied to the current shading model for linear light sources. For instance, one can

restrict the emission of every point on the linear light source with aps at a given angle �. This

is done by making certain that the limits of the integrals, � and � + , are always con�ned

within the aps' range, [�0 � �; �0+ �].

Other extensions can be applied to the linear light source as a whole instead of applying

functions to each point individually. It is easy to apply aps to the entire light. One only needs

to determine if the point being shaded is within the illuminated section and, if so, the shading is

taken care by the functions established previously. Similarly, a function more complicated than

aps could be applied radially to the linear light source. Figure 3.10 illustrates these extensions

of light emissions.

Chapter 3. Shading with Extended Light Sources 31

a) point radiates equally
 in every direction

b) point radiates following

c) point radiates only
within flaps

d) general function over the
emission of the entire light

φm a cos distribution

Figure 3.10: The extended shading model

Table I: Linear Light versus Multiple Point Lights

Primitive Shading Only Shading and Shadowing

Function Equivalent Function Equivalent

Square 0.39 + 0.14 l 4.36 0.16 + 0.10 l 8.35

Cube 0.34 + 0.11 l 6.00 0.15 + 0.10 l 8.50

Sphere 0.31 + 0.11 l 6.27 0.16 + 0.10 l 8.40

Disk 0.40 + 0.14 l 4.29 0.09 + 0.06 l 16.28

Patch 0.50 + 0.08 l 6.25 0.06 + 0.04 l 23.50

3.2.3 Results of Shading with Linear Light

Replacing a linear light source by a series of point light sources is, as we said earlier, prone to

sampling problems. The problems can appear in both the shading and the shadowing. Table I

investigates the relative cost of substituting a linear light source as described in this paper by

a series of point light sources. Figures 3.11 and 3.12 illustrate a typical scene we tested.

A linear light source of length ten is positioned �ve units above a primitive (square, cube,

sphere, disk, patch) located one unit above a plane. Each primitive has been scaled so its

shadow covers a similar area. The specular coe�cient n for (~RE � ~L)n is 64 for the primitive

and 32 for the plane. The relative timings are given from the implementation on our local ray

tracer [aman92]. The timings are normalised by the time required to render the same scene

Chapter 3. Shading with Extended Light Sources 32

Figure 3.11: Sphere under 7 point lights Figure 3.12: Sphere under a linear light

with a linear light source. For instance, rendering a sphere (ray casting) in our scene without

any light source takes only 31% of the time required to shade it with a linear light source. If

point light sources are used, 11% must be added for each light. Therefore in our benchmark,

approximating a linear light source by more than seven point light sources would be more

expensive. If shadows are considered, this number increases to nine. Figure 3.11 was computed

with seven point light sources and Figure 3.12 with our approximate linear light source. On a

24-bit frame bu�er display, the same scene was rendered with as many as 41 point light sources

and Mach bands within the penumbra region are still visible. Unfortunately, due to dithering,

the two images incorporated here do not give full credit to our new shading algorithm.

For a patch primitive, considering both shading and shadowing, the number of point light

sources equivalent in rendering time to a linear light source is as high as 24 because we rely on

a distributed ray tracing approach (described in the next chapter) to determine the projection

of the patch onto the light source.

From our observations in Table I and our experience with rendering scenes with linear light

sources, shading a surface illuminated by a linear light is equivalent in cost to shading the same

surface illuminated by less than seven point light sources. However, our analytical solution is

valid for any length of linear light source, in arbitrary position relative to the point being shaded

and for any di�use, specular and roughness coe�cients. Our solution avoids the discretisation

problems prevalent in all previous sampling approaches.

Chapter 3. Shading with Extended Light Sources 33

Although we have considered only timings to compare a number of point light sources, we

argue that our solution has an even stronger advantage over sampling by the peace of mind it

gives to a designer. Choosing the right number of samples depends on the lights' positions, the

surfaces' positions, the surfaces' characteristics, the shadows cast and the viewing position. Not

all of these can be fully automated so it is possible that during an animation sequence several

frames will exhibit some shading artifacts. Rerendering these frames with more samples is a

cost that should be factored in, but that is di�cult to evaluate. For these reasons we believe our

analytical solution to shading with linear light sources is an important contribution to shading

with extended light sources.

Shadowing increases the complexity of rendering scenes illuminated by linear light sources.

We will show in the next chapter that our technique, especially after the introduction of some

algorithmic speedups, is still quite competitive.

Figure 3.13 shows an image of a desk illuminated by a single linear light source. The soft

shadows add a more realistic look to the scene. Figure 3.14 shows a typical cafeteria illuminated

by 12 linear light sources (2 per white rectangle lying on the ceiling). Notice how by simply

increasing the dimension of the light sources to linear, the scene gives an impression closer to

what is usually achieved at a much higher computing cost by radiosity algorithms.

In the next section, we will present how our analytical solution to shading with linear light

sources has been extended to shading with polygonal light sources.

3.3 Area Light

As described in the previous sections, the full shading of a surface illuminated by an area light

source had never been completely computed before. The di�use reection could be computed

analytically, but the specular reection was only approximated by point sampling.

3.3.1 The Di�use Integral

Tanaka and Takahashi [tana91b] extend our formulation of the specular term from linear light

sources to polygonal light sources by incorporating some of their results on highlighting rounded

edges [tana90][tana91a]. By assuming a Lambertian distributed polygonal light, they use the

solution proposed by Nishita and Nakamae [nish83] to compute the di�use reection:

Lpixel = kd
L

2�

mX
i=1

�i cos �i:

Please refer to Section 3.1.4 and Figure 3.9 for more information about the di�use solution.

3.3.2 The Specular Integral

The development for the specular integral is more complex. The use of the specular reec-

tion from Phong is important due to its property that the specular reectivity is rotationally

Chapter 3. Shading with Extended Light Sources 34

Figure 3.13: A desk under a linear light

Chapter 3. Shading with Extended Light Sources 35

Figure 3.14: A cafeteria under 12 linear lights

Chapter 3. Shading with Extended Light Sources 36

symmetric around the perfectly reected eye direction ~RE. As we did, Tanaka and Takahashi

transformed the standard Cartesian formulation into polar coordinates around this vector. In

this form, the specular integral corresponds to

Lpixel = ksFsL
(n+ 1)

2�

Z Z

(w1;:::;wm)

cosn � sin �d�d� (3:12)

where n is the Phong roughness coe�cient

� is the angle between ~RE and ~vi, a vector pointing towards

a vertex i of the polygonal light

wi is the projection of vertex i onto the unit sphere

� is the rotational angle around ~RE

(w1; :::; wm) is the projected light polygon onto the unit sphere.

Look at the area light from point P on the surface element being shaded. Assume that the

up vector (Z = 1) is ~RE for simplicity. Look �rst at a light triangle de�ned by a point along
~RE and two vertices of the polygonal light source. Because we deal with a Lambertian light,

the radiance of this light is the same as the radiance of a light projected onto the unit sphere

centered at P . Figure 3.15 illustrates several variables used in the rest of this section.

β
β

X

P

α

Z

Y

w(i+1)

(i)w

A
B

R

Figure 3.15: Integrating the specular term

The solid angle is de�ned by three great circles, two passing by Z = 1 and one passing

by wi and wi+1. This latter great circle has a single point R closest to Z = 1 at an angle

we call �. We use the projection of R onto the plane Z = 0 to de�ne the origin (� = �
2 or

(X = 1; Y = 0; Z = 0)).

Chapter 3. Shading with Extended Light Sources 37

Assume the integral is evaluated from wi (�A on Z = 0) to wi+1 (�B on Z = 0). Solving

the double integral leads to

Lpixel = ksFs
L

2�
[(�B � �A)� (H(�; �B)�H(�; �A))]

where

H(�; �) =

Z �

0

cos2 �

tan2 � + cos2 �

!n+1

2

d�:

For our function cosn �, H(�; �2) decreases monotonously between 0 and �
2 and Tanaka and

Takahashi used a Chebyshev polynomial approximation of H(�; �2) to integrate H(�; �).

To integrate the entire polygonal light, each edge is integrated in counter-clockwise order

as seen from P and the result of the integral is multiplied by a function

F (wi; wi+1)

(
1 if (wi; wi+1) is counter-clockwise

�1 otherwise

Each integral is then summed to provide the �nal specularly reected radiance.

3.4 Conclusion

In this chapter, we presented an analytical solution for shading surfaces illuminated by linear

light sources and explained how our solution was extended to shade surfaces illuminated by

area light sources. Rendering with these illuminants is more expensive than rendering with

just the same number of directional and point light sources. However the increase in realism

justi�es the added complexity. Moreover, the increase in rendering cost is not as signi�cant as

increasing the number of point light sources to produce a similar lighting e�ect.

The next chapter addresses in more detail the shadowing computation as the light source

dimensions and the scene complexity increase.

Chapter 4

Shadows

In previous chapters, we talked about shading without paying much attention to another phe-

nomenon created by the presence of light sources: shadows. A shadow is produced when a

surface element acts as a blocker of some of the light emitted by another surface element. The

blocker stops some of the radiant energy along its path. The energy is then absorbed or redi-

rected. The volume of points for which at least a portion of the light is occluded by this blocker

is called a shadow volume. This shadow is of interest to us when the radiance on a third surface

element has to be computed since we must then characterise the illumination on this surface

element. This is achieved by intersecting this surface element with the scene shadow volumes.

A shadow is cast on a surface when this surface intersects a shadow volume. This intersection

de�nes a cast shadow. Shadows can provide important information about the shape of objects,

their relative positions and the nature of their surfaces (transparency). They also can reveal

some information about light locations and shapes. While shadows can also be produced by

secondary lights (i.e. a surface reecting light can act as a indirect light), we will restrain our

discussions in this chapter to shadows produced from an emitting light source.

The presence of shadows can reduce the cost of computing shading information. After all,

when a point is considered completely in shadow of a light, the direct contribution from this

light is zero. Unfortunately, determining if a point is completely, partially or not in shadow is

a fairly expensive process that often more than o�sets the savings in shading.

We will consider in this chapter only shadows produced by opaque blockers. Semi-transparent

material blocking light for certain wavelengths can be considered as opaque blockers if we deal

with the shadows on a wavelength basis. However, shadows produced by refractive surfaces

are more complicated since they can redirect light depending on their geometry, their index of

refraction and the wavelengths of the light. Many of the properties of shadows studied in this

chapter do not apply to refractive blockers.

In the following sections, we will �rst give a few de�nitions of concepts linked to shadows.

Then we will go through a series of properties to establish a foundation for our understanding

of what is involved in correctly computing shadows. This will give us some insights on the

e�ectiveness of some shadowing algorithms. With this in mind, we will present our shadowing

algorithm for scenes illuminated by linear light sources and two culling algorithms to reduce

the number of occluding candidates. Finally, we will review and discuss various algorithms

developed to determine the shadows from area light sources.

38

Chapter 4. Shadows 39

4.1 De�nitions

The umbra volume of a light source formed by an occluding object is the set of points such that

every point of the light source is blocked by at least a point of the occluding object.

Note that the umbra volume so de�ned is generally a volume which can be �nite, in�nite

or null. The umbra cast on another object is the set of points of the object (restricted to its

surface for an opaque object) that also belong to the umbra volume as previously de�ned.

The penumbra volume of a light source formed by an occluding object is the set of points

such that at least one point of the light source is blocked by at least one point of the occluding

object while at least one point of the light source is still visible.

Note that the penumbra volume is generally a volume or a set of disconnected volumes. If

a penumbra volume is formed by a light and a single blocker, this penumbra is always in�nite.

If the light source is a direction (point at in�nity) or a point, there exists no penumbra

volume as a point is either blocked or not blocked by a point of the occluding object. The

points blocked belong therefore to the umbra volume.

The shadow is the volume formed by the union of both volumes, the umbra and the penumbra

volumes. Each point not in shadow is illuminated by the entire light source.

In the next section, we will look at some theoretical characteristics of shadows. We will

start by studying the shadows in the plane (2D) because fundamentally, shadows produced by

a linear light source need to consider only the visible portion of a line segment viewed from a

surface element to shade. We represent this surface element by a single point on its surface for

simplicity. Also, some concepts and properties are simpler to illustrate and understand in the

plane and can be generalised to the 3D space.

4.2 Properties of Shadows

4.2.1 Directional and Point Light

As already mentioned in the previous section, a directional light and a point light source cannot

generate a penumbra volume from a blocker. A point is or is not in shadow. The umbra

generated by one or more blockers is the union of every umbra volume, where the volumes are

not necessarily connected. This is illustrated in 2D by Figure 4.16.

For a survey of shadowing algorithms for directional and point light sources, we refer the

reader to the survey of Woo et al. [woo90].

4.2.2 Linear Light

In the plane, a linear light is a line segment and a blocker is an opaque line segment (or a set

of line segments) resulting from the intersection of a 3D primitive with the plane de�ned by

the linear light source and the point to shade. The following properties apply to a single line

segment acting as a linear light and a single line segment acting as a blocker.

Chapter 4. Shadows 40

Blocker

Blocker

Point light umbra

Figure 4.16: Umbra region in 2D

4.2.2.1 One Light and One Blocker

Consider as input to the 2D shadow determination problem a blocker line segment and a line

segment de�ned as a linear light source. Figure 4.17 shows a light segment L and a blocker

segment B used in the next de�nitions. All the de�nitions are valid as long as the supporting

lines of the blocker and of the light do not intersect in the light segment or in the blocker

segment. Otherwise, the results are applicable on both sides individually if the light or the

blocker is split at their intersection point into two separate segments.

Let bi be a vertex of the blocker segment B. Consider the two lines de�ned by this vertex

and the two light vertices. The line with the smallest angle � with the segment B is called

minimum blocker extremal line (Minbi) and its associated vertex is called minimum blocker

extremal vertex. The maximum blocker extremal line (Maxbi) and its associated vertex, the

maximum blocker extremal vertex are linked to the other vertex of the light L. Each of these

lines subdivides the plane into two regions. The minimum blocker extremal line divides the

plane such that the light segment is on one side and the blocker segment is on the other. We

de�ne the positive side (Minbi)
+ as the one containing the light segment. The maximum blocker

extremal line divides the plane such that both the light and blocker segments are on one side of

the line. We de�ne this side (Maxbi)
� as the negative side. We also de�ne sides for the regions

divided by the supporting lines of the light segment and the blocker segment. The positive

side of the light supporting line (L+) contains the blocker segment and the positive side of the

blocker supporting line (B+) contains the light segment.

Similar de�nitions are used [camp91] for extremal planes of convex polygonal lights and

blockers. Campbell and Fussell prove many properties of shadows in 3D with these de�nitions.

Chapter 4. Shadows 41

maximum blocker
extremal line

maximum blocker
extremal vertex L

B

minimum blocker
extremal vertexl

b

l1 2

2
b1

minimum blocker
extremal line

α

Figure 4.17: Extremal lines

Since our work is mainly based on theirs, we will simply enumerate some properties of shadows

in the plane. When the proofs can easily be extended from the ones of Campbell and Fussell,

we will omit them and refer the reader to the original report [camp91].

Shadow Properties in the Plane:

1. No point on the positive side of either minimum blocker extremal lines or on the positive

side of the blocker B may be occluded by B. This represents the illuminated region and

is expressed in set operations as B+ [(Minb1)
+ [(Minb2)

+.

2. Any point in the area closed by the negative sides of both minimum blocker extremal lines

and the negative side of blocker B is at least partially occluded by B. This represents the

shadow region and is expressed in set operations as B� \ (Minb1)
� \ (Minb2)

�.

3. Any point on the positive side of either maximum blocker extremal lines receives some

light from L while still in shadow. This represents the penumbra region and is expressed

in set operations as [B� \ (Minb1)
� \ (Minb2)

�] \ [(Maxb1)
+ [(Maxb2)

+].

4. Any point in the area formed by the intersection of the negative sides of both maximum

blocker extremal lines and the negative side of blocker B do not receive any light from L.

This represents the umbra region and is expressed in set operations as B� \ (Maxb1)
� \

(Maxb2)
�.

Chapter 4. Shadows 42

0 umbra 1 umbra

L L

B B

Figure 4.18: Linear light umbra region in 2D

a) parallel lines b) intersecting lines

Figure 4.19: One umbra

5. A single linear light and a single blocker can generate 0 or 1 umbra region but not more

than 1 umbra region.

Proof:

Figure 4.18 illustrates cases with 0 and 1 umbra region. Recall the set de�nition of an

umbra: B� \ (Maxb1)
� \ (Maxb2)

� where each region is bounded by an oriented line.

Look �rst at (Maxb1)
� \ (Maxb2)

�. If the two lines are parallel, they de�ne three regions

and only at most one region can be on the negative side of both lines. Otherwise the two

lines intersect and once again only one region can be on both negative sides. Figure 4.19

shows all the possible cases. Note that for intersecting lines, all the cases are identical by

rotation. The supporting line of B can only divide this region into two, leading only to a

single umbra region.

6. A single linear light and a single blocker can generate 0,1 or 2 penumbra region(s) but

not more than 2 penumbra regions.

Proof:

Figure 4.20 illustrates cases with 0, 1 and 2 penumbra regions. Recall the set de�nition of

a penumbra: [B� \ (Minb1)
� \ (Minb2)

�] \ [(Maxb1)
+ [(Maxb2)

+]. From the previous

proof, we can deduct that [B� \ (Minb1)
� \ (Minb2)

�] determines a maximum of one

region. Call this region A. Then we have A\ [(Maxb1)
+ [(Maxb2)

+] which is equivalent

to [A \ (Maxb1)
+] [[A \ (Maxb2)

+]. Since each intersection leads to a maximum of a

single region, there may not be more than 2 penumbra regions.

Chapter 4. Shadows 43

0 penumbra 1 penumbra 2 penumbras

L

LL

BB

B

Figure 4.20: Linear light penumbra region in 2D

4.2.2.2 One Light and Many Blockers

The union of shadow regions de�nes a set of points such that each point belongs at least to one

shadow region.

1. The union of the shadow regions from two blockers forms an umbra region that is equal

or larger than the union of the individual umbra regions. This union forms a penumbra

region that is equal or smaller than the union of the individual penumbra regions.

Proof:

A point in the umbra of one blocker and in the penumbra of another blocker is in the

umbra of the union since the �rst blocker completely occludes the light. A point in two

penumbra regions can be in the umbra or penumbra of the union since the portion of the

light visible from this point can be completely occluded by another blocker. This explains

the possibly smaller penumbra and larger umbra of the union of shadow regions.

To illustrate this situation, consider Figure 4.21. We label Ui and Pi the umbra and penumbra

regions, respectively, formed by blocker Bi; i 2 f1; 2g. The region hashed and labelled U12 is in

penumbrae of both blockers B1 and B2 but together, B1 and B2 completely occlude the light L

and therefore this region is in the umbra of the union of the shadows ((P1)[(P2)[(U1)[(U2)).

If two blockers are connected, the two intersecting penumbra regions formed at the con-

necting vertex are identical except that the orientations of minimum and maximum blocker

extremal lines are in opposited directions. Since there is no gap between these two blockers

(i.e. no plane separating the two blockers can intersect the light), this entire region is simply

converted into umbra.

Chapter 4. Shadows 44

U2

P1

L

B2

B1

P1

P2

U12

U2

P2

P2

P1

P1

U1P1

Figure 4.21: Smaller penumbra and larger umbra

When the number of light sources is increased, the shadows must be computed for each

light source individually.

The properties enumerated in this section usually extend to 3D for convex lights and convex

polygonal blockers. The next section looks at shadows in 3D. It will show that in general, the

addition of an extra dimension introduces a substantial increase in shadow complexity.

4.2.3 Area Light

One important di�erence when going from line segments in the plane to polygons in 3D is the

notion of concavity and convexity. A line segment can only be convex while in 3D, a polygon

can be convex or concave. Most of the properties in this section assume convex lights and

convex blockers. These results are applicable to concave lights and blockers when generalisable

to a union of convex polygons.

4.2.3.1 One Light and One Blocker

Most of the following results have been extracted from work by Campbell and Fussell [camp91].

Consider as input to the 3D shadow determination problem a convex blocker polygon and

an area light source de�ned as a convex polygon. Figure 4.22 shows a triangular light L and a

rectangular blocker B used in the next four de�nitions.

Let (bi; bi+1) be any edge of the blocking polygon B. Consider all the planes de�ned by

this edge and all the vertices of light L. The plane with the smallest angle with the supporting

plane of B is called minimum blocker extremal plane and its associated vertex is called minimum

blocker extremal vertex. Similarly for the light, let (li; li+1) be any edge of the light L. Consider

all planes de�ned by this edge and all the vertices of blocker B. The plane with the smallest

angle with the supporting plane of L is called minimum source extremal plane and its associated

vertex is called minimum source extremal vertex. The positive side of the minimum blocker and

source extremal planes contains the light polygon. The maximum blocker and source extremal

Chapter 4. Shadows 45

B

b
i+1

bi

minimum blocker
extremal plane

l

li+1

i

L

B

a) b)

L

minimum source
extremal vertex

extremal plane

maximum source
extremal vertex

minimum source
minimum blocker
extremal vertexextremal vertex

maximum blocker

maximum blocker
extremal plane

maximum blocker
extremal plane

Figure 4.22: Extremal planes

planes and vertices are the corresponding concepts associated with the largest angle with the

supporting plane of B instead. The negative side of the maximum blocker and source extremal

planes contains both the blocker and light polygons.

Campbell and Fussell start from these de�nitions to prove the following:

1. No point on the positive side of a minimum blocker or source extremal planes can occlude

B.

2. The occlusion volume (umbra and penumbra) is the volume resulting from the intersection

of the negative side of the blocker B with the negative sides of the minimum blocker

extremal planes from every edge of B and the negative sides of the minimum source

extremal planes from every edge of L. This is equivalent to say that for a convex light

source de�ned by vertices and a convex blocker, the shadow volume is the convex hull of

the umbra volumes created by the blocker from each vertex of the light source.

3. The umbra volume corresponds to the intersection of the negative side of the blocker B

with the negative sides of the maximum blocker extremal planes from every edge of B.

In other terms, for a convex light source de�ned by vertices and a convex blocker, the

umbra volume is the intersection of the umbra volumes created by the blocker from each

vertex of the light source.

4.2.3.2 One Light and Many Blockers

The previous de�nitions can be applied individually to each convex light and each convex

blocker to characterise each volume as illuminated or in shadow (umbra or penumbra) of a

given blocker. With the same arguments than we used in the previous section on shadows of

segments in the plane, we can also add that:

1. The penumbra created by a collection of convex blockers Bi illuminated by a convex light

source L is at most the union of the penumbrae created by each blocker Bi.

Chapter 4. Shadows 46

2. The umbra created by a collection of convex blockers Bi illuminated by a convex light

source L is at least the union of the umbrae created by each blocker Bi and at most the

union of the umbrae of the pair-wise intersections of the penumbrae.

These volumes have been used in many algorithms [nish83] [camp90] [chin92] [poul92b]

[bao93] to speed up shadow determination. These volumes are used by these algorithms to

characterise the visibility of a light source from a surface element to shade. Ultimately the

algorithm can identify the blocker or even the edges of the blocker that must be reprojected

onto the light source to determine the visible portion of the light illuminating the surface

element to shade.

Much work in radiosity has lately paid attention to the discontinuities in shading produced

by shadows [heck91b] [heck92b] [heck92a] [camp91] [sale92] [lisc92] [lisc93] [tell92] [stew93] in

order to produce surface meshes more suitable for proper radiance interpolation. The surfaces

are intersected with the volumes. For a region on a surface that resides within a single volume,

the radiance is sampled at a few surface elements and the radiance function is reconstructed

for the entire region.

If the radiance over a light source is smooth (C1), the radiance over a planar receiver will

also be smooth unless a change occurs in the visibility of the light source. Discontinuities in

the radiance function are introduced by the presence of shadows. Heckbert [heck91b] identi�es

three types of radiance discontinuities (D0; D1 and D2) on a receiver illuminated by a light

source with a smooth radiance. A discontinuity is Dk at x if the radiance function is Ck�1

continuous at x but not Ck. If the radiance on the light source is smooth, discontinuities of the

radiance on the receiver will occur at special visual events in space that is when light vertices

or edges and blocker edges align.

In Campbell and Fussell report's [camp91], only minimum and maximum extremal planes

are considered to determine the illuminated, umbra and penumbra region(s) of a single light and

a single blocker. However to produce accurate meshes within shadow regions, all discontinuities

are of interest.

These regions have a similar interpretation in computing the aspect graph of polygonal

scenes in computer vision [gigu90] [gigu91]. In an aspect graph, the projections of lines seman-

tically identical (i.e. de�ning the visibility of a face) are regrouped for di�erent views of a scene.

Stewart and Ghali [stew93] construct a subset of the aspect graph. The �-aspect graph, where

� is a polygonal light, determines the views in space such that the visible light polygon keeps

the same structure.

A D0 discontinuity occurs at the boundary of a shadow volume created by a directional or

a point light source. It can also occur with a polygonal light in a situation such as illustrated

in Figure 4.23. The blocker B intersects the rectangle receiver. The radiance on one side of

the receiver is non-zero while the radiance on the other side is zero. A scene made of m edges

and illuminated only by polygonal lights can produce �(m2) D0 discontinuities [lisc92] as �(m)

edges can intersect O(m) faces.

Chapter 4. Shadows 47

B

L

Figure 4.23: A D0 discontinuity

D1 and D2 discontinuities occur at edge-vertex (EV) and edge-edge-edge (EEE) events

when the blocker does not intersect the receiver but lies between the light and the receiver. An

EV event produces a D1 or a D2 discontinuity. Figure 4.24 shows the change of visibility of a

light. In a), when a vertex of light L and an edge of blocker B align, the light becomes visible,

a) D b) D
12

B B

L L

Figure 4.24: EV event

producing a D2 discontinuity. After, the visible area of the light grows quadratically. In b),

two edges of both light L and blocker B are parallel. When these edges align, light L becomes

visible, producing a D1 discontinuity. After, the visible area of the light grows linearly. A scene

made of m edges can produce O(m2) EV events [heck91a]. An EEE event generally produces

a D2 discontinuity. The envelope of such an event is de�ned by a quadric ruled surface as it is

determined by a set of lines adjacent to all three edges at the same time. Figure 4.25 shows the

change of visibility of a light L when a light edge and two edges of blockers B1 and B2 align.

After, the visible area of the light grows quadratically. A scene made of m edges can produce

O(m3) EEE events [heck91a].

In radiosity, where a receiver with discontinuities can itself be considered as a secondary

light source, a discontinuity Dk can propagate discontinuities Dk+1 and Dk+2 on other receivers.

Since in the framework of this thesis we deal only with local illumination, we can concern

ourselves only with D0, D1 and D2 discontinuities.

Chapter 4. Shadows 48

L

B2

B1

D
2

Figure 4.25: EEE event

It is interesting to note that a linear light in a 3D environment can also produce D0, D1

and D2 discontinuities. In atland [heck91a], a linear light can introduce only D0 and D1

discontinuities.

When the number of area light sources is increased, the shadows must be computed for

each light source individually. Then, to determine the radiance at a given location, one must

�nd the regions within which the surface element being shaded resides and must determine the

portion of each light reaching the surface element.

4.3 Shadowing with Linear Light

In the previous chapter, we presented an analytical solution to shading surfaces illuminated by

a linear light. This solution provides a good approximation of real illuminants like uorescent

and neon tubular lights. The proposed shading therefore gives a better impression of real-

ism. However the shadows cast by objects illuminated by a linear light must also be properly

computed in order to not destroy but even accentuate this realism.

These shadows can be generated by approximating the linear light by a series of collinear

point lights located along the linear light. Unfortunately they will be prone to the same sampling

and rasterisation problems we faced for the shading. Instead of producing a smooth gradient

in the penumbrae along the direction of a linear light, discrete regions could appear, thus

destroying the perception of a single linear light.

Nishita et al. [nish85] describe an algorithm to compute the shadows produced by linear

lights in a scene made exclusively of convex polygons. Given a linear light source and a polygon

casting a shadow on a planar surface, the polygon vertices are projected onto the supporting

plane of the surface, taking as center of projection alternately each of the two end points of

the light. Once the contour lines of the shadows from both end points are determined, the

convex hull of these shadow polygons is computed and stored as the entire shadow region. The

intersection of the contour lines is also stored as the umbra region. Later on during the scanline

process, if a surface element is inside a penumbra region, the polygons producing this penumbra

are projected back onto the light source and the shading is computed for the segments of the

Chapter 4. Shadows 49

P

Linear Light Source

X

Y

Figure 4.26: Visibility of the Light Source

light source that are visible from the surface element to shade. Otherwise if the surface element

is illuminated, the full shading is computed without any extra shadowing test. Finally, if the

surface element is in an umbra region, only the ambient reection is considered.

Later, Nishita et al. [nish92] observed that some optimisation can be achieved for scenes

with many aligned uorescent lights on a ceiling. Rather than classifying each shadow region

[nish85], they take advantage of the fact that several linear lights (segments) might lie along a

single line and apply a scanline rendering technique to determine which portions of each linear

light illuminate the surface element to shade. The shading is then computed for these visible

linear light segments.

4.3.1 Primitive-based Shadowing

Instead of determining each shadow region, we decided to compute the visible portion of the

linear light source from the point being shaded. In that sense, this approach to shadowing is

basic but allows primitives other than polygons. When a surface element centered at point P

has to be shaded, the light source is �rst cut by the plane tangent to the normal at P because

no light can shine on P from an angle of more than �
2 of the normal at P . If a portion of the

light source is visible from P , a triangle (the light triangle) is formed by joining the end points

of the linear light and P . If an object intersects this triangle, its intersection casts a shadow

on P . This intersection is projected onto the light and the shading is computed only for the

visible segments of the light. In the case of the specular integral, the visible segments must also

be cut such that for all segment i, j�ij <
�
2 and j�i + ij <

�
2 in Equation 3.11 (i:e: ~Re �L > 0).

Let O be an object that may cast a shadow on P . The �rst test consists in intersecting

Chapter 4. Shadows 50

the plane supporting the light triangle (the light plane) with object O. If the computations

involved in intersecting O with the light plane are expensive, the simpler bounding volume of

the object can be used instead to quickly reject the objects trivially not intersecting the plane.

If it is determined the object does not intersect the light plane, then object O does not cast any

shadow on P . Otherwise, the light triangle is transformed into the object coordinate system

where more accurate tests can be performed. Afterwards, if indeed the object O intersects the

light plane, it is transformed in such position that the light lies on the X axis with one end

at the origin and the intersection point P lies on the plane z = 0 on the positive side of Y

(see Figure 4.26). This involves only a series of rotations and translations, leaving the basic

de�nition (shape) of the primitive unchanged. The remaining work consists in identifying the

intersection between a primitive and the plane z = 0 and projecting in 2D the result of this

intersection onto the X axis.

As an example, take a sphere that has been transformed by a series of scaling and shearing

operations. The light triangle is �rst transformed in the sphere coordinate system where it is

easier to determine if the sphere intersects the light plane. The intersection between the plane

and a sphere is either null, a point or a circle. In the �rst two cases, no shadow is produced. For

a circle, the two tangent points from P or the intersection between the circle and the X axis

de�ne the visible segments of the light source. Again, Figure 4.26 illustrates these two cases.

For simple objects like polygons, the transformation in the object coordinate system is not

required and the transformation matrix bringing the light triangle onto the plane z = 0 and

the linear light along the X axis needs to be computed only once per intersection point P .

For other more complicated objects like cubic patches, �nding the intersection between a light

triangle and the primitive can be a very di�cult task. Rather than not treating the shadowing

of these primitives in the presence of a linear light, we o�er an approximate solution based on

distributed ray tracing. Rays are shot from P towards the linear light and intersected only with

this primitive. The number of rays is determined as a function of the angle made when joining

P with the two end points of the light. In a �rst pass, a regular set of rays are shot to roughly

determine the edges of the intersection with the light plane. In a second pass, additional rays

are used to re�ne the projection edges. At this stage, some random jittering is added to the ray

directions, substituting aliasing by noise, which is very e�ective within the penumbra region.

This technique has the advantage of being rather general to approximate the visibility of the

linear light from P . In fact we rely on this approach for every primitive di�cult to intersect with

a plane. Unfortunately, it is not awless as the edges of the intersection are basically determined

from a limited set of rays and ultimately it has the same problems than any sampling technique.

Although the results so far have been visually pleasing, we advocate the proper intersection of

each primitive with the light plane. For instance, Fournier and Buchanan [four92c] subdivide

a B�ezier cubic patch into bilinear patches. These can e�ciently be used instead of the patch

itself for shadowing computation.

It is important to note here that as soon as we know that the whole light is hidden, the

Chapter 4. Shadows 51

shadowing process is stopped. The intersection/projection scheme described in this section can

be relatively expensive. It is therefore essential to eliminate the objects not intersecting the

light triangle as quickly as possible. The next two sections describe two algorithms that we

implemented to reduce the number of objects that are candidates for casting a shadow on the

surface element to shade.

4.3.2 Light Triangle 3D Scan Conversion

We implemented our shading and shadowing algorithms into our local ray tracer. Our �rst

acceleration scheme for shadowing is an extension of a standard ray tracing acceleration scheme.

To reduce the number of objects that a ray must test intersection with, we subdivide the scene

into regular cubes, also called voxels. Each voxel contains a list of objects intersecting this

particular voxel. When a ray traverses a voxel, only the objects intersecting this voxel have to

be tested. We use the regular grid traversal described in Amanatides and Woo [aman87]. Once

an intersection point is found, a light triangle is formed. This light triangle is scan converted in

the 3D grid of the scene. The objects intersecting a voxel intersected also by the light triangle

are gathered. This possibly smaller set of objects is then tested and projected onto the light

source as described in the previous section.

Although we implemented this technique with regular grid traversal, it can easily be adapted

to various other space subdivisions like irregular grids, octrees, kd-trees and hierarchies of

bounding volumes. While the scan conversion of light triangles through these structures might

prove to be more complex, it might reduce further the number of structure elements visited

and the number of candidates.

4.3.3 Linear Light Bu�er

In our second scheme, a modi�ed light bu�er [hain86] for linear light sources has been imple-

mented. In the traditional light bu�er, a cube is placed around a point light source. As a

preprocessing step, each object in the scene is projected onto the faces of the cube. Each face

is subdivided into regions and each region contains a list of objects projecting onto it. Each

list can be ordered by the distance to the light. When a surface element to shade has to be

determined in shadow or illuminated, it is projected onto the light bu�er and only the objects

into its region need to be tested. These objects are tested in order from the light until we �nd

an intersection or until the distance to the light of the next object is larger than the distance

from the surface element to the light.

Our linear light bu�er is represented by an in�nitely long cylinder whose axis is oriented

along the light. This cylinder is subdivided radially in sections. Each section has an ordered list

of objects contained (at least in parts) within the limit of its angle. To improve the performance

of the linear light bu�er, we also divide it in three regions: the left, center and right side of

the light source. This is illustrated in Figure 4.27. When an intersection point P is found, it

Chapter 4. Shadows 52

Linear Light Source

Section

RightLeft Center

Figure 4.27: The Linear Light Bu�er

is located within an angular section of the linear light bu�er. If it is positioned in the center

region, only the objects at least partly in this angular section and in the center region need to

be tested. If P is in the left region, only the objects in the left and center regions need to

be tested, and similarly for the right region.

4.3.4 Results of Shadowing with Linear Light

In the scan conversion of the light triangle in the 3D grid, no additional memory is needed.

No preprocessing is required but the scan conversion process for each point to shade can be

rather expensive. Table II and III illustrate our results for two test scenes.1 Figures 4.29 and

4.28 show the rendered version of those two scenes. In Table II, the rendering times have been

normalised by the time required to render the same scene with a grid of 53 voxels and without

using the scan conversion of light triangles. In the tetrahedron scene, scan converting the light

triangles into a grid resolution of 53 is 25% more expensive than no scan conversion. This

is due to the facts that just a few voxels contain lots of small triangles and that identifying

if a triangle intersects the light plane is a relatively cheap process. However when the grid

resolution increases, each light triangle is scan converted in smaller voxels with less candidates

per voxel. The number of triangles candidate is greatly reduced, which o�sets the extra cost of

scan conversion. The rendering cost is then reduced by as much as 76%. Notice that increasing

the grid resolution does not always result in a speed up. In the tetrahedron scene, a grid of

503 is less cost e�ective than 253. The sphereakes scene is more problematic and shows some

instability with the algorithm. The bottom square is much larger than the spheres that are

agglomerated in the center of the scene. Because of this situation, many spheres are divided in

just a few voxels. The scan conversion is highly sensitive to variations in the grid resolution, as

demonstrated by its unpredictability.

In the linear light bu�er, the pointers to the objects for each region within each section of

1These two scenes, the sphereakes and the tetrahedron, have been suggested by Haines [hain87] in an attempt

to help benchmarking rendering techniques. The sphereakes scene consists of 91 spheres de�ned recursively and

a square. The tetrahedron scene is represented by 1024 tetrahedron recursively positioned in a pyramid-like
structure. To test our algorithms, a linear light source is located above each scene.

Chapter 4. Shadows 53

Figure 4.28: Tetrahedron Figure 4.29: Sphereakes

each linear light bu�er need to be allocated. The assignment of an object to the appropriate

sections and regions is done in preprocessing. During rendering, a surface element needs only

a simple projection to determine the right section and region. An adaptive subdivision of the

angular sections can be extended for the linear light bu�er but this has not been done in our

current implementation.

In Table III, the usefulness of the linear light bu�er is evaluated. All the rendering times

are normalised by the rendering time using no linear light bu�er (a single section per linear

light bu�er) and no grid. It is interesting to note that unlike the scan conversion of the light

triangle, this algorithm is very stable for both scenes. As the grid resolution increases, fewer

objects are tested for intersection for each ray, thus reducing the whole rendering time. As the

number of sections in the linear light bu�er increases, the rendering time decreases steadily.

Table II: Light Triangle

Database Light Grid Resolution

Triangle 53 103 153 203 253 503

tetrahedron Inactive 1.0000 0.8926 0.8719 0.8657 0.8615 0.8642

Active 1.2532 0.5239 0.2925 0.2689 0.2385 0.3740

sphereakes Inactive 1.0000 0.9059 0.9022 0.8863 0.8742 0.8629

Active 1.2342 0.7969 0.9722 0.8245 0.8696 1.5742

Chapter 4. Shadows 54

Table III: Linear Light Bu�er

Database Grid Linear Light Bu�er Resolution

Resolution 1 24 36 72 144 360 720

13 1.0000 0.9732 0.9508 0.9425 0.9236 0.9120 0.9127

53 0.1429 0.0455 0.0410 0.0359 0.0333 0.0318 0.0314

103 0.1275 0.0303 0.0256 0.0206 0.0180 0.0166 0.0160

tetrahedron 153 0.1246 0.0418 0.0227 0.0177 0.0151 0.0138 0.0132

203 0.1237 0.0384 0.0223 0.0168 0.0142 0.0128 0.0123

253 0.1231 0.0341 0.0214 0.0163 0.0138 0.0122 0.0117

503 0.1235 0.0534 0.0209 0.0159 0.0133 0.0118 0.0114

13 1.0000 0.6656 0.6291 0.5751 0.5505 0.5332 0.5281

53 1.0270 0.6834 0.6449 0.5916 0.5678 0.5471 0.5497

103 0.9304 0.5809 0.5446 0.4876 0.4676 0.4479 0.4466

sphereakes 153 0.9266 0.5782 0.5392 0.4858 0.4644 0.4449 0.4411

203 0.9103 0.5606 0.5229 0.4796 0.4481 0.4280 0.4258

253 0.8979 0.5486 0.5112 0.4688 0.4347 0.4156 0.4130

503 0.8863 0.5366 0.4974 0.4579 0.4212 0.4031 0.3990

4.3.5 Conclusion on Shadowing with Linear Light

On a simple test scene, we observed that for a few primitives, shading and shadowing with a

linear light source is equivalent in computation to using 10 point light sources. However using

this few point light sources results in pictures showing discretisation artifacts within the shadow

regions. For primitives as complicated as patches, the number of point light sources equivalent

in computation is around 25.

An algorithm is introduced to handle correct shadowing with more complex primitives than

polygons. This algorithm adds more exibility in the primitives casting shadows from a linear

light source at the cost of more expensive intersection computations. In order to reduce the

additional cost of using this shadowing algorithm, we studied two techniques based on ray

tracing acceleration techniques. The scan conversion algorithm has the advantage of requiring

no additional memory. However the scan conversion process is rather expensive and it is di�cult

to evaluate the dimension of the grid subdivision that would provide a good speed up of the

shadowing calculations. The linear light bu�er requires additional memory for each linear

light source. However its stability and the speed up observed made us choose this method for

rendering many of our scenes.

For certain primitives, determining the visible portion of the linear light source is very

complicated. A general approach based on shooting rays to determine the visible portion of

the light is used. With such a process, the cost of shadow determination is very high and the

Chapter 4. Shadows 55

tradeo� of both culling algorithms over no culling becomes even more worthwhile.

4.4 Shadowing with Area Light Sources

4.4.1 Sampling the Light

Most of the algorithms proposed to compute shadows from area light sources are based on

sampling the light source to determine the visible part from the point to shade.

Cook et al. [cook84a] use distributed ray tracing where a set of rays are sent to the area

light to sample the light radiance reaching the surface element to shade. Various techniques

have been proposed to improve the sampling pattern of the light source [mitc91] [shir91]. Kok

and Jansen [kok91] [kok92] devise some criteria to decide adaptively how many rays should be

sent to the area light source. Ward [ward91] estimates the importance of the contribution of

each light before sending samples. The low contributors are statistically approximated without

shooting any ray. Similarly, Chen et al. [chen91] treat a light source only when its radiosity has

a signi�cant impact on the global illumination.

Cohen et al. [cohe85] propose the hemicube approach. A hemicube consists of �ve faces

regularly subdivided in pixels. The hemicube could be positioned on the center of an area

light source and therefore act just like the light bu�er of Haines and Greenberg [hain86] with

the exception that in the hemicube, only the closest object is kept for each hemicube pixel.

Therefore an object is assumed to cover entirely a hemicube pixel. The hemicube has the

advantage that it is simple and can make direct use of current hardware Z-bu�ers. However it

su�ers because of its regular subdivision. It can present strong aliasing and can miss features

(shadows) if its resolution is not �ne enough. Max and Troutman [max93] show how the

hemicube can be improved upon by allowing a variation of the resolutions of the pixels on each

face and by rotating the hemicube about the surface normal. Meyer [meye90] uses the hemicube

information before shooting rays towards an area light. Pietrek [piet93] combines hemicube,

ray casting and analytical techniques to quickly and accurately compute form factors. He also

gives some criteria to decide which approach should be used in which situation based on the

information contained in adjacent pixels in the hemicube. Sillion and Puech [sill89] replace

the hemicube by a single plane with varying surface elements according to the solid angle they

produce.

All these techniques su�er from sampling that is done at the center of a primitive (generally

a polygon) to represent the shadowing over the entire surface.

4.4.2 Extended Rays

Instead of using sampling rays, Amanatides [aman84] extends the concept of a ray to a cone.

By doing so, he can compute the shadows cast from a spherical light source. A single cone

is sent to the light and the non-obstructed portions of the cone determine the portion of the

light shining on a point. To reduce the cost of intersecting a cone with many objects, Genetti

Chapter 4. Shadows 56

and Gordon [gene93] �t a cone over the light and recursively subdivide this cone into smaller

cones until each cone is either considered fully illuminated, in shadow, or until the subdivision

reaches a certain threshold.

Heckbert and Hanrahan [heck84] describe beam tracing where a polygonal ray is sent towards

a polygonal light to determine the visible part of the light. Polygonal objects clip the beam as

it progresses towards the light.

4.4.3 Characterising Regions

As we saw earlier, a shadow introduces discontinuities in the radiance function over a receiver.

Baum et al. [baum91] use D0 discontinuities produced at the intersection of polygons supported

by non-parallel planes to create better meshes for radiosity computation. D0 discontinuities also

occur in the shadow (umbra) from directional and point light sources. The shadow volumes

[crow77] from a point light source have been represented by a binary space partion (BSP)

tree by Chin and Feiner [chin89]. Campbell and Fussell [camp90] create meshes for shadow

discontinuities in radiosity by distributing a series of point light sources on a polygon emitter

and generating the meshes (BSP) for each point light. This technique can lead to a large

number of subdivisions as each light might need to be approximated by a large number of point

light sources.

Nishita and Nakamae [nish83] compute the shadow with its umbra and penumbra (D0; D1

and D2) regions cast by a convex polygonal blocker when illuminated by a convex polygonal

light. They project every edge of blockers from every vertex of the light. The shadow is

determined as the convex hull (if both light and blocker are convex polygons) of the shadow

volumes from each light vertex while the umbra corresponds to the intersection of these shadow

volumes. The reected radiance is computed point by point at the rendering stage. If a point

on a polygon is fully lit by the light, the radiance is computed directly without any further

shadow test. If this point lies in an umbra region, only the ambient contribution is added. If

the point is in penumbra of one or more polygons, the polygon(s) casting this shadow must

be projected back onto the light and the radiance is computed only for the visible portion

of the light. When the information about which polygon is casting a given penumbra is not

provided, some techniques allow fast culling of the polygons [hain91] [woo93]. These techniques

rely mostly on the plane equations formed by linking the point to shade to the edges of the

light.

Bao and Peng [bao93] use a technique similar to [nish83] but rely on a BSP structure to

order the polygons casting a shadow on the others. The light source is subdivided if it lies on

both sides of the supporting plane of a scene polygon. Instead of considering only the planes

formed by the scene edges and the light vertices, Chin and Feiner [chin92] also compute the

planes formed by the light edges and the scene vertices. Thus they avoid the use of Weiler-

Atherton [weil77] [athe78] clipping algorithm and construct similar umbra and penumbra BSP

trees for each light. This latest approach has also been used by Campbell and Fussell [camp91]

Chapter 4. Shadows 57

with more theoretical assertions about the boundary of each region.

This kind of approach characterises regions in space as illuminated, in umbra or in penumbra

of a single blocker. However, they do not characterise regions that would be in umbra as a result

of the combined action of two or more blockers. Therefore all the polygons for which a point is

in penumbra must be projected back onto the light source to determine the portion of the light

visible from the point to shade. Obviously, this can be an expensive process. As an example,

assume a �nely meshed object lies under an area light. Individually, every facet of the object

produces a very small umbra but together they can cast a large umbra.

Campbell and Fussell [camp91] observe that the radiance within each penumbra region is

not linear and simple linear interpolation of a few sample points do not provide the proper

values for each point in a given regions. They propose to subdivide each region according to

the radiance function. The maximum radiance points are found by numerical optimisation

techniques and each region is further subdivided accordingly. Drettakis and Fiume [dret93]

show how a few sample points can be used to reconstruct the radiance function in the absence

of shadows.

Instead of characterising only the contour of the penumbra and umbra volumes, other re-

searchers have studied the e�ect of the discontinuities within the penumbra regions. Most of the

algorithms start by �nding all the critical curves formed by a vertex of the light and an edge of

the scene or by a vertex of the scene and an edge of the light. Heckbert [heck92a] �nds the end

points of each critical line lying on a given polygon, identi�es the intersections between these

line segments and subdivides each region with a Delaunay triangulation. A parametric surface

is �nally �t to each triangle to represent the radiance over the region. Lischinski et al. [lisc92]

use the same scheme but represent the scene with a 3D BSP tree and store the critical curves

(lines) on each polygon with a 2D BSP tree. A quadratic interpolating surface is �tted over the

radiance and contributions of lights and reectors (forming di�erent meshes) are summed over

a global mesh. Salesin et al. [sale92] present a solution that �ts piecewise cubic interpolants

to the radiance, thus preserving C1 continuity. Finally, Lischinski et al. [lisc93] merge their

discontinuity meshing algorithm with the hierarchical radiosity of Hanrahan et al. [hanr91] al-

lowing for a fast solution of complex environments that produces images of higher quality due

to the presence of more proper radiance discontinuities.

In all the previous approaches, the discontinuities produced by three edges are not computed.

Teller [tell92] presents an algorithm to compute EV and EEE discontinuities in an antipenumbra

by converting every segment in the Pl�ucker coordinate system. In this 5D system, a directed

line corresponds to a half-space delimited by a plane in the Pl�ucker coordinates. A set of all

directed segments forming the holes de�ne a convex polytope. The intersection of an edge of

the polytope with the Pl�ucker quadric surface determines an end line of a discontinuity. The

intersection of a face of the polytope with the Pl�ucker surface de�nes a VE (planar) or a EEE

(quadratic ruled surface) discontinuity. Stewart and Ghali [stew93] use a plane sweep approach

starting at the light source. The intersections of scene edges and faces with the plane are

Chapter 4. Shadows 58

recorded and processed in order, thereby constructing the aspect graph as seen from any point

on the light.

4.5 Conclusion

Shadows provide important information and therefore play a role essential in our interpretation

of the world. However as we saw in this chapter, properly and e�ciently computing realistic

shadows in computer graphics is an expensive process.

Characterising each shadow region in a scene has the advantage that it can be done once

as preprocessing and can lead to important savings in a static environment. It can also allow

computation of the radiance function over an entire region. However this process requires to

compute all the regions, even if some shadows are not visible. These regions must be stored and

queries about points in these regions have to be answered e�ciently. Moreover, as the dimension

of the light increases, the complexity of the regions grows, making the characterisations of

regions much more di�cult.

Sampling the light on a need-to-know basis is a simple process. However it is done at the

risk of missing some blockers and can be expensive for large lights in complex environments.

To avoid missing blockers, the blockers can be projected back onto the light, thus revealing the

portion of the light as seen from the point to shade. This is done at the increased cost of doing

the light clipping.

Intermediate techniques have been used to characterise regions as being in the shadow

(umbra or penumbra) of individual blockers or fully illuminated. These techniques have been

popular as they often o�er a nice compromise between computing the shadows at every point

and characterising every region.

In our approach to shadowing with linear light sources, we chose to recompute the inter-

section of a light triangle with a scene for each point to shade. This provided us with a simple

algorithm adapted for each type of primitive in order to render soft shadows. Two culling tech-

niques have also been developed to reduce the number of objects potentially casting a shadow

on the point to shade. This decision seemed the most appropriate in a ray tracing renderer.

However this decision must be made for each application domain.

In the next chapter, we will see how the shadow regions as well as the shading on the surfaces

can be used to specify the illumination and surfaces characteristics within the modeling process.

Chapter 5

Lighting Design by Shading and Shadows

In the previous chapters, we reviewed various reection models to compute the shading of

many surfaces. We also presented algorithms to compute the shading and shadows of scenes

illuminated by linear and polygonal lights. All these models and techniques provide tools to

a user to create images of scenes with a higher degree of realism. However, the user must

understand very well the reection models and their relationships with the illuminants in order

to produce the right shading e�ects in the scene she is designing.

In most modeling systems, lights are created and manipulated just like any geometric object.

A user must then assign to each light an emitted power as a function of wavelength. Similarly,

the user must provide values for the various surface parameters. At each step, the only way to

observe the results of the changes is by rendering the scene. Depending on the scene complexity,

the rendering technique and the quality needed for the intermediate image, a resulting image

can be produced in times ranging from a fraction of a second to hours. With this feedback,

the user can return to the modeler and again change the parameters to create better shading

e�ects. This process is repeated until the image corresponds to what the user wants or until

the user �nally decides, often after many frustrating iterations, that the image is as good as it

is going to get.

The task is not simple because the user must perform mentally an inverse shading. She

can know which shading e�ect she wants on a surface, but must determine the values for each

surface parameter and each light position and emitting power that will translate into the desired

shading.

In this chapter, we describe how we incorporate shading and shadow informations into the

modeling process itself. By creating and directly altering these shading e�ects, the lights and

surfaces are indirectly speci�ed. Our modeler thus helps to determine where a light should be

to produce a shadow here or a highlight there. It can also provide values for surfaces parameters

to create a highlight of a certain size or to �t selected colours at surface points.

Our approach reduces the number of inverse shading tasks that a user must perform. It

should lead to important savings in the number of modeling/rendering iterations. It also frees

the user from knowing all the speci�cs of shading models and can prevent this user from having

to enter magic numbers. Any user, whether experienced or not, should bene�t from the extra

information provided by our modeler.

Our new process does not preclude previous ways of de�ning and positioning light sources or

specifying reection parameters. In fact, one can still move the light sources directly, just like

59

Chapter 5. Lighting Design by Shading and Shadows 60

any other object in the scene, or specify surface characteristics by entering values for various

shading parameters. Our techniques thus o�er a new approach that enhances the process of

lighting design and surface shading.

In the next sections, we quickly review some computer vision techniques for extracting

information from shading features in an image. We see how di�cult some of these problems are

because of a lack of information (constraints). In a modeler, viewing parameters and the exact

scene geometry are known. Because of this, many problems become much simpler to solve. We

show how di�use and specular reections can be used to determine the geometric location of

a light. We also describe a technique to de�ne and position a light from the shadows it cast.

Finally, we demonstrate how the modeler can �t the \best" values of the shading parameters

to colour points applied on a surface.

5.1 A Parallel with Computer Vision

Computer graphics builds models to simulate reality. Once built, the user renders these models

onto an image. In this sense, computer graphics models the causes (the interaction of light with

matter) and renders the e�ects (colours) as an image. By way of contrast, computer vision is

interested in analysing an image. It tries to isolate certain e�ects in an image in order to

estimate the causes. While the two processes might seem to go in totally opposite directions,

it is interesting to consider how advances in one might actually help the other.

An important research area in computer vision is analysing shading information to extract

object shape, light orientation and surface characteristics from an image. There is an extensive

literature on recovering shape from shading.1 By integrating the shading gradient, it becomes

possible to infer a surface that would produce the shading. The technique has several limitations

because boundary conditions are often unavailable. In fact, it is di�cult to determine what

portion of a pixel colour is due to the surface at a boundary because we do not know the pixel

coverage. Real surfaces are not generally ideal di�use reectors and interreections between

surfaces reduce the accuracy of the reconstructed surface. Much research still involves producing

more general solutions, although shape from shading is a very di�cult problem to solve without

relying on additional assumptions.

Finding the light source direction from shading is a complementary problem to shape from

shading. By assuming a scene is made of di�use surfaces and a uniform isotropic distribution

of surface normals, Pentland [pent82] applies a least-squares regression to the pixels intensities

and gradients to determine the most likely light direction. However, when his assumptions are

violated, it becomes very di�cult to rely on his technique.

Highlight information has been used to determine light direction or local shape orientation.

Babu et al. [babu85] study contours of constant intensity in an image to determine the orienta-

tion of planar surfaces under the illumination of a directional light source. Buchanan [buch87]

1For a collection of important results in this area, see [horn88] and [wolf92].

Chapter 5. Lighting Design by Shading and Shadows 61

�ts ellipses to the highlights to obtain the same information for planar surfaces illuminated by

point light sources. One important requirement of most of these algorithms is the accurate

identi�cation of the highlight area. This area is often detected by some kind of thresholding

technique. The unfortunate situation with thresholding is that di�erent threshold values can

lead to relatively di�erent shape of the highlight and, therefore, to di�erent shape and light

recovery. Other techniques, such as the use of polarisation [wolf91], are promising, although

they require the presence of polarising lenses on the cameras capturing the scene.

Much useful information can be extracted from the shadow areas in an image [walt75]

[shaf85]. These areas provide additional information on the shape (pro�le) of the object casting

a shadow and even on the shape of the object on which the shadow is cast. Moreover, they

provide information on the direction and the shape of the light sources. However, shadows of

dim lights will produce only very small changes in shading gradients. Similarly, the presence

of several lights (possibly extended lights) and interreections will create many shadows for

each object. This amalgam of overlapping shadows will make the situation very di�cult to

interpret. Detecting shadows can be done in a manner similar to edge detection by applying

various edge enhancing �lters. For extended lights, the shadow edges are soft and the shadows

must be detected based on changes in the gradients of the surface shading. Gershon [gers87]

uses gradients in colour space to determine if a region corresponds to a shadow region or simply

to a change of material.

While modeling a scene, a user has access to important information unavailable to computer

vision, i.e. the geometry of the scene and the viewing parameters. To better understand a 3D

scene, the user can move her view point around, display at the same time several views of the

same scene, move objects, and remove hidden surfaces, all in real time. However, very few

current applications use information about shading and shadows to improve the e�ciency of

the modeling step. In this chapter, we investigate how to de�ne and manipulate light sources

and to specify surface shading parameters.

5.2 De�ning and Manipulating Light Sources

With the advent of high performance graphics hardware, it becomes possible to interactively

create and manipulate more complex models with a higher degree of realism. The simple wire-

frame models of yesterday can now be replaced by illuminated, smooth shaded, depth bu�ered,

textured (�ltered) and antialiased polygons, while still retaining real time interaction with the

models.2 Hanrahan and Haeberli [hanr90] demonstrate with their system how current graphics

hardware can be used to paint textures and various other surface parameters (transparency,

perturbation of surface normals, etc.) directly onto surfaces in a fully interactive system. This

increase in rendering power allows us to better investigate light de�nition and manipulation

from shadings and shadows as well as specify surface characteristics by their shading e�ects.

2As point of reference, the Silicon Graphics RealityEngine [akel93] is reported to have performance exceeding
one million antialiased, texture-mapped triangles per second.

Chapter 5. Lighting Design by Shading and Shadows 62

In the next three sections, we describe how light sources can be de�ned and manipulated

from di�use reections, highlights and shadows. The advantages of each technique are demon-

strated and their respective limitations are explained to give a better insight on the e�ciency

of each technique.

5.2.1 Lights from Di�use Reections

A di�use surface appears equally bright from every angle. For most surfaces, the shading

gradient provided by this model o�ers an important clue to understand the shape of a surface.

Recall the di�use contribution to the pixel radiance of a surface element illuminated by a

directional light (Equation 3.3):

Lpixel = kd(~N � ~L)E0:

In this equation, we assume that all the terms are constant except for the light direction ~L. ~N

is the surface normal at a given point.

This formulation tells us that for a given point on the surface speci�ed as the maximum

intensity of the di�use reection function, a unique directional light source can be determined

when (~N � ~L) = 1, which occurs at
~L = ~N:

The term maximum intensity is not properly correct if we think of it in the context of a

complete shading model with di�use and specular reections. However if in a scene all is �xed

except for the direction of the light, this maximum intensity will �nd the direction of the light

that will produce the maximum irradiance on the surface element. It is interesting to note that

other surface elements on this surface might also reach this maximum irradiance but will never

surpass it.

The di�use reection as expressed above is independent of the viewer position. It is therefore

possible to change the viewer position while the di�use shading information remains the same.

Unfortunately, this technique is limited to specifying only a direction along which a light source

lies unless additional constraints are added to the system. Such constraints can exist in a

modeling system. For instance, the user can constrain the light to reside on a plane (such as

a ceiling in an indoor scene). By adding a point of di�use maximum intensity, a direction is

established. The intersection of this direction ray and the light plane3 can be used to de�ne a

point light source or a vertex of an extended (linear or polygonal) light source.

While a point light de�ned by this technique still maximises the above di�use expression,

it does not correspond to maximising the di�use radiance in the direction of the pixel for a

surface illuminated by a point light. Instead, one needs to maximise the di�use contribution of

Equation 3.5

Lpixel = kdfrd(~N � ~L)
�p

4�r2
:

3Note that there might not be any intersection.

Chapter 5. Lighting Design by Shading and Shadows 63

If all the terms are kept constant except for the light position, the maximum intensity of the

above equation occurs at

max

~N � ~L

r2

!
:

Without any additional constraint, this maximum occurs directly on the surface element. In

many indoor scenes, illuminants have �xed de�nition (a point light, a linear light of a certain

length or a polygonal light of a certain size) and thus must lie on the ceiling plane. By con-

straining the point light to lie on a plane, the maximisation can be expressed in Cartesian

coordinates (see Figure 5.30) as

max

2
4xp sin�� d cos�

(d2 + x2p + y2p)
3

2

3
5

where xp and yp are the only variables. The local maximum can be obtained with a nonlinear

optimisation algorithm.

x

y

d

O

N

x ,yp p

θ
α

Figure 5.30: Maximising (~N �
~L)

r2

This time the surface element is not necessarily the portion of the surface with the largest

irradiance. However, this point light does provide the maximum irradiance on the surface

element while still lying on the plane. A similar approach can be applied to linear and polygonal

illuminants if, for instance, the light can only be translated on the plane.

5.2.2 Lights from Highlights

Specular reection models light that is reected mostly around one direction. The light reected

this way corresponds to what we consider to be a highlight. Recall that the specular contribution

to the pixel radiance of a surface element illuminated by a directional light (Equation 3.3)

Lpixel = ksFs(~N � ~H)nE0;

Chapter 5. Lighting Design by Shading and Shadows 64

where ~N is the surface normal at a given point, ~H is the bisector vector of the eye direction

and the light direction, and n is the surface roughness coe�cient.

In this equation, we assume that all of the terms are kept constant except for the light

direction ~L (therefore ~H varies). This formulation tells us that for a given point on the surface,

speci�ed as the maximum intensity of the highlight, a unique directional light source can be

determined when (~N � ~H) = 1, which occurs when ~H = ~N , and therefore

~L = 2
�
~N � ~E

�
~N � ~E;

where ~E is the eye direction.

Once again, we interpret the term maximum intensity to mean maximising the radiance

function given above.

This simple relationship between the maximum intensity of the highlight and the light

direction has been used in the past. Hanrahan and Haeberli [hanr90] mention how they specify

a light direction by dragging the point of maximum intensity of a highlight on a sphere. This

technique has also been implemented in two other modelers. A light modeler developed in 1983

at the New York Institute of Technology by Paul Heckbert manipulated highlights on a sphere.

A light editor written by Richard Chuang around 1985 at Paci�c Data Images was used to

position highlights at speci�c locations on ying logos. A similar approach at LucasFilm was

used to get a glare on a sword at a crucial moment in the movie Young Sherlock Holmes.

Our technique extends the basic approach by indirectly and interactively determining the

surface roughness coe�cient n in relation to the size of the highlight.

Once the maximum intensity point of the highlight has been selected, the user drags the

cursor away from this point. At a new position on the surface, the surface normal is computed.

This new point is used to determine the boundary of the highlight, i.e. where the specular term

of the radiance reaches a preselected threshold t. To satisfy this threshold, n, the only free

variable in (~N � ~H)n = t, is easily computed as

n =
log t

log(~N � ~H)
: (5:13)

While only these two points on a surface are necessary to orient a directional light source and

establish the surface roughness coe�cient, they give very little information about the complete

shape of the highlight. To approximate the contour of the highlight, the pixel with the maximum

intensity is used as a seed point and the neighbouring pixels covered by this surface are visited in

a boundary �ll fashion [fole90] until pixels on both sides of the threshold are identi�ed or until

the boundary of the visible surface is found. With this boundary �ll algorithm, the second

point is not guaranteed to be enclosed by the contour of the highlight determined from the

original seed point. Figure 5.31 represents a shape where the point of maximum intensity and

the threshold point would de�ne two separate highlights from a unique directional light. If

this happens, the second point is also used as a seed. Unfortunately, unless each pixel covered

Chapter 5. Lighting Design by Shading and Shadows 65

threshold point

point of maximum intensity

Figure 5.31: Peanut with two highlights from one light

by this surface is visited, some of the possible other highlights produced by this light on this

surface might be missed. If the position of every highlight is necessary, every pixel covered by

the surface must be checked. This is done only when requested by the user because this can

lead to considerable increase in computation time, thus reducing the interaction speed.

Instead of using a screen based algorithm to trace the highlight boundary, we could have

followed the boundary curve directly on the surface via numerical methods. This provides a

more accurate de�nition of the highlight contour. However, because of its simplicity, speed and

generality (it is applicable to any rasterisable object), the boundary �ll algorithm proved quite

satisfactory in our application.

When n has already been determined for a given surface, care must be taken in order to keep

a unique value for n. If another highlight is created on this surface, as soon as the point with the

maximum intensity is selected, the contour of this new highlight is computed with the previous

value for n. However, this value for n and the position of the highlights are not �xed and can

be interactively changed because some information is kept in a temporary frame bu�er. In this

frame bu�er, each previously visited pixel contains information about its surface normal. The

contour can therefore be scaled down (i.e. a smaller highlight de�ned by a larger value for n)

very e�ciently. If the contour is increased, only the unvisited pixels need to have their surface

normals determined. It is also possible to move the highlight on the surface. This process is

more expensive if the highlight is moved to a completely di�erent location on the surface as

many surface normals might need to be computed. On some graphics hardware, information

on the surface normals can be obtained directly from the hardware, therefore allowing for even

faster highlight manipulation.

The contour of the highlight that we de�ne is an approximate representation of the highlight.

In the fully rendered surface, this highlight may appear di�erent because of the di�use reection

contribution and the ks factor that controls how much of the specular contribution translates

into radiance. The highlight can appear di�erent if a blocker resides between a point on the

highlight and the light direction. Shadow rays can be shot towards the light to determine the

Chapter 5. Lighting Design by Shading and Shadows 66

presence of blockers and to modify the boundary �ll algorithm with this information. Figure 5.32

shows a highlight produced by a directional light source over a patch of the teapot. The white

segment within the highlight region represents the point of maximum intensity. This segment

points towards the light direction.

Figure 5.32: Creating a light by its highlight

The highlight information is dependent on the eye position. Therefore, if the eye is moved,

every highlight in the scene must be recomputed. The points of maximum intensity will not

be valid anymore and consequently every surface must be revisited to recover every highlight.

This expensive process should be avoided as much as possible. This also means that a highlight

computed in one window would have a di�erent de�nition in another window for which a

di�erent projection is used. To avoid confusion and too much computing time, we decided

to remove all highlight information when the viewing parameters are changed. The lights

de�nitions and surfaces roughnesses are kept with the scene description. The highlights are

recomputed only upon request from the user.

Another limitation of using highlight information to describe a light source is that a highlight

determines only a direction. We therefore need more constraints to determine other types of

light source. Some of these constraints are described in the previous section when the di�use

reection approach was discussed. These are applicable here. Similar to the di�use reection

used to manipulate a light, if a point light, a linear light or a polygonal light are constrained

to lie on a given plane, the location of the light is controlled. This is solved with a nonlinear

Chapter 5. Lighting Design by Shading and Shadows 67

optimisation algorithm.

To represent highlights created by extended light sources, the contribution of each vertex

of the light is not su�cient to determine the shape of the complete highlight (Figure 5.33). To

display this information, the boundary �ll algorithm has to compute the specular integral for

a linear light (Equation 3.11) or a polygonal light (Equation 3.12) for each pixel visited. Such

integrals are rather expensive to compute. In order to achieve real time, cheaper approximations

based on precomputed tables help to reduce the cost. We did not investigate this approach in

this thesis, but relied solely on the partial information provided by the light's vertices.

Figure 5.33: Incomplete highlight information

Highlight information can be very useful to specify a directional light source and a surface

roughness coe�cient. With extra constraints, they can even be used to de�ne and control

point, linear and polygonal light sources. Shadow information can also be used to de�ne and

manipulate light sources. The next section describes how this can be done.

5.2.3 Lights from Shadows

As seen in the previous chapter, shadows provide very important clues to understanding the

geometry of a scene. In the context of this thesis, we use the fact that shadows can reveal

important information about the nature of a light source. We de�ne light sources by manip-

ulating their shadow volumes.4 These shadow volumes have the advantage of depending only

on the lights and the objects' positions. Therefore, as opposed to the manipulation of lights by

their highlights, the eye position can change without altering the description of the shadows;

the shadows are consistent for every projection. This allows for multiple windows to be opened

with di�erent orthographic and perspective projections, as is common in most of the modeling

systems.

4A shadow volume formed by a single object and a directional or a point light is the 3D volume within which

every point is in the shadow of the object [crow77] [berg86]. For extended light sources (linear, polygonal), the

shadow volume is the 3D volume within which every point is at least partly in the shadow of the object.

Chapter 5. Lighting Design by Shading and Shadows 68

Some systems have been reported to display shadows in real time. Blinn [blin88] describes

how an object scaled by zero in one dimension and coloured with a uniform darker shade can be

used to simulate a fake shadow approximating a shadow from a directional light source. Most of

the graphics hardware producing shadows in real time rely on shadow volumes [crow77]. In their

extension of shadow volumes for objects de�ned as unions, intersections and di�erences of other

objects (CSG objects), Jansen and van der Zalm [jans91] display shadows from directional and

point light sources. Chin and Feiner include shadow polygons in the BSP tree representation

of a scene. They display shadows from point light sources [chin89] and polygonal light sources

[chin92]. Segal et al. [sega92] use textures created from the light source to simulate shadows.

While all of these techniques can display shadows in real time or near real time, none de�nes

or manipulates lights from shadows. Some work in 3D user interfaces [hern92] describes how

the fake shadows of Blinn [blin88] are projected onto three orthogonal planes (or fake mirrors

when the object is fully shaded) to aid in transforming a model. This is part of a toolkit to

manipulate an object from its fake shadow or fake reection. This work is not concerned with

dealing with the light sources and realism.

The shadow volume created by an object illuminated by a directional light source consists

of a sweep of the object silhouette in the direction the light source shines. This silhouette can

be analytically determined for simple primitives, computed for moderately complicated objects

with algorithms like the one of Bon�gliolo [bonf86], sampled by studying the variation of surface

normals at the vertices of a tessellated object or sampled using the information in a Z-bu�er

orthographic projection of this object.

Specifying the direction of a directional light is simply a question of choosing two arbitrary,

although di�erent, points in the scene. The second point is considered along the shadow cast by

the �rst one. Figure 5.34 shows a cylinder illuminated by a directional light source. The white

point on the top of the cylinder represents the �rst point selected by the user. The line segment

originates from this point and intersects in 3D the plane underneath where the cursor points.

For some primitives, computing the exact silhouette can be an expensive process. Depending on

the application domain, an approximation of the shadow volume can be su�cient, allowing for

real time computation and display while still providing important information about the real

shadows. In the case of the cylinder of Figure 5.34, each polygon vertex forming the cylinder

is simply projected in the direction the light shines.

In our modeler, we use four di�erent representations for the shadow volumes. The �rst

one consists of (1) simple line segments originating from points on the blocker (not necessarily

all on the silhouette). This representation is fast and allows a user to easily select a speci�c

line segment. The backfacing faces of the shadow volumes and the objects behind the shadow

volumes are still visible. The shadow volumes can also be displayed as (2) opaque or (3) semi-

transparent volumes. It is then easier to see the shadow volumes as 3D objects and determine

the parts of surfaces that are intersecting the shadow volume. It also allows a user to easily

select a frontfacing face of the shadow volume. The last representation uses (4) the graphics

Chapter 5. Lighting Design by Shading and Shadows 69

hardware to display only the intersection of the shadow volumes with the objects in the scene.

Therefore the shadow volumes disappear and only the shadows that they produce are displayed.

This is how we see shadows but this does not allow for a simple manipulation of the volumes

creating these shadows.

To move a shadow volume once it is de�ned, a user needs to select a point on the shadow

volume. The point on the object casting this shadow is then identi�ed. By dragging the cursor

to a new location, a new direction is computed, the direction of a directional light source.

Figure 5.34: Creating a directional light by its shadow

We use the fact that a directional light source can be interpreted as a point light source

located at in�nity to explain how we create a point light source from a shadow volume cast

from a directional light. Figure 5.35 illustrates the process of going from a directional light

source (Figure 5.35a) to a point light source (Figure 5.35b) by modifying its shadow volume.

A point sn1 on the shadow volume is selected. The point sn2 on the silhouette casting

shadow on the point sn1 is identi�ed. This shadow segment [sn1; sn2] will now be considered as

nailed (not moving) and the point light source will reside on the supporting line of this segment.

By selecting another point s1 on the shadow volume, the point s2 casting this shadow on this

point is identi�ed. The nailed segment [sn1; sn2] and the point s2 de�ne a plane (sn1�sn2�s2).

By moving the cursor away from s1, a point s
0

1 on this plane is located. s01 is considered on the

shadow cast by s2. The two supporting lines of segments [sn1; sn2] and [s01; s2] intersect at a

unique point pi. The point light source is therefore moved to pi as shown in Figure 5.35b.

Once a point light source is created, it can be manipulated in the scene by manipulating its

shadow volume. This can be done by �xing any shadow segment as previously described, or, if

Chapter 5. Lighting Design by Shading and Shadows 70

1

sn
1

2

i

2

1

s

p

sn
s

sn

b)a)

s2

2s

1’s

Figure 5.35: Going from a directional light source to a point light source

no shadow segment is nailed, by adding a new constraint to the system. Once such assumption

is that the distance d from the point light pi to the point s2 casting a shadow is constant.

Combinations of these two actions are su�cient to position almost any point light source in a

scene.

In some rare con�gurations of a scene, some positions might not be accessible by manipu-

lating only these shadow volumes. For instance, assume that a scene is made of a single at

polygon and of a directional light parallel to the plane of the polygon. In such a situation, the

light would never be able to escape the plane of the polygon. To avoid this kind of situation,

the scene is bounded by a large box and shadows cast on these walls can always be manipulated

to avoid the problem above.

It is important to note that the point s2 might not lie on the boundary of the shadow

volume while the point light source is moved around. However the real shadow volume is

always displayed so the user has a direct view of the altered shadow.

To create extended light sources like linear or polygonal lights, new point light sources are

needed to de�ne the vertices of the light source. The shadow volumes of each light vertex

are handled just like any point light source. For polygonal light sources with more than three

vertices, each light vertex must reside on the light plane. This extra constraint is added to the

system to create the shadow volume of a new light vertex because only a direction (two points)

is necessary to determine the 3D location of the light vertex.

As we saw in the previous chapter, shadows of extended light sources are formed by the

umbra and penumbra volumes. Several techniques can be used to compute these volumes. In

our implementation, we compute the umbra as the intersection of each vertex shadow volume

(one shadow volume per light vertex); the penumbra is the di�erence between the whole shadow

and the umbra. Some problems occur when neither the blocker or the light are limited to being

convex. It can be shown however that if both the light and the blocker are divided into convex

elements, the whole shadow cast by this blocker from this light is the union in 3D of all the

shadow volume convex hulls as:

Chapter 5. Lighting Design by Shading and Shadows 71

For now on, assume a polygonal convex light and a convex object.

For each (convex light element)

For each (convex blocker element)

Compute the convex hull of the shadow

volumes created by these two elements

Compute the 3D union of all these convex hulls

To compute e�ciently the shadow volume (umbra and penumbra) cast by a convex object

illuminated by a convex light, we do the following. We assume the blocker does not intersect

the light plane. We �rst �nd a plane separating the light from the blocker. If there is no

such plane, the light intersects the blocker (remember that the light and the blocker are both

convex). The portion of the light inside the blocker is simply disregarded. Finding a separating

plane can be achieved in O(n logn) where n is the number of faces in the light and the blocker.

Then this plane is displaced away from the light until the light and blocker are on the same

side of the plane. For each light vertex and blocker vertex, their supporting line is intersected

with the plane. A simple 2D convex hull algorithm (we used the algorithm of Graham reported

in Sedgwick's book [sedg90]) is then applied to these points. The points on this 2D convex hull

are associated with lines in 3D. Each line belongs to a vertex shadow volume. The 3D convex

hull of these vertex shadow volumes is delimited by planes supported by the same lines of the

vertex shadow volumes than the ones obtained by the 2D convex hull on the separating plane.

Computing the umbra region (i.e. the intersection of each vertex shadow volume) cannot

generally be performed in 2D. Figure 5.36 shows an example where using only the information

in the 2D projection plane would fail to identify the umbra region (showed in hatched). To

Figure 5.36: Hatched umbra region is undetected in the projection domain

Chapter 5. Lighting Design by Shading and Shadows 72

compute the umbra volume, we intersect each shadow polygon5 of a light-vertex shadow volume

with every other vertex shadow volumes formed by the other vertices of a single light. This

process can be very expensive as it is O((ps)2) where p is the number of vertices of the light and

s is the number of shadow polygons forming the shadow volume. Algorithms to compute the

intersection of the supporting planes of each light-vertex shadow volume can be used. This can

be achieved in O(n logn) [prep85] where n is the number of supporting planes of each shadow

polygon.

Although all these techniques give a good impression of the �nal shadow, they do not incor-

porate umbra volumes resulting from the union of penumbra volumes from di�erent blockers.

The various algorithms provided by Teller [tell92] and Stewart and Ghali [stew93] could be used

to identify all the umbra volumes but accurately computing these extra volumes will be at the

cost of a much slower general interaction.

5.2.4 Results

A modeler has been implemented in order to test the techniques presented in this chapter. The

modeler operates on primitives such as conics (sphere, disk, cone, cylinder), squares, cubes,

triangular meshes and B�ezier patches. Figure 5.37 shows a global view of the modeler itself.

The code is written in C under GL of Silicon Graphics. The graphics hardware allows for

real time surface removal, Phong shading, transparency and shadow volumes, which is very

useful to model scenes and create and manipulate shadow volumes. Unfortunately, this real

time shading can lead to some minor di�culties when creating highlights, because the threshold

t must be adjusted to the hardware shading implementation.

Figures 5.38 to 5.40 show a cone under a triangular light source. At �rst, no convex hull

is applied. In this image (Figure 5.38), it is easier to associate each shadow with a light

vertex. Once the convex hull is applied (Figure 5.39), only the segments on the silhouette of

the penumbra are displayed. Notice the umbra region just under the cone, within the penumbra

volume. The shape of the umbra was di�cult to extract from the previous representation. In

Figure 5.40, the umbra and penumbra volumes are �lled with a semi-transparent mask. All

these static images do not give full credit to the representations into the modeling process. As

soon as the point of view is rotated, the lines provide more 3D information.

In the �rst part of this chapter, we described how shading e�ects like di�use reection,

highlights and shadows can be used to de�ne and manipulate light sources. These e�ects can

be rendered in real time with existing graphics hardware. However, we also used some simple

line drawing representations (highlight contour, shadow volume sampled as line segments) in

order to ease the manipulation of these e�ects. Obviously, these representations do not provide

the same perceptual information than a fully rendered image. In the next sections, we will

present a system to interactively determine surface characteristics as they appear in the �nal

5The silhouette of the object can be discretised. Each point cast its shadow in one direction. Two consecutive

points on this silhouette and their shadow direction de�ne a quadrilateral with two of its vertices at in�nity.

Chapter 5. Lighting Design by Shading and Shadows 73

Figure 5.37: Global view of the modeler

Chapter 5. Lighting Design by Shading and Shadows 74

Figure 5.38: Cone under a triangular light: No convex hull

Figure 5.39: Cone under a triangular light: Convex hull applied

Chapter 5. Lighting Design by Shading and Shadows 75

Figure 5.40: Cone under a triangular light: Convex hull with �lled shadows

image. This is achieved by painting colours on the surfaces. The system �nds the best values for

the various surface parameters in order to produce these colours at their exact locations. We

saw how the surface roughness could be determined by de�ning the size of a highlight but could

not specify the �nal look of the highlight. In fact, while the �nal shape of the highlight follows

its representation, if the surface has a very low specular contribution, this entire highlight might

be invisible in the fully shaded image. This new painting system will allow us to control the

colour of this highlight.

5.3 De�ning Surface Characteristics

When drawing an image, an artist �rst sketches rough line drawings of his ideas. Once satis�ed

with the story, she starts re�ning the line drawings by adding more details and correcting the

�rst drafts. Finally, when the line drawings express enough her feelings, the artist is ready for

the last step, selecting the right colours and colouring.

While these steps are not mutually exclusive, we can generalise the process as:

� rough line drawings to convey spatial relationships

� correction and �ne line drawings to provide fuller details in the image

� colour selection and �lling for the �nal picture.

Chapter 5. Lighting Design by Shading and Shadows 76

With the advent of computer graphics, new tools were developed, opening a new era for

cartoon animation and special e�ects in cinema. These tools have been widely spread in logo-

type animations but also their impacts were recognised in cartoon computer animations like

Tony de Peltrie by Lachapelle-Bergeron-Robidoux-Langlois, Luxo Jr., Red's Dream, Tin Toy

(Academy Award) and Knick Knack from Pixar, and in Locomotion from Paci�c Data Images.

These tools also opened new possibilities for special e�ects as in sequences from The Wrath

of Khan by Lucas�lm and in sequences from The Abyss, Terminator II and Jurassic Park by

Industrial Light and Magic.

Unfortunately, even though many software packages are now available, they still require a

good knowledge of their shading techniques in order for a user to produce the exact results one

originally thought of. This is true in each step of the drawing process described above, but

becomes particularly true as the latest steps are reached. Getting a certain shading is very

important in fully computer generated images. The appearance of a metallic surface is di�erent

than one of plastic. A user must therefore be able to manipulate the surface parameters to

approximate well enough the reection from the real surfaces. While a user has the possibility

to alter the shading of the surrounding surfaces in order to improve the overall look of a �nal

image, it becomes much more di�cult to use the same tricks in special e�ects that normally

require to merge computer generated objects with real objects. When two surfaces, a real one

and a computer generated one, are next to each other and must look the same, it is essential

that the simulated shading approximates visually the real shading of the surface. Within the

limits of our simple reection models, it becomes very di�cult to �nd the \best" approximation.

A typical surface in computer graphics has several attributes. They include surface colour,

ratio of di�use versus specular reection, surface roughness, transparency, index of refraction,

etc. The number of attributes depends on the rendering system, the object representation and

desired e�ects, whether the shading, reection, refraction and shadowing models are physically

based or pure hacks.

To evoke the right surface in painting, an artist must mix basic colours and apply them to

speci�c locations on the canvas. A painter has the freedom to apply any colour at any given

point in a scene. The realism of the painting relies on the skills of the artist in reproducing

with colours what she perceives on the shading e�ect. Creating the right surface in computer

graphics is di�cult because of the possibly large number of parameters involved to provide at

least the exibility to create some basic shading e�ects. It is similar to painting in the sense

that colours can be used to set certain parameters. It is di�erent because mathematical models

are given to approximate the behaviour of light and an artist is limited by their rules.

In the next sections, we will investigate how our knowledge of current shading properties

can be used to free a computer graphics artist from knowing every surface parameter in order

to produce a given shading e�ect on a surface. The system in itself is relatively simple to

understand. An artist selects points on a surface and assigns colours to each of these points.

A unique value for each shading parameter is provided and the remaining parts of the surface

Chapter 5. Lighting Design by Shading and Shadows 77

are shaded according to the values of these parameters.

5.3.1 Painting Systems

Since we present our system as a variation on a painting system, we describe in this section the

evolution and state of the art in computer painting systems.

Since the beginning of computers, computer scientists have been interested in the large

bene�ts computers can o�er for interactively creating pictures. They are fast, precise, allow to

undo previous commands and automate often very monotonous tasks. Sutherland in his Ph.D.

thesis [suth63] presents many innovative ideas on how computers could be used as a drafting

tool. Although his system basically deal only with line drawing representations of objects, many

of his concepts have been extended to today's painting systems.

The typical painting system is 2D as it tries to simulate the general environment of real

painters. The pencils are substituted by a mouse, a tablet or a light pen, the canvas by a

computer screen, the paint by a palette of colours, the brushes by various shapes for the cursor,

the eraser by a cursor removing colours, etc. The strong analogy between the tools of the artists

and the tools o�ered in painting systems explains the general simplicity of the painting systems.

They can also o�er characteristics unique to computers. For example, it becomes possible to

undo a command, remove paint, �ll regions with a colour or a pattern, replace a colour by

another with basic commands. Smith [smit82] describes many of standard painting system

features. To give a look and feel closer to real paint and brushes, some systems use information

about brush de�nition and movement [hobb85][�sh85][stra86]. Others simulate textures closer

to real paint [guo91][smal91][cock92].

The use of digitised images into a computer extends the power of painting systems. One

can capture any image, apply various transformations to it (scaling and �ltering are just two

examples of a large class of image processing algorithms) and incorporate it in a painting.

Haeberli [haeb90] presents such a painting system which samples a given (possibly real) image

as the brush moves over it and redraws each region according to a painting style. He can

simulate styles like cubism and impressionism. Cabral and Leedom [cabr93] use vector �elds to

produce similar e�ects on images.

Although 2D painting systems are the most popular, it is easy to see how researchers

extended them to 2D1
2 (like in cel-based animation) by using an �-channel to composite together

several images. By �ltering and shading the edges in a 2D image, Williams [will91] creates an

impression of pseudo-3D. He also presents a model for painting in 3D [will90] where the brush

(cursor) is moved in the 3D space to apply paint (colour) to 3D volume elements.

Hanrahan and Haeberli [hanr90] describe a highly interactive 3D painting program. Based

on the advances in workstation graphics hardware, they show how they achieve in real time

the painting of various surface attributes directly onto the 3D surfaces. Examples of attributes

they use include light and surface colours (ambient, di�use and specular), surface roughness,

bump and displacement mappings as well as some investigations on transparency. While their

Chapter 5. Lighting Design by Shading and Shadows 78

technique is a good step forward into more user-friendly mapping of surface attributes, it

still requires the user to execute all the work of choosing colours and properties via standard

techniques (entering numbers or moving sliders). This forces the user to understand the impacts

of various shading parameters to obtain the desired e�ect. Seeing the variation of shading

directly in the image as a particular slider moves is helpful but if one does not know which

sliders have to move at which position, �nding the right combination for a given shading e�ect

can be a frustrating task.

In the next section, we will present a new kind of painting system. This system covers

the middle ground between a traditional painting system where the user has full control of

which colour is assigned to which pixel, and shading parameters selection where the user is

given a shading e�ect by directly changing values for the various shading parameters. In this

new system, a user does not have to understand the underlying mathematical shading model

but still can control the shading to reach her goal. In the next sections, we will present the

interface of our painting system and then explain the numerical methods used to provide the

\best" values for the surface parameters.

5.3.2 Painting Scenario

The interface of our painting system is relatively simple. A user selects colours and applies

them to points in the 3D scene. A colour point is represented by a small disk aligned on the

surface along the normal at this point. The center of the disk indicates the 3D location of the

colour point. The disk is painted with the selected colour but is not shaded. It is surrounded

by a small ring of opposite colour [naim85] to easily detect and manipulate it on a surface.

These colour points can be moved on the surface, deleted, their colour can be modi�ed and

the size of each disk can be scaled up or down. A larger disk is convenient to see properly the

colour of each point and to manipulate it. Since colour is context sensitive, it is important to be

able to increase the colour disk in order to better perceive this colour. A smaller disk occludes

less of the underneath surface, allowing to better see the shading gradient around the colour

point. This can be important to see small highlights. Figure 5.41 shows some colour points

(represented by their disks) on a surface.

Our system is similar to the system presented by Hanrahan and Haeberli but limited only

to colours on selected points on surfaces. However it goes a step beyond by trying to �t

the \best" values to the shading parameters of this surface. By best values, we mean that

the system attempts to optimise certain functions (under-constrained system) or to �t values

(over-constrained system) so that the coloured points will remain as close as possible to their

assigned colours when the full rendering is completed.

To select colours, we extended a basic colour tool provided by Haeberli. Three sliders

indicate the proportion of each parameter in a given colour space. Five colour spaces are

currently available: RGB, CMY, HSV, HLS and YIQ.6 It is possible to convert each parameter

6It is not clear which colour space is the most appropriate in our context. We found the HLS colour space

Chapter 5. Lighting Design by Shading and Shadows 79

Figure 5.41: Colour points on a surface

from any to any of these colour spaces. The colour corresponding to the positions of the three

sliders is displayed in the rightmost rectangle. Figure 5.42 shows the colour tool. This tool

allows one to sample the colour of any pixel on the screen. This is a very useful feature to

approximate the shading of real objects. Assume a real image is displayed on the monitor. The

shape of the real object can be approximated in the modeler. Then, the colour of strategic

points on the real surface can be selected and applied to the same points on the model in order

to approximate the shading of the real surface. The colour tool has been extended to provide

a range for a selected colour to relax the constraints (this is explained in the next section). It

has also been modi�ed to communicate directly with our modeler.

However useful our basic colour tool is, it could still be improved upon. Schwarz et

al. [schw84] [schw87] compare various colour spaces and colour selection tasks. Their results

should be integrated in our colour tool. However, as this goes beyond the scope of this thesis,

we simply refer the reader to [wysz82] and [hall89] for more information about this topic.

For some combination of colour points, no values for the surface attributes will satisfy every

constraint. When this happens, the system performs a rough and/or a �ner investigation of

altering the latest colour. Colours for which a converging solution can be found are indicated

in our colour tool. The user can then select one of these new colours or decide to move the

point to another location on the surface and let the system estimate if this new position leads

to a possible solution.

to be useful for points within mostly the di�use region of a surface. However because of our frequent use of the

RGB colour space in other applications, we more often rely on this space.

Chapter 5. Lighting Design by Shading and Shadows 80

Figure 5.42: Colour tool of Haeberli

Now that we have a better feel of how the user interface of our painting system operates, we

will present in the next sections the numerical algorithms used to �nd the \best" values for the

surface parameters as determined by the colour points. We will see how each colour point can

be interpreted as a system of equations, a constraint in an optimisation problem or a sample

in a �tting problem.

5.3.3 Painting: Solving a System of Equations

Assume one has a 3D scene with all the geometry known and all the light sources positioned

with their power �xed. This is a situation that often occurs in scene design. First the designer

builds the geometry with temporary surface attributes. These attributes are mainly used to

di�erentiate the various objects in a scene. They are subsequently modi�ed once the scene is

closer to completion. In indoor scenes, it is also often the case where the light sources have �xed

positions and power within the scene geometry (light bulbs of 100 Watts hanging at precise

locations from the ceiling). The lights can also be positioned with the techniques we described

in the previous sections.

When a surface element is shaded, the radiance reected to the pixel is function of the scene

geometry and of the surface parameters. The general reection model of Equation 2.2 applied

Chapter 5. Lighting Design by Shading and Shadows 81

to one directional light:

Lpixel = kaLia + kd

Z
!

(~N � ~L)Ld! + ks

Z
!

Fs(~N � ~H)nLd!

We can express this function in each colour channel (r,g and b)7 as

Lpixel(r) = ka(r)Lia(r)+

kd(r)

Z
!

L(r)(~N � ~L) d!+

ks(r)

Z
!

Fs(r)L(r)(~N � ~H)n d!

Lpixel(g) = ka(g)Lia(g)+

kd(g)

Z
!

L(g)(~N � ~L) d!+

ks(g)

Z
!

Fs(g)L(g)(~N � ~H)n d!

Lpixel(b) = ka(b)Lia(b)+

kd(b)

Z
!

L(b)(~N � ~L) d!+

ks(b)

Z
!
Fs(b)L(b)(~N � ~H)n d!

(5:14)

If we consider ka(�)Lia(�) and Fs(�) as constants then we have a reection model which ap-

proximates the hardware SGI GL reection model for a directional light.

If the value for each variable is known, the reected radiance is easily computed. In our

painting system, we attempt to solve the inverse problem. Therefore our system must �nd

values for the surface characteristics that would satisfy the colour points if the full shading

were performed. In the above reection model, for a given point, all the surface attributes are

independent in red, green and blue. Therefore without lost of generality, we can consider solving

the problem in the red channel. The approach is identical for the green and blue channels.

For a given colour point, the known values in the di�use reection can be summed for all

m lights as:

Ld(r) =
mX
i=1

Z
!i

(~N � ~Li)Li(r) d!i for ~N � ~Li > 0:

And similarly for the specular reection:

Ls(r) =
mX
i=1

Z
!i

(~N � ~Hi)
nLi(r) d!i for ~N � ~Li > 0 and ~N � ~Hi > 0:

Generally speaking, Ld(r) and Ls(r) can be computed for any other type of light source, whether

it is a point light, a linear light or an area light.

Each colour point contributes to a new equation in each of three channels. If there are as

many independent equations as variables, the system of equations can be solved and values

7A colour channel consists in the convolution of light spectrum with a wavelength response curve.

Chapter 5. Lighting Design by Shading and Shadows 82

identi�ed for each surface attributes. Looking at Equation 5.14, if Fs is constant, we can

therefore handle these terms as a single variable (ka(r); kd(r); ks(r)) assuming they capture

both the surface colour and proportion of ambient, di�use and specular reection, respectively.

With the shading model of Equation 5.14, a system of three variables can be determined with

only three colour points in the following form

2
64
1 Ld1 Ls1

1 Ld2 Ls2

1 Ld3 Ls3

3
75
2
64
ka

kd

ks

3
75 =

2
64
L1

L2

L3

3
75

and if a solution to this system exists, a unique value for ka, kd and ks can be computed.

Unfortunately, it is unlikely that a user will be able to provide the exact colours that would

lead to a solution. We need to transform the problem such that it would lead to a solution.

The next two sections will present two interpretations of this problem and their solutions.

5.3.4 Painting: An Optimisation Problem

We can look instead at this inverse problem as an optimisation problem. In this scheme, each

colour point is given as a volume in the colour space of acceptable colours, thus introducing

two constraints. Additional constraints are associated with the variables in the shading model.

For instance, no variable can be negative. Moreover, some shading model can put an upper

limit on the values of some of their parameters. The combination of all the constraints on a

surface can lead to no solution, a unique solution (rare) or an in�nity of solutions. In the latter,

to provide the user with a unique solution, we need to minimise (or maximise) an objective

function. Several objective functions are possible and each can lead to di�erent behaviours of

the system. It is also possible to use di�erent objective functions depending on the number of

colour points and their locations. For instance, one can decide to maximise the ambient term

for the �rst colour point on a surface and to maximise the di�use term when the next colour

point is added. Or one can decide to use a series of objective functions like �rst maximising

the di�use term, bounding the value within a small range of this local maximum and then

maximising the specular term.

In our current system, the choice of objective functions is based on the number of colour

points and their location. Generally, we proceed as follow. We �rst minimise the ambient term,

bound this minimum and then maximise the di�use term. This way, shadow areas will be as

dark as the user wants and the user will have the most control on the di�use reection. We only

change the objective function if the �rst colour point is located in a shadow area. Then the

di�use reection is not inuenced by this colour and maximising it would lead to the maximum

value allowable for the di�use reection. So instead, we minimise the di�use term.

We found that this combination of objectives leads to a behaviour of our system that is

intuitive and simple to understand and use. However it is possible to personalise the behaviour

of the system. We can provide the user with a library of objective functions. The user can then

Chapter 5. Lighting Design by Shading and Shadows 83

interactively select the objectives and combine them. She could also decide which objectives

to use depending on the number of points and their locations. The user would then need to

understand the three types of reections but nothing more about the speci�cs of the shading

model.

The shading model of Equation 5.14 can be solved by a simple constrained linear optimi-

sation algorithm. These algorithms have the advantage of converging to the global minimum.

However most of the even slightly more sophisticated reection models will often introduce

nonlinear constraints.

Look at the following reection model used in our local ray tracer [aman92]:

Lpixel(r) = kaS(r) + kdS(r)Ld(r) + ksLs(r) [MS(r) + (1�M)]

Lpixel(g) = kaS(g) + kdS(g)Ld(g) + ksLs(g) [MS(g) + (1�M)]

Lpixel(b) = kaS(b) + kdS(b)Ld(b) + ksLs(b) [MS(b) + (1�M)]

(5:15)

In this model, S(�) is a simple function of the surface colour. This model simulates a linear

dielectric-conductor ratio (M 2 [0; 1]) for the specular reection. When M = 1, the specular

reection is function of the light colour only. It is more complex than the previous reection

model. Also notice that the coe�cients of ambient, di�use and specular reection (ka; kd; ks)

are the same for all three primaries. Therefore we cannot treat the solution independently in

each channel. The constraints in this model are nonlinear. Some variables could be separated to

form a system of independent equations but at the cost of introducing several quadratic terms.

We preferred not to do so in order to experiment with the more general problem of solving an

optimisation problem with nonlinear constraints.

We input these constraints and their gradients into FSQP [zhou93], a general algorithm to

solve constrained nonlinear optimisation problems. FSQP is based on Sequential Quadratic

Programming with two types of line searches in the solution domain: a monotonic search along

an arc and a nonmonotonic search along a straight line. The interested reader should refer

to the original report [zhou93] for a detailed version of the algorithms used. This algorithm

performs very well (locally superlinear convergence) for a smooth objective function and smooth

constraints. Minimising the ambient reection or maximising the di�use reection generally

satis�es the smoothness desired for an objective function. The specular reection can generate

a solution within a very narrow domain. If the initial guess is infeasible for some constraints,

FSQP will attempt to �nd a feasible starting value but can fail to �nd one. If this happens, no

optimisation can be performed.

To avoid this situation, we developed careful initial guesses based on our knowledge of

the domains of each variable and within which region each colour point resides. Consider the

following example with only two colour points, one in shadow and one in the di�use area.

Assume ka = 1 and suppose we want to study the domain of possible values for kd. We can use

the colours to determine the limits such that

Dl(r) � kaS(r) + kd S(r)� Ld(r) � Dt(r)

Dl(r) � Al(r)(1 + �A(r) � x) + kd Al(r)(1+ �A(r) � x) Ld(r) � Dt(r)
(5:16)

Chapter 5. Lighting Design by Shading and Shadows 84

where Dl(r) is the lower colour red for the di�use colour point

Dt(r) is the top colour red for the di�use colour point

Al(r) is the lower colour red for the ambient colour point

Al(r)(1 + �A(r)) is the top colour red for the di�use colour point

x 2 [0; 1]
Looking at the variation on kd, we obtain�

Dl(r)

Al(r)(1 + �A(r) � x)
� 1

��
Ld(r) � kd �

�
Dt(r)

Al(r)(1+ �A(r) � x)
� 1

��
Ld(r)

On a graph, this expression is represented in Figure 5.43. kdl(r) represents the lowest value for

x

O
kdl(r) kdt(r)kdl k dt

k

xmin

xmax

Figure 5.43: Domain of kd

kd for the red channel while kdt(r) is the top one. Each channel (r, g, b) creates a trapezoid.

The intersection of these three trapezoids determines the limits for kd 2 [kdl; kdt] and also for

S(c) = Al(c)(1 + �A(c) � x) with x 2 [xmin; xmax] and c is a colour channel.

When a colour point in a specular region is added, the same kind of analysis, although

involving more parameters, must be performed to determine an initial guess that satis�es the

constraints.

When FSQP cannot generate a valid initial guess and our investigation of each variable

boundaries fails to identify a feasible initial guess, there is always the possibility that no solution

exists that would satisfy all the constraints. When this happens, the system shows which

constraints are violated (based on our study of the domain of each variable) and the user can

modify the colour point, its boundaries or its position to allow for a di�erent search of an initial

guess.

When the colour points de�ne more constraints than variables, the new constraints can only

contribute to narrow down the range in which to search for a solution. This can be achieved in

a simple manner by reducing the acceptable range of the colour points already located on this

Chapter 5. Lighting Design by Shading and Shadows 85

surface. In our experience, adding more colour points often only contributes to introduce new

constraints that can be violated and therefore eliminates the possibility of providing a solution.

5.3.5 Painting: A Fitting Problem

We can interpret di�erently the colour points when more points than variables are input in the

system. This becomes a typical problem of �tting the \best" approximation for each variable

subjected to nonlinear constraints. We use a nonlinear least-squares �tting algorithm, lmder,

taken from MINPACK. lmder is based on the Levenberg-Marquardt algorithm.

In a typical least-squares �tting, each variable is free. However in our shading models,

each variable is constrained within a certain domain. To retain this concept of boundaries, we

introduce penalty functions. A variable f(x) is replaced by:

f(x) =

8><
>:

f(x) � ebl�x if x < bl

f(x) if bl � x � bu

f(x) � ex�bu if bu < x

where bl and bu are the lower and upper boundaries on x, respectively. Any steep function

could replace the exponential here. The steeper the function, the higher the penalty will be if

a variable goes beyond its domain.

We also modify our system in order to provide di�erent weights for di�erent kinds of colour

points. From the shading Equations 5.14 and 5.15, one can observe that a colour point within a

shadow region on a surface can directly inuence very few variables. Therefore we can increase

by a large factor (100 in our system) the weight of these points. This ensures that the points

in the other regions do not push the ambient term outside its limits. Similarly, the di�use

reection is usually well controlled by one or two colour points. A smaller factor (10 in our

system) keeps their contributions important, although less than the ambient ones. Finally,

in most cases, the designer uses more colour points to �nely control the variation of colours

in the highlights. Each colour point in the highlight region will keep its unit contribution.

By choosing appropriate weights, it is possible to approximate the behaviour of the objective

functions. If done properly, a user will not notice the passage from an optimisation problem to

a least-squares �tting one.

However, unlike the optimisation algorithm, the least-squares �tting does not guarantee

that every colour point will retain its colour in the �nal rendering. The weights and penalties

do help to keep the �nal colours as close as possible to the original ones. This technique o�ers

a nice alternative to the optimisation when the user is not able to �nd an initial feasible guess

or when the behaviour of the objective function does not correspond exactly to what the user

expects of the �nal shading.

Chapter 5. Lighting Design by Shading and Shadows 86

5.3.6 Results

A large advantage of this combination of optimisation and least-squares �tting relies to a certain

degree on the fact that most of their use is invisible to the user. By this we mean that the

user does not need to know how many variables there are in the reection model and their

contributions to the �nal shading of a surface. In fact, several di�erent shading models could

be used within the modeler and the user would have never to request one over another. The

system could adapt itself to the demands of the user when she insists on certain colour points

to be placed at speci�c locations.

This advantage can also be interpreted as a disadvantage. A poor choice of objective

functions in the optimisation part or a poor combination of weights in the least-squares �tting

could lead to strange behaviours of the system that the user could not understand because

everything is hidden.

We found however that for the functions and weights we used, the behaviour of our system

appeared intuitive, predictable and lead quickly to the desired shading. If the �rst colour points

are placed mainly in the shadowed and di�use regions of a surface, the user gets high control on

the �nal shading with only a few points. Once these aspects of a surface are satisfying, the user

can �nely tune the look of the highlights with more colour points. In many of our test scenes,

we found that three to four colour points often provide enough control to quickly produce a

close approximation to the right values associated with the surface parameters.

It is important to provide the user with adequate feedback when colour points are added or

moved on the surface. The real time hardware rendering with the SGI shading model allows

one to see directly the surface change as the colour points are altered. Unfortunately, this is

not possible for more sophisticated shading models unless they can somehow be converted or

approximated by the SGI shading model. By keeping some information (3D location, surface

normal, illuminant irradiance) for each pixel covered by the surface the user is currently working

on, the entire surface can be reshaded e�ciently when the user needs it.

5.3.7 Inverse Shading in Global Illumination

The problem of inverse shading has just recently been addressed in two di�erent approaches

applied to a di�erent facet of the problem that we address in this thesis. Schoeneman et

al. [scho93] describe how time consuming, tedious and often counter-intuitive selecting lights

and surface reectances can be in a system solving global illumination in a di�use environment.

This is true even for experienced users. They apply the inverse shading to identify the lights'

intensities and colours that would closely match a target provided by a user. The user paints

colours onto the scene with a tool like a spray can. By assuming only ideal di�use surfaces and

treating only the direct illumination, they devise clever incremental updates of the matrices and

vectors that are then used in a constrained least-squares. This way, they can handle e�ciently

scenes with as many as 19,000 polygons and 12 lights. Even though they increase the weight

Chapter 5. Lighting Design by Shading and Shadows 87

of the painted scene vertices compared to the unpainted ones, their system cannot guarantee

that the �nal colour will be close to the painted one because it is also function of the surface

reectance associated with each surface element. Also, since only the lights are modi�ed, it is

likely that other surfaces will have their appearance changed after each application of paint.

Kawai et al. [kawa93] also apply inverse shading to a radiosity solver. They use uncon-

strained nonlinear optimisation (Broyden-Fletcher-Goldfarb-Shanno) to �nd a local minimum

of a possibly complex objective function. It includes physical terms (light source emission, direc-

tionality and distribution as well as element reectivity) and terms based on human perception

(impression of clearness, pleasantness, and privacy based on the scene brightness). In order to

reduce the number of free variables, the user must select the active ones and impose constraints

on them. Their system can provide complete results within a minute or two on a scene of a small

conference room. They report however that their system can require \unintuitive tweaking"

when the psychophysical properties of lighting are not accounted for.

5.3.8 Extensions

In our experience and as indicated Kawai et al. [kawa93], adding more variables to solve for

usually has the e�ect of enlarging the domain of possible solutions. Unfortunately, depending

on the behaviour of the new variables, they can introduce more local minima. When this

happens, it becomes more di�cult to determine if a given local minimum corresponds to a

visually satisfying result for the objective function. Some techniques are available to start

searches at various locations and therefore examine di�erent local minima. This is in fact what

Kawai et al. [kawa93] do.

We believe that some additional variables could be considered to extend our current solu-

tion. The �rst one is the roughness coe�cient. We did not consider it because it was available

by the way that we de�ne and manipulate the highlights. Other variables from more sophisti-

cated reection models could be investigated. Some examples include transparency, anisotropy,

di�raction, polarisation, layered surfaces, etc. Similarly to Schoeneman et al. [scho93] and

Kawai et al. [kawa93], we could also consider altering the lights intensities and colours and

apply our techniques in a radiosity solver. We could even attempt to de�ne and manipulate

the lights from the colour points.

However, with all those possibly more complex shading e�ects and with a growing number

of free variables, developing e�cient objective functions that keep the behaviour of our system

intuitive and powerful becomes a task as di�cult as solving for the constraints.

5.4 Conclusion

In this chapter, we investigated using lighting e�ects, i.e. shading, highlights and shadows, to

de�ne the lights themselves and specify their location as well as identify the surface shading

parameters. We showed some inherent limitations with these approaches but also demonstrated

Chapter 5. Lighting Design by Shading and Shadows 88

a powerful new technique. This technique allows a user to manipulates interactively shading,

highlights and shadows, which can be very important when designing a scene. In previous

modeling systems, these e�ects were not under the direct control of the user. Therefore a user

needed to iterate between rendering the entire scene and modifying the lights. This process

can be expensive depending of the quality of the rendering required. Incorporating shading,

highlights and shadows in the modeling process adds more information on the geometry of the

scene and its illumination which should help the user to better understand the scene even before

rendering it.

Our system, although simple, gives direct information to the user on the lighting e�ects she

is constructing during the modeling process. These lighting e�ects are the objects being directly

manipulated. This direct manipulation is crucial because getting the desired shading e�ect by

manipulating the causes is generally more di�cult than manipulating the e�ects themselves.

We foresee that, as the graphics hardware improves and as CPUs become faster, more

and more e�ects available only at the rendering stage will become an inherent part of the

modeling stage itself. Real time Phong shading is now common with high-end modelers. These

improvements will lead us to investigate more intuitive ways of de�ning and controlling these

special e�ects. Although the separation between computer graphics and computer vision is still

strong, we believe this will lead us to more computer vision in computer graphics for greater

bene�ts of realism and potentially more computer graphics in computer vision for better scene

analysis of natural phenomena.

Chapter 6

Conclusion

What we see is the result of interaction between light and matter. The intensities reaching our

eyes are interpreted to help us understand the world we live in. We can identify objects, their

surface properties, their relative positions in 3D space, their motion, etc. By improving our

understanding of light and its interaction with matter, we can also improve our understanding

of the matter itself.

3D computer graphics is one technique used to represent a 3D synthetic world by projecting

this world onto an array of pixels. The simulation of light transport and its interaction with

virtual objects determine the colour of each pixel. One active area of research in computer

graphics consists in simulating as accurately as possible our real world. This search for realism

is important because our visual system was developed to understand the world we live in. So

by producing realistic computer generated pictures, we can expect people to better understand

an arti�cial world.

In this thesis, we focused our research onto one aspect of realism: the local illumination. In

local illumination, we are interested in shading a surface directly illuminated by light sources.

Typically in computer graphics, people were using directional and point light sources as il-

luminants. They are satisfactory for distant or small lights but lack realism and exibility

when a higher dimensional light is needed. For the few people using linear or polygonal light

sources, only di�use reection was computed analytically while specular reection was simply

approximated via sampling. Assuming the popular Phong specular expression, we presented an

analytical solution to the di�use as well as to the specular reections from a linear light source.

Our solution is suitable for various extensions on light emission and has also been extended by

Tanaka and Takahashi [tana91b] for computing the reection from a polygonal light source.

The increase in realism in the shading of surfaces illuminated by linear and area light

sources comes unfortunately with a higher complexity for computing shadows. We gathered

several properties of shadows to form a theoretical foundation. These results help us to better

understand the cost of correctly computing shadows. With this in mind, we presented two

algorithms to reduce the number of possibly occluding candidates for a linear light source and

discussed the algorithms currently used for shadowing with polygonal lights.

While the �rst part of this thesis addressed mainly rendering issues, the second part ap-

proached the generation of realistic shading from a modeling standpoint. When modeling a

scene, a designer traditionally moves the objects in the virtual world, moves the lights and

89

Chapter 6. Conclusion 90

inputs the surface characteristics by assigning values to various shading parameters. Unfortu-

nately, all along this process, little feedback is given until the end of the rendering process. As

the rendering process becomes more expensive due to the desire of achieving a stronger realism,

the number of iterations between modeling and rendering increases, often leading to frustrating

situations. By knowing well the shading model used, an experienced designer can reduce this

number of iterations but this knowledge will not always be applicable to systems with di�erent

shading models.

In the second part of this thesis, we presented a shift from the traditional modeling systems.

We introduced rendering issues directly in the modeling process. It therefore becomes possible to

indirectly alter the causes by manipulating the e�ects. We investigated de�ning and positioning

light sources by moving on a surface a point of highest di�use or specular intensity or by moving

the shadow volumes cast by an object. We also showed how the specular exponent can be

speci�ed by selecting the size of a highlight and how various surface properties can be identi�ed

by painting colours onto points on a surface. With all these techniques, a designer should

achieve a given shading e�ect in much less time than previously and this, without any special

knowledge of the shading model.

Creating the right picture with today's computer rendering technology is an art. The

designer must face intrinsic limitations due to the modeling process, the rendering algorithms

and, very important but too often neglected, the user interface used as an intermediary between

what is wanted and how to do it. This research alleviates the burden of the rendering task by

extending the types of light sources available and by introducing rendering issues directly in

the modeling process. We expect these results to have a direct impact on tomorrow's rendering

technology.

Bibliography

[akel93] Kurt Akeley. \RealityEngine graphics". Computer Graphics (SIGGRAPH '93 Pro-

ceedings), pp. 109{116, August 1993.

[aman84] John Amanatides. \Ray Tracing with Cones". Computer Graphics (SIGGRAPH

'84 Proceedings), Vol. 18, No. 3, pp. 129{135, July 1984.

[aman87] John Amanatides and Andrew Woo. \A fast voxel traversal algorithm for ray trac-

ing". Eurographics '87, pp. 3{10, August 1987.

[aman92] John Amanatides, John Buchanan, Pierre Poulin, and Andrew Woo. \Optik Users'

Manual | Version 2.6". Technical Report Imager 1992{1, University of British

Columbia, August 1992.

[athe78] P. Atherton, K. Weiler, and D. Greenberg. \Polygon Shadow Generation". Com-

puter Graphics (SIGGRAPH '78 Proceedings), Vol. 12, No. 3, pp. 275{281, August

1978.

[aupp93] Larry Aupperle and Pat Hanrahan. \A hierarchical illumination algorithm for sur-

faces with glossy reection". Computer Graphics (SIGGRAPH '93 Proceedings), pp.

155{162, August 1993.

[babu85] Mohan D.R. Babu, Chia-Hoang Lee, and Azriel Rosenfeld. \Determining Plane

Orientation from Specular Reectance". Pattern Recognition, Vol. 18, No. 1, pp. 53{

62, January 1985.

[bao93] Hujun Bao and Qunsheng Peng. \Shading models for linear and area light sources".

Computers and Graphics, Vol. 17, No. 2, pp. 137{145, March/April 1993.

[barb92] Christopher G. Barbour and Gary W. Meyer. \Visual cues and pictorial limitations

for computer generated photo-realistic images". The Visual Computer, Vol. 9, No. 3,

pp. 151{165, December 1992.

[baum91] Daniel R. Baum, Stephen Mann, Kevin P. Smith, and James M. Winget. \Making

radiosity usable: Automatic preprocessing and meshing techniques for the generation

of accurate radiosity solutions". Computer Graphics (SIGGRAPH '91 Proceedings),

Vol. 25, No. 4, pp. 51{60, July 1991.

[beck93] Barry G. Becker and Nelson L. Max. \Smooth transitions between bump render-

ing algorithms". Computer Graphics (SIGGRAPH '93 Proceedings), pp. 183{190,

August 1993.

[berg86] P. Bergeron. \A General Version of Crow's Shadow Volumes". IEEE Computer

Graphics and Applications, Vol. 6, No. 9, pp. 17{28, September 1986.

91

Bibliography 92

[bish86] G. Bishop and D.M. Weimer. \Fast Phong Shading". Computer Graphics (SIG-

GRAPH '86 Proceedings), Vol. 20, No. 4, pp. 103{106, August 1986.

[blin77] James F. Blinn. \Models of Light Reection For Computer Synthesized Pictures".

Computer Graphics (SIGGRAPH '77 Proceedings), Vol. 11, No. 2, pp. 192{198, July

1977.

[blin88] James F. Blinn. \Jim Blinn's Corner: Me and my (fake) shadow". IEEE Computer

Graphics and Applications, Vol. 8, No. 1, pp. 82{86, January 1988.

[bonf86] L. Bon�gliolo. \An Algorithm for Silhouette of Curved Surfaces based on Graphical

Relations". Computer-Aided Design, Vol. 18, No. 2, pp. 95{101, March 1986.

[borg91] Carlos F. Borges. \Trichromatic approximation for computer graphics illumination

models". Computer Graphics (SIGGRAPH '91 Proceedings), Vol. 25, No. 4, pp. 101{

104, July 1991.

[buch87] Craig Stuart Buchanan. \Determining Surface Orientation from Specular High-

lights". M.Sc. Thesis, Department of Computer Science, University of Toronto,

August 1987.

[cabr87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. \Bidirectional Reection

Functions from Surface Bump Maps". Computer Graphics (SIGGRAPH '87 Pro-

ceedings), Vol. 21, No. 4, pp. 273{281, July 1987.

[cabr93] Brian Cabral and Leith Casey Leedom. \Imaging vector �elds using line integral con-

volution". Computer Graphics (SIGGRAPH '93 Proceedings), pp. 263{270, August

1993.

[camp90] A.T. Campbell and Donald S. Fussell. \Adaptive Mesh Generation for Global Di�use

Illumination". Computer Graphics (SIGGRAPH '90 Proceedings), Vol. 24, No. 4,

pp. 155{164, August 1990.

[camp91] A.T. Campbell and Donald S. Fussell. \An analytic approach to illumination with

area light sources". Technical Report TR-91-25, Department of Computer Science,

University of Texas at Austin, August 1991.

[chen91] Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller, and Douglass Turner. \A

progressive multi-pass method for global illumination". Computer Graphics (SIG-

GRAPH '91 Proceedings), Vol. 25, No. 4, pp. 165{174, July 1991.

[chin89] Norman Chin and Steven Feiner. \Near Real-Time Shadow Generation Using BSP

Trees". Computer Graphics (SIGGRAPH '89 Proceedings), Vol. 23, No. 3, pp. 99{

106, July 1989.

[chin92] Norman Chin and Steven Feiner. \Fast object-precision shadow generation for area

light sources using BSP trees". Computer Graphics Special Issue (1992 Symposium

on Interactive 3D Graphics), Vol. 26, pp. 21{30, March 1992.

Bibliography 93

[cock92] Tunde Cockshott, John Patterson, and David England. \Modelling the texture of

paint". Computer Graphics Forum (EUROGRAPHICS '92 Proceedings), Vol. 11,

No. 3, pp. 217{226, September 1992.

[cohe85] M.F. Cohen and D.P. Greenberg. \The Hemi-Cube: A Radiosity For Complex

Environments". Computer Graphics (SIGGRAPH '85 Proceedings), Vol. 19, No. 3,

pp. 31{40, July 1985.

[cohe93] Michael F. Cohen and John R. Wallace. Radiosity and realistic image synthesis.

Academic Press, 1993.

[cook82] R.L. Cook and K.E. Torrance. \A Reectance Model for Computer Graphics". ACM

Transactions on Graphics, Vol. 1, No. 1, pp. 7{24, January 1982.

[cook84a] R.L. Cook. \Shade trees". Computer Graphics (SIGGRAPH '84 Proceedings),

Vol. 18, No. 3, pp. 223{231, July 1984.

[cook84b] Robert L. Cook, Thomas Porter, and Loren Carpenter. \Distributed Ray Tracing".

Computer Graphics (SIGGRAPH '84 Proceedings), Vol. 18, No. 3, pp. 137{145, July

1984.

[crow77] Franklin C. Crow. \Shadow Algorithms for Computer Graphics". Computer Graph-

ics (SIGGRAPH '77 Proceedings), Vol. 11, No. 2, pp. 242{248, July 1977.

[dias91] Maria Lurdes Dias. \Ray tracing interference color". IEEE Computer Graphics and

Applications, Vol. 11, No. 2, pp. 54{60, March 1991.

[dret93] George Drettakis and Eugene Fiume. \Accurate and consistent reconstruction of

illumination functions using structured sampling". Computer Graphics Forum (EU-

ROGRAPHICS '93 Proceedings), Vol. 12, No. 3, September 1993.

[�rb85] P.A. Firby and D.J. Stone. \Interference in Computer Graphics". Computer Graph-

ics Forum (Eurographics '85 Proceedings), Vol. 4, No. 3, pp. 209{216, September

1985.

[�sh85] Kenneth P. Fishkin and Brian A. Barsky. \Algorithms for brush movement". The

Visual Computer, Vol. 1, No. 4, pp. 221{230, December 1985.

[fole90] J.D. Foley, A. van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley Publishing Company, second edition, 1990.

[four92a] Alain Fournier. \Filtering Normal Maps and Creating Multiple Surfaces". Technical

Report Imager 92/1, Imager, Computer Science, University of British Columbia,

1992.

[four92b] Alain Fournier. \Normal distribution functions and multiple surfaces". Graphics

Interface '92 Workshop on Local Illumination, pp. 45{52, May 1992.

Bibliography 94

[four92c] Alain Fournier and John Buchanan. \Chebyshev polynomials for boxing and inter-

sections". To be submitted to ACM Transactions on Graphics, 1992.

[gart90] Judith A. Gartaganis and John Tartar. \Wave-based spectrum rendering". Techni-

cal Report TR 90-13, Department of Computer Science, University of Alberta, May

1990.

[gene93] Jon Genetti and Dan Gordon. \Ray tracing with adaptive supersampling in object

space". Proceedings of Graphics Interface '93, pp. 70{77, May 1993.

[gers87] Ron Gershon. The use of color in computational vision. Ph.D. thesis, Dept. of

Computer Science, University of Toronto, 1987.

[gigu90] Ziv Gigus and Jitendra Malik. \Computing the aspect graph for line drawings of

polyhedral objects". IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, Vol. 12, No. 2, pp. 113{122, February 1990.

[gigu91] Ziv Gigus, John Canny, and Raimund Seidel. \E�cient computing and representing

aspect graphs of polyhedral objects". IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 13, No. 6, pp. 542{551, June 1991.

[glas89] Andrew S. Glassner. \How to Derive a Spectrum from an RGB Triplet". IEEE

Computer Graphics and Applications, Vol. 9, No. 4, pp. 95{99, July 1989.

[guo91] Qinglian Guo and T.L. Kunii. \Modeling the di�use painting of sumie". IFIP

Modeling in Computer Graphics, 1991.

[haeb90] Paul Haeberli. \Paint By Numbers: Abstract Image Representations". Computer

Graphics (SIGGRAPH '90 Proceedings), Vol. 24, No. 4, pp. 207{214, August 1990.

[hain86] Eric A. Haines and Donald P. Greenberg. \The Light Bu�er: A Ray Tracer Shadow

Testing Accelerator". IEEE Computer Graphics and Applications, Vol. 6, No. 9,

pp. 6{16, September 1986.

[hain87] Eric Haines. \A Proposal for Standard Graphics Environments". IEEE Computer

Graphics and Applications, Vol. 7, No. 11, pp. 3{5, November 1987.

[hain91] Eric Haines and John Wallace. \Shaft culling for e�cient ray-traced radiosity".

Eurographics Workshop on Rendering, 1991.

[hall83] R.A. Hall and D.P. Greenberg. \A Testbed for Realistic Image Synthesis". IEEE

Computer Graphics and Applications, Vol. 3, No. 8, pp. 10{20, November 1983.

[hall89] R. Hall. Illumination and Color in Computer Generated Imagery. Springer-Verlag,

1989.

[hall93] David E. Hall and Holly E. Rushmeier. \Improved explicit radiosity method for cal-

culating non-Lambertian reections". The Visual Computer, Vol. 9, No. 5, pp. 278{

288, March 1993.

Bibliography 95

[hanr90] Pat Hanrahan and Paul Haeberli. \Direct WYSIWYG Painting and Texturing on

3D Shapes". Computer Graphics (SIGGRAPH '90 Proceedings), Vol. 24, No. 4,

pp. 215{223, August 1990.

[hanr91] Pat Hanrahan, David Salzman, and Larry Aupperle. \A rapid hierarchical radios-

ity algorithm". Computer Graphics (SIGGRAPH '91 Proceedings), Vol. 25, No. 4,

pp. 197{206, July 1991.

[hanr93] Pat Hanrahan and Wolfgang Krueger. \Reection from layered surfaces due to

subsurface scattering". Computer Graphics (SIGGRAPH '93 Proceedings), pp. 165{

174, August 1993.

[he91] Xiao D. He, Kenneth E. Torrance, Francois X. Sillion, and Donald P. Greenberg. \A

comprehensive physical model for light reection". Computer Graphics (SIGGRAPH

'91 Proceedings), Vol. 25, No. 4, pp. 175{186, July 1991.

[heck84] Paul S. Heckbert and Pat Hanrahan. \Beam Tracing Polygonal Objects". Computer

Graphics (SIGGRAPH '84 Proceedings), Vol. 18, No. 3, pp. 119{127, July 1984.

[heck91a] Paul S. Heckbert. Simulating global illumination using adaptive meshing. Ph.D.

Thesis, Computer Science Division (EECS), University of California, Berkeley, June

1991.

[heck91b] Paul S. Heckbert and James M. Winget. \Finite element methods for global illumi-

nation". Technical Report UCB/CSD 91/643, Computer Science Division (EECS),

University of California, July 1991.

[heck92a] Paul Heckbert. \Discontinuity meshing for radiosity". Eurographics Workshop on

Rendering, pp. 203{216, 1992.

[heck92b] Paul S. Heckbert. \Radiosity in atland". Computer Graphics Forum (EURO-

GRAPHICS '92 Proceedings), Vol. 11, No. 3, pp. 181{192, September 1992.

[hern92] Kenneth P. Herndon, Robert C. Zeleznik, Daniel C. Robbins, D. Brookshire Conner,

Scott S. Snibbe, and Andries van Dam. \Interactive shadows". Symposium on User

Interface Software and Technology, pp. 1{6, November 1992.

[hobb85] John Douglas Hobby. Digitized Trajectories. Ph.D. Thesis, Stanford University,

1985.

[horn88] Berthold K. P. Horn and M.J. Brooks, editors. Shape from Shading. MIT Press,

1988.

[houl91] Caroline Houle. \Light Source Modelling". M.Sc. Thesis, Department of Computer

Science, University of Toronto, 1991.

[imme86] D.S. Immel, M.F. Cohen, and D.P. Greenberg. \A Radiosity Method for Non-Di�use

Environments". Computer Graphics (SIGGRAPH '86 Proceedings), Vol. 20, No. 4,

pp. 133{142, August 1986.

Bibliography 96

[jans91] Frederik W. Jansen and Arno N.T. van der Zalm. \A shadow algorithm for CSG".

Computers and Graphics, Vol. 15, No. 2, pp. 237{247, 1991.

[kauf81] J.E. Kaufman and H. Haynes. IES Lighting Handbook. Illuminating Engineering

Society of North America, 1981.

[kawa93] John K. Kawai, James S. Painter, and Michael F. Cohen. \Radioptimization | Goal

based rendering". Computer Graphics (SIGGRAPH '93 Proceedings), pp. 147{154,

August 1993.

[kok91] Arjan Kok and Frederik Jansen. \Source selection for the direct lighting component

in global illumination". Eurographics Workshop on Rendering, 1991.

[kok92] Arjan J.F. Kok and Frederik W. Jansen. \Adaptive sampling of area light sources

in ray tracing including di�use interreection". Computer Graphics Forum (EURO-

GRAPHICS '92 Proceedings), Vol. 11, No. 3, pp. 289{298, September 1992.

[krin47] E.L. Krinov. Spectral reectance properties of natural formations. Laboratoria

Aerometodov, Akad. Nauk SSSR, Moscow, 1947.

[lewi93] Robert Lewis. \Making shaders more physically plausible". Eurographics Workshop

on Rendering, pp. 47{62, 1993.

[lisc92] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. \Discontinuity mesh-

ing for accurate radiosity". IEEE Computer Graphics and Applications, Vol. 12,

No. 6, pp. 25{39, November 1992.

[lisc93] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. \Combining hierar-

chical radiosity and discontinuity meshing". Computer Graphics (SIGGRAPH '93

Proceedings), pp. 199{208, August 1993.

[max93] Nelson Max and Roy Troutman. \Optimal hemicube sampling". Eurographics

Workshop on Rendering, pp. 185{200, 1993.

[meye88] G. W. Meyer. \Wavelength Selection for Synthetic Image Generation". Computer

Vision, Graphics and Image Processing, Vol. 41, pp. 57{79, 1988.

[meye90] Urs Meyer. \Hemi-Cube Ray-Tracing: A Method for Generating Soft Shadows".

Eurographics '90, pp. 365{376, September 1990.

[meye91] Gary Meyer and Richard Hale. \A Spectral Database for Realistic Image Synthesis".

Proceedings of Graphics Interface '91, pp. 47{52, June 1991.

[mitc91] Don P. Mitchell. \Spectrally optimal sampling for distribution ray tracing". Com-

puter Graphics (SIGGRAPH '91 Proceedings), Vol. 25, No. 4, pp. 157{164, July

1991.

[mora81] Hans P. Moravec. \3D Graphics and the Wave Theory". Computer Graphics (SIG-

GRAPH '81 Proceedings), Vol. 15, No. 3, pp. 289{296, August 1981.

Bibliography 97

[musg89] F. Kenton Musgrave. \Prisms and rainbows: a dispersion model for computer graph-

ics". Proceedings of Graphics Interface '89, pp. 227{234, June 1989.

[naim85] Avi Naiman. \Color spaces and color contrast". The Visual Computer, Vol. 1, No. 3,

pp. 194{201, November 1985.

[nico77] F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis. \Geo-

metrical Considerations and Nomenclature for Reectance", October 1977.

[nish83] Tomoyuki Nishita and Eihachiro Nakamae. \Half-Tone Representation of 3-D Ob-

jects Illuminated by Area or Polyhedron Sources". Proc. of IEEE Computer Society's

Seventh International Computer Software and Applications Conference (COMP-

SAC83), pp. 237{242, November 1983.

[nish85] T. Nishita, I. Okamura, and E. Nakamae. \Shading Models for Point and Linear

Sources". ACM Transactions on Graphics, Vol. 4, No. 2, pp. 124{146, April 1985.

[nish92] T. Nishita, S. Takita, and E. Nakamae. \A Shading Model of Parallel Cylindrical

Light Sources". Visual Computing (Proceedings of CG International '92), 1992.

[peer93] Mark S. Peercy. \Linear color representations for full spectral rendering". Computer

Graphics (SIGGRAPH '93 Proceedings), pp. 191{198, August 1993.

[pent82] Alex P. Pentland. \Finding the illuminant direction". Journal of Optical Society of

America, Vol. 72, No. 4, pp. 448{455, April 1982.

[phon75] Bui-T. Phong. \Illumination for Computer Generated Pictures". Communications

of the ACM, Vol. 18, No. 6, pp. 311{317, June 1975.

[pico92] Kevin P. Picott. \Extensions of the linear and area lighting models". IEEE Com-

puter Graphics and Applications, Vol. 12, No. 2, pp. 31{38, March 1992.

[piet93] Georg Pietrek. \Fast calculation of accurate form factors". Eurographics Workshop

on Rendering, pp. 201{220, 1993.

[poul90a] Pierre Poulin and John Amanatides. \Shading and Shadowing with Linear Light

Sources". Eurographics '90, pp. 377{386, September 1990.

[poul90b] Pierre Poulin and Alain Fournier. \A Model for Anisotropic Reection". Computer

Graphics (SIGGRAPH '90 Proceedings), Vol. 24, No. 4, pp. 273{282, August 1990.

[poul91a] Pierre Poulin. \An extended shading model for linear light sources". Proceedings of

the 1991 Western Computer Graphics Symposium, pp. 31{35, April 1991.

[poul91b] Pierre Poulin and John Amanatides. \Shading and shadowing with linear light

sources". Computers and Graphics, Vol. 15, No. 2, pp. 259{265, 1991.

[poul92a] Pierre Poulin. \Separate functions for local illumination". Graphics Interface '92

Workshop on Local Illumination, pp. 37{43, May 1992.

Bibliography 98

[poul92b] Pierre Poulin and Alain Fournier. \Lights from highlights and shadows". Com-

puter Graphics Special Issue (1992 Symposium on Interactive 3D Graphics), Vol. 26,

pp. 31{38, March 1992.

[poul92c] Pierre Poulin and Alain Fournier. \Lights from highlights and shadows". Proceedings

of the 1992 Western Computer Graphics Symposium, pp. 141{145, April 1992.

[prep85] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.

Springer Verlag, Berlin, Germany, 1985.

[raso91] Maria Raso and Alain Fournier. \A Piecewise Polynomial Approach to Shading

Using Spectral Distributions". Proceedings of Graphics Interface '91, pp. 40{46,

June 1991.

[rush90] Holly E. Rushmeier and Kenneth E. Torrance. \Extending the Radiosity Method

to Include Specularly Reecting and Translucent Materials". ACM Transactions on

Graphics, Vol. 9, No. 1, pp. 1{27, January 1990.

[sale92] D. Salesin, D. Lischinski, and T. DeRose. \Reconstructing illumination functions

with selected discontinuities". Eurographics Workshop on Rendering, pp. 99{112,

1992.

[schl93] Christophe Schlick. \A customizable reectance model for everyday rendering".

Eurographics Workshop on Rendering, pp. 73{83, 1993.

[scho93] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald Greenberg.

\Painting with light". Computer Graphics (SIGGRAPH '93 Proceedings), pp. 143{

146, August 1993.

[schw84] M.W. Schwarz, J.C. Beatty, W.B. Cowan, and J.F. Gentleman. \Towards an ef-

fective user interface for interactive colour manipulation". Graphics Interface '84

Proceedings, pp. 187{196, 1984.

[schw87] Michael W. Schwarz, William B. Cowan, and John C. Beatty. \An experimental

comparison of RGB, YIQ, LAB, HSV, and opponent color models". ACM Transac-

tions on Graphics, Vol. 6, No. 2, pp. 123{158, April 1987.

[sedg90] Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990.

[sega92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli.

\Fast shadows and lighting e�ects using texture mapping". Computer Graphics

(SIGGRAPH '92 Proceedings), Vol. 26, No. 2, pp. 249{252, July 1992.

[shaf85] Steven A. Shafer. Shadows and Silhouettes in Computer Vision. Kluwer Academic

Publishers, 1985.

[shin87] Mikio Shinya, Tokiichiro Takahashi, and Seiichiro Naito. \Principles and Applica-

tions of Pencil Tracing". Computer Graphics (SIGGRAPH '87 Proceedings), Vol. 21,

No. 4, pp. 45{54, July 1987.

Bibliography 99

[shir91] Peter S. Shirley. Physically Based Lighting Calculations for Computer Graphics.

Ph.D. Thesis, Computer Science Department, University of Illinois at Urbana-

Champaign, 1991.

[sill89] Francois Sillion and Claude Puech. \A General Two-Pass Method Integrating Spec-

ular and Di�use Reection". Computer Graphics (SIGGRAPH '89 Proceedings),

Vol. 23, No. 3, pp. 335{344, July 1989.

[sill91a] Francois Sillion. \The state of the art in physically-based rendering and its impact

on future applications". Eurographics Workshop on Rendering, 1991.

[sill91b] Francois X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P. Greenberg.

\A global illumination solution for general reectance distributions". Computer

Graphics (SIGGRAPH '91 Proceedings), Vol. 25, No. 4, pp. 187{196, July 1991.

[smal91] David Small. \Simulating Watercolor by Modeling Di�usion, Pigment, and Paper

Fibers". Proceedings of SPIE '91, February 1991.

[smit82] Alvy Ray Smith. \Paint". Tutorial: Computer Graphics, pp. 501{515, 1982.

[smit89] B.E. Smits and G.M. Meyer. \Newton colors: Simulating interference phenomena

in realistic image synthesis". Eurographics Workshop on Photosimulation, Realism

and Physics in Computer Graphics, 1989.

[stew93] A. James Stewart and Sharif Ghali. \An output sensitive algorithm for the com-

putation of shadow boundaries". Proceedings of the �fth Canadian Conference on

Computational Geometry, pp. 291{296, August 1993.

[stra86] S. Strassmann. \Hairy Brushes". Computer Graphics (SIGGRAPH '86 Proceed-

ings), Vol. 20, No. 4, pp. 225{232, August 1986.

[suth63] I.E. Sutherland. Sketchpad: A man-machine graphical communication system.

SJCC. Spartan Books, 1963.

[tana90] Toshimitsu Tanaka and Tokiichiro Takahashi. \Cross Scanline Algorithm". Euro-

graphics '90, pp. 63{74, September 1990.

[tana91a] Toshimitsu Tanaka and Tokiichiro Takahashi. \Precise rendering method for edge

highlighting". Scienti�c Visualization of Physical Phenomena (Proceedings of CG

International '91), pp. 283{298, 1991.

[tana91b] Toshimitsu Tanaka and Tokiichiro Takahashi. \Shading with Area Light Sources".

Eurographics '91, pp. 235{246, September 1991.

[tell92] Seth J. Teller. \Computing the antipenumbra of an area light source". Computer

Graphics (SIGGRAPH '92 Proceedings), Vol. 26, No. 2, pp. 139{148, July 1992.

[torr67] K.E. Torrance and E.M. Sparrow. \Theory for O�-Specular Reection from Rough-

ened Surfaces". Journal of Optical Society of America, Vol. 57, No. 9, 1967.

Bibliography 100

[verb84] C.P. Verbeck and D.P. Greenberg. \A Comprehensive Light-Source Description for

Computer Graphics". IEEE Computer Graphics and Applications, Vol. 4, No. 7,

pp. 66{75, July 1984.

[walt75] David Waltz. \Understanding Line Drawings of Scenes with Shadows". The Psy-

chology of Computer Vision, pp. 19{91. Mc-Graw Hill, New York, 1975.

[ward91] Gregory Ward. \Adaptive shadow testing for ray tracing". Eurographics Workshop

on Rendering, 1991.

[ward92a] Gregory J. Ward. \Measuring and modeling anisotropic reection". Computer

Graphics (SIGGRAPH '92 Proceedings), Vol. 26, No. 2, pp. 265{272, July 1992.

[ward92b] Gregory J. Ward. \Towards more practical reectance measurements and models".

Graphics Interface '92 Workshop on Local Illumination, pp. 15{21, May 1992.

[warn83] D.R. Warn. \Lighting Controls for Synthetic Images". Computer Graphics (SIG-

GRAPH '83 Proceedings), Vol. 17, No. 3, pp. 13{21, July 1983.

[weil77] K. Weiler and K. Atherton. \Hidden surface removal using polygon area sorting".

Computer Graphics (SIGGRAPH '77 Proceedings), Vol. 11, No. 2, pp. 214{222, July

1977.

[west92] Stephen H. Westin, James R. Arvo, and Kenneth E. Torrance. \Predicting re-

ectance functions from complex surfaces". Computer Graphics (SIGGRAPH '92

Proceedings), Vol. 26, No. 2, pp. 255{264, July 1992.

[will90] Lance Williams. \3D Paint". Computer Graphics (1990 Symposium on Interactive

3D Graphics), Vol. 24, No. 2, pp. 225{233, March 1990.

[will91] Lance Williams. \Shading in Two Dimensions". Proceedings of Graphics Interface

'91, pp. 143{151, June 1991.

[wolf90] Lawrence B. Wol� and David J. Kurlander. \Ray Tracing with Polarization Pa-

rameters". IEEE Computer Graphics and Applications, Vol. 10, No. 6, pp. 44{55,

November 1990.

[wolf91] Lawrence B. Wol�. Polarization Methods in Computer Vision. Ph.D. thesis,

Columbia University, 1991.

[wolf92] Lawrence Wol�, Steven A. Shafer, and Glenn Healey, editors. Radiometry. Physics-

based Vision: Principles and Practice. Jones and Bartlett, 1992.

[woo90] Andrew Woo, Pierre Poulin, and Alain Fournier. \A Survey of Shadow Algorithms".

IEEE Computer Graphics and Applications, Vol. 10, No. 6, pp. 13{32, November

1990.

[woo93] Andrew Woo. \E�cient shadow computations in ray tracing". IEEE Computer

Graphics and Applications, Vol. 13, No. 5, pp. 78{83, September 1993.

Bibliography 101

[wysz82] G. Wyszecki and W.S. Stiles. Color Science: Concepts and Methods, Quantitative

Data and Formulae. Wiley, 1982.

[yuan88] Ying Yuan, Tosiyasu L. Kunii, Naota Inamoto, and Lining Sun. \GemstoneFire:

adaptive dispersive ray tracing of polygons". The Visual Computer, Vol. 4, No. 5,

pp. 259{270, November 1988.

[zhou93] Jian L. Zhou and Andre L. Tits. \User's guide for FSQP version 3.2: A Fortran code

for solving constrained nonlinear (minimax) optimization problems, generating iter-

ates satisfying all inequality and linear constraints". Technical Report TR-92-107r2,

Electrical Engineering Department and Institute for Systems Research, University

of Maryland at College Park, March 1993.

