L earning to Use Complex Computer Tednology:.
The Importanceof User Interface Design

PhD Depth Paper
by

Joanna M cGrenere

Department of Computer Science
The University of Toronto

June 25th, 1998

Supervised by:

Profesor Ronald M. Baedker
Department of Computer Science
University of Toronto

Professor Kellogg S. Booth

Department of Computer Science
University of British Columbia

O Joanna M cGrenere, 1998

Abstract

Computer systems (and many other devices that contain embedded computers) are
beamming more and more mmplex as advances in techndogy permit substantially more
functionality to be provided to users. Often the vast number of options, and the sometimes
ad hac manner in which these options are invoked, leads only to confusion onthe part of
the user rather than satisfadion with the product. This can paentially inhibit the user’s
growth of expertise. A key fador in designing complex systemsisthe design of an
appropriate user interfacethat exposes functionality in away that suppats the neads of the
user as aleaner and daes not lead to confusion and frustration.

This paper is aliterature review that covers two somewhat symmetric goproaches to user
interfacedesign. The first involves making design dedsions based onan understanding of
how userslean new complex systems. The seandinvalves having the system learn abou
the user and then adjust itself or al ow adjustments based onwhat it has learned. This paper
surveys previous and current work in bah of these aeas and draws conclusions abou
appropriate aeas for further reseach in user interfacedesign techniques based onthese two
approades.

TABLE OF CONTENTS

1 INTRODUGCTION ...ttt e e ettt e e e e e et bbbt mmeate e et e e e e e e sa s bbb ee et e e e aeneeaaaeesaaasnnbaneeeaaeesaaans 1
2 SETTING THE STAGE ... oottt ee et a e e et e et mmn st e e e e e e e e s snsteeae e e e aaneeeaeeeeesannnsnnenes 2
21 TERMINOLOGY ...ttttuteetietui e eeeetessmeasaseeeeeetstaa s aeaeeessaaaseessssan s aeeeeessssan s eeann s seeeeeessssnnsaeeeeessssannnns 2
2.2 HOW ARE USERS COPING? ..ttt e eteettseee ettt seeeasseeeeestanaaaseaeseestsaansastan e eeaeeeastannaeeesmnnseeseessnnnnenns 3
2.3 WHY FEATURISM? WHY THE COMPLEXITY 2.ctttiieiititeeeeeetis e e s tenneeseeatst s e e e seessatnsssnnsnnnseessessnnnnnseesd 6.
24 THE GOAL OF UNIVERSAL ACCESS . .tittuuiietittiiieesettiieaasaseseaesestsssasseaasesstaaasssstan e aeaesesstnnnaeeesnnnsenes 7
25 RESEARCH DIRECTION ...cttttiiittiitseeseettisseaae s eeeeeeastanseeeaeeaassaaaessssna s seeaeessssanseeesnnnseeesesssnnnnseeesened 8
3 LEARNING TO USE COMPLEX SYSTEMS....oiiiiiiiiiiiii ettt 8
31 WWHAT ISLEARNING? ..c.eettttettiese e e e e eeeestemesassasaasaaasaaaasaeaeseseaeasssssssssesssssnsssnsssnssaneeaeeeaaeeeeeeeereeenes 10
3.2 EXTERNAL FACTORS AFFECTING LEARNINGevvvvvitietnnisieeeeeessaansasssasssssssssssesssesssssnnsesssssssssnnnsnnes 11
321 IMIOLIVALION. ... e e e e s e e s e ee e e eeeeeeeeeesesesess s s st bt e eeaeaeaaaaaaaaaaaaaaaaaeens 11
322 INdividua CharaCteriStiCSuuuueieii it 11
33 HOW DOES ONE LEARN?.....ceeittutttiisieseeeeetaaamsaassaaasaasasasasasasesessnnasssssssssnssssssnnsnsnsssnnnseeeeeeseeeeeeenes 12
331 EXPIOratory LEAIMINGveeiieiiiiiiiee ettt ettt e et e e e e e 12
332 Learning ThroughTransfer of Prior KNOWIEAQE.coiiiiiiiiiiiiiieeeee e 16
333 FOrmMal TraINMING ... eeeeeeiee ittt ettt e e sttt e e e st e e e e s seem b e e e e e anbeeeeeans 17
334 User Suppat - Online Help, Tutorials, Demonstrations and Animations, and Documentation18
335 Learning from Friends and Coll GAgUBS.coiiuuiiiiiiiiiiiemnie ettt 21
34 MODELLING HOW USERS LEARNtuuitieieeeieteieeettetmmmreseteeeeeseeeeeeessseeessaansaassasassasasaseseseeeseeannnnnes 22
35 DESIGNING FOR LEARNABILITY ..evttttttuiaaeseeeeeteeeeemmmssasasesasaaeaaaaeeaaeaeesannsssssssnnsssnsssnnsnsnnnnnanneeeseees 23
351 Designing for EXPIOratiONuviiiieiiiiiiie ettt e e et e s sbe e e eeeeens 23
35.2 (B2=To g T aTo R o) g = ¢ e OO PSP UPP PPN 25
353 Learner-Centered DESIGNciii et reet ettt mn et e et e e sbb e e e s nnnneeas 26
354 Questioning the All-iN-ONe MOGEL..........oooiiiiiii e 28
4 INTELL IGENT USER INTERFACES. ... oottt eeer st e e st mme s eaee e e e e e e s s snnnnneeees 30
4.1 = T USRI 32
4.2 ADAPTIVE USER INTERFACES.cettuuiitttitteeseettt et aeeeasesstannseseaeessaasesssssnnsaeeseessssnnaeennneeeessenes 35
4.2.1 Examples of Adaptive User INtErfaces:........ovvii it 38
4.3 USER IMODELLING . ..ttt ttttttteeseatts e e s teeneaaesett s e e eaaseastaa s s aaes s eeeeeeastannteeeaeesssanneesessnn s aeeeenesnrnnnens 41
43.1 EXamples Of USEr MOGEIS:uvueiiiiei ettt e 43
4.4 TASK MODELLING AND PLAN RECOGNITIONcitttiiieiiitiseesestiiessaeeeeseesssnnnnseesssssanassssssnnnneeassenns 43
44.1 Examples of Task Modelling andPlan Reagnition:uuvveiiiiieieeeeeeeee e 44
45 MULTIMODAL COMMUNICATION/NATURAL-LANGUAGE DIALOG.........cvvviiiiiieie e ceeecccccse e 45
45.1 Examples of Multimodd Comrrunicatior/Natural-Language Dialog:...........ccccvvvvvvviieienenn. 45
4.6 N = I L= Nl o = SRR 45
4.6.1 Examples of INtelli gent HElD: ...ooeeeeeieee et 45
4.7 INTELLIGENT TUTORING SYSTEMS ..ituuiiiiiriiieeeeiiiiieesienneesesssssnseeesesssssnnsssnsssssesssesssssnnseesseessannses 40
4.8 DYNAMIC PRESENTATION ...ttttuuiiiieettt e eeesttssesasseseeeesstannaseaesessasassssstsn s aeaeseestsnnaseannnsaeeeeessssnns 46
48.1 Examples of DyNamiC Presentalion:c.oiveeeeiiiiieeeeiteeee e 47
4.9 SOFTWARE ARCHITECTURES titttttteetesttesestsenmmesssstsnseeaasesstannaeeanansaeeseesssanntaeesaesssnnanessnnnaeess 47
4.10 [N 71y 1 (o PP 51
5 SUMM ARY AND DISCUSSIONcoiiiiiiieiiiiiiii i ieee ettt sttt e e e e e e e s anbebseeenenbeees 52
51 PUTTING IT ALL TOGETHER - TWO POSIBLE SCENARIOS.......cutttiiiieieeeeereeriremieseiassasesesasasaaasaeaannns 57
511 Gradud tod seledion and @-seledion - todlbox/workbench metapha ...l 57
512 Task driven todl seledion - multiple workbench metapha ..., 58
5.2 RESEARCH CONTRIBUTIONS. ... ittt eeeeteteeeeeetstummmteseseseesesesesesesesesesanssssaasaaaassnsasasesesesesemnsssmsmsnsnes 59
6 REFERENGCES.......ttttitiiiiiiiiii st ceeetet e e e s ettt et e e et aaaae e e s aanss st aeeaeeeessssnaeseanssttnaneeeeeeseannnsssnnnnns 61

1 Introduction

End-user applications have dhanged dramaticdly sincethe introduction d the PC nealy
two decales ago. The sharp increase in raw compute power has trandated into applicaions
with sophisticated graphicd user interfaces and with considerably more functionality than
their predecessors'. Look, for example, at word processng. In the ealy 1985 a padkage
that included basic input, basic editing, basic page formatting, and the aility to save and
print was probably thought to be mmprehensive. For aword procesor to be competitive
today it must include some drawing and spreadshed capabiliti es, the aility to import and
export just abou any format, the aility to format the document in a multit ude of ways, and
thelist goes on. Despite significant eff orts in the domain of Human Computer Interadion
to make the interfacemore intuitive, ou interfaces are in noway optimal [Raskin, 1997
and the functionality explosion hes only furthered the cmplexity of software?.

What abou the user? As we move towards universal accessit istimely to ask such
guestions as how users are aurrently managing complexity, whether complexity has become
abarrier to effedive and efficient use of human resources, and whether in fad the
complexity of today’s g/stems adually presuppases a sophisticated user? Have we perhaps
readed the adge of acoommodation and further advancewill require aparadigm shift?
Central to the issue of how users cope with complexity ishow in fad userslean to use
complex systems. What leaning strategies do users employ? Isthere away that systems
could be designed to better suppat the leaning process? What can we lean from users
leaning in ather domains?

This paper is aliterature review that addresses these questions and aher issuesinvolved in
the leaning of functionality-fill ed software that serves adiverse user popuation. In
particular it coverstwo gute symmetricd approachesto user interfacedesign: leaning how
users lean complex systems and designing acardingly, and having the system lean abou
the user and adjusting acardingly. Thefirst approacd is roated in fundamenta pradices of
thefield of Human Computer Interadion. It involves achieving an understanding of how
users lean by studying the users themsel ves through a number of well establi shed
tedhnigues. Oncethe processof leaning a mmplex system is better understood, then
designs that suppat leaning can be implemented and tested. The second approach is rocted
more heavily in thefield of Artificial Intelligence It involves the system creaing and
maintaining arepresentation d the user’s knowledge, habits, and reals. In aceordancewith
this knowledge base, the system can perform some tasks (perhaps rudimentary or perhaps
time consuming) on kehalf of the user and can be aljusted to better acoommodate the
individual user. The goa with this approac isto placesome of the burden o leaning on
the system.

! Thistrend of software expanding to take advantage of hardware caabiliti esis not unique to computing but
has appeared in the evolution of many appliances, including food gocessors, digital watches, and video tape
recorders[Card, 1989.

2|t isworth noting that this trend towards complexity is not limited to software. It is evident in herdware [e.g.,
Myer and Sutherland, 1969 and islikely a general trend outside the redm of computing. Once asystem
bemmes too complex and is no longer suppartable, the general solution isto build spedalized toals.

The purpose of thisreview isto identify reseach dredions and future contributionsin the
areaof leaning complex computer systems. The bodes of literature reviewed include
human-computer interadion, learning, intelli gent and adaptive user interfaces, and even
some trade literature.

The paper is divided into four main sedions. Thefirst sedion, Setting the Sage, highli ghts
the literature in which functionality is addressed and explains sme of the fadors that have
motivated the functionality explosion. The secondsedion, Learning to Use Complex
Systems, coversthe first approach to user interfacedesign by looking broadly at how people
aquire skill i n the context of computing environments. The third sedion, Intelli gent User
Interfaces, covers the secondapproach and describes the contribution d the Artificia
Intelli gence @mmunity towards reducing complexity in the interface ad improving user
performance The final sedion provides a brief summary, discusson, and some passhble
future reseach dredions. As an alternative path through the document, the reader may
wish to skip dredly to the final sedion after reading Setting the Stage in arder to get an
overview of the literature surveyed. With this aternative, the detail s in the third and fourth
sedion can then be used for reference purposes.

2 Setting the Stage

2.1 Terminology

Thereisnot yet awidely accepted terminalogy for the functionality explosion but it
appeasin the literature under the terms featurism [Constantine, 1995 and undr the
umbrella of the term bloat® [Kaufman and Weed, 1998 Munk, 1996 Kesterton, 1998.
Acoording to aworkshopat CHI 98 entitled “Identifying InterfaceBloat,” bloat describes
the perception o some users of a heavil y-feaured system. For some users, having a
heavily-feaured system is not problematic, in fad it is desirable. For other users, such a
system evokes a negative resporse. These users find a system to be bloated when it is nat
obvious how to acaompli sh tasks, when there is more in the interfacethan the user wants to
use, and simply when thereisalot to look at in the interface ad these interfaceobjeds
seem crowded and cluttered.

Theterm functionality is generally well understoodand perhaps that is why authors negled
to defineit predsely. Even in Goodwin’s[1987 article on functiondlity and wsability, the
definition o functionality was assumed bu not made eplicit. For the purposes of this
review functionality will be defined as: operations that modify awork objea”, operations
that present a diff erent view of the work objed, operations that change the state of the

% Based on a mnversation with Leah Kaufman, “bloat” originally appeaed in the literature in referenceto the
impad on performancethat resulted from adding rew feaures, e.g., a bloated system was one that took too
longto load or that required too much disk space

“ Work objed is used to denote the atifad that the user is manipulating, e.g., adocument, a presentation, a
spreadshed, an animation, an image, €etc.

interface operations that change settings in the interface Although most functionality is
accessble through interfaceobjeds’ it is the operation itself that is considered to be the
function. For example, the cmmmon operation to cut during editing is the removal of a
seledion from the work oljed and its placenent on the system cli pboard. Generally this
operation is accessble through a button onan applicaion’ s todlbar, through a menuitem,
and as well through the standard hakey Ctrl-X. Despite the fad that there ae multiple ways
to accessthis operation, it only represents asingle function. This latter exampleill ustrates
that as functionality is added, interfaceobjeds that accessthe functionality must also be
added and thisis not necessarily one-to-one becaise many functions have multiple
accesrs.

Theterm feature is more general than function. It tendsto refer to bah the accers of a
function and the functionitself. The perception d bloat can refer to bah of these.

Throughou this review the aljedive complex is used to describe techndogy. Thisterm is
relative and subjed to interpretation. However, for the purposes of this paper, it can be
taken to describe techndogy that has sufficiently many feaures that a person would na
simply be ale to walk upto and make substantial use of withou investing significant
leaning time. A standard word processor provides one example of a ammplex system.

The dasdficaion d usersinto noviceand expert categoriesis commonin dscussons
abou software skill . Unfortunately, the use of the term noviceis not consistent in the
literature. Noviceis ometimes used to refer to someone relatively inexperienced with
computersin general. It isalso used to refer to someone who is new to a particul ar
application[e.g., Nilsen et a., 1993. Often it isnat clea [e.g., van Oostendap and
Walbeehm, 1993 how noviceis being used. A more defining terminology is needed
becaise someone whois new to an application bu whois avery experienced user isvery
different than a generally inexperienced user. Greenberg and Witten [198] introduced the
term foreign wsers for people who have no grior experience of a given system but are
familiar with computersin general. Thisterm has not been adopted by other reseachers.

2.2 How are users coping?

Most computer users are cnstantly being faced with more on their desktop. It has been
estimated that an officeworker who relies primarily on threebasic gpplicaions sich asa
word processor, a sprealshed, and a graphics padkage, as well as an operating system, will
be required to lean a software upgrade onthe average of every six months [Franzke and
Rieman, 1993. With every upgrade, inevitably comes new functionality.

There has been minimal reseach to date that addresses how users are managing in the face
of al thisfunctiondity. It doesn’t appea as though anyone has taken onthisisaue diredly.
There ae some acounsthat areinformal and qualitative in nature whil e others are more

® Interfaceobjed refers to avisible objed that can be manipulated by the user. In GUI development toalkits
these objeds are cdl ed widgets and include: menus, toalbars, buttons, etc.

formal and include some quantitative measure. Here is an example of an informal acourt
that likens feaurism to adisease:

“Word processors, and agrowing legion d our most important software toadls, have
bewme victims of creeping feaurism, a serious malady of user interfaces that
strikes oftwareinits prime and can, if left unchedked, cripple the user. Untreaed,
cregping feaurism can leave users with an agorapholic resporse to large, open
dialogue boxes, or even with alingering fea of unknovn menus.” [p. 162,
Constantine, 1995

Others have dluded to these mmplex systems as being “nightmarish” for the user:

“Our present systems have mme to be & large, complex, and nightmarish as the
mainframes they first displaced (mainframes have becme larger still; but most
computer users dont haveto ded diredly with them onadaily basis).” [p. 99,
Raskin, 1997

Some survey reseach by Munk [1996 has suggested that having powerful PCsfill ed with
heavily feaured software can reduceusers’ productivity: “Too much hasepower onthe
desktop can have the perverse dfed of cutting productivity.” For example, she reported that
in asurvey of six thousand workers condicted by SBT Accourting Systemsin San Rafad,
Cdifornia, it was foundthat users ent five hous aweek ‘futzing’ with their PCs. It isnat
entirely clea what constitutes futzing, but she includes the foll owing as big time wasters:
waiti ng for programsto run, reports to print, repair men to show up, technicd suppat folks
to pick upthetelephore, and aganizing and cleaing out cluttered disk storage.

Carroll and coll esgues [Carroll and Carrithers, 1984, 1984h Carroll and Madk, 1984
Madk, Lewis, and Carroll, 1983 creaed what they cdl ed a Training Wheds Interfacefor a
commercial word procesor. Thisinterface ssentially blocked some functionality and error
states, such that when userstried to seled a blocked function, a message was displayed that
indicated that the function was unavail able in the Training Wheds Interface Two studies
were mnducted ead with twelve novice users that compared the training wheels g/stem
(TW) to the mmplete system (CS). In the first study it was foundthat the TW users could
complete asimple word processng task 21% faster and spent significantly lesstime
(p<0.05) recovering from errors when using the dtered system compared to the CS novices.
Error isdefined here a adeparture from the aeae and print adion peth andrecovery is
defined as a subsequent return to that path. In a post-sesson comprehension test of word
procesor basics the TW group performed significantly better than the CS group (p<0.05),
andin aquestionraire designed to reved attitude toward work, the TW group scored
significantly higher than the CS group (p<0.05. The aithors conjedure that becaise the
TW users were more successul, they may have felt better abou themselves and abou work
in general. The second study was amost identicd to the first and most of the mean
differencesin this gudy closely tradked thaose of the first study. Two dfferencesin the
sendstudy were that the TW group committed significantly lesserrors (p<0.005 but
there were no significant diff erences in the posttests on comprehension and work attitude.

Franzke and Rieman [1993 conducted a study with twelve users who hed an average of
two yeas experience with Madntosh computers. The study compared hawv long it would
take usersto lean haw to creae adefault graphin two dfferent versions of agraphing
padkage. They foundthat it was sgnificantly faster (p<0.05 using the ealier version d the
padkage than the later version. The graphing task spedficdly required the navigation and
completion d aparticular dialog box that roughly tripled in feaures between the two
versionstested. Clealy, if the experimental task had required the use of the feaures

avail able only through the newer version's dialog box, then it would probably have been the
case that using the newer version would be faster. (There would, o course, be no
comparison at al if it wasinfeasible to accomplish the task in the ealier version.) This
raises the question d how much o the functionality made avail ableis adually used.

Franzke [199] investigated the impad of the number of interfaceobjeds on a user’s ability
to find the gpropriate objed. She amnducted an experiment with seventy-six reasonably
experienced users (average of just under threeyeas of Mac eperience and average
familiarity with threeMac gpli caions) that included two trials. It was foundthat as more
objeds were displayed at a given time, it took significantly longer for the usersto locate the
objed neaded. But this main effed interaded with trial. Thus the adion times during the
first trial (the explorationtrial) were more df eded than those during the secondtrial.
During the secondtrial, the number of objeds did na matter as much. There was athree
way interadion ketween the number of objeds, the quality of an oljed’slabel, and the trial
such that the search time for poarly-labeled oljedswas sgnificantly worse when there
were many objedsto seacch in ealy trias. If the label quality was goodthere was no effed
of the number of objeds on dsplay. There was anather triple interadion olserved between
the type of interadion, the number of objeds on dsplay, andthetrial. If there were many
objedsto seach, adiontimes during trial one were inflated espedally for interadions that
were difficult to dscover. Such interadions refer to, for example, clicking on a dialog-box
button, editing text, using aradio buton, single dicking onagraph oljeq, etc. In particular,
the types of interadions that fall under the cdegory of dired manipulation required more
time.

In terms of total functionality usage, Nilsen et al. [1993 condcted alongitudinal study of
people using a mmmercial spreadshed padkage. In general, their research foundthat people
only use asubset of an applicaion’s functionality and they dorit often master even this
subset, let alone lean and master al the functionality. Kesterton[199§ reports that on
average people use only about 13 percent of the computer feaures and programs that they
own. The Nilsen et a. study lasted 16 months and included twenty-six subjeds who were
followed during their leaning of Lotus 1-2-3. The subjeds were dl new MBA students
who were expeded to use Lotus 1-2-3 for schod related work. Each subjed was “tested”
(in alaboratory setting) at the outset and then was subsequently given an amost identicd
test at eadh of three gually spacel intervals, so there were four testing sessons. The tests
consisted of tasks that required knowvledge of basic Lotus 1-2-3 functionality. The results
showed that fourteen of the twenty-six subjeds were ale to complete dl the tasksin the

test, seven were ale to complete most tasks but made some arors, and the remaining five
subjeds committed multi ple erors which dsplayed abasic lack of knowledge éou Lotus
1-2-3.

Nilsen et a. [1993 reviewed the HCI literature and foundthat studies of the growth of
software skill show “that people atempt to fully master the aurrent task-related skill before
moving onto more complex, advanced skill or those relevant to ather tasks.” This suggests
that users prefer to fed like an expert in afunctionality subset rather than anovicein the
total functionality. When applicaions do give users the choiceto operate d different
expertise levels within a complex system, Shneiderman [19974 claimsthat users are
content remaining experts at level 1, rather than deding with the uncertainties of higher
levels. The only systems he dtes as giving this choice ae computer/video games and
HyperCard. (Although most systems permit tail oring, heis edficdly referring to systems
that all ow the user to set alevel and the subsequent avail ability of functionality is grictly
based onthelevel.)

2.3 Why featurism? Why the complexity?

The documented ac@urts and studies foundin the literature suggest that alot of
functionality is unused and that unreeded functionality is distrading to users. This may
indicate that areturn to simpler systems would be beneficial. If we assume that the average
user would make better use of lessfeaured software, then why has most software become
more-feaured? The lit erature suggests a number of reasons, namely, that feaures are
needed in order to market the product successully, that it is the programmers themselves
(i.e., the technicdly-literate) who are dedding which functionality to include and are
designing how the functionality isincluded, that the evolutionary processof software
development does not easily acoommodate global redesign, that additional feaures are
needed in order for an applicaion to integrate with ather appli cations, and that usability
guidelines favour giving users multi ple waysto perform the same adion. Each of theseis
discussed briefly below.

Marketing is driving feaurism because feaures sl [Constantine, 1993. It is ©mewhat a
dichotomy; despite the fad that most buyers will never use many of the options, it isa
comfort for these same buyers to knaw that the options are there just in case they may be
needed someday. This can also be viewed as consumerism, i.e., that users want more for
their money regardlessof whether or nat it will be used [Kaufman and Weed, 199§. In the
trade press software reviewers clealy focus on feaures by using tidy comparison tables
that are padked full of different markers (cheds, dashes, circles with variousfill) which
denote the extent to which a padkage has a ceatain capability. Vendars attempt to have the
most chedks (or fill ed circles) onthe function list and consumers lean to dscriminate
between full -feaured appli cations and thase with lessfeaures.

The request for new feaures comes primarily from experienced users and these feaures are
suppemented, designed and implemented by programmers who are dso experienced users

[Computer Science and Telecommunicaions Board, 1997. It is ometimes the case that
programmers want to add easily coded feaures with littl e concern for the extent to which
the feaures will adually be used. The mentality isthat if it is easy to code, then the st is
low and so even if it only benefits afew, it isworth it. In addition, programmers are
credive people and may want to add a new fedure becaise it isinnovative or challenging to
code [Kaufman and Weed, 199§.

It has been suggested that it is not the aldition d feaures that has caused the complexity
but rather the manner in which they have been added. The processof software engineaing
is evolutionary and rather than maintaining a dea and consistent global design through
versions of an applicaion, it is more often the case that the software turnsinto a patchwork
of parts and pgeces and consequently usability suffers greatly:

“Creeping feaurism results from the slow acaetion d cgpabiliti es andis refleded
in abumpy andirregular user interfacemarred by idiosyncrasies and spedal
functions that seem to grow like warts or carburclesin the oddest places.” [p. 163,
Constantine, 1995

Additional feaures appea in software products for compatibility or integration puposes.
Thisis exemplified in product suites such as Microsoft Office, in which the user is given
the aility to load afil e from one Office product into another [Kaufman and Weed, 1998.

Lastly, new feaures may appea for what is considered to be ausability reason. It is
sometimes thought that if users are given multi ple ways to dothe same thing, that the
usability of the system is enhanced [Kaufman and Weed, 199§.

To summarize, the functionality explosion that has taken placeis largely attributable to
marketing forces, and the resulting feaures are primarily targeted at and designed for the
sophisticated user. Those users who are average or not even average use aminimal amourt
of thetotal functiondlity and preliminary reseach suggests that these users cope better with
simpler versions of software. This conclusion does not bode well for the goal of universal
acces

2.4 The Goal of Universal Access

Both in Canada and in the United States the goal to provide universal accessto computing
tecdhndogy has been set. Industry Canada is targeting to make Canada the most connected
courtry in the world by the yea 2000.The Schodnet program is just one example of this
initi ative. Through this program all 16,500schods and 3,400 pulbc libraries aaossCanada
will aqquire Internet connedions by the end d 1998[Manley, 1993. The United States
shares Canada’ s goal of becoming a cnreded courtry but recognizes that conredions
alone will not guarantee accssto al. The U.S. National Academy of Sciences has accepted
the dhall enge of making the Nation's Information Infrastructure (NIl) accessble and usable
by all. In aworkshop reld to addressthis chall enge, the dtendees dedded that the interfaces

to the computing and communications g/stems that dominate the NIl shoud be referred to
as evay-citizen interfaces. Thisterm refleds the projed’s misson to examine the necessary
requirements for every citi zen to be ale to use the resources avail able through the NII. The
attendees reaognized that even citizens withou disabiliti es can strugg e with information
techndogy:

“...even though the usability of systems has improved substantially over many yeas,
current interfaces dill exclude many people from effedive NIl access Most obvious
areindividuals with physicad and aher disabiliti es, bu as articlesin even the
national and businesspressattest, people withou such dstinguishing
charaderistics, even expert users of NIl systems, experience difficulti es that
constrain or even predude their full use of NIl resources.” [p.1,Computer Science
and Telecoommunications Board, 1997.

The following are charaderistics that were determined to be desirable for effedive every-
citizen interfaces: easy to understand, easy to lean, error tolerant, flexible and adaptable,
appropriate and effedive for the task, powerful and efficient, inexpensive, partable,
compatible, intelli gent, suppative of social and groupinteradions, trustworthy (seaure,
private, safe, and reliable), information centered, and deasant to use.

2.5 Research Direction

The gparent frustration by at least some of the non-expert users with complex software
suggests that the interfaceneeds to be reconceptuali zed to med the needs of all users,
regardiessof skill | evel. It seems intuitive that an interfaceoff ering the user only the
functionality pertinent to his’her skill sand needs would be eaier to use than ore that
offered functionality beyond hs/her comprehension [Cote-Mufiaz, 1993. Imagine asystem
that knows the user’s ill , needs and current task, and then presents exadly the gpropriate
functionality. When these skill s, needs, and task change, the interfacewould adapt easily
and present the functionality required to match these changes. Clealy the system just
described is unachievable. It would require the system to acaurately predict al changesin
both user skill and reads. Just becaise the ided is nat achievable, however, does not mean
that we must stay with the airrent paradigm.

3 Learning to Use Complex Systems

In arder to understand haw feaurism impads the leaner it is necessary to first step back
and ask how, in general, people lean to use a omplex system. It isinstructive to first
identify why leaning is necessary at all.

Bosser [1987] situates the role of leaning complex systems as shown in Figure 1 which has
been adapted from Baeder and Buxton [1987. The prescriptivemodel of the system
represents the set of skill sthat are required for a user to succesgully use asystem fully. The

descriptivemodel of the user represents the set of skill sthat a user has when first
encourtering the system. It is most often the case that the descriptive model is a proper
subset of the prescriptive model andisthus shown as such in the figure. The goal isfor the
prescriptive model to equal the descriptive model. To achieve this goal, the gap between the
required and actual skill s (i.e., the set diff erence) neadsto be bridged. The bridging can
occur through better design which reduces the required skill or by learning of skill s onthe
part of the user. Thus, Bosser notes that good design and learning are compensatory.
Wedknesss of the system can be overcome by leaning, and eff edive design reduces the
burden onthe user’ s cognitive system.

prescriptive
model of system

descriptive
model of user

learning design

Figure 1: learning and @sign can ke used to bridge the gap ketween the descriptive model of the user and
the prescriptivemodel of the system [Baecke and Buxton, 1987 .

There ae potentially two thingsto be leaned by the user: the task and the interface Bosser
[1987 refersto these as the task and tod knowledge that need to be aqjuired. Baedker and
Buxton[1987 distinguish these & the functiond and operationd problems to be solved.
Operational problems have to dowith the means of performing work whereas functional
problems have to dowith the content of that work. They note that one objedive of user
interfacedesign is to minimize the need for operational problem solving becaise dl of the
cognitive resources consumed at thislevel are being diverted from completing the task that
was the reason the cmmputer was adopted in the first place

The leaning being addressed in this review is primarily that of leaning the interface or in
the terminology above, how users overcome the operational problems. Although users may
not have perfed task domain knowledge before using an appli caion that suppats adomain,
it must be asumed that users must have some understanding of the task to be aleto use
thetod. For example, if someone doesn’t know what the dphabet is and daesn’'t
understand words or paragraphs, then regardlessof how well aword procesor is designed,
it isunlikely that the user will be aletolean hav to useit (for itsintended pupose
anyway). The question d how to design a system to suppat the learning of task knowledge
isan interesting one and is the primary focus of researchers investigating Leaner-Centered
Design which is described in Sedion 3.5.3

3.1 What is learning?

Bosser [1987 natesin hisliterature review “Leaning in Man-Computer Interadion” that in
his experiencefinding a general definition for leaning wasn’t passble. In some schods of
empiricd psychaogy, leaning has been associated with behaviourism and a representative
definitionwould be: “learning isa change in behaviour occurring as aresult of experience”
This definition stresses observable variables and is therefore only meaningful when the
procedures for experimentally manipulating ‘ experience€ and for observing the behaviours
that change & a mnsequence of these manipulations are defined.

Bdsser [1987 naotes that from a agnitive paint of view, this type of definitionistoo
simplistic end that there ae aognitive processes for which experimental procedures canna
be defined. He dtes the following nontoperational definitions which he suggests are dmost
meaninglessfor empiricd psychalogy:

e “Leaningis making useful changesto the mind’ [Minsky, 1985cited in Bosser, 1987
« “Leaningis constructing or modifying representations of what is being experienced”
[Michalski, 1986cited in Bosser, 1987

Current cogniti ve theory emphasizes threeinterrelated aspeds of learning [Resnick, 199Q.

1. Leaningisaprocessof knowledge construction, nd of knowledge recording or
absorption.

2. Leaning is knowledge-dependent; people use aurrent knowledge to construct new
knowledge.

3. Leaningishighly tuned to the situation in which it takes place

Leaning has also been described as the aquisition d knowledge where knowledge can be
both fadua knowledge & well as procedural knowledge. Skill i s procedural knowledge that
has been optimized for exeaution speed and acaracy through pradice Unskill ed behaviour
is problem solving [Card, Moran, and Newell, 1983in Baedker and Buxton, 1987 which
requires the user’s attention and wses arelatively large number of resources [Baedker and
Buxton, 1987. These definitions of skill ed and urskill ed behaviour are amnsistent with
cognitive psychology where skill aqquisitionis defined as the processof compili ng and
procedurali zing individual steps. Baedker and Buxton have likened this to a cogritive
subroutine.

With resped to leaning a system, we encourter in the trade literature, in some of the HCI
literature, and certainly in the popuar pressthe mommon bwzwords “ease of use” and
“user-friendly.” When a system provides ease of use or a system is user-friendly it implies
that asystem iseasy to lean bu these ae dl in fad vague mncepts [Baedker and Buxton,
1987 Bosser, 1987. Baedker and Buxton suggest that a deaer formulation o the goal that
isintended by these termsisthe goal of accéerating the processwhereby novices begin to
perform like experts. (SeeSedion 2.1for discusson on ser categorization.) Nilsen et al.
[1993 observe that the HCI literature adopts ill aayuisition as representative of leaning
and that the psychadlogicd lit erature focuses on the improvement in performance, where
performancerefers to the speed and acaracy at which tasks are cmmpl eted.

10

3.2 External Factors Affecting Learning

People do nd simply respondas automatons to given stimuli. People ae different and the
contexts within which people lean to use computers and computer applicaions are
different.

3.2.1 Motivation

Bossr [1987 notes that motivation days asignificant role in learning. Humans exeaute
adions based onmulti ple goals and constraints, some of which may be cnflicting. He says
that the goal of user behaviour isto maximize amulti-dimensional utility criterion, that it is
important to consider the relative utility associated with the reatable goal condtions, and
that motivation guides behaviour and therefore dso guides leaning based on padice(i.e.,
determines which skill swill develop). Motivational fadors associated with human-
computer interadion are largely determined by the task and are spedfic to the user’ s current
context. Time management is considered to be the most important fador. The lossof
current work time is associated with high negative utility. Other likely fadorsinclude: error
avoidance, improvement of performanceor quality of product, bulding confidencein tod
usage, improvement of qualificaion, and reduction d stressby automation o skill . In his
review, Bosser urges Human Fadors praditi oners to identify the dimensions of utility and
the anstraints which are of relevancefor the user in spedfic work situations. From this we
can conclude that enumerating the motivational fadors and quantifying them is an onrgoing
areaof reseach.

3.2.2 Individual Characteristics

Unlike motivation, which often varies not only between users but also within users
depending on the task and aher constraints, charaderistics 2uch as cognitive aility and
cognitive style ae inherently individual charaderistics. Olfman [1987,in Davis and
Bostrom, 1997 reviewed the role of individual charaderistics and their impad on wsers
leaning new software. He foundthat cognitive aility (memory ability, reading/semantics
ability, and visua ability), cognitive style (analytic/heuristic, leaning style, and preferred
leaning mode), computer experience (with spedfic software goplicaions), and a number of
other traits (e.g., age, grade point average, mathematics ability) did impad leaning.

Davis and Bostrom [1997 conducted a study that compared the impad of two leaner
characteristics, individual leaning mode and visual ability, onthe aility to lean bah a
dired manipulation system and a command-li ne system. Their hypotheses regarding the
impaa of being an abstrad versus a ancrete learner were not suppated by the study. With
resped to visua ability, however, the hypothesis that high visual users would perform
better overall than low visual users was suppated. High visual users also tended to perceive
the systems under study as easier to use than did the low visual users. One must be caitious
not to over generali ze the results of a study such as this. The phenomena under study here

11

are reasonably complex and thus multi ple studies using diff erent methoddogicd
approades are likely required to gain an understanding of their true impad [seeMcGrath,
1994

3.3 How does one learn?

Leaning has been identified as a means of matching the user’s ill s to the skill s required
by the interface The literature documents a number of diff erent approachesto leaning a
complex system which include exploratory leaning, learning through transfer of prior
knowledge, formal training, learning through user suppat provided with a system
(documentation, orine help, tutorials, animations, and demonstrations), and learning
through asgstance from coll eagues and friends. Exploratory leaning, as will be discussed
below, isthe most common approach to skill advancement and so although ead of these
methods is covered in this review, exploratory learning is given the greaest coverage.

Discussons abou Computer Aided Instruction and Intelli gent Tutoring Systems have not
been included. The purpose of these systemsisto help the user lean, however, they are
generally geared towards fadlit ating task leaning (functional leaning) and nd leaning the
interface(operational leaning).

3.3.1 Exploratory Learning

Learning by doing [Carroll and Madk, 1984, learning by trial and error, learningin
contex [Rieman, 1994, and activelearning [Kerr and Payne, 1994 can al have dlightly
different meanings than exploratory leaning, however, they generaly al represent the same
phenomenonwhich is aaquiring knowledge by navigating through a system, trying diff erent
adions, and asesdang the results of thase adions. Thereis no genera principle of how
exploratory leaning works and most of the literature on exploratory leaning is domain-
spedfic (conversation with Dan Kedaing, chair of Human Development and Applied
Psychalogy at Ontario Institute for Studies in Educaion). Thus the literature documented
hereis edficto leaning to use techndogy.

The evidenceregarding the dficiency of exploratory leaning as ameansto aqjuire
knowledge is conflicting [Carroll and Madk, 1984. Bosser [1987 compares leaning by
doing to formal training and ndes that although the latter may take more time, it resultsin
more productive work afterwards. Kamouri et a. [1986,cited in Trudel and Payne, 1995
conducted a study that compared exploration-based and instruction-based techniques
(pradice-oriented, tutorial examplesin amanual) for leaning a mmputer-simulated device
Two days after training, subjeds who hed leaned by exploring were more succesdul at
transferring procedures to a novel, analogous device The explanation given for this result
by the authors was that exploration encouraged the development of abstrad representations
and analogicd reasoning whil e the more passve leaning that resulted from foll owing
textual instructions did nd.

12

There is reasonable evidencein the literature that exploratory leaning is used more often
than any other method[Howes and Payne, 199Q Rieman, 1996 Carroll and Mad, 1984.

Howes and Payne [199(nate that exploratory leaning is an everyday redity - leaners
spend alot of time exploring, whether out of choiceor out of necessty. They cite the
foll owing reasons: no dacumentationis avail able, it istoo much troude to read
documentation even if it is avail able, thereis an urgent need to accomplish particular
pradicd tasks, and explorationisfun.

Rieman [19949 condcted afield study to addressthe question: Within the work and
computing environments currently avail able, when and hav do wserslean to use the
software they need for their dail y tasks? He foundthat users predominantly use exploratory
leaning and they do so in the mntext of red tasks. Users are very concerned about
acaomplishing the tasks required for their job and thus prefer a just-in-time, task-driven
approad to leaning. Rieman uses abroad definition d exploratory leaning: leaning
“through trial and error, through interadion with ather users, through occesiona reference
to manualsif they are available.” It isnat surprising that his definitionis lessconstrained
than most definitions because it is derived from afield study and nd a cntrolled
experiment. Others have used narrower definitions. For example, van Oostendap and
Walbeehm [1995] define exploratory learning to be “aspedal case of problem-solving that
consists of aseach processin abasic problem space whil e the leaner has no, a aimost no,
spedfic domain knowledge.”

Even though explorationis often used for leaning an interface reseach shows that when it
isused initsmost basic form it doesn’t result in effedive leaning. Trudel and Payne
[199] foundthat unfettered exploratory leaning is rather unrefledive and ursystematic.
They suggest that if users are left to explorein an urrestricted fashion, they do nd behave
adaptively, i.e., they interad too much, and think too littl e. Further, they suggest that this
mal adaptive behaviour is adually encouraged by the interadivity of modern computer-
based devices, i.e., by the eae of making adions and by the rapid visual feedbad that is
derived®. Payne and Howes [1997 identify three exploration traps:

* Leaners may achieve the desired eff eds but forget the sequence of adions taken to
acomplish the success

» Leaners may remember a sequenceof adions but it may be asubogimal method.

» Leaners may inappropriately charaderize their accompli shments, or inappropriately
parse device transformations which makes generali zation to dfferent situations
problematic.

Trudel and Payne [1999 demonstrate that increasing the st of interadion at the interface
can improve performance and leaning. They argue that when god management and

® Thishigh“interadivity/poar leaning’ versus “refledion driven interadion/better leaning’ can be seen asa
form of spead/acaracy tradeoff. If the objedive of atask is eed, then acarracy is generaly saaificed. On
the other hand, if the objedive isacairagy, then speal is saaaificed. Thistype of tradeoff is hardly limited to
interacting with computers.

13

refledion are included with exploratory leaning, more is leaned. They condicted an
experiment with subjeds leaning to use a @mputer-simulated dgital watch in which
refledion was influenced by the imposition o akeystroke limit (i.e., alimit onthe anourt
of physicd interadion with the device) and goal management was influenced bah by
providing subjeds with lists of goals and by limiti ng subjeds to explore one part of the
device a atime. They foundthat imposing a keystroke limit did lead to improved
exploratory leaning: despite exploring the devicefor lesstime, the subjeds who had
limited keystrokes demonstrated bah superior dedarative and procedural knowledge. One
interpretation d thisresult isthat by limiti ng the keystrokes, ead interadion with the
deviceisascarce and valuable resource which encourages sibjeds to pay more dtentionto,
and think harder abou the results of the interadion. A similar result was foundwhen
subjeds were forced to explore one mode of the digital watch at atime. The goal li st
manipulation also improved exploration bu to alesser degreethan the other two
manipulations. This result seans to suggest that goal-oriented exploration, whil e important,
isnat as sgnificant a determinant for effedive leaning as are refledion oninteradion and
constraining the exploration space

Trudel and Payne [1999 note that their findings pose adilemmafor the designers of
interadive systems because one of the main appeds of such systemsistheir explorability.
They suggest that user interfaces could be augmented with spedal “exploration fadliti es’
which compromise some of the usability of standard operation a add information to the
system display so as to enhance eploratory leaning. They nate that the training wheds
interfaceis one example of this.

Reseach condwcted by Svendsen [1997] suggests that another way to forcerefledionisto
make the interfacemore difficult to use. When he compared users doing the same task with
adired-manipulationinterfaceto users using a mmmand interfacehe foundthat those who
used the coommand interfacedemonstrated superior problem solving ability. He cncluded
that systems that are considered to be user-friendly can in some caes reducethe users
problem-solving ability. Despite this, the usersin his dudy showed a dea preferencefor
using the direct manipulation interface This dichatomy poses a dhall enge for designing for
leanability.

Payne and Howes [1997 devel oped the task-adion traceto suppat informed refledion
during exploratory leaning. It is suppased to rescue the user from the “how did | do that?
trap. Through dialog monitoring the task-adion traceprovides. adynamic traceof the
user’s adions; a parall el traceof the tasks the user accompli shes with adisplay of the
mapping from adions onto tasks; and afilter of the user’s adions for any particular task,
displaying only the necessary subset. These traces are maintained in awindow separate
from the goplicaionwindow. Payne and Howes ran an informal study of the task-adion
tracewhich suggested that some users find the tracesufficiently helpful to interaa with it
repeaedly during the first four hours of leaning. They also foundthat presenting leaners
with an additional “thing” to lean can be problematic. Pil ot subjeds complained that being
presented with spedal instructions for the trace dongside the main learning task was

14

overwhelming. It was concluded that leaning suppat tods shoud na burden their users
with new leaning demands, or they will very likely not be utili zed.

The reseach by JohnCarroll and colleaguesin the 1980s [Carroll and Carrithers, 1984,
1984k Carroll and Madk, 1984 onthe Training Wheds interfacetook a diff erent approach
to that of the task-adion trace Rather than adding suppating information to guide
exploration, the Training Wheds interfaceblocked off error states and functionality in a
word processor that was not needed for the simple task of typing, saving, and grinting a
document. With this blocking, novice users were ale to acampli sh the task significantly
faster and spent significantly lesstime recovering from errors than did novice users who
used the full version d the word procesor. Carroll and Carritthers [19844 identify three
main aspeds of the design of the Training Wheds g/stem: it limits the pun shment
asociated with making errorsin leaning; the user errors €l cit feadbadk that cen help
leaners discriminate leaning targets from errors; and it limit s and focuses the potential
spaceof user optionsin the leaning situation. The first two aspeds given, designing for
error and providing feedbadk, are now considered integral to good design.

Franzke and Rieman [1993 investigated whether ealier versions of a software padkage
would provide a ‘hatural training wheds environment” for later, more cmplex upgrades.
The experiments condwcted confirmed this hypaothesis for the software tested. It was found
that subjeds adually spent lesstotal time performing the same task twice, oncein the
ealier version d agraphing padkage and then again in alater version of the same padkage,
than ather subjeds who performed the task only oncein the later version with no
preparation. Franzke and Rieman nde that these results suggest that ealier versions of
software auld be useful for training, either in aformal training program or as production
software for novice users. The successof either approach would be highly dependent on
both the users tasks and the diff erences between versions of the software.

Franzke [1995 conducted a study to determine how explorability isimpaded by certain
interface ondtions. In particular, she looked at whether the aility to discover the
appropriate interfaceobjed is dependent on the number of distrading interfaceobjeds, on
the type of interadion required, and onthe goodressof alabel. For reasonably experienced
users it was foundthat the more objeds that were displayed at any given time, the longer
the adiontimesto accessthe wrred objed. A similar finding was the cae for the quality
of the label. Thisfinding, however, interaded with the trial, which means that in subsequent
uses of the system, theimpaad of the number of objeds and the label quality was lessened.
It was also foundthat if there were many objedsto search, adion times during the first trial
were inflated, espedally for interadions that were difficult to discover, such as dired
manipulation interadions.

To summarize, research shows that learning through explorationis the preferred method
although it may not necessarily be the most efficient or eff ecive method d leaning how to
use asystem. It is predsely the interadivity of applications that encourages exploratory
leaning, bu it is also the interadivity that all ows for unproductive exploration and thus
poar leaning. Exploratory learning can be enhanced when the learner is forced to refled on

15

his/her interadions and when the exploration spaceis constrained. Refledion can be forced
by limiti ng the anourt of interadion the user can have with a system or by making the
interadion more stly.

3.3.2 Learning Through Transfer of Prior Knowledge

Leaning through transfer of prior knowledge has been cdled learning by knowing and
metapha [Carroll and Madk, 1984. It is also sometimes referred to as transfer of learning,
which Bosser [1987] defines as “the saving in leaning a secondtask caused by the previous
leaning of asimilar task.”

The foll owing questions arise: Where is knowledge aquired? Once aquired, will
knowledge dways be avail able? For the purpaoses of human-computer interadion Bésser
[1987 distinguishes task and tod knowledge, either of which may be general or spedfic.
Task refers to domain knowledge and tod refers to knavledge éou the system or device
(Tod knowledge was ealier referred to as interfaceknowledge and operational knowledge
in the first part of Sedion 3 in this document.) Bés<er defines sources of knowledge and the
length of time that knowledge is maintained as given in Tables 1 and 2, which are alapted
from his book.

Knowledge of Task Knowledge of Toal
General formal education educaionandtraining

Spedfic vocational training tod-spedfic training, pradice

Table 1: Sources from which knonmedge is obtained [Bosser, 1987.

Knowledge of Task Knowledge of Toadl

General therest of your life decales or more

Spedfic decales or more monthsto decales

Table 2: Duration that knowledge is maintained [Bésser, 1987.

The type of knowledge that is most relevant to HCI is todl-speafic knowledge, which as
shown in Table 2 can padentially be very short lived. Thistype of knowledge must be
aquired with ead new tod even if thereistransfer of task knowledge and genera tool
knowledge. Bosser [1987 nates that general and spedfic knowledge from other domains
may be prerequisites for aaquiring tod-spedfic knowledge and, in particular, extensive
knowledge of the task domain in which the tod is used is often a precondtion. As
explained at the beginning of Sedion 3, the need for domain knowledge can be seen even
by looking at basic word processng. If auser doesn’'t understand the dphabet let alone the

16

meaning of aword, a sentence, or aparagraph, it is highly unlikely that the design o the
word processor is going to impad that user’s ability to creae adocument.

Carroll and Madk [1984 adknowledge that prior knowledge can be problematic. They
studied how usersleaned to use aword processor and how the typewriter metaphar was
prevalent. They note that difficulty arose when the metaphar did na fully hald. For
example, anumber of confusions using the word processor were experienced when the
leaners used the badspacekey which na only moved the aursor badk one spacebut also
erased the charader and, similarly, using the spaceoar with the aursor positioned over text
not only moved the aursor forward bu also introduced a blank spaceand shifted the text
following the aursor by the width of the blank space

It isnatural for learnersto rely ontheir prior knowledge. In faa, it is probably very difficult
for leanersto ignore what they know. And so it seems obvious that designers shoud design
systemsto acaurt for users’ prior knowledge. The difficulty with this design solutionis
that new tedhndogies will necessarily be cnstrained by old tecdhndogies [Carroll and
Madk, 1984. Some key questions for future research might be: To what extent can we
constrain new techndogies by old ores? Isthere an efficient method for making users
aware of instances where the metaphar doesn’t hold?

Broad questions regarding knowledge transfer and the domain of computer usage include:
What kind d general education andtraining are necessary, desirable or optimal preparation
for using computers? How does the knowledge aquired when working with ore mwmputer
system transfer to working with a diff erent system?

3.3.3 Formal Training
Formal training refers to leaning through educaional courses condicted by an instructor.

There ae obvious advantages of formal training: students' misconceptions can be deteded
by the instructor, instructors can reved functionality that students may not have found on
their own, and efficient methods for acaompli shing tasks can be made evident. The premise
isthat this training will result in better long term performancethan ather less $ructured
methods of leaning.

One disadvantage of formal training is that the content of a courseis not often tail ored to
theleaner’'s gedfic neads. The extensive principles that are @mvered in courses can be
unrecessary for most users who exeaute only limited tasks. Another disadvantage is that
users forget knowledge aquired during training when they have no oppaetunity to
immediately apply it in their red work domain [Bosser, 1987.

Although the literature suggests measures to estimate the ast of training (fees for training
course, cost of personrel during training, lossof work time during training, etc.), it doesn’t
suggest acarrate measures for estimating the benefits of training [Bosser, 1987. Figure 2
provides avisua representation for some aspeds of the st of training.

17

A Performance Asymptote

L
Performance /
(Workeycles per Cost of Leaning
Time) - Training and Pradice-

in terms of time lost

iz

Initial |—> Pradice
Training

»
»

Figure 2: The st of learning to use a deviceis the sum of performancelost for training andreduced
performanceduring practice. Not only time lost, but also reduced qudity of output may haveto be cmnsidered
asa cost factor [Bossr, 1987.

3.3.4 User Support - OnlineHelp, Tutorials, Demonstrations and
Animations, and Documentation

Providing both procedural and fadual information through additional leaning materialsis
one way to transfer todl and perhaps task knowledge to the user. For the purposes of this
review, leaning materials are caegorized into onine help, dacumentation and tutorials.
Thisisnot a perfed categorization and there is ome overlap. Documentation refers to
manuals and aher printed materials. Online help generally contains smilar content to
documentation bu may be structured dfferently and provides diff erent aff ordances. Online
tutorials and demonstrations are in some sense asubset of online help bu refer to
interadive or multimedia materials.

One problem common to suppating material, whether it be online or printed, iswhat is
sometimes referred to as the “language problem.” This problem occurs when the language
used to describe concepts/functionality in suppating material does not match the language
users use to describe the same ancepts/functionality. This makesit very difficult for users
to seek help on hav to dosomething. The problem stems largely from the fad that it has
traditionall y been expert users who have been resporsible for writi ng the documentation.
Expert users have developed arich vocabulary in the processof gaining expertise and they
either forget that noviceusers will nat have this same vocabulary or they are unable to
anticipate the vocabulary that novice users might use and, therefore, smply use the
vocabulary with which they are familiar. Borenstein [1989 foundthat the quality of help
textsis more important than the mechanisms by which the texts are accesed and concluded
that resources shoud be mncentrated ontedhnica writing rather than elaborate help
medanisms.

3.3.4.1 OnlineHelp

Standard orline help generally provides the same information that printed dacumentation
contains. Examples are utiliti es such as the ommand-oriented man on UNIX and the

18

hypertext-style help in PC and Madntosh systems. The most common form of online help
isalist of article titles and an index of terms that leal to the aticles [Shneiderman, 19974).

Rieman’sfield study [1994 of 14 interadive computer users, who represented a wide range
of computer skill andjob duies, foundthat in general online help was inferior to manuals.
He nates that this was a paradoxicd result given that users' leaning adiviti es are task-
oriented and time-constrained. Online help isthe only leaning aid that has some accesto
the user’s current context and is the most realily avail able, espedaly in site-licensed
environments and for laptop users. He suggests the foll owing explanations for this paradox:
the help window obscures the task window which inhibits users from using trial and error at
the same time & online help; and the users’ time @nstraint discourages use of realing and
navigating online material, which is percaved to be slower than printed documents becaise
of the reduced readability of onlinetext [Gould et a., 1987,in Rieman, 199§.

Sellen and Nicol [199Q identify the problem that online help is often dfficult to use, na
that helpful, and dften leaves users feding ineffedive and frustrated. In their user study at
Apple Computer, Inc., they foundthat there ae five diff erent types of questions for which
users ek help:

1. Goal Oriented: What kinds of things can | dowith this program?
2. Descriptive: What is this? What does this do?

3. Procedural: How do| dothis?

4. Interpretive: Why did that happen? What does this mean?

5. Navigational: Where an 1?

Baedker and Small [1990in Baedker, Small, and Mander, 1991 modified and extended
these question types to the foll owing:

1. Identification: ~ What isthis?

2. Transition: Where have | come from and gone to?
3. Orientation: Where an 1?

4. Choice What can | do nowv?

5. Demonstration: What can | dowith this?

6. Explanation: How do| dothis?

7. Fealback: What is happening?

8. History: What have | dore?

9. Interpretation: Why did that happen?

10Guidance What shoud | do nowv?

Sellen and Nicol [199Q, from their user study, developed the foll owing five principles for

the design of online help:

1. Online help shoud never be asubstitute for goodinterfacedesign.

2. Help shoud be montext-sensitive; it shoud na take the user away from the task at hand.

3. Help systems dhoud asgst usersin framing their questions and provide diff erent help for
different questions.

19

4. Help systems shoud be dynamic and resporsive.
5. User shoddn't neal help to get help.

Baeder, Grudin, Buxton, and Greenberg [1993 provide an ogtimistic view. They suggest
that many of the ealy studies on orine help which foundit to be ineffedive were based on
old interfaces and screen techndogies. They suggest that online help has traditionall y
receved few resources but that at lesst some vendars are starting to pay serious attention to
training, documentation, and orline help.

There ae intelli gent help systems which attempt to tail or the help provided to the user’s
current context and skill | evel andin some cases provide natural |anguage queries. More
detail abou thisis provided in Sedion 4.

3.3.4.2 Tutorials, Demonstrations and Animations

Demonstrations and animations typicdly present essential system concepts and are thereby
an effedive way of introducing novice users to the system. Tutorial exercises guide the user
through system concepts, giving the user an oppatunity to try out the cncepts.

Baeder, Small, and Mander [199]] investigated animated icons as a means of addressng
the problem that users are often ursure of what an icon represents. The results from their
user study showed that there was a significant benefit from the animations. Animations that
were kept simple both visually and conceptuall y helped users clarify the purpose and the
functionality of the icons.

Payne, Chesworth, and Hill [1997 investigated the instructional potential of what they
termed apure version d animated demonstrations. These versions had nocommentary or
suppating documentation for the animation. Such animationis analogous to what is e in
video games when agameisnat in use. Their study foundthat a 2.5 minute animation,
silent video of the MadDraw screen in use resulted in an almost 50% reduction in task
completiontime. The animationwas $own to the users prior to their use of MadDraw.

Kerr and Payne [1994 compared the instructional efficagy of using animated
demonstrationsin bah adive and passve leaning environments to tead basic spreadshed
skill s. Active leaning is charaderized by problem-solving behaviour whereas passve
leaning is charaderized by foll owing a prescribed script which is commonin commercial
tutorials. The latter has been |abeled a scenario machine [Carroll and Kay, 1988cited in
Kerr and Payne, 1994. Resultsindicae a ¢ea leaning advantage of problem-solving, over
prompted interadion (the scenario madine). It was foundthat animations played two key
roles. Thefirst isthat simply watching animations provides a useful introductioninto
complex interfaces. The seaondis that animations can be dfedive & an example foll owing
resourcefor adive problem-solving.

20

3.3.4.3 Documentation

Carroll [1990 recommends minimali st training materials because they suppat exploration.
He found,for example, that short incomplete manuals can be more dfedive than the full
“systems-style” versions of manuals.

Wright [1983 performed areview of documentation design. She foundthat common
adivitieswhich all readers undertake ae searching for information relevant to their present
needs, uncerstanding the information found,and applying the understanding gained. Wright
described the functions that documentation reeds to serve as ranging from tutorialsto quick
references to detail ed explanations [1988,cited in Rieman, 199§. In general, she advocaes
a “user-oriented” approad to the aedion d documentation [Baeker and Buxton, 1987.

In Rieman’s[19949 field study abou how usersleaned, it was foundthat for task-oriented
problem solving, the informants would typicdly use the documentation in additionto trying
things on the system. He notes that thisis an approacdh consistent with Carroll’s minimal
manuals. A somewhat unexpeded finding in Rieman’s gudy was that some of the
informants relied onthird-party manuals. (An example of such manualsisthe series X for
Dummies’” where X is anything from computer appli caionsto golfing.) He notes that thisis
perhaps because of the limited number of “official” manuals that are available in asite-
licensed situation. But he dso suggests that this may be ameans of overcoming the
language problem. The hypothesisis that the informants may have tried trial and error and
given upwith the official manuals and orline help and are using the third-party manuals
because of the dternative language used and views given. The order in which the materia is
presented in aternative manuals may also be better matched to users’ tasks.

Bossr [1987] reviewed the literature on dacumentation and foundit to be inconclusive but

did provide the following recommendations:

» Advanceorganizers are helpful for chapters and sedions. An advance organizer refersto
the presentation o instructional material such that arough overview is presented first
andisthen filled in by the material presented |ater.

» Graphic display of the structure of menu herarchies and command language grammar is
helpful.

* Theprovision d both task and todl-oriented indices is needed.

3.3.5 Learning from Friendsand Colleagues

A common way of furthering knowledge isto ask afriend a coll eggue for asgstance This
type of assstance can take many diff erent forms which include: asking informal questions
to the dosest person within earshat, pasting questions to Usenet newsgroups or bull etin
boards, sending a question via email to afriend a system administrator, or watching over a
colleague’ s houder as he/she presents a demonstration.

Rieman [1994 foundin hisfield study that users frequently asked for assstancein person
or by phore and dten did so in combination with trial-and-error strategies.

21

Clement [1993 reported that when desktop computers were introduced into a University
administrative office the seaetaries foundthat they learned more by studying on their own
and by discusgng difficulties with co-workers than what they had leaned through formal
courses and external sources of expertise.

3.4 Modelling How Users Learn

The goa of cogritive modellingisto model how humans gain knowledge and it does ©
within the framework of the human asinformation procesor. Thisinformation processng
paradigm rests on the assumption that human behaviour can be described in terms of
information processes, esentialy programs. Leaning is one aped of cognition and thus
cognitive models that represent learning appea in the literature. One of the goals of
cognitive modelling isto predict human performance As a caved, Preece 1994 notes that
the aognitive perspedive of theindividual user performing various tasks at the interfaceis
losing its reaognition as an adequate conceptual framework for HCI. The traditional
cognitive gproach has negleded how people work in the red world, for example, it doesn’t
acoun for people interading with ahers.

Rieman, Young, and Howes [1996 describe a ognitive model of exploratory leaning that
covers bath trial-and-error and instruction-taking adiviti es. One key asped captured in this
model iswhat they refer to asiteratively degpening attention. When trying to acaomplish a
task a user will normally use alabel-foll owing strategy which means that the user attempts
to find alabel that matches aword or concept in the task description. If such alabel isnot
foundthe user will often repeaedly scan pul down menus or a subset of them with
increasingly greder attentionto ead item. Rieman, Y oung, and Howes explain this
behaviour in terms of dual search spaces: the gplicaioninterface adthe user’sinterna
knowledge. Both of these must be explored in such away that the costs and kenefits are
considered. The model implements this dual-spacesearch by alternating between external
scanning and internal comprehension thereby narrowing down a potentiall y productive
route through an interface An example of a st isthe fad that unddang aseledion d atop-
level menu (by moving the mouse aursor away from the menu) is sgnificantly chegper than
undang the seledion d a pulldown menu which often invalves interading with adialog
box. The use of prior knowledge has a @st in that the user may need to apply recdl
strategies, consider synonyms and related terms, and form anal ogies to experiences with
other software.

Models can be represented by formalisms such as a production system. This g/stem is

compased of anumber of rules (productions) which represent knowledge and eat

production consists of a andti on comporent and an adion comporent. The system

performsthe adionif the condtionisfoundto betrue. These ae cdl ed recmgnize-ad

cycles. Leaning is generally represented in these systems through:

e production compasition— coll apsing a sequence of productions that are used to solve a
problem into a single production that does the same thing

22

» proceduralism—the processof buil ding domain-spedfic dedarative knowledge diredly
in the productions 9 that there is no reed to hdd this knowledge in working memory
[Anderson, 1983 n van Oostendarp, and Wabeehm, 1995

» drengthening—ead time aproductionruleis used its strength is increased and the time
to exeaute aproductionisafunction d its grength [Nilsen et al., 1993.

A problem with a number of models foundin the literature is that the predictions for
exeautiontime and leaning time ae based onided behaviour. Van Oostendap and
Walbeehm [1999 propose research dredionsfor the extension d current HCI modelli ng
techniguesto include exploratory leaning in the mntext of dired manipulation interfaces.
They propase amethodto acourt for dlips (errors) by alowing for partial matching of
productions based onaweighting and a threshold mecdhanism. They also propose amethod
of modelli ng the fad that recognizing is easier than retrieving.

The previously mentioned model by Rieman, Y oung, and Howes [1994 and that proposed
by van Oostendarp and Wabeehm [1995 are representative of the aurrent state of
cognitive modelli ng. These ae based onmany predecessors which include GOMS, CCT,
EXPL, and CE+. The description d these models is beyondthe scope of this paper,
however, the interested reader is encouraged to look at “The Growth of Cognitive Modeling
in Human-Computer Interadion Since GOMS’ [Olson and Olson, 1990 and “ Theory-
Based Design for Easily Leaned Interfaces” [Polson and Lewis, 199Q for further
information.

Bosser [1987 compares modelli ng and prototyping as two diff erent means to evaluating
system design. Prototyping implies an empiricd evaluation d the prototype which he
asrtsis lengthy and expensive if dore properly. In contrast, he agues that modelli ng
allowsfor fast evauation d the formal properties of the model. Bosser suggeststhat it is
ided to employ bath methods in combination such that the space of passble design
alternatives is modell ed and then reduced to a small er number of designs, which can be
evauated in the form of prototypes.

Bosser [1987, in the last chapter of his book, describes away to model leaning
requirements. Based onmy reading of this sdion, the descriptionwasn’t nealy clea
enough for me to implement his learning model.

3.5 Designing for Learnability

3.5.1 Designing for Exploration

Shneiderman [1997a] recmmends a strategy that permits a leve-structured (sometimes
cdled layered or spiral approach’) to learning when diverse user classes must be
acommodated by the system. He says that novices shoud be taught a minimal subset of

" This approach is based on the spiral model for software engineaing[Boehm, 198§

23

objeds and adions with which to get started becaise they are most likely to make wrred
choices when they have only afew options and are proteded from making mistakes. Thisis
in esence aform of functionality blocking where the functionality is layered.
Unfortunately, Shneiderman daesn’t suggest spedfic design guidelines to acamplish this
design strategy.

Carroll and Madk offer anumber of general suggestions for exploratory environments

[1984:

1. Leaners shodd be made to fed resporsible and in control. An exploratory environment
establi shes and reinforces arole of resporsibility and control for the leaner viathe
system interface ad training materials.

2. Animportant property of an exploratory environment is g/stem simpli city.

Carroll et a. proposed the foll owing for successul guided exploration d computer systems

[1986,cited in van Oostendarp and Walbeenm, 1995:

1. help users st the gpropriate goals

2. offer helpful hints on hav these goals might be adieved

3. provide users with chedkpoints and means of confirming that they are heading in an
appropriate diredion

Norman’s threerequirements for an explorable system are [1988,cited in van Oostendap

and Walbeehm, 1993:

1. All posshble ations shoud bevisible a al times and the user shoud be &leto perform
every single one of these possble adions.

2. The dfed of every adion shoud bevisible and reaily interpretable.

3. Actions shoud bewithou cost: whenever an adion leals to an undesirable outcome, the
user shoud be aleto ndlify it. For operations that are not nulli fiable, bah an
appropriate warning and the oppatunity to cancd the operation shoud be given.

Rieman, Y oung, and Howes provide anumber of design implicaions related to generating

labelsin the interface[19949:

1. Exploratory adionwill not be @tempted urtil the user has balanced its predicted “ safety”
against the quality of itslabel. The safest adions are those that are trivial to undo o
those that have apredictably minimal effed.

2. Choasing goodlabelsis nat aways easy. Designers need to be avare of adions that may
have multiple equally good|abels. Some users may become blocked when they don't
find the expeded label and designers $ioud provide assstancefor these ationsin the
form of online materials and manuals.

3. Designers soud supdy additional information that could shift the balance a the point
where benefit-to-cost comparisons are most difficult. When users pause with the aursor
over amenuitem (which occurs frequently in secondary passes of the menu) the system
could reaognize the pause and dsplay the system state (dialog box or whatever) that
would be evoked if the user seleded the given adion. At this point the user can seled the
item or can move the aursor which will remove the system state (dialog box or whatever)
automaticdly withou the user having to figure out how to get out of it.

24

3.5.2 Designing for Error

Animportant system property is sfety. Safety is defined by Carroll and Madk [1984 as
“the capaaty of the system to proted the leaner from demoralizing penalty.” It is
paramourt that the leaner must fed safe in taking adion.

Designing for error is one way to enhanceleaning in general and more spedficdly
exploratory leaning. Norman [199(Q nates that when an error in interadion accurs between
the user and computer, the initial readionis usually to attribute this error to the user when
in fad we shoud guestion the design dof the system instead. The work required by the user
to lean asystem is sgnificantly reduced when a system is designed to minimize interadion
error andto provide gpropriate eror messages when an error state isreaded. Lewis and
Norman [1984 diff erentiate two types of errors: mistakes and slips. A mistake occurs when
the user has the wrong intention to begin with. A slip occurs when the user has the wrred
intention bu performs an adion that was not intended. They say that error can be
minimized by using the gpropriate representation (e.g., using point and click onan iconto
open afile can minimize “file not found' type of errors) and by avoiding false
understandings.

One of thefirst hurdles with error recovery isthe detedion d the aror itself. Slipsare
easier to deted than mistakes because the outcome of the adionin adlip isdifferent than
the intention. With amistake it is the intention that is wrong to begin with. Six passble
ways in which the system can respondto help the user deted the eror are [Lewis and
Norman, 1984:

1. Gag: Gagisaforcing function. Thisis something that prevents the behaviour from
continuing until the problem has been correded.

2. Warn: Warning is lessobtrusive than gag. Warning basicdly tell s the user thereisa
problem but all ows the user to continue despite the warning.

3. Do nothing: Do nahing basicdly means that no system resporseis given if the user
attempts an ill egal adion.

4. Sef correct: When the system deteds an ill egal adionit can try to corred the adion. An
example of thisgiven is smple spelli ng corredion. Systems that use self corredion must
have undofeauresin case the @mrreded adionis nat the intended adion.

5. Let’stalk about it: This method accurs when the system engages the user in aform of
dialog when a problem is deteded.

6. Teach me: This method acurs when the system queries the user on the intention kehind
an adion and leans from the user.

Although these methods help in the detedion d a problem, they don't necessarily help
identify the problem.

25

3.5.3 Learner-Centered Design

Soloway, Guzdial and Hay [1994 have agued that the HCI community must move beyond
“user centered” design to “leaner-centered” design. The goal of design shoud beto suppat
individuals' development of expertise and the development of deeper understandings of
content and pradices. Despite the fad that this goal is broad and encompasses the spedrum
of leaners, the leaner-centered movement has primarily focussed onstudentsin
clasgsooms who are leaning content. Thisis not to say that reseachersin the aeaof
leaner-centered design do na recognize that leaning is also for professonals. It is smply
that the research to date has not addressed this group d leaners.

The leaner-centered design movement was begun by Elli ot Soloway at the University of
Michigan. Soloway explicitly states that the aurrent focus for him and hs gudentsis on K-
16° leaners but he does cite Senge's [1990,cited in Soloway et al., 1996 compelling
arguments that an arganization must be aleaning organizationin order to be prodictive
and thus concludes that leaner-centered design shoud also have validity in the workplace
[Soloway et a., 1994.

Acoording to Soloway, Guzdia and Hay [1994, the foll owing spedal needs of leaners

must be addressed when putting leaners at the center of the design:

» Understanding isthe Goal: How can leaners acquire domain knowledge from an
appli cation? For example, how do users cometo know acourting principles and
pradices when a spreadshed is presented to them?

» Motivation isthe Basis: Leanerstendto procrastinate when confronted with atask for
which they are unprepared. How can software play arole in suppating the leaner’s
wavering motivation?

» Diversity isthe Norm: How can asingle gplicaion suppat leaners who are from a
diverse set of badkgrounds, with adiverse set of interests, skill s and abiliti es?

» Growth isthe Challenge: An applicaionis by andlarge the same on cay 1 asit ison
day 100.But auser can be very different. For example, that person may have leaned
quite abit abou a problem domain and might have developed a set of skill sand
pradices in that domain. How can the software acommodate the dhange in the user?

The term scaffolding is used frequently in leaner-centered design reseach. Scafolding
predates the use of computersin the dasgoom andin general is atedhnique for providing
suppat to leaners whil e they are learning a new task [Wood, Bruner, Ross 1975and
Rogoff, 1990cited in Soloway, Guzdial and Hay, 1994. For example, the provision d
scafolding through human tutors has been well establi shed as an eff edive means of
suppating leaning [Jadkson, Krgjcik, and Soloway, 1999. Scafolding essentially allows a
leaner to engage in adivities that would atherwise be beyond hs/her abiliti es. Asthe
leaner develops the required knowledge and skill s, the scaffolding fades < that the learner
isfully in control.

8 Soloway does not clarify what he means by K-16. He is likely referring to the school yeas K-12 dus four
yeas of undergraduate education.

26

Soloway, Guzdial and Hay [1994 proposethe TILT Modd (Todls, Interfaces, Leaner’s
needs, Tasks) to guide the design of leaner-centered software. The objedive of the model
isto highlight how software might addressthe spedal nedls of the leaner. The TILT

Modd uses gedfic scafolding strategies that are gpropriate for the needs of the learner.
For Tasks, a macing scafolding technique is recommended to help students acquire
knowledge and the spedfic pradices of atask domain. For Todls, scafolding is provided by
making the todls adaptable such that they suppat aleaner growing in expertise. For the
Interfacesto the todls, scafolding can be provided through the use of different media and
modes of expresson.

Jackson, Krgjcik, and Soloway [1999 use the terms “fade&ble suppats’ to describe
scafolding. They argue that although many techniques have been explored that provide
various suppative structures for leaners, typicdly the suppat does not fade within the
software itself. But the scaffolding must fade & the user devel ops expertise in the same way
that a human tutor provides lessand less sippat as the tutee aquires knowledge. They list
adapiveand adapable interfaces as potential solutions. Theoreticdly, adaptive interfaces
change automaticdly using amodel of the leaner’s understanding. In pradice however, an
extensive model of the leaner’ s knowledge may be hard to spedfy or evaluate in more
open-ended damains. Adaptable interfaces, onthe other hand, pu the user in control of the
fading. Because it may be hard for the leaner to make fading dedsions, the software can be
designed to help the student measure his or her progressand uncerstanding. Jackson,
Krajcik, and Soloway have developed a design approac cdled Guided Leaner-Adaptable
Scaff olding which “is designed as discrete, fine-grained scaff olding of various types, faded
under control of the leaner, with guidancefrom the software to aid the leaner in making
informed dedsions.”

Jackson, Krgjcik, and Soloway [1999 identify threecaegories of scafolding: suppative
refledive andintrinsic.

Suppative scefolding provides suppat for doing the task. The task itself is unchanged and
so as suppative scafolding fades, the task is the same & before, however, it is expeded
that the leaner has internali zed the concepts which have been scafolded. Thiskind o
scafolding includes guiding, coaching, and modelling and is the most often referred to as
scafolding in the literature [Jadkson, Krgjcik, and Soloway, 199§. Guiding scafolding can
be provided through messages which appea when appropriate and which can be faded
through a “stop reminding me” button. Coaching and modelling scéffolds can be provided
through contextualized help butons. These buttons may not fade per se, but are faded
simply through na being invoked.

Refledive scafolding is suppat for thinking abou the task (e.g., planning, making
predictions, evaluating). Like suppative scafolding it doesn’t change the task itself, bu
instead makes the adivity of refledion explicit by dliciting the leaner’ s thoughts. It can be
provided by anotepad that appeas alongside the goplicatlion’ s main window where the
leaner is encouraged to refled by typing plans, descriptions, predictions and evaluations.

27

Jackson, Krgjcik, and Soloway [1998 use the term intrinsic scaf olding to mean suppat
that changes the task itself, through reducing the mmplexity of the task and focusing the
leaner’s attention and by providing medhanisms for visuali zing or thinking abou a
concept. Idedly scafolding shoud suppat gradual fading such that the task is gradually
changed bu associations remain which enable the learner to progressto more mmplex and
abstrad tasks. Intrinsic scafolding can be implemented as defaults which hide dl but the
simplest todls from the noviceleaner, bu make advanced fedures avail able as the leaner
grows and develops expertise. Intrinsic scafolding is manifest as different views and
representations of model comporents, or diff erent sets of enabled controls and toals.

Norman and Spotrer provide an introductory sedionto a 1996issue of the
Comnunications of the ACM (volume 39, number 4) which focuses on leaner-centered
design. They evaluate the papers on leaner-centered design from thisissue dong three
dimensions. engagement, eff ediveness and vability. Engagement determines motivation.
Motivation correlates well with time ontask and they note that it can make more of a

diff erence between successand fail ure than any other fador. Effedivenessis concerned
with the adual leaning that takes place Viability is concerned with the feasibilit y of
creding leaner-centered software. Norman and Spotrer note that the primary strength of
the aticles presented in thisisaue is that of engagement. The dimensions of eff ediveness
and viability were nat the focus of the aticles and so they are limited in these aeas. The
asesanent of eff edivenessis limited to the opinions of students and teaders which is not
robust. However, the authors note that conventional assessment that is based onarigidly
controlled question and answer format is probably not the rred solution. In terms of
viability, they note that this is the most difficult dimensionto assessand that to addressthis
issue would require the complete development of a arricula and deployment in schod
systems.

A number of applications have been implemented in leaner-centered design reseach.
Some examples that are drawn from the dorementioned isaue of CACM include: Broadcast
News, amultimediatod that teadies cia studiesto high schod students by al owing
them to determine the content of atelevision news gory [Schank and Kass 1994; Cardiac
Tutor, aknowledge-based simulation for teading abou cardiacresuscitation and the
Engineaing Tutor which teades the amncepts of design for manufaduring, spedficdly
design for injedion molding, to first-yea engineeing undergraduate students [Woadlf,
1994q; scafolded examples for leaning objed-oriented design which are redi sticdly-sized
sample problems whaose complexity is gradually reveded in steps that leverage and
reinforcetheintrinsic structure of the problem-solution process[Rosson and Carroll, 1994;
and Model-It, amodelli ng todl that enables gudents to gain insight into the behaviour of
complex systems[Jacksonet al., 19949.

3.5.4 Questioning the All-in-One Model

The worth of complex all-in-one todlsis being questioned [Sagar, Hof, and Judge, 1996
Buxton 199§. Buxton suggests that too much functionality is often overloaded into asingle

28

device Theresult isthat the deviceis agenera devicethat can domost things but nothing
redly well andso it can be cnsidered “week”. Further, the agnitive load associated with
using the deviceis propationa to the number of feaures associated with the device. It
foll ows that the mmplexity and thus the @gnitive load associated with using a mmplex
tod can be reduced by making the tod lessgeneral. Reducing the agnitive load implies
ease of learning.

Cognitive Load

A High .

Low |:|
Strength Strength None |:|
Generality h Generality i’
@ (b)
A
Strength Strength
“Net Benefit”
Generality Generality
(© (d)

Figure 3: Representation d a (a) General-Weak tod (b) a Srong-Spedfic tod (c) a Srong Spedfic tool set
and(d) networked Srong Sgdfic todset (sightly adaped from Buxton[199§).

The redangular areain these graphs represents asingle tod (e.g., word processor) and the
areawithin the redangl e represents the aognitive load associated with using thistodl. The
x-axis represents the degreeto which the todl is a general-purpose todl. The y-axis
represents the degreeto which the tod will alow you to accompli sh spedfic tasks.

Theideaisthat instead of designing general todls that incorporate enormous amourts of
functionality but dori't have significant strength in many of the functionality domains, it is
better to design individual todls that have very spedfic purpases. Not only will t he strength
of theindividual todls be greaer but the agnitive load will be lessened because the user
can seled which todlsto use.

If one only needs gedfic functionality, then it is better to use aspedfic tod instead of a
general tod because the aognitive load required isless This can be seen by comparing the
areaunder the aurve in Figure 3(a) versuskigure 3 (b). If one only needs some of a general
tod’ s functionality, ore might be better off seleding afew spedfic purposetodls. The load
asociated with two or threetodls shown inFigure 3 (¢) may be lessthan that inFigure 3 (a).
But what if al the functiondlity is neaded? Clealy the load associated with all the todls
inFigure 3 (c) is greaer than that inFigure 3 (a). For this case Buxton 1999 advocates the

29

mode shown inFigure 3 (d). Here, the tods are integrated intelli gently, removing most of
the aognitive load from the user. The example he givesisthat of using a phore while
driving a ca and listening to the ca stereo. If these todls are unaware of ead ather then the
cognitive load would be high. Imagine asituationin which the stereo is playing loudy and
the phorerings. In order to answer the phore the user must not only fiddle with the phore
to answer it but must also adjust the stereo. If, onthe other hand, these toadls are integrated,
then when the phorerings, the stereo would knaw to turn itself down. Buxtonrefersto this
as anet benefit.

4 Intelligent User Interfaces

Reseach in the aeaof intelli gent user interfaces provides sosmeinsight into the isaue of
designing for leanability in heavily-feaured systems. Although there is no clea definition
of what constitutes an intelli gent user interface(lUl) [Encarnac®, 1997, at the most
abstrad level one might want to charaderize such interfaces as ones that attempt to bridge
the design/learning gap through the gplication d intelli gence Interfaces need na be static,
the samefor all, and vad o any dynamic understanding of what the user istrying to
acomplish. Rather, interfaces can dynamicdly reconfigure to acommodate individual
differences, or can domundane tasks that the user would rather nat do, a perhaps even
have a ‘richer” dialog with the user than what is provided by point-and-cli ck.

Reseach in IUIs has been underway for the last threedecales. Mill er, Sulli van, and Tyler
[199] provide abrief badkground onthis reseach. They nate that some of the ealy
reseach in Artificial Intelligence (Al), including natural language and problem solving
reseach, fallswithin intelli gent interfacereseach. The goal of this Al work was to address
how people might interad with systems capable of solving large, complex problems. This
ealy work was dominated by the metaphar of natural language-li ke discourse where the
user asked guestions and the computer replied. They nate that the vision shifted in the
198Gs largely because of the introduction o the graphicd user interface ad also becaise
natural -language understanding remained such a dhall enging areaof reseach. It was felt
that GUIs could make it easier for intelli gent systemsto determine the meaning underlying
users adions: “insteal of having to search for the meaning in a natural-language statement,
agraphicd interface ca be built aroundthe important conceptsin the task and damain at
hand, making the content of auser’s adionsimmediately accessble to an uncerlying
reassoning system.” Despite the latter, Mill er, Sulli van, and Tyler are dealy not saying that
dired manipulation and GUIs are dways better than natural language or other agent-
oriented interfaces. In fad, they believe that what is needed is a synthesis of the two
perspedives.

Mark [199] provides the eseence of more recent Ul research in the forward to Sulli van
and Tyler's[1991] book.He nates that the premise behind IUI reseach is that software
appli cations have become significantly complex and that despite advancesin interface
design techniques, it is difficult to design an interface @vironment that all ows usersto aa
intelli gently:

30

“In a ommplex environment, it is very difficult to distill out aset of interface ontrols
that deliver the goplicaion’s power, bu that human beings can learn and remember;
it isvery difficult to define interfacebehaviour that treas users fairly - does nat
hedor them, mislead them, purish them for experimentation,and so on’ [p. vii,
Mark, 1991

The gproach adopted by IUIsisthat theinterfaceisin effed promoted to ateam member:

“The goal isno longer to design a user interfacethat has a complete set of usable
controls and undaerstandable behaviour. The new challengeisto give the interface
some understanding abou what the users are trying to doand hav they need to go
abou doing it. ... Theinterfacemust be given enough knowledge of the problem to
allow it to take on significant resporsibility. The interfacemust be aleto
communicae with the user at the level of taking diredion and giving advice dou
tasks - if the user has to communicate & the level of detail within tasks, no
significant delegation hes taken place The interfacemust be &leto explain its
adivitiesin order to alow the user to buld upconfidencethat it isto berelied
upon’ [p. viii, Mark, 1991

Mark [199] adknowledges that whether all of thisisin fad intelli genceis a matter of
expedation and perception.

Encarnacé [1997 addresses the shifting definition o intelli gent interfaces. He notes that at
one time the definition d intelli gent user interfaces included “.. the integration o an AU
(adaptive user interface...bah with an intelli gent help system (IHS), making context-
sensitive and adive help avail able, and with an intelli gent tutoring system (ITS), suppating
the user in leaning the use of the system,” where ain a mwmmon dfinition today, the term
‘intelli gent’ refers to any of these redizations, but nat necessarily their entirety. Dieterich et
a. nated in 1993that the diff erence between AUIs and 1Ul was not well defined.

Based onthereview of theliterature, it is gill not clea where the boundary between AUIs
andlUlslies. The ealier literature seemsto use adagiveinterfacein placeof or
interchangeably with intelli gent interface Recent clasdficaions such as that by Encarnacé
[1997] only serve to confuse the issue further. In afigure he displays AUIs as a superset of
IUIs but has “InterfaceAdaptability” as a mmporent/subset of 1Uls. For the purposes of the
current review, the broader reseach areawill be referred to as 1UIs, and AUI will be
reserved to mean interfaces in which the functionality accesgble to the user is adapted
based on ser charaderistics.

The literature cvering intelli gent user interfaces presents a number of reaurring themes and
therefore it is possbleto impose arough categorization. The most general caegories
include agents, adapivity, user modelli ng, task modelli ng/plan reagnti on and multimodd
comrmunication. These shoud na be seen as mutually exclusive aess of reseach by any
means. Intelli gent help, intelli gent tutoring, and dynamic multimedia presentation are

31

caegories of applicaionsthat are based onthe previously mentioned broader caegories.
The architedure and evaluation of intelli gent systemsis also covered in the literature.

4.1 Agents

There has been grea controversy over agents, the foremost contention perhaps being the
ladk of a dea definition. The debate over using agent techndogy in the interfaceversus
more establi shed techniques such as dired manipulation hes been heaed. Highlighting the
issues raised in this debate serves as a reasonabl e introduction to agents. In two recent
debates between Pattie Maes, alealing researcher in the aeaof agent techndogies, and
Ben Shneiderman, along time proporent of dired manipulation, it seans that some form of
consensus may be on the horizon [Shneiderman and Maes, 1997. Maes acknowledged that
the word agent is overloaded. The aeaof agent research that relates to complex techndogy
iswhat she cdl s software agents. She spedficdly prefers avoiding the terms intelli gent
agents and autonamous agents because they are problematic. Maes gives the foll owing
advantages of software agents:

1. A software agent knows the individual user’s habits, preferences, and interests.

2. A software agyent is proadive. It can take initi ative becaise it knows what the user’s
interests are. It can, for example, tell the user abou something that he/she may want to
know abou based onthe fad that he/she has particular interests. Current software is not
at al proadive. All of theinitiative has to come from the user.

3. Software agents are long-lived. They ke running, and they can run autonamously while
the user goes about and daes other things.

4. Software ggents are alaptive in that they trad the user’ s interests as they change over
time.

An agent can ad onthe user’s behalf whil e he/she is doing other things in much the same
way that atravel agent will ad onan individual’s behalf once his/her travel needs and
preferences are made known. An example of an agent is presented by Kozierok and Maes
[1993 in which the ayent leans the user’ s preferences and reads with resped to scheduling
medings by observing the user, through reinforcement (dired feedbad from the user), and
by dired instructions from the user.

Mases nates the foll owing reasons that we need software agents today:

¢ Our computing environment is no longer closed and undr a user’s complete ntrol like
it oncewas. Our computer provides aviewport into avast and dynamic network of
information and ather people.

» Thetypicd user isnolonger a mmputer professonal.

» People usetheir computer for more and more tasks and are thus required to keep tradk of
more and more information.

Shneiderman [1993 has argued in the past that “the dfedive paradigm for now and the
future is comprehensible, predictable, and controll able interfaces that give users the sense

32

of power, mastery, control, and accmpli shment” and that the term agent itself isill -defined
but seansto include the following comporents:

« anthropamorphic presentation
 adaptive behaviour

» accetsvague goal spedficaion
* givesyoujust what you reed

» workswhileyou dort

» workswhereyou aren't

He nates that the first threeseem appeding at first, but have proven to be
courterproductive. The latter three aie goodideas but can be atieved more dfedively with
other interfacemedanisms.

Despite some of Maes ealier reseach diredions with agents, she statesthat it isa
misconception to think that agents are necessarily personified or anthropomorphized. In
fad, she notes that most agents are not. Maes also clarifies that agents do nd necessarily
rely ontraditional Al techniques, like knowledge representation and inferencing. Many of
the coommercially avail able and succesgul agentsrely on either user programming or
madhine leaning rather than traditional Al techniques.

Mases argues that agents are not an alternative for dired manipulation, bu rather they are
complementary metaphars: an agent is not a substitute for agoodinterface She argues that
the reason for agents is delegation and that no matter how goodthe interface there ae some
tasks that she just may not want to do herself. She gives the example that if her car had a
perfed interfacefor fixing the engine, she still would not fix it.

Maes also addresses the aiticism that agents make the user dumb and that they usurp all
control from the user. Concerns about agents are aldressed by the guideli nes for agents
presented by Maes at the 1997International Conference on Intelli gent User Interfaces
[Computer Science and Telecommunicaions Board, 1997:

» Makethe user model avail able (inspedable, modifiable) to the user.

* The aent’s method d operation shoud be understandabl e to the user.

* The aent shoud be aleto explain its behavior to the user.

» The aent shoud have the aility to give continuows feedbadk to the user abou its date,
adions, and leaning.

» The aent shoud all ow variable degrees of autonamy, and the user shoud dedde how
much and what type of tasks to delegate to the agent. The user shoud be aleto
“program” the agent (e.g., tead it things, make it forget things).

» Theuser shoud na haveto lean anew language to ded with the ayent. The goal isto
use the gplicationto communicate between the agent and the user.

These guidelines grve to move the agent research much closer to Shneiderman’s
requirements for controll able and predictable user interfaces. Further, Maes noted at the

33

send d the two debates that one of the key reasons for the divisionin phlosophiesis that
the two camps are focusing on dff erent problem domains. The Shneiderman camp is
deding with awell -structured task domain and a well -organized information damain, so
that it lendsitself to visualizing all of the diff erent dimensions:. for example, visuali zing the
information stored in a database. The Maes camp, onthe other hand, is deding with an
information damain that may be very ill structured and very dynamic; an example of such a
domain is the World Wide Web.

Shneiderman [199]3 cites a number of examples where anthropamorphic terms and
concepts have mntinualy been rejeded by consumers and, in fad, Maes notes that the most
succesdul software agents thus far are ones that are pretty much invisible. Despite this,
there ae d least afew examples where ggents are visible and are used to help the user
navigate the interfaceitself. These agents do nd adhere to the delegation phl osophy of
agents and demonstrate that reseach onagentsis diverse. There is the Microsoft Office
personal assstant which isinitially instantiated as an anthropamorphic paper clip to whom
the user may ask natural language questions and who will also suggest somewhat
unoltrusively more dficient techniques for auser’s current task. At thispaoint | haven't
seen any literature that covers the user’s resporse to this agent. A secondexample by Rich
and Sidner [1994 is cdled a wllaborative interface gent. This agent mimics the
relationships that exist when two humans coll aborate on atask involving a shared artifad
such as two mechanics working on a ca engine together or two computer users working on
a spreadshed together. There was no wser testing documented onthis reseach.

Dryer [1997 provides abrief discusson d wizards and guides which are perhaps the most
common kind d Ul agent today. Wizards are most common. Their goal isto assst the user
by breaking a cmmplex task into a series of steps and then present one step at atimeto the
user. Wizards work best with alinea series of steps and are therefore most succesful when
the tasks have dgorithmicdly derived solutions. Dryer notes that these agents generally do
not use any artificial intelli gence dthough they are sometimes percaved by usersto be
intelli gent. The benefits of awell-designed wizard are that a multi -purpose task interfaceis
replacal by atask spedfic interfacethat guides the user along an efficient path to task
completion and that autonamously completes those steps of the task that do nd require the
user’s attention. One possble disadvantage of such a mnstrained processis that the user
may nat adually refled on hig/her adions and therefore may nat lean from the process

Based onDryer’s[1997 acoun, it wasn't entirely clea what guides are. He provides the
following description: “Guides are ancther kind d Ul agent. Typicdly, guides provide task
asgstance by monitoring a person’ s interadion with the information system and presenting
information appropriately. ... Guides are intelli gent because they annatate an interface
whenever and havever it ismost likely to be useful. A well designed guide will dired a
person through the next step in atask.”

Acoording to Dryer [1997 guides are best for frequent tasks becaiuse users want to lean

abou tasks they do frequently. Wizards are best for infrequent tasks that users dorit
necessarily want to lean abou but do reed to acaomplish. Wizards work best for solutions

34

that can be derived agorithmicdly whereas guides can asdst either algorithmic tasks or
heuristic tasks.

Myers et al. [1993 discussthe use of heuristics’ to predict users’ intentions. They note that

systems that use heuristics attempt to delegate some of the low level detail sin order to save

the user time and are dso hoefully easier to lean becaise the system does part of the

work. The disadvantages are similar to thase dready mentioned: that an incorred adion

might occur which might not be naticed by the user; the user might not understand why the

system did adifferent adion a how to get the desired adionto occur; again that the user

might have the feding that the system was unpredictable and that he/she no longer had

control; the additional user testing costs to determine whether the heuristics are sufficiently

predictable to users and to tune the heuristic or its presentation; and the alditional

documentation and quality assurance wsts. Myers et a. suggest that successul use of a

heuristic requires that:

1. A magjority of userswould predict the same result of an adion performed in agiven
context.

2. An algorithm can be developed which interprets the mntext and produces the result most
users exped.

3. In cases where the dgorithm does not dowhat a user requires, it shoud still give aresult
that isinterpreted as reasonable, and the result must not be harmful.

4. 1t shoud beundable.

5. The user can dscover ways to override the default behaviour when necessary.

These guidelines for heuristic use and Maes' guidelines for agents show the importance of
user expedation and control when some tasks are delegated to the system.

4.2 Adaptive User Interfaces

Research in adaptive user interfaces (AUI) addresses the diversity of the user popuation
differently than agent reseach. Rather than delegating cumbersome tasks to a trustworthy
agent or coll aborating with an agent in order to navigate the interface the phil osophy of
AUI reseach isthat the interfaceitself shoud adapt to the needs, preferences, and skill s of
the user. The goal isfor the cmplexity of an adapted interfaceto be lessthan that of an
equivaent all-in-one interfacebecause the functiondlity accessble matches the user’s
needs, preferences, and skill s. Cote-Mufiaz [1993 noted the foll owing consequences of
AUls: the user will better master the complexity of software, there will be better user
performance, the system will be aleto gain and maintain the atention o the user, and the
system will avoid underloading or overloading the user.

The question d who adapts the interfaceis relevant. Tyler and Treu [1989 identify and
discussthreepaosshble sources of adaptation: a mwmputer expert, the user, or the system. In
thefirst case, a computer expert, perhaps the original designer of the system, modifies the

° ‘Heuristics are aproblem solving technique in which the most appropriate solution is chosen using rules
[Myersetd., 1993.

35

interfacebased on wser feedbadk. The problem with this enario isthat it doesn’t scde; an
expert may be aleto construct afew diff erently-tail ored interfaces, however, thiswill not
likely be sufficient to mee the needs of al the diff erent users. Another problem with this
that was not mentioned by Tyler and Treu is the substantial delay or turn aroundtime
generally required for modificaions. The second pashility isfor the user to take alvantage
of the austomizability that most systems provide by tail oring the interfaceto suit his/her
own style and abiliti es. This <enario works well for experienced users who knav both
what neadsto be tailored and haw to go abou tail oring. However, it doesn’t hold for
inexperienced users who will nat likely know what they need to tail or and hav they shoud
go abou tail oring [Innacent, 1982 Page € al., 1996. The last approach mentioned is that
the system adjusts the feaures of the interfacebased onaaquired knowledge &ou the
individual user. The basic ideaisthat the system monitors the user and adjusts the interface
to suit that individual.

Given that the goal of adaptive interfacereseach isto match theinterfaceto an individual’s
profile, the solution o having a mmputer expert in charge of adapting the interfaceis not
pradicd. Thisleaves the adaptation upto the user or the system itself. Dieterich et al.
[1993 provide asurvey of the AUI literature and aframework for understanding the
adaptation process They identify four stages in the processof adapting a user interface

1. initiative: the nead for adaptationis suggested

2. propacsal: aternatives for the alaptation are proposed
3. dedsion: one of the dternativesis chasen

4. exeadtion: the dhaosen dternative is exeauted

At eath of thefour stagesit is either the user or the system that isin control. For example,
when the system controls ead stage, the system is esentially a self-adaptive system. When
the user isin control of all stages, the user is doing the alaptation which is tantamount to
tail oring or customization. (These two extremes are sometimes juxtaposed as adagivevs.
adapable systems [Fischer, 1993.) Then dof course there ae diff erent combinations. Figure
4(a) represents the wnfigurationin which the software is entirely self-adaptive: the system
iscompletely in control. Dieterich et al. [1993 note that the majority of reseach into AUls
has been from the system-adaptive perspedive and they make the foll owing conclusions
from their survey:

» Systemsthat have user control seam more promising than those that have dl/mostly
system control. A configuration in which the user and the system share @ntrol, which
they cadl Computer-Aided Adaptation,is deemed by the aithorsto be the most
promising approach in order to oltain a user interfacethat will help the user to perform
histasksin a pleasant and eff edive way. This configurationis depicted in Figure 4(b).

* More dfort shoud be spent onthe integration d developed adaptivity medanismsinto
common user interfacedesign and management toals.

» Aspedsof user accgtance andthe evaluation d adaptation have been negleded in the
past and reed far more dtention.

36

System User System User

Initiative Initiative
® |

Proposal Proposal
Decision Decision
Execution E ti

xecution

o)
(@ (b)

Figure 4: Categorization o adagive systems: (a) Self-Adaptive (b) Computer Aided Adaptation

The first point given above that advocaes user control can be seen to parall el the more
recent diredionin agent reseach which adnowledges the importance of user control and
user understanding of the agent behaviours.

To achieve the Computer-Aided Adaptation configuration, Kiilhme [1993 proposes an
inspedable user model which gives the user an insight into adaptation strategies and
underlying assumptions. The user shoud clealy be made awvare of the existenceof the user
mode and shoud have accssto the included information. By changing the informationin
the user model, the user is essentialy adapting the interfacein an implicit manner. The user
shoud also be ale to adapt the interface eplicitly by inspeding and adjusting the
adaptation-related medchanisms. These include an adaptable dialog monitor which coll eds
information relevant for adaptation and an adapter which adapts the dialog by applying the
information represented in the user model.

Greenberg and Witten [19893 conducted some ealy work on adaptive interfaces and nded
some alvantages and dsadvantages to adaptation. The alvantages are:

1. variations in expertise acossusers

2. evolving user needs

3. user has appropriate cntrol

4. attemptsto redify user-designer conflicts

The disadvantages are:

1. dynamics of user-system concurrent modelli ng (at the same time the adaptive system is
trying to make amodel of the user, the user istrying to model the system)

. user will l adk confidencein a system that seems inconsistent (although Grudin [1989
argues succesdully that consistency is only one of many competing design goals)

. user does nat have gpropriate control

. complexity of implementation

. inacarades of model construction

. difficulties in evaluating adaptive systems

N

o O01h W

37

From the ébove we can seethat control, which appeas both as an advantage and a
disadvantage, isindeed controversial and further it isnot clea what constitutes appropriate
control.

Stephanidis, Karagiannidis, and Koumpis [1997 document a methoddogicd approac to

adaptive systems. They nate that in most adaptive systems, the alaptation strategy is hard-

coded into the system and therefore when changes are needed, it is relatively difficult to

implement the dhanges. They focus on the alaptation strategy as a dedsion making process

which is charaderized by the following attributes:

» what to adap: aspeds of the user-computer interfacethat are subjed to adaptations are
cdl ed adaptation constituents and can be semantic, syntadic, or lexicd,

» when to adapt: aspeds of the interadion cal ed adaptation determinants onwhich the
adaptation dedsions are made;

« why to adap: the adaptation goals underlying the alaptation process

* howto adayt: adaptations are driven by a set of rules, adaptation rules, that esentially
asggn certain adaptation constituents to spedfic adaptation determinants for given
adaptation goals.

Stephanidis, Karagiannidis, and Koumpis [1997 describe amethoddogicd approac that
enables:

» the astomization d the set of adaptation determinants and constituents,

» theincorporation d the alaptation goals as an integral part of the adaptivity process

« andthe modificaion d adaptation rules, acwrding to the goals of adaptivity.

4.2.1 Examplesof Adaptive User I nterfaces:

Adaptive Prompting

Malinowski et al. [1993 introducethe ideaof adaptive prompting. Thistednique amsto
reducethe user’s confusion caused by the volume of prompts (menuitems, dialog boxes,
etc.) by leading the user to the functionality which is most relevant in a given situation.
Adaptive prompting is provided to the user through a cmplementary preseledion d the
relevant options and is nat a substitute for existing interadion tecniques.

The authors discusstwo dfferent adaptive prompters. The first is the Adaptive Action
Prompter which is a permanently visible, dynamic menu (or control panel) which will
include only the most appropriate and most likely to be dhosen adions based onthe user’s
context. Thus the prompter contents are updated with every context change. The user can
aways sled adions from either the prompter or the regular menus, whatever is more
convenient in agiven situation. Because the prompter li sts the most appropriate ad¢ionsin
one placethe user has agoodsurvey of sensible dternatives. The prompter can be shown as
plain menuitems aone, or menuitemsthat indicae the referred ojed (e.g., “CUT seleded
text” where seleded text isthe referred oljed), or menu items with task-oriented
explanation (e.g., “START to start the simulation wsing the seleded sample”). The user can
optionally be invalved in controlli ng the rules used for the prompting.

38

The secondform of adaptive prompting discussed is Adaptive Dialog Boxes. This
prompting isto addressthe problem that dialog boxes often present alot of parameters that
arerequired for afunction. The aithors suggest that strategies for coping with the volume
of parameters auch as sorting the parameters based onfrequency of use or moving rarely
neaded parameters to an additional dialog box titl ed something li ke More Parameters™®
change the layout of the dialog box and therefore results in confusion to the user. The
strategy of adaptive prompting in dalog boxesisto present the informationin away that
allows the user to identify the important items and their parameter settings at aglance This
isadieved by using forms of highlighting and color coding to draw the focus of the user.
The structure of the dialog box is not changed in this approach. No user testing for either
prompters is documented.

AIDA

Cote-Muiiaz [1993 documents an adaptive system for interadive drafting and CAD

appli cations that fixes the anourt of functionality offered by icons and menus based onthe
user’s knowledge. But to suppat exploratory leaning, the user has accessto the full
system’ s functionality through a cmmand line. In addition, rew functionality is introduced
in ore of two ways; either the user creaes a new command/maao or the system recognizes
arepetiti ve operation (such as creding threelines that result in atriangle) and suggests the
credion d a ommand/maao. These @mmand'maaos bemme avail able to the user
through new menuitems. No user testing is documented.

SAl - Skill Adapivelnterface

Acoording to conventional wisdom, dired manipulation interfaces are better for novices
and command line interfaces are better for experts. Some atempts to creae hybrid

appli cations (appli cations that include both dired manipulation and command line
interfaces) have been made. Gong and Salvendy [1999 studied hybrid systems and found
that most users never moved beyond wsing the menu. To redify this they creaed the Skill
Adaptive Interface(SAl) that gently pushed the user to use the mmmand line. Once auser
had seleded a menu item athreshold number of times, all subsequent times the same item
was leded the system would provide aprompt which gave the equivalent command. The
user was then forced to use the command line for thisitem. Gong and Salvendy reported
user studies that showed this hybrid technique to have promise.

In addition to gently forcing a user into command li ne usage, SAl was also adaptive in that
the menu contents were variable. Oncethe user was able to enter the command at the
command line without using the prompt avail able from the menu, the menu item was
transferred from the adive menuto a hidden menuthat was attached at the end d the adive
menu. Users had accessto the hidden menu, although the authors do nd spedficdly say
how. The hidden menu contained items for which the users had aready leaned the

9 This slution of having a button in a dialog box that permits accessto more alvanced ogtions appeaed in
the Xerox Star. The term “Progressve Disclosure” has been used by the original Star designteam to describe
thismodel [Johnson et al., 1989.

39

correspondng command and also items that the user had na yet encourntered. When an
adive menuitem was transferred to the hidden menu, an empty menu slot was then

avail able. Tofill the empty sot, the system seleded an item from the hidden menu that had
not yet been made visible. The determination o which item shoud be seleded for the
empty slot was based ona priority parameter. The aithors do nd elaborate any further on
how this parameter was st. This adaptive aped of the system was nat subjed to user
testing.

Adaptive Version of Microsoft Excd - Flexcd

Thomas and Krogsoder [1993 nate that the grea majority of reseach in adaptive systems
has been dore with prototype systems. One of their goals was to assessadaptationin a
complex software product that was commercialy used. They chose Microsoft Excd. They
were aleto modify the Excd interfacethrough the Excd dialog editor and the maao
programming language.

The foll owing adaptation feaures were implemented:

* Theuser coud define new menu entries and new key shortcuts for function
parameterization.

» Theuser coud define key shortcuts for Excd functions which namally can only be
invoked from the menu.

* For functions with default parameters, the default could be changed.

» A separate adaptation toolbar was made avail able to make the dorementioned toadls
more visible.

» System generated adaptation suggestions were indicated by an amustic signal anda
blinking button. The user could accessthe suggestions at his’her convenience Unread
suggestions were maintained in atip list.

» Usage suggestions reminding the user of seaningly forgotten adaptations, and a aitique
moded telli ng the user how the adaptation tools may be used more dficiently were dso
included.

In general, the system was well recaved in user testing athough the paper didn't speafy
some key detail s including: the number of users tested, the duration d system use, and the
badground knavledge of the users.

UIDE - The User I nterface Devdopment Environment

The oore of UIDE is aknowledge base [Sukaviriya and Foley, 1993. An applicaionis
described in the knowledge base in such away that no particular interfacestyle is adopted -
it isessentialy just the functionality that is described in terms of instances of application
adions. Thisisthe domain dependent part of the knowledge base. Interface ations and
interadion techniques reside in adomain-independent part. These interface ations can be
linked to spedfic goplicaionadions and parameters which in essence spedfies the
interadions asociated with ead appli caion function. More than ore interadion technique
can belinked to an interface ationfor aternative interadions.

40

Two types of interface aaptation are discussed: redesign of menus and dalog boxes, and
addition d new commands (maaos). They do nd provide enough detail to determine
exadly what is meant by “redesign of menus and dalog boxes’ but one can assume that it
hasto dowith altering the cntents of the menus and dialog boxes by re-ordering the
contents or adding and celeting items.

Both the temporary lossof productivity due to relearning and the longer-term productivity
gain dueto the reorganization are fadors considered by the system in determining whether
adaptation shoud occur. To suggest command maaos, the dirondogicd history of
interadions is periodicdly examined to find repeaed sequences of commands. No user
testing is documented.

4.3 User Modelling

In order for a system to self-adapt or to suggest adaptations that are gopropriate to the user,
the system must have knowledge &ou the user. This knowledge is generally maintained in
aknowledge base cdl ed auser model, which is resporsible for aayuiring and managing
data & well as providing means for the gpli cation (or consumer of the user model) to
accessthe data. This user model shoud na be confused with what are sometimes referred
to by the same name in HCI reseach. User modelsin HCI may refer to the user’s mental
model or the designer’s model of the user [Norman, 198].

Kay [1993 defines a user model as “a colledion d information that constitutes a model of
the user. Thisinformationis explicit and it is a separate entity...It isemphasized that this
moded, like dl models, attempts to represent only some aspeds of the user, namely those
that are relevant to the domain at hand.” Greenberg and Witten [1989 provide the
perspedive that a user model isthe computer’s model of the user.

There ae athreemain isauesin user modelling: what user informationis relevant, when
and haw the information will be aquired, and haow it will be represented in a user model.

what user information is acquired?

Encarnacd [1997] provides the foll owing li st of the types of user information that are
generally of interest in user modelli ng:

1. existing or missng knowledge of the user

2. goasand dans of the user

3. user preferences and tendencies

4. user experiences and skill s

5. user misunderstandings

how and when isthe user information acquired?

Kuhme [1993 notes that there ae two sources of relevant information abou the user. The
first isan explicit methodin which the user provides slf-estimations and preferences

41

through guestion-and-answer type sessons at isolated times during the interadion. The
second methodis impli cit where the system attempts to deduce information by constantly
monitoring the user’ s dialog with an applicaion [e.g., Vaubel and Gettys, 1997. Kihme
notes that there ae problems with bah self-estimations and deduction through dialogue
monitoring. Self-estimations are not always reliable and deductionis “most often severely
restricted by avery small user-system communicaion bandwidth”. Encarnaca [1997 has
used the terms separated acquisition and integrated acquisition for these two methods.
Further, he says that separated acquisition can be system controlled or user controll ed. If the
system controls when the user must complete the a@uisition sessons, it is much more
obtrusive then when the user isfreeto doit at his’her convenience

how isthe acquired user information trandlated into auser model?

Encarnacé [1997] describes five diff erent techniques used to creae and represent a user

model. The threemost commonly used techniques are given below:

1. Primary acquisition heuristics use rules to buld the user model onthe basis of
interadion with the user. These rules are generally dependent onthe aurrent application
domain bu there has a'so been work dore on damain-independent aqquisition heuristics.

2. Sereotypes are anatural way to generate initial or default valuesin amodel [Kay, 1993.
When stereotypes are used, it is only necessary to gain sufficient information about the
user in order to determine to which stereotype he/she belongs. Stereotypes are defined by
the system designer and the number of stereotypes neaded is often dependent onthe
applicaion damain. It can be asignificant disadvantage if alarge number of stereotypes
need to be generated [Kassand Finin, 199]. The user can be assciated with orne or
more stereotype.

3. Overlay models esentiall y represent an individual’ s knowledge a an owerlay of the
domain or expert knowledge. For ead concept in the domain the user model contains an
estimate of the user’ s knowledge eou the concept.

Kay [199]3 identifies sme pragmatic issues that shoud be cnsidered by the 1Ul research

community in order for user modelli ng to move beyond pototype systems:

* ned for todsthat dothe tasks invalved in bulding and maintaining the user model;

* nedl to reuse models - models are expensive to crede therefore the wsts need to be
amortized,;

» nedl to addresstheisaue of granularity - probably need to move avay from heavy-
weight and computationall y expensive modelli ng to li ght-weight models;

* nedal to make the model accessbleto the user - there is evidencethat users want access
and want to understand. Advantageous sde dfeds are that the user can play an adive
role in constructing and verifying their model and the acountability of the programmer
may be improved.

The development of user modelli ng shell systems have to some extent addressed the issue

of modd reuse and cost. Theideawith these systemsis that the system designer need na
code dl the necessary user modelli ng modues from scratch and embed them within the

42

system but rather use apre-coded modelli ng system that can be simultaneously adive for
other applicaions as well.

4.3.1 Examplesof User Models:

UIDE —The User I nterface Devdopment Environment

Sukaviriya and Foley [1993 creaed an owerlay of the UIDE knowledge model (described
in Sedion 4.2.1) that serves as a user model which records information abou the user’s
history of interadion. This overlay model can maintain statistica history of interadion,
chrondogicd history of interadions, and history of help requests.

AIDA

The user model used in Cote-Mufiaz's[1993 AIDA (described in Sedion 4.2.]) considered

threetypes of user knowledge in ordered to determine the dassof user:

* theuser’'stask domain knowledge;

» theuser’sgeneral computer knowledge — this covers the general computer concepts that
are neaded to work with computers;

» theuser's ystem-spedfic knowledge — this covers pradice and experience spedfic to
the software system that israrely transferable to ather systems.

Cote-Mufiaz gives the examplethat if auser knows alot abou the task of engineeing

design bu knowslittl e &bout computers, then he neads completely diff erent asgstance than

an expert in computer systemswho knavs nothing abou engineing design.

GUMS - A General User Modeling Shell

Kassand Finin [199] designed GUMS, auser modelli ng shell system, to serve awhole set
of applicaion pograms. For ead applicaion GUMS kept a knowledge base of user models
relevant to that application. Applications were resporsible for aaquiring information abou
the user and supfying it to GUMS to updite the user model. In turn, the gplicaion
queried GUMS to oltain information abou the user.

4.4 Task Modelling and Plan Recognition

Task modelli ng attempts to represent the tasks that users will perform with the system. The
various models can be diff erentiated into four categories [Wilson et al., 1988in Dieterich et
al., 1993: models which analyze the knowledge mntent of red world tasks; models that
predict difficulties from interfacespedficaions; models which analyze the users
conceptua structures; and model s which analyze cognitive adivities. Dieterich et al. [1993
discusstask modelli ng. They indicae that despite the numerous formali sms for task

modelli ng, these have been dfficult to apply to intelli gent systems because they do nd
hande modern interadive interfaces. For example, many are unable to describe parall elism
and interrupts. In addition, the majority of these models are static andin order for them to
be operational, they have to be transformed into an exeautable form.

43

Plan recogniti on attempts to recognize users' plans or parts of plansin order to oktain
further information for adaptation a to infer new tasks [Dieterich et al., 1993. There ae a
number of advantages to inferring users’ plans through monitoring: context-dependent
asgstance and feedbadk can be provided; possble completions of sub-plans can be
presented; default parameters can be suppied; and a more reasonable undofadlity can be
provided; global errors can be deteded and passbly correded. As one would imagine,
recognizing plans when the task spaceis constrained and structured is sgnificantly easier
than in complex domains where auser’s plans might consist of a hierarchy of subpgans and
subgoal s needed to acampli sh the overall goal [Carberry, 1989.

Encarnacé [1997] diff erentiates threediff erent categories of approachesto pan

recogniti on:

1. Intended plan recognition occurs when the user is aware and adively cooperating with
the recognition process

2. Keyhadle planreagnti on occurs when the user is unaware or indiff erent to the
recognition process Thisform of recogniti on requires lesscomplex recognition
mechanisms and provides less @phisticaed interpretations of the user’s adions.

3. Obstructed pan remgrition assumes that users are avare of the recognition processand
are adively trying to obstruct it.

4.4.1 Examplesof Task Modelling and Plan Recognition:

CHORIS - The Computer-Human Objed-oriented Reasoning | nterface System

Tyler et a. [199] describe an emergency crisis management system that is based on
CHORIS, which isageneric achitedure for intelli gent interfaces. The achitecure and
hencethe aisis management system contains a plan manager that incorporates a task
model. The plan manager consists of three citica elements. adedarative representation d
plans, routines for utili zing such representations to assst usersin their interadions, and the
reasoning ability to determine what particular goals users are trying to achieve. For
example, when a user logs into the system and indicates that an eathqueke has occurred,
then the substep hierarchy for the manage earthquaketask will appea. The interface agsts
the user in that the system can compare the user’ s commands and arguments to commands
with the constraints onthe task substep’s parameter values and thereby deted global errors.
In asimilar fashionthe interface ca make reasonable guesses abou appropriate default
parameters for the aurrent task step and provide these automaticdly for the user. At thetime
of writing, the third comporent which was to reagnize the users intention from low level
interadions had na been fully redized. No user testing was documented.

SAUCI - A Self-Adaptive User-Computer | nterface

Tyler and Treu [1989 document a system cal ed SAU CI which was designed to suppat
leanability and wsability. One of the ways the system accomplishesthisgoal is by
providing task-speafic guidanceto the user. The system is essntially agraphicd interface
to the UNIX operating system. The user seleds the desired high-level task from amenu and
the system then provides a breg-down of al the substeps necessary to complete the task

44

and provides visual feedbadk as to which substep the user is currently engaged in. User
testing showed that this g/stem performed favourably for novice UNIX users.

4.5 Multimodal Communication/Natural-Language Dialog

Multimodal communicaion combines multi ple forms of interadtion which can include
natural-language (spoken or inpu as text), gestures, and the more traditional interadion
technigues. command line entry and dred manipulation. The goal of multimodal
communicaionisto make interading with techndogy more intuitive and retural. It can
allow usersto operate hands-freeor eyes-free and can thus provide greaer flexibility to the
user. Despite the goparent advantages of multimodal communication, bdh determining
appropriate situations for its appli caion and the cmmplexiti es of processng natural
language remain chall enging areas of research [Encarnacd, 1997.

4.5.1 Examplesof Multimodal Communication/Natur al-L anguage
Dialog:

CHORI'S - The Computer-Human Objed-oriented Reasoning I nterface System

The emergency crisis management system [Tyler et a., 1997 described in Sedion4.4.1

allowed the use of natural language queries and gestural input in the midde of such queries.

For example, the user could type the query “What is the popdation d these schods?’ and

subsequently gesture through cursor pointing to the representations of the desired schods.

The Adaptable User I nterface

Kantorowitz and Sudarsky [1989 developed a User InterfaceManagement System that
suppatsthe creaion d adaptable user interfaces which all ow the user to switch between
dialog modes (nat strictly limited to dred manipulation and command language) at the
token level of granularity.

4.6 Intelligent Help

Providing help for the user has proven to be a more difficult problem than most designers
would have expeded. Reseach has shown that online help or manuals are not users
preferred method d knowledge aquisition[Rieman, 199§. The problem is that users have
difficulty finding the help that they need: help provided is not related to the user’ s context,
more informationis given than necessary, or the information given dces not match the
user’'s expertise level. Reseach in intelli gent help has attempted to addressthese problems.

4.6.1 Examplesof Inteligent Help:
SAUCI - A Self-Adaptive User-Computer | nterface

45

SAUCI [Tyler and Treu, 1989, described in Sedion 4.4.1, attempts to suppat learnability
by providing intelli gent advising. Part of the intelli gent advising cgpability is giving user-
tail ored advice onthe UNIX commands. When the user requests general help ona
command, a help shed pops up providing the purpose, arguments, and ogeration d the
command. Each o these comporents of the help shed is tail ored to the user level. The user
can aso request spedfic adviceby providing a mommand and the aguments that they would
liketo try. Rather than the system exeauting the cmmmand, the system provides feedbadk on
any potential problems that would arise from the command exeaution. Tyler and Treu
[1989 note that this suppats exploratory learning.

UIDE - The User I nterface Devdopment Environment

Applicaionsthat are built using UIDE (described in Sedions 4.2.1and 4.3.]) are aleto
automaticdly generate and provide cntext-sensitive, animated, and multimediahelp [de
Graff et a., 1993; Sukaviriyaet a., 1990; Sukaviriyaet al., 1993c; all threereferences cited
in Encarnacd, 1997.

4.7 Intelligent Tutoring Systems

Intelli gent tutoring (teading) systems are concerned with the aquisition d domain
knowledge rather than operational knowledge. They attempt to foll ow the teading model
of agoodteader whoisfaceal with adiverse group d students. The model adapts the
teading content and style to the domain being taught as well asto theindividua student’s
needs and abiliti es [Kay, 1993.

Cardiac Tutor

The Cardiac Tutor is a knowledge-based simulation for teading abou cardiacresuscitation
[Wodlf, 1994. The Tutor includes both ared-time simulation and agraphicd view of an
emergency room patient. The students are given the goal to save the patient by seleding the
proper advanced cardiaclife suppat procedures. Clues are provided through spoken advice,
emergency room sounds, and graphicd representations of ECG traces, blood gases, and
vital signs. Automated tutorial help is off ered with cutomized problems to suit the student’s
level of achievement. The Tutor provides pasitive feadbad for both goodand improved
performance and incorred behaviour is categorized and commented upon.Preliminary user
feedbad was very pasitive.

4.8 Dynamic Presentation

Reseach in dynamic presentation seeks to provide views of datathat are dependent on the
charaderistics of the data set and tail ored to the individual user’ s experience, cgpabiliti es,
and preferences. The goa isto make the data a comprehensible & possble.

46

4.8.1 Examplesof Dynamic Presentation:

GAMES — Guided Adaptive Multimedia Editing System

Gutkauf [1997 introduces a chart editing system which generates criti ques by user request.
These «aitiques are based ona user model, onexpert knowledge in chart editing and onthe
chart currently being edited. The goal is for the system to help the author to avoid
commonly made mistakes and to empower redpients of charts to adjust certain parameters
(e.g., colors) to their individual abiliti es and reads. A chart will only change its appeaance
or behaviour when the user requests a aitique. The user can also request an explanation
from the aitique.

AGA — Adaptive Graphics Analyser

Holynski [198§ describes AGA which generates images that are dassfied based on 8
variables: balance grid size, busyness complexity, regularity, colour variety, shape variety
and symmetry. He had 200 subjeds evaluate the images and standard regresson anaysis
was used to dscover which variables were gpropriate predictors for user preference In
order to determine more detail ed information the average dtradivenessrating for eah
image dong with the value of the 8 variables were inpu into arule aguisition grogram.
The program produced clea presentation rules for agiven set of viewers such as
attradivenessis low if complexity and bisynessare bath low. AGA modifies rules obtained
from the rule aquisition program by accepting spedfic knowledge from a particular user
abou that individual’ s perceptual judgment.

4.9 Software Architectures

Early reseach in intelli gent interfaces was understandably more focused ontrying out ideas
rather than being concerned abou the extensibility, understandability, reusability, and
maintainability of the implementation that instantiated the idess. It soon kecane dea that
the dorementioned concerns needed to be addressed and that an understanding of the
software achitedure for the software comporents that comprised the intelli gent asped of
systems was needed. This of course parallels alarger trend in computer science over the last
two decales towards extensible, understandable, reusable, and maintainable systems.

The Seeheim Model [Praff et al. 1985,in Encarnac@®, 1997 represents one of the first and
best known models for general user interface achitedure. There ae threemain comporents
to this model. The presentation describes the visual interadion ojedsonalexicd level.
The dialog describes the structural elements of the dialog and the behaviour of the
interadion oheds onasyntadic level. The apgication interface describes the purpose of
the dialog in the proper appli cation context on a semantic level.

47

Presentation Dialog Application
Component Component Interface
3

A 4

Fealbadk

Figure 5: Seeheim nodel

Other well known models include the Sedtle model, the Lisbonmodel, and the PAC model
[Bassand Coutaz, 1991. Despite the variety, there has been aladk of consensus onwhich
isthe best. This has prompted some of the leading reseachersin this areato conclude that a
single prescriptive model to fit al types of interadive systemsis very difficult, if not
impossble, to define [UIMS tod Developers Workshop, 1992.

To address this deficiency, these researchers propased an approach that examined the nature
of the data that passes between the user interface ad the non-user-interfaceportions of an
interadive system. The gproach led to the definition d the Arch Model which models the
runtime achitedure of an interadive system.

Dialog
/ Component \
Domain Objeds Presentation Objeds
Domain- Presentation
Adaptor- Component
Component
Domain Objeds Interadion Objeds
Domain- Interation
Spedfic Toolkit
Component Component

Figure 6: Arch Model [UIMSTod Devdoper’s Workshop, 1997 .

Comporents of the Arch Model as described from the UIMS Toadl Developer’s Workshop

[1993:

« Domain-Spedfic Comporent: controls, manipulates and retrieves domain data and
performs other domain-related functions.

48

* Interaction Toolkit Comporent: implements the physicd interadion with the end-user
(viahardware and software).

» Dialog Comporent: has resporsibility for task-level sequencing, bah for the user and
for the portion d the gplication damain sequencing that depends uponthe user; for
providing multiple view consistency; and for mapping bad and forth between damnain-
spedfic formalisms and wser-interfacespedfic formalisms.

» Presentation Comporent: amediation, a buffer comporent between the Dialog and the
Interadion Toalkit Componrents that provides a set of tod kit-independent objeds for
use by the Dialog Comporent.

* Domain-Adaptor Componrent: a mediation componrent between the Dialog and the
Domain-Spedfic Comporents. Domain-related tasks required for human operation o
the system, bu nat avail able in the Domain-Spedfic Comporent, are implemented here.
The Domain-Adaptor Componrent triggers domain-initi ated dalog tasks, reorganizes
domain data, and deteds and reports ssmantic atrors.

The objeds depicted in the figure represent information that is transmitted between the
comporents. Theterm “objed” does nat refer to formal objeds as they exist in ohjed-
oriented programming. Rather, objeds are an abstradion for describing a coommunication
medhanism.

» Domain Objeds: when used in the Domain-Spedfic Comporent, Domain Objeds
employ domain data and operationsto provide functionality not associated dredly with
the user interface In the Domain-Adaptor Comporent, domain data and operations are
used to implement operations on damain data that are asociated with the user interface

» Presentation Objeds: are virtual interadion oljeds that control user interadions.
Presentation Objeds include data to be presented to the user and events to be generated
by the user. The medium used in the presentation a event generationis not defined.

* Interaction Objeds:. are spedally designed instances of media-spedfic methods for
interading with the user. Interadion Objeds are suppied by the Interadion Toadlkit
software and may be primiti ve or complex.

The Arch model can be generali zed to the Sinky Metamodel [UIMS toadl Developers
Workshop, 1992 which esentialy provides a set of Arch models by shifting functionality
among comporents. Such a metamodel is desirable becaise it enables the seledion d the
Arch mode to be dependent on the goals of the developers, their weighting of development
criteria, and the type of system to be implemented.

Although the achitedure models mentioned thus far have been instrumental for research in
user interfacesoftware achitedures, nore of them are sufficient for the redization d

intelli gent user interfaces. To addressthis Hefley and Murray [1993 integrated the Triple
Agent Model by Card [1989 Card 1984in Encarnacd, 1997 shown in Figure 7 with the
Arch Model to form the Arch Modd for an Adaptive Intelli gent Human-Machine Interface

49

Task isdirectly observed by the user

User aff ects task directly
Task control and ¢
effects of being
Feelbad and
User ¢-2diusiments o, . User Tas'_(< sensed > @>
Discourse User affects Madchine
T | Madine task indirectly *
Task is observed
indirectly
Figure 7: Card’'s Triple Agent Model of human-computer interaction (diagram adaped from Encarnagéo
[1997).

The Triple Agent Model comprises four parts: the user, a User Discourse Machine which
interads with the user, a Task Macdhine interacing with the task, and the task itself. Card
[1989 notes that the User Discourse Madine and the Task Madhine may in fad be
independent computers or they may just be separate modu es within the same system. There
are three ayentsin this model: two computational agents (the Task Machine and the User
Discourse Machine) and the user. Each of these agents can paentially have models of the
other agents and pasble even of the other agents' models.

The Arch Model for an Adagtive Intelli gent Human-Machine Interface extends the Domain-
Adaptor Comporent of the Arch Model to include the foll owing three @mponrents: Domain
Adaptation, Discourse Management, and an Intelli gent Dedsion Suppad System (IDSS).
The integration described by Hefley and Murray [1993 is nat entirely clea but the main
points are paraphrased below:

» Intelligent interfaces are redly instances of domain adaptors.

e Thedomain spedfic comporent could howse the user model data and bah the domain-
spedfic and dynamic knowledge-bases.

» Layerscloseto the user interfaceitself can perform recognition, pgresentation,
explanation, wser tailoring and so on.

« A robust intelli gent interfacewill have several embedded layers within it, in additionto
the provision d adaptivity and intelli gent presentation. These include spedfic levels
for:

» Domain adaptation: goa management, higher level (i.e., cognitive) user
modélli ng.

 Discourse management: management of the interadion, adiorn/presentation-level
user modelli ng.

50

/ Domain Knowledge Base Manager \

Coordinator [€ Critic

Explanation > Response
Generator Generator

v v 4
Discourse Presentation Plan
IDSS Generator Identification /

7

Dialog
Component

Presentation
Component

Iteration

Figure 8: Architecural model for an adapive human-machine interface [Hefleyand Murray 1993 .

4.10 Evaluation

The evaluation d adaptive systems has been identified as awedg areawithin thisfield of
reseach [Dieterich et al., 1993. HO0k [1997] identifies important issues relevant to
eval uating adaptive systems. The main pantsinclude:

» Theimportanceof being ableto dstinguish the adaptive feaures of the system from the
general usahility of the system. H66k [1997 notes that most studies of adaptive systems
are comparisons of the system with and without adaptivity and the problem can be that
the non-adaptive system may nat have been designed oggimally for the task.

» Theisaue of what to measure. Often the main evaluation criteriais task completiontime.
Although this may be important it may not be the best or only measure. HO0k describes a

hypermedia system for which the quality of the search and the result is more important
than the overall seach time.

51

» Users own evaluations of the system are important. How do they fed the alaptive and
nonadaptive systems compare? Do they fed in control of the alaptive parts of the
system?

» Duration d study isrelevant. The alvantage of most adaptive systems is that they adapt
to the users changing needs and goals. Thus dhort term studies that do nd al ow these
needs to change in a natural way do nd provide an acarate assessment of adaptive
systems.

5 Summary and Discussion

Over the last two decales there has been anaticedle increase in the number of feaures that
are included with appli caion software. As previously mentioned, thistrendis nat isolated
to software but can be seen aso when considering househadd appliances such asfood
procesrs and VCRs. “The more the better” seems to be the prevaili ng phil osophy. There
has been some reseach on hav people ae wping with the alded complexity but not
sufficient reseach to clarify theisaue. A brief summary of the reseach is asfoll ows:

» Userswho are new to an application are &leto complete tasks faster and with fewer
errors when functionality that is not needed for the tasksis blocked dff.

» If atask can be cmpleted ontwo dff erent versions of a software padkage, auser whois
new to the padkage will be &leto complete the task onthe ealier version faster.

» Thenumber of distrading interfaceobjeds aff eds the ability of reasonably experienced
users who are new to an applicaionto find the gpropriate objed.

» Usersgeneraly use only a subset of an applicaion’sfunctionality and they don't often
master even this subset.

» Usersare generaly more comfortable with mastering a subset of functionality rather than
being anovicewith resped to the total functionality.

The latter two padnts suggest atrend abou usage: only a subset of an applicaion’s
functionality is used by the majority of users. It isnat exadly clea why thisisthe cae. One
posshility isthat the full functionality isnat needed by most users. Anather posshility is
that users don't know how to use the functionality or dori't even know that it exists and so
although they could useit, they get by withou it. The redity is most certainly a
combination d these two scenarios, but the extent to which ore scenario is more prevalent
than the other is unknawn.

The first threepoints above strongly suggest that for users who are new to asystem, it is
significantly easier to acaomplish atask if the feaures that are nat required for that task are
either removed from the interfaceor are blocked doff. This, in and o itself, shoud na seem
entirely surprising. One only nead look for examplesin the everyday world of how users
lean to use and continue to use mmplex toads or feaured systems. Two such examples
come to mind.

52

One exampleislearning to use a céculator. Speaking from personal experience, | was
given my first cdculator when | was in grade schod. It suppated littl e more than addition,
subtradion, multi plication, and dvision. When | entered high schod, this cdculator no
longer met my needs and so | aaquired a basic scientific cdculator. Andin seoondyea of
my undergraduate degreel transitioned yet again, bu thistimeto a programmable
cdculator.

Putting the st fador aside, no ore would think of giving a grade schoder a programmable
cdculator becauseit is obviously far beyondthe neads of a dild. It would oy confuse the
child and the likelihood d the child pressng the wrong button by mistake would be high.
Not only would such a cdculator nat fit the task of a child but it would likely hamper the
child’sleaning.

Another exampleisleaning to drive a ca This exampleisn’t quite & clean asthat of the
cdculator but is worthwhil e noretheless To make the example work one needsto include
the physicd world as part of the systemin question. Most city people when they lean to
drive start out in an easy condtion. They may start out in alarge, empty parking lot and
when they fed comfortable cntrolli ng the ca they will probably try driving in aresidential
areawhere afew basic traffic signs need to be observed and aher cars neal to be
negotiated, all at areasonably low speeal. Next, anew driver would probably fed most
comfortable trying to drive on major city streds where more traffic signs are found and
more cmplex maneuvers, such as changing lanes, are required. The new driver would most
likely leave highway driving urtil | ast. Despite the minimal traffic signs on hghways, the
high spead usually deters new drivers from highway driving until they are comfortablein
low-speed conditions.

What this example shows is that people, when given the oppatunity, chose to reducethe
complexity when learning a new system. It isworth pdnting out that by the time apersonis
leaning how to drive, he/she often has avery good operational model of an automobil e.
Thisiswhat enables new driversto set thelevel of difficulty with which they are
comfortable. By comparison, novce users have apoa operational model of a computer.

Returning again to the discusson d the literature, there ae anumber of isaues and

guestions that remain urenswered:

» All of theliterature that attempts to assessreduced complexity only looks at the first few
hours a user spends with the system. How do wsers cope with a full -feaured system
beyondthese initial hours? If users were to continue using the reduced system, at what
point would they find it to be insufficient? Is there something in between areduced
system and afull system that would be gpropriate for some users?

» Isleaning onasimplified system equally beneficial for al users? One might presume
that it is more beneficial for anovice user than an expert user. Isthistrue? To what
extent? Isit dependent on whether the user is noviceexpert in the omputer domain o
the task domain?

53

We do knaov how users approach learning a system. They learn through exploration, by
applying previous knowledge, by taking formal training, by reading the user manual, by
taking advantage of online help and orline tutorials and demonstrations, and by asking for
asgstancefrom friends and coll eagues. Although al of these learning avenues are used,
reseach clealy shows that users generaly lean through exploration andthey do so in the
context of red tasks. Thisleaning behaviour is sometimes referred to astrial and error,
leaning by doing, or simply adive leaning. There is evidencethat explorationis
occasionally dore in conjunction with reading the manual or using online help. Just because
explorationis the most common approach, havever, it is not to say that thisisthe most
eff edive way to lean. Empiricd evidence seemsto suggest that this methodis more

eff edive than some passve methods, such as reading the manual or using online help and
tutorials, however, there is no evidencethat compares exploratory leaning to formal
training.

Thereisempiricad evidencethat suggests ways to make exploratory learning more dfedive.
In generdl, if users are left to explore in an urrestricted fashion, they do nd behave
adaptively, they interad too much, and think too littl e. This maladaptive behaviour isin fad
encouraged by the interadivity of systems. Exploratory leaning can be made more dfedive
when it isrooted in relevant tasks, and when users are encouraged to refled ontheir
interadions. Refledion can be enforced by a number of means, namely, by limiti ng the
number of keystrokes users have during exploration, by making the interfacemore difficult
to use, and by forcing users to explore one subset of the functionality at atime. Limiting
keystrokes is an interesting empiricd result, hovever, there isno obvous way to use this
techniguein pradice Similarly, making the interfacemore difficult doesn’t seem like a
pradicd long term solution espedally because users clealy prefer easier interfaces (such as
dired manipulation) even though they may nat equally promote good problem-solving
behaviours.

Forcing the exploration d one subset of functionality at atimeis an extrapalation d the
functionality blocking that was e in the Training Wheds Interface[Carroll and
Carrithers, 1984, 19848 in which there was only a single functionality subset. What hasn’t
been suggested by the literature is a means of implementing functionality blocking with
more than ore functionality subset. The Trudel and Payne [1999 study reported the
benefits of limiti ng exploration. Their experimental design had the experimenters advance
the user to anew functionality subset after a given amount of time. This, of course, isnot a
pradicd solution for commercially avail able software. This dudy aswell asthat of the
Training Wheds Interfacepresent some groundwork onfunctionality blocking, but many
guestions remain before this grategy can be cnsidered for commercial software:

» How can appropriate subsets of functionality be determined? To what extent is
functionality layered o clustered?
» How shoud the user transition from one subset to another?

These ae fundamental questions that need to be aldressed if functionality blocking is going
to be aviable methodto suppat leaning by the user. It is essentia that there be some way

54

to determine what functionality needs to be grouped, what functionality is needed all the
time, what functionality is only neaded occasionally, what functionality is only needed by
the expert users, etc. Buxton's[1998 model seams to suggest a point of departure not so
much in terms of the expert/novicedimension bu in terms of functionality grouping. He
advocaes parsing functionality based ontask athouwgh thisin and d itself remains a
reseach question.

It isworth considering a dlight extension o Buxton's model such that spedfic tods appea
within amore genera tod. The representation d this can be seenin Figure 9. Although at
first glancethe cognitive load (i.e., the aeaunder the arve) is higher than what is srownin
Figure 3(a) it isimportant to remember that users use only a small subset of the total
functionality. The user would orly need to use those todls within the toolset that are
required. The image in the figure shoud be understoodto be significantly diff erent than
what is commonin today’ s user interfaces. Take Microsoft Word for example. Much of the
functionality is aways avail able from the first few levels of the menus and the default
todbars. Additional todbars can be alded to bah increase the accsshility of some
functionality already foundin the menus and also to make accesble functionality not
available in the menus.

Continuing with the word processng example, the model in Figure 9 advocaes that the
functionality be grouped into tod's that addressgiven tasks. For example, when the user
wantsto draw in adocument, the user is placal in the drawing todl. All functionality
required for drawing operationsis accesgble from that too and nahing more. This would
most likely mean that there would be some overlap in functionality between todls. There
would be some “net benefit” becaise of consistency of style and terminology among tools
and also because the todls could be avare of the mntext in which they are operating.

Cognitive Load

High .
Strength Low |:|
None |:|

v

Generality

Figure 9: Extension d Buxton's model to include strength andspedfi city within a general todl.

Asauming that functionality subsets can be determined, then the next hurdleis figuring out
how to design a system that suppats multi ple functionality subsets such that the user can
transition easily between the subsets.

Although the aility to dynamicdly adjust the avail able functionality seemslike atall order,
one neads to remember that software is fundamentally more mall egble than most
techndogy. It is predsely this mall eaility that is the subjed of research in adaptive and
intelli gent user interfaces. Adaptive interfaces ek to adjust the interfacesuch that the

55

functionality accessble matches the user’ s needs, preferences and skill s. Initial reseachin
this areasought to have the system self-adapt, in ather words, the system inferred what the
user needed and adjusted its interface acordingly. There were two main problems with this
approach. The first was that the Al techniques used to determine the user’ s neals and wants
were not as robust asinitially clamed and so system inferences were subjed to
considerable eror. The second poblem was that users need to fed as though they arein
control of the system; when a system changes withou avisible caiseit leals the user to
fed alossof control.

The reseach in adaptive user interfaces is motivated by the desire to improve user
performancein systems that are reasonably complex. This motivation can be identified by
looking at the prototypes that attempt to recognize frequent user key sequences and then
provide the user with asingle mmmand a maao that acampli shes the same result, that
reorder menus or dialog boxes based onthe user’ s usage, that infer the user’ stask and
suppy appropriate default parameters, and that provide aprompter that lists the most likely
adions based onthe arrent context.

There ae a oupe obvious limitations of the research in adaptive user interfaces. The first
isthat, with the exception d the Flexcd prototype based onMicrosoft Excd [Thomas and
Krogsoder, 1993, al theresearch is based on pototype systems. One must question the
validity of reseach that attempts to improve performancein complex systems and uses
limited prototypesto doso. Ancther significant limitationisthe ladk of reported user
testing. Thisis disappanting given that the intelli gent user interfaceresearch community
initially set out to be amix of the HCI and Al reseach communities. User evaluationisa
fundamental principle in HCI, yet it receves minimal attentionin the intelli gent interface
reseach.

In general, the reduction o complexity has nat been adequately addressed in intelli gent user
interfacereseach. Take the Adaptive Action Prompter [Malinowski et al., 1993 described
in Sedion 4.2 as an example. It advocaes adding an additional seledion b that is always
visible with the most likely options given the user’s current context. The net effed of thisis
that more interadion ohjeds are alded to the interfacein order to addresscomplexity. This
cetainly seans badkward. Instead of advocaing better design it suggests adding another
widget to navigate. The anthropamorphized paper clip in the Microsoft Office suit
represents the same problem. It suggests that feaures can be pumped into the interfaceso
long asthereis alittl e ayent in the corner to whom the user can ask natural language
guestions.

Recant literature onintelli gent and adaptive user interfaces suggests a number of

requirements if this research is going to impaa commercia applicaions. These include: the

need to make user modelli ng li ght-weight, and the need to pu the user in control of

adaptation. Research isaues arise diredly from these:

» A light-weight user model canna acount for al individual differences. What are the
dimensions of alight-weight user model ? How li ght-weight can a user model be before
being rendered useless?

56

* How can the user effedively control the alaptation process?

5.1 Putting it all Together - Two Possible Scenarios

From the reseach gathered for thisliterature review it is passble to imagine & least two
distinct interfacescenarios that provide d least partial solutions to the functionality
explosionthat has occurred. Each of these is based onmetaphars that are described below.

5.1.1 Gradual tod seledion and de-seledion - toolbox/workbench
metaphor

A capenter initialy starts off with a dean workbench. Gradually as he/she aafts the work
artifad, tods are brought from the toolbox to the workbench. Sometimes the capenter uses
atod andthen immediately returnsit to the toolbox knowing that the tod will not be
needed again in the nea future. Other times, todswill be left on the workbench after their
usein anticipation d using them again in the nea future. At some points the workbench
will beaome duttered with todls to the point that it is difficult to continue working with the
work artifad. Many tools may be returned to the toolbox in order to clear some space The
capenter will i nevitably change tasks periodicdly. These task changes may acampany
significant changes to the seledion d todls used onthe workbench.

Figure 10 shows what the user might seeif we take this approach. Thereisasingle
workspace ad atoolbox from which the user can seled the desired todl(s) and return them
when nolonger needed. When atod is added to the workspace all the functionality of the
tod is made avail able in the workspace When the workspacebecomes too cluttered, the
user puts the tod badk in the toolbox.

Example: The user loads aword processng application for the first time. Only aminimal
functionality subset is avail able, i.e., the user can creae anew document, open an existing
document, save, print, inpu text, cut, paste, and delete. The todbox that accompanies the
barebores word processor, includes toals sich as Text Formatting, Drawing, Charts,
Tables, etc. The user is easily able to add a remove these todls from the goplicaion’s
workspace

57

|
|[®] Ele Edt Help _|8] x| — Formatting toolbar

Basic for matting functionality: e.g.,font, style, alignment

Toolbox [_ (O] <]
O Formatting
</————/ O Drawing
O Tables
drag and dop a togge O Charts
switch (?7) to
add/remove tool
etc.
z
| Page 1 TR nt 1 [[[[[g

Figure 10: Workspace andtoolbox described in Senario One. The image depicts the workspace after the
Formatting tool has been adced.

5.1.2 Task driven tod seledion - multi ple workbench metaphor

An dternative to bringing al the required tods to a single workbench is aworkshopwith
multi ple workbenches, ead providing diff erent utility. The capenter moves with the work
artifad from one bench to ancther, e.g., becaise sometods sich asadrill pressor eledric
saw are large, certain tods require aspedal surface or there ae physicd constraints sich
as proximity to an eledric outlet or alight source In this enario it iseasier to leave the
tods dationary andfor the capenter to move to them.

Figure 11 shows what the user might seeif we take this approach. When the user first
acesss the system he/sheisrequired to answer afew brief questions which all ows the
system to roughly assessthe user’ s knowledge, i.e., light-weight user modelling categorizes
usersinto ore of three céegories: novice, intermediate, or expert (or possbly athree
dimensional model of expertise). The user next seleds atask from the list of high-level

58

tasks presented by the system and tools appropriate to the seleded task are then
automaticdly seleaed by the system. (Alternately, the user will be presented with alist of
functions rather than tasks — this to be determined through user studies). The system then
opensinto adefault tod and a gestalt cli ck-able map representing al tods available is
provided at the periphery of the workspace In thisway, this g/stem can be adapted to bah
the user’s current task (or function) and knavledge. For example, al of atod’s
functionality will be disclosed to an expert user whereas only a subset of the functionality
will be disclosed to anovice When anovice or intermediate user is ready to have accesto
increased functionality within atoadl they click a button that represents “More functionality
please”. The system would present ahigh level view of al the dternatives and the user
would orce ggain seled a high-level task.

Example: The user loads aword processng application. Based onthe user’ s resporseto a
few brief questions, the system determines the user to be anovice The user seleds “crede
businessletter” as the desired task, he/sheis given the default novicetoad-set which
includes threetods, Tex Entry and Formatting, Sgell Checke, Thesaurus. The basic
functionality of Text Entry and Formatting is for example, fort, fort size, style, and
justification. To accessmore alvanced formatting feaures, e.g., paragraph, page layout, etc.
the user cli cks the button asking for more functionality.

To seled ancther todl, e.g., the Spell Chedker, the user clicks onits representationin the
map. The Spell Chedker is highlighted and besic functionality avail able to that todl is
shown in thetodbar. To return to Text Entry and Formatting, the user need only click its
representation in the map.

5.2 Research Contributions

Investigating scenarios guch as those mentioned above could pdentialy provide al or some

of the following reseach contributions:

e a @ntinuation d the training wheds (functionality blocking) research that was very
successul and hghly cited in the literature but has never been furthered;

» an understanding of the benefits of asimplified system for diverse users,

o assesgment of adaptive strategies in the context of commercial, complex software rather
than prototype software (e.g., MS Word, MS Excd, Lotus Notes, Alias Wavefront’s
Maya, MAD);

» performing user testing of an adaptive interfacewhich would further the understanding
of appropriate user testing strategies and methoddogies for adaptive systems,

e aninvestigation d the pertinent issues of light-weight user modelli ng in adaptive
interfaces;

» anassesgnent of an adaptive interface beyondthe first few hours of usage;

 the development and testing of a 3D model of expertise.

59

Highlighted to
indicaetoodl in use

- Documentl

[FRARTULTE | SRRSO T ext Entry and For matting Togl

”'@ Fle Edit Help =] x| o
Task:| BusinessLetter |i| Todls: |Text Entrv and Formattina ||Spell Chedker ||Thesaurus By clicking her(-e the
' workspacewill
Text Entry and Formatting toolbar [+ More | bewme the spell
| ﬂ chedker tod

(TR TULTE R RSN Spell Chedker Tool - Documentl =] E ‘)

™ Eile Edit Help =13 x|

Task: BusinessLetterE Todls: [Text Entry and Formatting [|Spell Chedker ||Thesaurus

Spell Chedker toolbar [+ More | Buttonto
| —1| increase
| | |functionality

W Word Processor [ESZNIRVCRKeLS - Document1 M=l E3
") Fle Edit Help == %]
Task:| BusinessLetter[w]|| Tods: [Text Entry and Formatting |[Spell Chedker ||Thesaurus
Thesaur us toolbar [+ Moref—
KN -
Pagr
IS
Mage
+
)
¥
4 | »
| Page 1 111 lar 1" Im 1 cal 1 | [| | 2

Figure 11. Workspaces as depicted in Senario Two. At any given time only one of these screensisvisible. It
ispossble to navigate from one screen to ary other by simply dicking onthe desired tool button

60

6 References

Baeder, R., Grudin, J., Buxton, W., and Greenberg, S. (1995. Readings in Human-Computer Interaction:
Toward the Year 200Q San Mateo, Californiaz Morgan Kaufmann.

Baeder R., Small, |., and Mander, R. (1997). Bringingiconsto life. Proceeadings of CHI' 91, 1-6.

Baeder, R. and Buxton, W. (1987). Readings in Human-Computer Interaction: A Multidisciplinary
Approach, San Mateo, Californiaz Morgan Kaufmann.

Bass L., and Coutaz J. (1991). Devdoping Sdtware for the User Interface Realing, Mass Addison-Wesley.

Boehm, B.W. (1988. A spiral model of software development and enhancement. |EEE Computer, 21(2), 61-
72

Bonar, J. and Liffick, B. (1997). Communicaing with high-level plans. in Intelli gent User Interfaces, J.S.
Sullivan and S.W. Tyler (eds.), 129156,

Borenstein, N. (1985. The Design andEvaluation d On-line Help Systems. PhD Disgertation, CMU-CS-85-
151, Department of Computer Science, Carnegie-Mellon University.

Boser, T. (1985. Learningin Man-Computer Interaction: A Review of the Literature, Germany: Springer-
Verlag.

Buxton, W.S. (1998. Conversation with Bill Buxton, Chief Scientist Alias Wavefront and Sili con Graphics;
Asciate Profesor, University of Toronto, Spring, 1998

Carberry, S. (1989. Plan recognition and its use in urderstanding dialog. in User Modelsin Dialog S/stems,
A. Kobsa and W. Wahlster (eds.), Berlin, Heidelberg: Springer-Verlag, 133162

Card, SK. (1989 Human fadors and artificial intelli gence in Intelli gent Interfaces: Theory, Research and
Design, P.A. Hancock and M.H. Chigrell (eds.), North-Holland: Elsevier Science PublishersB.V., 27-46.

Carrall, J., and Carrithers, C. (1984. Blocking learner error statesin atraining-wheds g/stem. Human
Factors, 26(4), 377-389

Carrall, J., and Carrithers, C. (1984. Trainingwhedsin a user interface Commnunications of the ACM, 27(8),
800-806.

Carrall, J., and Madk, R. (1984). Leaningto use aword procesor: By doing, by thinking, and by knowing. In
Thomas, J., and Schneider, M. (eds.), Human Factors in Computer Systems, Ablex, 13-51.

Carroll, J.M. (1990. The Nurnberg Funnel. Cambridge, MA: MIT Press

Clement, A. (1993. Computer suppart for computer work: A socia perspedive on the enpowering of end
users. in Readingsin Groupware and Computer-Suppoted Cooperative Work: Asgsting Human-Human
Collabaration, R.M. Baeder (ed.), San Francisco, California: Morgan Kaufman, 315328

Computer Science and Telecommunicdions Board, National Research Council (1997). Morethan Sreen
Deep: Toward Every-Citi zen Interfaces to the Nation's Information Infrastructure, National Academy
Press Washington, D.C.

Constantine, L.L. (1995. Constantine on Peopleware. Engewood Cliffs, NJ: Prentice Hall .

Cote-Munoz, JA. (1993. AIDA - An Adaptive System for Interadive Drafting and CAD Applicaions. in
Adaptive User Interfaces. Principles and Practice, M. Schneider-Hufschmidt, T. Kuhme and U.
Malinowski (eds.), Elsevier Science Publishers B.V., 225240

Davis, S. and Bostrom, R. (1992). An experimental investigation of the roles of the cmputer interface ad
individual charaderisticsin the learning of computer systems. Internationa Journal of Human-Computer
Interaction, 4(2), 143172

Dieterich, H., Malinowski, U., Kuhme, T., and Schneider-Hufschmidt, M. (1993. State of the Art in adaptive
user interfaces. in Adaptive User Interfaces: Principles and Practice, M. Schneider-Hufschmidt, T. Kuhme
and U. Malinowski (eds.), Elsevier Science PublishersB.V., 13-48.

Dryer, D.C. (1997. Wizads, guides, and beyond: Rational and empiricd methods for seleding optimal
intelli gent user interface gents. Proceealings of IUI'97, 265-268

Encarnacé®, L.M. (1997). Concept and Realization d Intelligent User Suppat in Interactive Graphics
Applications, unpublished disertation, der Fakultét fur Informatik, der Eberhard-Karls-Universitét zu
Tubingen. http://www.gris.uni-tuebingen.de/gris/proj/guis/PapersDISSdisshtml.

Fischer, G. (1993. Shared knowledge in cooperative problem-solving systems - integrating adaptive and
adaptable components. in Adaptive User Interfaces: Principles and Practice, M. Schneider-Hufschmidt, T.
Kuhme and U. Malinowski (eds.), Elsevier Science PublishersB.V., 49-68.

61

Franzke, M. (1995. Turning reseach into pradice Charaderistics of display-based interadion. Procealings
of CHI' 95, 421-428

Franzke, M., and Rieman, J. (1993. Natural trainingwheds: Leaning and transfer between two versions of a
computer applicdion. Vienna Conference VCHCI'93, 317-328

Gong, G., and Salvendy, G. (1995. An approac to the design of a skill adaptive interface Internationd
Journal of Human-Computer Interaction, 7(4), 365383

Goodwin, N.C. (1987). Functionality and Usability. Commnunications of the ACM, 30(3), 229233

Greenberg, S. and Witten, |.H. (1985. Adaptive personalized interfaces - A question of viability. Behaviour
andInformation Techndogy, 4(1), 31-45.

Grudin, J. (1989. The cae ajainst user interface onsistency. Commnunications of the ACM, 32(10), 1164
1173

Gutkauf, B. (1997). Accounting for individual differences through GAMES: Guided Adaptive Multimedia
Editing System. Extended Abstracts, CHI 97, 22-27 March 1997, Atlanta, GA, 57-58.

Hefley, W.E. and Murray D. (1993. Intelligent User Interfaces. Proceedings of the 93 Internationd
Workshop onintelli gent User Interfaces, January 4-7, Orlando, Florida, 3-10.

Holynski, M. (1988. User-adaptive computer graphics. Internationd Journal of Man-Machine-Sudies, 29,
539548

Hook, K. (1997). Evaluating the utility and usability of an adaptive hypermedia system. Proceadings of Ul
97,179-186.

Howes, A. and Payne, S.J. (1990. Supparting exploratory leaning. Human-Computer Interaction -
INTERACT *90, D. Diaper et al. (eds.) North-Holland: Elsevier Science PublishersB.V ., 881-885.

Innocent, P.R. (1982). Towards slf-adaptive interfacesystems. Internationd Journal of Man-Machine
Sudies, 16, 287-299.

Jackson, S.L, Stratford, S.J., Krajcik, J., and Soloway, E. (1996. A leaner-centered tod for students building
models. Commnuncations of the ACM, 39(4), 48-49.

Jackson, S.L, Krajcik, J., and Soloway, E. (1998. The design of guided leaner-adaptable scafoldingin
interadive leaning environments. Proceadings of CHI 98, 187-194.

Johnson, J., Roberts, T., Verplank, W., Smith, D., Irby, C., Bead, M., and Madkey, K. (1989. The Xerox
Star: A retrospedive. |IEEE Computer 22(9) 11-29.

Kantorowitz, E., and Sudarsky, O. (1989. The alaptable user interface Comnunications of the ACM, 32(11),
13521358

Kass R. and Finin, T. (199J). General user modeling: A fadlity to suppart intelli gent interadion. in
Intelli gent User Interfaces, J.S. Sullivan and SW. Tyler (eds.), 111-128

Kaufman, L, Weed, B. (1998. User interfaces for computers - Too much of a goodthing? Identifying and
resolving bloat in the user interface Conference Summary, CHI 98, workshop #1Q 207-208.

Kay, J. (1993. Pragmatic User Modelli ng for Adaptive Interfaces. In Adaptive User Interfaces: Principles
andPractice, M. Schneider-Hufschmidt, T. Kuhme, and U. Malinowski (eds.) Amsterdam, Holl and:
Elsevier Science Publishers, 129-147.

Kedaing, D. (1998. Conversation with Dan Keaing, chair of Human Development and Applied Psychology at
Ontario Institue for Studiesin Educaion, University of Toronto. Spring, 1998

Kesterton, M. (1998. Social Studies. The Globe and Mail, May 20", 1998 A20.

Kerr, M.P. and Payne, S.J. (1994. Leaningto use aspreadshed by doing and by watching. Interacting with
Computers, 6(1), 3-22.

Kozierok, R. and Mass, P. (1993. A leaning interface gent for scheduling meetings. Intelli gent User
Interfaces ‘93, 81-88.

Kuhme, T. (1993 A user-centered approach to adaptive interfaces. Intelli gent User Interfaces ‘93, 243-245.

Lester, J.C., FitzGerald, P.J., and Stone, B.A. (1997). The pedagogica design studio: Exploiting artifad-based
task models for constructivist leaning. Procealings of Ul 97, 155162

Lewis, C., and Norman, D. (1986. Designing for error. in D. Norman, and S. Draper (eds.), User Centered
System Design, Lawrence Erlbaum Associates, 411-432.

Mad, R.L., Lewis, C.H., and Carroll, J.M. (1983. Leaningto use word procesors: Problems and prospeds.
ACM Transaction onOffice Information Systems, 1(3), 254271

Malinowski, U., Kilhme, T., Dieterich, H., Schneider-Hufschmidt, M. (1993. Computer-aided adaptation of
user interfaces with menus and dialog boxes. in Human-Computer Interaction: Sdtware andHardware
Interfaces, Procealings of the Fifth Conference on Human-Computer Interaction, (HCI Internationd ‘93),

62

Orlando, Florida, Volume 2. M.J. Smith, and G. Salvendy, (eds). Elsevier Science PublishersB.V., 122
127.

Manley, John (1999. Canada by Design Ledure Series, Knowledge Media Design I nstitute, University of
Toronto, March 12, 1998

Mark, W. (199)). Foreward. in Intelli gent User Interfaces, J.S. Sullivan and S.\W. Tyler (eds.), vii-viii .

McGrath, J. (1995. Methodd ogy Matters: Doing Reseach in the Behavioral and Social Sciences. in
Readingsin Human-Computer Interaction: Toward the Year 200Q R. Baeder, J. Grudin, W. Buxton, and
S. Greenberg, 151-169.

Meyer, T.H., and Sutherland, 1.E. (1968. On the design of display processors. Comnunications of the ACM,
11(6), 410414

Miller, J.R., Sullivan, JW., and Tyler, SW. (1991). Introduction. in Intelli gent User Interfaces, J.S. Sullivan
and SW. Tyler (eds.), 1-10.

Munk, N. (1996. Technology for technology’s sake. Forbes, October 21, 280-288.

Myers, B.A., Potosnak, K., Woalf, R., and Graham, C. (1993. Heuristicsin red user interfaces. Procealings of
Inter CHI’ 93, panel, 304-307.

Nilsen, E., Jong, H., Olson, J,, Biolsi, K., Reuter, H., and Mutter, S. (1993. The growth of software skill: A
longitudinal ook at leaning & performance Proceealings of InterCHI’ 93, 149-156.

Norman, D.A. (1986. Cognitive Engineaing. in User Centered System Design: New Perspedives on Human-
Computer Interaction, D.A. Norman and SW. Draper (eds.), Hill sdale, N.J.: Lawrence Erlbaum, 31-61.
Norman, D.A. (1990. Human error and the design of computer systems. Comnunications of the ACM, 33(1),

24-27.

Norman and Spohrer (1996. Leaner-centered education. Comrnruncations of the ACM, 39(4), 24-27.

Olson, J.R., and Olson, G.M. (1990. The growth of cognitive modelingin human-computer interadion since
GOMS. Human-Computer Interaction, 5, 221-265.

Page, S.R., Johnsgard, T.J., Albert, U., and Allen C.D. (1996). User customizaion of aword processor.
Procealings of CHI 96, April 13-18, Vancouver, Canada, 340-346.

Payne, S.J. and Howes, A. (1992. A task-adion tracefor exploratory learners. Behaviour and Information
Techndogy, 11(2), 63-70.

Payne, S.J., Chesworth, L., and Hill, E. (1992. Animated demonstrations for exploratory leaners. Interacting
With Computers, 4(1), 3-22.

Polson, P.G., and Lewis, C.H. (1990. Theory-based designfor easily leaned interfaces. Human-Computer
Interaction, 5, 191-220,

Preece J. (1994). Human-Computer Interaction, Addison-Wesley.

Raskin, J. (1997). Looking for a humane interface Will computers ever beamme eay to use?
Comrnunications of the ACM, 40(2), 98-101

Resnick, L.B. (1990. Knowing, Learning, andInstruction: Essays in Honar of Robert Glaser, L.B. Resnick
(ed.), Hill sdale, New Jersey: Lawrence Erlbaum.

Rich, C. and Sidner, C.L. (1996. Adding a mllaborative agent to graphicd user interfaces. Proceadings of
UIST’ 96, Sedtle Washington, USA, 21-30.

Rich, E. (1989. Stereotypes and user modeling. in User Modelsin Dialog Systems, A. Kobsa and W.
Wahlster (eds.), Berlin, Heidelberg: Springer-Verlag, 35-51.

Rieman, J. (1996. A field study of exploratory leaning strategies. ACM Transactions on Computer-Human
Interaction, 3(3), 189218

Rieman, J., YoungR., and Howes, A. (1996. A dual-spacemodel of iteratively degpening exploratory
leaning. Internationa Journal of Human-Computer Studies, 44, 743-775.

Roson, M. and Carroll, J.M. (1996. Scdfolded examples for learning objed-oriented design.
Comnuncations of the ACM, 39(4), 46-47.

Sagar, |., Hof, R.D., Judge, P. (1996. The raceis on to simplify: Pulli ng the unwired masss into the
information age means gadgets must be & easy to use & the telephone. BusinessWeek June 24, 1996 72-
75.

Sellen, A., and Nicol, A. (1990. Building User-centered on-line help. in B. Laurel (ed.), The Art of Human-
Computer Interface Design, Addison-Wesley, 143153

Schank and Kass(1996). A goal-based scenario for high schod students. Comnuncations of the ACM, 39(4),
28-29.

63

Shneiderman, B. (1995. Perspedives: Looking for the bright side of user interface gents. Interactions,
(January), 13-15.

Shneiderman, B. (1997a). Designing the User Interface Strategies for Effedive Human-Computer
Interaction. Third Edition. Addison Wesley.

Shneiderman, B., (1997h. Dired manipulation for comprehensible, predictable and controll able user
interfaces. Procealings of 1Ul '97, 33-39.

Shneiderman, B., and Maes, P. (1997). Dired manipulation vs. interface gents. Excerpts from debates at 1Ul
97 and CHI 97. Interactions, (November/Decanber), 42-61.

Soloway, E., Guzdial, M., and Hay, K_.E. (1994). Leaner-centered design the dhallenge for HCI in the 21%
century. Interactions, (April), 36-48.

Soloway, E., Jadkson, S.L., Klein, J., Quintana, C., Redl, J., Spitulnik, J., Stratford, S.J., Studer, S., Eng, J.,
and Scda, N. (1996. Leaningtheory in pradice Case Studies of Leaner-Centered Design. CHI 96, 189
196

Stephanidis, C., Karagiannidis, C., and Koumpis, A. (1997). Dedsion makingin intelli gent user interfaces.
Procealings of Ul 97, 195202

Sukaviriya, P., and Foley, J.D. (1993. Supparting adaptive interfaces in a knowledge-based user interface
environment. Intelli gent User Interfaces ‘93, 107-113

Sullivan, J.S., and Tyler, SW. (199J). Intelli gent User Interfaces, J.S. Sullivan and SW. Tyler (eds.), New
York: ACM Press

Svendsen, G.B. (1997). The influence of interface style on problem solving. Internationd Journal of Man-
Machine Studies, 35, 379-397.

Thomas, C.G. and Krogsoeter, M. (1993. An adaptive environment for the user interfaceof Excd. Intelli gent
User Interfaces ‘93, 123-130.

Trudel, C.1. and Payne, S.J. (1995. Refledion and goal management in exploratory learning. Internationa
Journal of Human-Computer Studies, 42, 307-339.

Tyler, SW., and Treu, S. (1989. An interface achitedureto provide alaptive task-spedfic context for the
user. Internationd Journal of Man-Machine Studies, 30, 303-327.

Tyler, SW., Schlosderg, J.L, Gargan Jr., R A., Cook, L.K., and Sullivan, JW. (1991). Anintelli gent
interface achitedure for adaptive interadion. in Intelli gent User Interfaces, J.S. Sullivan and SW. Tyler
(eds.), 85-109

UIMS Tod Developers Workshop (1992. A metamodel for the runtime achitedure of an interadive system,
SIGCHI Bulletin, 24(1), 32-37.

van Oostendorp, H., and Walbeehm, B. (1995. Towards modelli ng exploratory leaningin the cntext of
dired manipulation interfaces. Interacting with Computers, 7(1), 3-24.

Vaubel, K.P., and Gettys, C.F. (1990. Inferring wser expertise for adaptive interfaces. Human Computer
Interaction, 5, 95-117.

Wahlster, W., and Kobsa, A. (1989. User Modelsin Dialog Systems. in User Modelsin Dialog Systems, A.
Kobsa and W. Wahlster (eds.), Berlin, Heidelberg: Springer-Verlag, 4-34.

Wright, P. (1983. Manual dexterity: A user-oriented approach to creding computer documentation.
Procealings of CHI "83, 11-18.

Wodlf, B.P. (1996). Intelli gent multi media tutoring systems. Communcations of the ACM, 39(4), 30-31.

64

