
Online Customization Sharing Ecosystems:
Components, Roles, and Motivations

Mona Haraty
 University of British Columbia

haraty@gmail.com

Joanna McGrenere
University of British Columbia

joanna@cs.ubc.ca

Andrea Bunt
University of Manitoba
bunt@cs.umanitoba.ca

ABSTRACT

The rise of open platforms and public APIs has enabled
more users of customizable software to customize by
installing plugins or add-ons that are created and shared by
others. Despite the prevalence of online customization
sharing, we know little about how and why online
customizations are shared. Through interviews with 20
users of four diverse systems who have extensive
experience with sharing their customizations, we reveal the
concept of customization sharing ecosystems. These
ecosystems include multiple components for hosting
customizations, discussing, and managing them; the
ecosystems are sustained through users acting in a diverse
set of roles (e.g., sharers, re-users, reviewers, problem
reporters, requesters, helpers, publicizers, and packers).
Our interviews also reveal motivations for creating and
sharing customizations online which overlap considerably
with those in open source software. Our findings highlight
tradeoffs and design considerations in these ecosystems.
Author Keywords

Customization sharing; customization; ecosystems

ACM Classification Keywords

H.5.m; K.4.3

INTRODUCTION

More and more users are taking advantage of software
customizability to expand software’s capabilities through
additional features or to enable personalized workflows.
Most of these users are benefitting without having the
required skills or the time to create these customizations on
their own. Instead, they are adopting customizations made
by others, through plugins and other mechanisms. For
example, 85% of Firefox users have chosen to customize
by installing add-ons [30]. This phenomenon has been

enabled by 1) software applications that are designed as
open platforms that offer public APIs, thus allowing
developers to create plugins and cross-application
customizations using tools like IFTTT and Alfred, 2)
customization sharers who are willing to create
customizations, and 3) technologies that enable those
sharers to share their customizations with other users. To
support the important role of customization sharers1, we
need to understand what motivates sharers to create and
then share customizations, what mechanisms they use to do
so, and how those mechanisms either support or hinder
sharing practices.

Sharers contribute to customizable software—often
commercial—by extending its functionality. There is a vast
literature on motivations for contributing to free and open
source software (FOSS) and its infrastructure is designed to
leverage those motivations. We were curious to see to what
extent similar motivational factors drive creation and
sharing of customizations for proprietary software.

Research on customization sharing has focused
predominantly within organizational boundaries [6,12]. It
remains unclear how the customization sharing practices
translate from within-organization settings to online
settings where sharers come from diverse contexts and may
have other motivations to share. Little empirical research
has been conducted to investigate online environments and
mechanisms in terms of their conduciveness to
customization sharing.

Our research takes that next step in understanding
customization sharing practices beyond those within an
organization. To understand what mechanisms sharers use
to share their customizations and what motivates them to
share, we conducted interviews with 20 customization
sharers of four diverse systems: Sublime Text, Minecraft,
Alfred, and IFTTT; the first two being customizable
systems and the others being customizing tools used for
creating customizations. Being a game, Minecraft adds an
interesting perspective on sharing as will be seen. In fact,
customizing is so commonplace in games that is considered
an important part of using the system [7].

1 We use customization sharers to refer to people who create and publish

their customizations, and we use re-users to refer to people who use
sharers’ customizations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org.
CSCW '17, February 25-March 01, 2017, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4335-0/17/03…$15.00
DOI: http://dx.doi.org/10.1145/2998181.2998289

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2359

This study is, to our knowledge, the first to investigate
online customization sharing, and makes several key
contributions. Through documenting current customization
sharing practices in four diverse systems, we reveal the
concept of sharing ecosystems. These ecosystems are often
complex, consisting of various components to support the
different aspects of customization sharing and re-using:
hosting customizations, discussing them, finding them,
installing them, and keeping them updated. We encapsulate
the roles that bring these ecosystems to life and show that
they have some, but not full, overlap with the roles in
FOSS projects. Our findings shed light on motivations to
create and share customizations and the degree to which
these motivations overlap with those that drive
contributions in FOSS. Collectively, our findings point to
implications for the design of customization sharing
ecosystems, and highlight important design tradeoffs.

BACKGROUND AND RELATED WORK

Our research draws on the literature on customization and
customization sharing. Sharing customizations that involve
programming has some similarities with developing and
participating in FOSS projects, thus we also briefly review
literature on roles and motivations in FOSS.

Types of customizations

The customization literature has identified a range of
different customizations, although there is no standardized
terminology. For example, Opperman and Simm talk of
two broad customization categories: functionality and
interface adaptations [27]. Bentley and Dourish similarly
distinguished surface customizations, in which users select
from a set of predefined options, from deep customizations,
in which users, for example, add a new behavior to the
system [1]. Haraty and McGrenere define advanced
personalization/customization broadly as customization that
goes beyond changing the look and feel, and involves
changing functionality [9].

Motivations to customize

MacKay identified several triggers (motivations) and
barriers to customizing one of the earliest Unix
environments targeted at non-technical users. Some of the
most common triggers were noticing one’s own repeated
patterns, retrofitting when the system changed, and seeing a
“neat” customization; the most common barrier was lack of
time [20]. Motivations of game customizers, however, are
quite different. They consider customizing an artistic
endeavor, allowing them to make games “their own” and
thus increase their enjoyment of game play, and helping
them acquire a job in the game design industry [28,31].

Customization sharing: benefit, roles, and medium

Several studies have documented customization sharing
habits and the different types of users who are involved in
the sharing process within an organization [8,12,18,21].
Most of these studies identified a continuum of three types
of users: ordinary users, local developers (sometimes

referred to as translators and tinkerers), and professional
programmers or lead users. Lead users created
customizations for their own use, and translators created
simplified and task-specific versions of the customizations
created by lead users [18]. Similar to translators, local
developers in Gantt and Nardi’s study also created
customizations for the employees of their organization [8].
Some local developers, referred to as gardeners, were paid
to do so in certain organizations [8]. We further compare
these roles with respect to our findings.

MacKay’s pioneering study of sharing Unix configuration
files and email filtering rules revealed the importance of
sharing customizations by showing that only a small
percentage of people customize, and most people prefer to
ask others about a customization or to modify an existing
customization file [18].

In a within-organization study of customization sharing,
Draxler et al. investigated appropriation practices in
Eclipse, a customizable development environment. They
suggested three principles for supporting customization
sharing: the ability to browse plug-ins installed by
colleagues, providing an awareness of peers’ customization
activities, and the ability to install tools that are already in
use by peers [6]. Murphy-Hill and Murphy found that peer
observation and peer recommendation are programmers’
primary means of discovering new plugins [25];
practitioners indicated a preference for peer interaction
compared to other information sources such as forums and
Twitter for discovering and learning about customizations.

Several studies identified email as an effective way of
sharing customizations within an organization [12,21].
Kahler’s study of sharing Word add-ons via email found it
effective for small work groups, but suggested that to scale
beyond an organization, shared customizations need to have
rich annotations and comments to provide context for
others [12]. Studies of sharing customizations via wikis
revealed users’ dissatisfaction with allowing others to edit
their customizations [13], and difficulty in knowing who
can see their scripts and who is affected by their edits [17].
Altogether this suggests that designing mechanisms to
support sharing customizations is not straightforward.

Online customization sharing has also been investigated in
the context of remixing behaviors in maker communities
[26], where little user activity was observed around
generated (remixed/customized) designs.

FOSS: background, roles and motivations

FOSS projects often start with a single programmer solving
his own problem, and then making the solution available to
others. Once a FOSS project attracts developers who would
like to contribute to the project, the owner becomes a
coordinator [29]. In addition to the coordinator, the
following roles exist in a typical FOSS project: core
developers who write most of the code and review

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2360

submitted code, contributors who can become core
developers after sufficient contributions (as voted by the
core developers), problem reporters, user support, and end
users [24].

Individuals have heterogeneous motivations to participate
and contribute to FOSS. Although no one motivation
dominates in the community [15], the promise of higher
future earnings [11], the need to solve one’s own problem
[14], and intellectual curiosity [15] have been reported as
the most important drivers to contribute to open source
projects. Some contribute to improve their programming
skills, some enjoy programming, some have a personal
need for the code, some feel an obligation to the
community because of using FOSS and believe that the
code should be open, and some want to enhance their
reputation [15].

To summarize, the existing literature on sharing
customization focuses on understanding customization
sharing for a single tool and/or within a single organization.
Thus, the broader landscape of online customization
sharing is relatively unknown. This paper builds on and
extends this body of work by investigating online

customization sharing practices for a variety of tools.

METHODS

We conducted a semi-structured interview study with 20
users of four systems with the goal of investigating the
mechanisms they use to share customizations as well as
their motivations for creating and sharing customizations.

Systems investigated

To find customizable systems that support sharing and re-
using of customizations, we searched the Web for the
following keywords: “share” plus each of “customization”,
“personalization”, and “configuration” keywords. In
addition, we asked friends and colleagues to introduce us to
any customizable tools that they were aware of. From this
initial list, we chose to review 10 systems that represented
good coverage of the sharing mechanisms found. The 10
systems included: two blogging platforms (WordPress,
Tumblr), two text/code editors (Vim, SublimeText), an
application launcher (Alfred), an automation tool (IFTTT),
a game (Minecraft), a task management tool
(RememberTheMilk), a web browser (Google Chrome),
and a desktop customization program (Rainmeter).

We identified key dimensions across which the shared
customizations differed: their human readability,
granularity, and authoring accessibility. The sharing
mechanisms in these systems differed in where the
customizations were shared, whether the platform ensured
security of customization, whether it provided meta-data
and supported commenting on shared customizations, and
whether it allowed for customization requests. Then, to
further investigate the characteristics of sharing
mechanisms from sharers’ perspectives, we chose four

systems – Sublime Text, IFTTT, Alfred, and Minecraft –
that represented the diversity across the ten systems in
terms of the dimensions we identified. Each of these
systems is briefly described below. We intentionally chose
to include two customizing tools, ones that are used to
customize other apps and services, namely Alfred and
IFTTT. The other two systems that we chose are
customizable systems: Minecraft and SublimeText.

Sublime Text is a customizable text/code editor. Creating an
advanced customization in Sublime text is done through
developing plugins in the Python language using the
Sublime Text API and wrapping it into a package. For
example, “All Autocomplete” is a package that extends
Sublime’s autocomplete by finding matches in all open
files—instead of only the current one.

Minecraft is a game where users create worlds by breaking
and placing construction blocks. Modifications (mods) of
the Minecraft code add a variety of gameplay changes
ranging from new blocks, to new items, to entire arrays of
mechanisms to craft. For example, “Advanced Genetics” is
a mod that gives the player and other entities in the game
supernatural abilities such as teleporting or flying by
injecting genes using a syringe. Creating a mod requires
programming in Java.

Alfred is an application launcher and productivity tool.
Users can automate their tasks by creating customizations
(called workflows). Creating a workflow in Alfred involves
trigger-action programming [32] in a visual programming
environment, where users can connect triggers to actions.
Creating an advanced workflow involves writing a script in
a programming language of choice. An example of a
workflow was “Movie Ratings” with which users can
search for a movie and see its IMDB, Rotten Tomatoes, and
Metacritic ratings. Workflows allow users to use and
interact with their apps and web services more efficiently.

IFTTT is a web-based service that allows users to extend
the functionality of their applications by creating “If This
Then That” customizations, called recipes, which connect
their different applications. Recipes are created using a
visual programming environment. An example of an IFTTT
recipe is one that connects one’s Facebook to Dropbox by
automatically saving new Facebook photos in which one is
tagged to a Dropbox folder.

System List of active sharers Response

rate

#of

Ps

Ps’

Labels

Alfred www.packal.org/contibutors 60% 6 Alfx

IFTTT ifttt.com/top_chefs 50% 5 IFTx

MineCraft www.curse.com/mc-mods/ 36% 4 MCx

Sublime Text packagecontrol.io/browse/authors 24% 5 SUBx

Table 1. Systems investigated in the study, URLs where we

found lists of top customization sharers for each system,

response rates, and how we refer to the participants from each.

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2361

PARTICIPANTS

We recruited 20 participants who were actively sharing
customizations in the four systems. To obtain their contact
information, we used the “top sharer” lists from each
system (Table 1). From these lists, we contacted those
whose contact information was publicly available. The
response rate ranged from 24% (for Sublime Text) to 60%
(for Alfred) and this difference did not seem to be related to
any characteristics of the systems or sharers. All
participants were male (4 unemployed, 4 student/postdoc,
and 12 developer/engineer) and were from eight countries.
Their age ranged from 20 to 46, with 18 of the participants
in their twenties or early thirties. They received $10 for
their participation in the form of direct payment or donation
to their favorite charity (three declined any compensation).
See Table 1 for how we refer to the participants from each
system.

Procedure

All the interviews were conducted via Skype. During the
interviews, which were semi-structured, we asked
participants about their experience with sharing their
customizations. Specifically, we asked them to describe
their motivation for creating and sharing customizations,
their process of customizing and sharing their
customizations, their interactions with users of their
customizations, and their use of others’ customizations. We
personalized the questions for each participant based on
their online sharing activities. The interviews lasted from
10 to 75 minutes, depending on the participants’
willingness to talk about their various experiences.
Interviews with IFFTT participants tended to be shorter
than the others; as we will describe below, sharing in
IFFTT is generally a simpler process (both technically and
socially), meaning that those participants had less to talk
about.

The interviews were audio recorded and later transcribed in
full. The transcriptions were qualitatively analyzed using
inductive thematic analysis [3], focusing on data related to
mechanisms used for sharing and re-using customizations,
motivations to share, and social interactions around the
shared customizations. The lead author initially coded the
data. Identified themes were then refined collaboratively by
all co-authors, with frequent revisits to the raw data by all.

FINDINGS

Our findings revealed that the mechanisms our participants
used to share their customizations were supported by
systems comprised of people and tools interacting with
each other to support various sharing-related activities. We
refer to these components and their interactions as
customization sharing ecosystems. First, we describe these
ecosystems in terms of their components, how people
interact with the components to share and re-use
customizations, and various roles that people play within
the ecosystems. Then, we discuss what drives the

ecosystems: what motivates people to create and share
customizations, what makes a customization shareable, and
how re-users trust and use the shared customizations.
Throughout our findings, we compare and contrast our
results with the prior work on customization sharing within
organizations as well as the FOSS literature.

Customization sharing ecosystems

Ecosystems’ components

Our findings reveal customization sharing ecosystems and
that they consist of customizations, customization groups,
customizable software, customizing software, discussion
places, customization managers, customization repositories,
and source code repositories. Not every ecosystem that we
uncovered included all components. Table 2 summarizes
each ecosystem based on these components. We briefly
explain each next.

Customizations: Customizations in these ecosystems vary
across two of the dimensions we identified in our initial
review of customizable systems: the authoring accessibility
and readability (see Table 2). In addition, we also found
customizations differ with respect to their specificity to
their author’s needs. Later in the paper, we will discuss
how these properties of customizations drive the
customization sharing ecosystems by influencing re-users'
trust in customizations and sharers’ decision on whether to
share a customization.

Customization groups: In the Minecraft ecosystem, our
participants reported using modpacks, a group of mods that
are put together to fit a specific need or a theme. In addition
to simplifying downloading, one benefit of using modpacks
instead of individual mods is that gamers normally play
with lots of mods and the conflicts between the mods are
taken care of in modpacks. We did not see the notion of
grouping customizations in the other ecosystems.

Source code repositories: Places where sharers upload the
source code of their customizations include online generic
code repositories such as GitHub, and dedicated code
repositories such as CurseForge (for games).

Customization repositories: Places where sharers upload
their customizations. Different repositories offer different
functionalities such as facilitating browsing and searching
of their hosted customizations. Some provide meta-data on
the customizations (e.g., number of downloads, ratings),
and some ensure the security of customizations through a
human moderation process.

Customization managers: Tools that connect the
customizable software and the source code repositories.
They allow re-users to browse and install customizations,
and sharers to distribute updates to their customizations.

Discussion places: All the ecosystems include public
discussion places such as forums, IRC channels, GitHub,
and Twitter. Our participants reported announcing their

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2362

customizations, receiving feedback on their customizations,
and supporting their customizations in these places. The
feedback ranged from thanks or admiration, to feature
requests, bug reports, contributions, and suggestions for
improvements, both from users of their customizations and
other sharers. Customization sharers, in both Alfred and
Minecraft ecosystems, support each other in these places
for developing better customizations. These discussion
places are critical for ecosystems such as Minecraft where a
substantial part of the modding knowledge is embedded
within the community, according to MC2. Participants’
attitudes towards the discussion components of the
ecosystems varied (both within and across the different
systems we studied). For example, IFTTT participants did
not expect to support their customizations in any way: “I

wasn't really sharing the recipes to support and manage

them, it was just kind of a throw it out there and if they

want to use it they can” [IFT2]. It is more common in the
Alfred and Minecraft ecosystem to support their
customizations, however, the desire to do so often depends
on the nature of the requests and the customization: “the

one [workflow] that I received the most bug reports for was

[…]. I never really investigated [the reports] because it

worked for me [Alf5].

Degree of ecosystem component integration: three models

We briefly describe how our respondents reported
interacting with the different components described above
to share and reuse customizations in each ecosystem.

Considering how the ecosystems’ critical components are
integrated together, each ecosystem can be best described
as one of the following three models: a collection-of-

islands (the critical components are disconnected from each
other), a pipeline (the critical components are connected
such that to share a customization, sharers only need to
upload its source code to a code repository and do not have
to do anything else to facilitate re-using), or a one-stop

shop (a single component does the job of all the critical
components). Below, we illustrate how the models are
instantiated within each of the four ecosystems.

IFTTT: The simplest among the systems we studied, the
IFTTT website is the single place that supports all the

processes of creating, sharing, browsing, searching, and
installing recipes. Sharing/publishing a recipe is as easy as
a single click in the process of creating a recipe, with no
written code involved. Our participants reported finding
shared recipes by searching or browsing the recipes.
However, the ease of creating recipes caused some of our
participants to create a recipe without searching first: "I just

have a need and start creating it. IFTTT process is so

simple and quick that it's just as fast, if not faster, to just go

ahead and make it and customize the field the way that I'm

thinking than try to work off somebody else's existing

recipes" [IFT3]. This has led to many duplicate recipes on
IFTTT [33]. There is no dedicated discussion place for
IFTTT recipes, which does not appear to be missed by our
participants: “They [IFTTT recipes] are just such small

things and such an almost incidental part of my day to day

work. I can't imagine engaging in commenting back and

forth on any of them” [IFT3]. IFT2 and IFT5, however,
mentioned receiving questions about their recipes on
Twitter which we learned is used for requesting a recipe as
well. In addition, users can tweet their created recipes from
within IFTTT. Overall, this ecosystem is best described as
a one-stop shop.

Minecraft: Our Minecraft participants reported uploading
the source code of their mods in various code repositories
such as GitHub (a generic code hosting service) and
CurseForge (a dedicated one for games). Re-users can
browse and download mods from mod repositories such as
the Curse website, or install through a mod manager such
as CurseClient. We found other customization repositories
and customization managers for Minecraft, but none were
used by our participants. According to our participants,
users of their mods ask questions, report bugs, and request
features mostly in the Minecraft forum, but also in the

Curse forum and GitHub. Our participants find new mods

to play by watching Youtubers who publicize and
demonstrate how to use a mod or through modpacks that
are listed and featured by the game launchers. Much of the
Minecraft sharing ecosystem can be described as a pipeline,
because once the customizations’ source code are uploaded
to the source code repository, they will be available on the
customization repository and the customization manager to

Components | systems Minecraft Sublime Text Alfred IFTTT

Customizations investigated Mod Package Workflow Recipe

 -Is authoring a customization accessible to non-programmers? No No Depends on the workflow Yes

 -Are customizations human readable? Yes if open source Yes if open source Yes Yes

Customization group Modpack None None None

Source code repository GitHub, CurseForge GitHub GitHub N/A

Customization repository Curse website None Packal, personal websites IFTTT

Customization manager CurseClient, FTB PackageControl None IFTTT

Discussion place Forum, GitHub Forum, GitHub Forum, GitHub Twitter

Ecosystem model Pipeline Pipeline Collection-of-islands One-stop shop

Table 2. Summary of the ecosystems in terms of their components and properties

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2363

install, and the installed mods will be kept updated for their
users as developers update them.

Sublime Text: Our Sublime Text participants reported
uploading their packages’ source code to GitHub, and
request their package to be listed in the Sublime Text’s
customization manager (Package Control), which is
integrated with Sublime Text such that users can search,
install, and update packages from within Sublime Text.
Despite not having to leave Sublime Text for finding new
packages, our participants reported going to Package
Control for that purpose, because usage data such as
number of installs—which they find helpful in deciding
between similar packages—are available only there.
Discussions around a package include bug reports and
feature requests and they happen in GitHub. The Sublime
Text sharing ecosystem is also best described as a pipeline,
because once sharers upload their packages to GitHub, they
will be available to install both from the customization
manager and from within Sublime Text, and the installed
packages will be automatically updated for their users when
updated by their authors.

Alfred: Our Alfred participants reported uploading both
their workflows and their source code separately in two
disconnected places: GitHub, and Packal—a website that is
supposed to be the central repository for Alfred workflows.
In addition, they announce their workflows in the Alfred
forum’s “share your workflow” thread. Bug reports and
feature requests are received in both the forum and GitHub.
Our participants reported finding new workflows by
regularly checking the forum, rather than through Packal
even though the latter is designed specifically for this
purpose. The Alfred sharing ecosystem can be best
described as a collection-of-islands, since no integration
exists between its components.

Some of our participants commented on how they used to
share their customizations in the past and how that has
changed. We found that the way sharing is supported in
each system has evolved over time, and the evolution,
except for IFTTT, has been quite organic. Customization
sharers used to share their customizations in forums. Over
time, users or third party developers began to contribute to
the sharing process by developing dedicated tools that
facilitate sharing and reusing of customizations. These
contributions have given rise to what we refer to as
ecosystems. For example, Sublime Text’s customization
manager was developed by a Sublime Text customization
sharer as a way to distribute updates to his package [2].

Roles in the ecosystems

Through our interviews with customization sharers, we also
gained insights into roles other than sharers that occur in
the sharing ecosystems. The descriptions above point to
different activities various people perform in these
ecosystems. Here, we consolidate this discussion into a set
of roles: customization sharers, reviewers, re-users,

problem reporters, requesters, helpers, publicizers, and
packers. Some of these roles were common in all the four
ecosystems, while others were only found in one or two
ecosystems. As we describe below, these roles have some
overlap with those previously identified in both within-
organization customization sharing and FOSS projects. The
roles consist of two main categories: sharers and re-users,
each of which has subcategories. Reviewers are a subset of
sharers, and problem reporters, requesters, and helpers are
subsets of re-users. Publicizers and packers are two
secondary roles.

Customization sharers: People who author and share
customizations online with others. Sharers communicate
with and help interested users to use their customizations.
Some of our sharers also reported creating customizations
for others upon request. As a result, customization sharers
often have a more complex and multi-faceted role than
those identified in previous studies of within-organization
sharing, for example, combining the roles of lead users and
translators in MacKay’s study [18], and local developers
and gardeners in Gantt and Nardi’s study [8]. Using FOSS
terminology, sharers often take on the combined roles of
owner, core developer, and contributor.

Reviewers: A subset of customization sharers in the Alfred
ecosystem play this role, by providing feedback to other
sharers in the discussion places for the purpose of assisting
the creation of higher quality customizations. They do so
completely voluntarily upon requests: “when it's a new user

who is saying this is my first workflow, even if I don't use it

or intend to use it. I always download it and see how it's

constructed to be able to say what would have I done

differently here […] to incentivize them to work for better

solutions in the future” [Alf3]. This feedback-driven role
differs from the role of local developers in [8] who
consulted with end users to create customizations to suit
their needs. The reviewer role is common in FOSS projects
[24], however, reviews there tend to be the necessary
prerequisite to having a piece of code included in the
central code base. The fact that review sometimes takes
place in customization sharing ecosystem, even though
customizations neither become part of an official code base
nor have to be used by other users, was an unexpected
finding.

Re-users: People who re-use customizations created by
others. Some re-users play other roles such as problem
reporters, requesters and helpers which we describe below.

Problem reporters: A subset of re-users of a given
customization report its problems. They do so in various
discussion places, some of which, like GitHub, are more
suited to the task of bug reporting. The inclusion of and the
support for problem reporters is one of the benefits of
sharing customizations online: “Those [bug reports] are

very good because it fixes the bug for me and everyone

else” [Alf3]. Sharers commented that a system like GitHub

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2364

makes it easier to track and organize the reported problems
compared to forums, where the problems are buried in
other posts leading to redundant reports and responses.
Despite this preference, many bug reporters continue to use
the forums. The same role of problem reporter exists in
FOSS projects, where users of the software are relied upon
to report problems, however, we did not see an analogous
role reported in studies of within-organization
customization sharing.

Requesters: A subset of re-users who solicit a
customization from others. Alf1 reported receiving a direct
request from someone, and IFT4 responding to a public
request on Twitter from someone he follows on Twitter.
While this role has not been explicitly identified in prior
studies, as mentioned earlier, local developers in [8], and
translators in [18] created customizations for their
colleagues sometimes in response to requests.

Helpers: A subset of re-users help other re-users who have
difficulty using a customization. Some sharers reported
relying on these helpers: “If I have a relatively new mod,

it's usually like you answer questions and help them out but

once the mod gets bigger you have people who already

know about the mod and know how to solve its problems.

They usually take care of answering all the questions”
[MC4]. Helpers monitor the discussion places, and provide
answers to users’ questions. In contrast, within an
organization, employees direct their questions about a
customization to someone who is likely to know the answer
[8,18]. Helpers’ job is similar to the mundane but essential
task of user support in FOSS projects [14].

Publicizers: In the Minecraft ecosystem, a few famous
YouTubers publicize mods by demoing them. They not
only create awareness of new mods, they also make it easy
for others to use them. This role is similar to FOSS
advocates who blog about various FOSS projects to raise
awareness of them.

Packers: In the Minecraft ecosystem, a group of people —
called modpackers — put mods together and take care of
the conflicts between the mods. In the same way that
translators in [18] created task-specific sets of
customizations by reusing the customizations created by
the lead users, modpackers create theme-specific sets of
mods using the mods created by mod authors.

To summarize, compared to customization sharing in
organizational settings, we found more roles in the online
settings, many of which have analogies to those needed to
build and maintain a FOSS. The expansion of roles over the
within-organization setting could be attributable to the
various discussion places facilitating online peer
interactions. The transparency of the online interactions
could contribute to online reputation building. We return to
ways to better support these emerging roles in the
Discussion.

What drives the customization sharing ecosystems

Prior studies of customization sharing have shown that only
a small percentage of users of customizable tools create and
share customizations with others [18]. Understanding the
motivation of this small group is crucial for supporting
them effectively, hence keeping the ecosystems alive. The
other factor that plays a role in driving these ecosystems is
re-users’ trust in shared customizations. After all, if no one
other than the original authors use their customizations,
sharing becomes worthless. In this section, we describe our
participants’ motivation to create and share customizations,
describe the characteristics of unshared customizations, and
report on the characteristics of the ecosystems that help this
particular group of re-users to trust and use the
customizations shared by others.

What motivates sharing customizations

We found that a combination of motivations drive
customization sharers’ behaviors. While our participants
from different ecosystems shared common motivations,
some motivations were more pronounced in some
ecosystems than others. We elaborate on the properties of
ecosystems that contributed to such differences in the
Discussion and describe the motivations below.

Being influenced by a sharing culture, particularly open-

source culture: Many of our participants across the
ecosystems share their customizations because they
embrace a sharing culture: “I guess it's more of a

fundamental piece of myself where I really like open source

software. I like the idea and motivation behind it, of always

sharing things. So, I'm pretty public on trying to share as

much as possible that I can with whether it's stuff that I do

outside of IFTTT but also recipes” [IFT2]. The sharing
culture seems to be influenced by the use of FOSS. Sub4,
Sub5, and Alf3 talked about their reliance on open source
in their job as their motivation to share their
customizations: “Nearly everything that I rely on for my job

is open source, […] so it would be just silly not to open

source it” [Sub4]. This sense of obligation to the
community has also been identified as one of the
motivations for contributing to FOSS [15].

Building reputation: Two Alfred participants referred to
reputation building as part of their motivation. Alf4 and
Alf1 specifically mentioned that their customizations
contributed to their GitHub profile: “To be honest, it's also

good to have a GitHub profile every now and then, because

then you get attention. That's also something that I don't

want to play down; […] It's just a plus, it's nice to have. I

can just put it on GitHub and other people might like it and

is good for me as well” [Alf4]. Sharing customizations on
GitHub seems to be one way of managing one’s activities
to form good impressions, since online activity traces in
GitHub are used for recruiting [22], as well as for forming
impressions about ones’ expertise [23]. This is similar to

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2365

self-marketing that promises future monetary awards, one
of the motivations for contributing to FOSS [10,16].

Having an online backup of customizations: A side benefit
of sharing a customization is that it gets backed up online:
“Some is just so that have it some place. If I stop using a

particular workflow and later on I wanted it back again, if I

have deleted it, I can just pull it back down from Packal

[Alfred’s unofficial customization repository]” [Alf1].

Zero or minimal effort needed for sharing: IFTTT has
made it extremely easy to share by adding only a single
click to the process of creating a recipe. Such ease of
sharing in IFTTT affected IFT3’s decision to share: “IFTTT

makes it relatively easy to publish those [recipes]. So, it felt

relatively inconsequential for me to just hit the share button

and let it go out”.

We also asked about motivation for creating customizations
in the first place which we describe below.

Having a personal need: This is the dominant motivation
across the participants in all the ecosystems (except for
Minecraft): “all of them [workflows] are meant to scratch

an itch” [Alf3], “I usually find deficiencies in my

workflows and try to find ways to improve them” [SUB5],
“to make things a little easier for me” [IFT4]. Personal
need for a solution has also been identified as one of the
most common triggers to customizing [20], and one of the
most important drivers of contributions to FOSS [14].

Increasing enjoyment of the game: Echoing prior findings
[28,31], this is the main motivation for our Minecraft
participants: “The main reason is I just really enjoy the

game. With any game that you enjoy you just find ways that

you could improve various things” [MC2]. This motivation
is so strong that even lack of programming knowledge has
not been a deterrent: “My only [programming] background

is what I've done with Minecraft. When I would watch

tutorials they would suggest learning Java first but I went

against that and just learned as I went along” [MC1].

Self-development: Similar to some FOSS contributors [15],
learning or practicing one’s programming skills is a
motivation for creating their first customizations for a few
participants: “my motivation was just learning about

programming. I basically learned programming building

Alfred workflows” [Alf5], “I always wanted to do

something with my knowledge of java, and when a friend

told me "You should do something like that [creating

mods]" while playing Minecraft, I started” [MC3].

Responding to others’ requests for a desired customization:
Although uncommon, this is another motivation to create a
customization: “A guy on Twitter that I follow was

mentioning that he wanted to do something and I made this

[recipe name] recipe and sent that to him and he was pretty

appreciative of that” [IFT4].

Job’s responsibility: Finally, IFTTT’s community
managers create customizations as part of their jobs,
somewhat similar to the gardeners [8] and the paid
contributors to FOSS [16].

Unshared customizations: what, when, and why

Many participants mentioned that it is silly not to share a
customization once they create it. Despite that, all of the
participants, except for the Minecraft participants, reported
creating some customizations that they chose not to share.
We describe the characteristics of customizations that our
participants referred to as influencing their decision about
sharing.

Customizations with private information are not shared.

Being unsure as to how to anonymize a customization or
hide private information is a reason for not sharing
customizations: "some of them [I didn’t publish] probably

because they had more private information and I wasn't

really sure how to anonymize them. They referred to a

specific directory somewhere on my computer, or they

referred to a RSS feed that were private to me" [IFT3].

Overly specific customizations are not shared. All the
IFTTT and Alfred participants mentioned that if their
customization is very specific to their needs, they will not
share it: “I have a few that I don't think that as many

people would find it useful or might have something custom

to the way I manage folders, Google drive, or something

like that” [IFT2]. It is possible to make a specific
customization useful to others, but it can require extra
effort as Alf6 put it: “To make a workflow usable to

everyone, there is certain level of quality that you have to

reach. You need to write a bit of documentation, you have

to add the configuration UI.” Such effort can be more than
some are willing to invest: “if it would take more work to

make them good enough whether it's pretty or simple so

everyone can use, I won't share because I'm lazy” [Alf5].

Too straightforward customizations are not shared. Our
participants also tended not to share customizations that are
“too straightforward” to create: “they were too

straightforward to share; basic stuff like if there is a new

post in the RSS feed, email it to me. I feel like because most

IFTTT users know that functionality exists, it's probably not

necessary to share that” [IFT3]. In the case of Alfred, “too
straightforward” to create workflows are the ones that
could be created by the Alfred GUI without coding.

In both of the above cases, participants commented on
wanting their customizations to be useful for a broader
audience and that popularity (or lack thereof) of
customizations could boost or hurt their ego: “The one

[recipe] with Nest thermostat, I didn't publish because it

requires you have Nest. So, it just didn't seem like it would

be necessarily popular. So, I publish the ones that could be

used by a wider audience…if over a period of time they

[recipes] remain relatively unpopular, I'll probably delete

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2366

them. There is a little bit of ego to it, you know having a

popular recipe is interesting. If something is sitting there

and not being popular, I might unpublish it" [IFT1].
Unsharing a customization because it is not popular is an
implication of customization repositories exposing the
usage data of shared customizations. We discuss the trade-
offs in making such data transparent in the Discussion.

Unlike Sublime Text, IFTTT, and Alfred, where private
customizations are common, private Minecraft mods makes
no sense to our Minecraft participants: “that [creating a

mod and not sharing it] wouldn't really make sense

because you kind of make the mod for other people to use.

Also the knowledge needed to create a private mod makes it

not worth it to just create it for yourself, unless it's a very

small thing” [MC4]. The large investment to create a
customization in Minecraft does not justify not sharing it.

Trust in shared customizations

Previous studies have shown that being able to trust shared
customizations [6] and their sharers is critical [25]. Buggy
customizations could break software, and improper
treatment of user data could raise security concerns. We
gained some insights into re-users’ trust since our
participants also re-used others’ customizations. Our
participants generally expressed either no or little concern
in reusing shared customizations, because of the following
characteristics of the ecosystems: human moderation,
exposed popularity, customization readability, and sharer
reputation.

Human moderation: The customization manager in
Sublime Text (Package Control) and the code repository in
Minecraft (CurseForge) provide human moderation on the
customizations. This made our participants confident in the
security of the customizations: “I know from uploading my

own mods they check things out before allowing others to

download files” [MC1].

Exposed popularity: Some participants pointed to
popularity of a customization as a cue to its security: “when

the mod is really famous and thousands of thousands of

people playing it, then I wasn't too worried. It can't be

dangerous when so many people are playing it” [MC2].

Customization Readability: Several participants mentioned
that the availability and readability of customization files
increases their confidence in the security of the file, even
though they do not necessarily investigate every
customization they use: “the fact that all plugins' repo is

freely available, they basically are code that you can read

directly makes it more trustworthy in my opinion. I try to be

careful, I usually try to have a peak on the code” [SUB1].

Sharer Reputation: In the Alfred and Minecraft
ecosystems, where there is a sense of community among
users and customization authors, our participants
mentioned knowing good authors whose customizations

they trust: “Now that a few years have gone by I know

which developers can be trusted” [MC1].

DISCUSSION AND IMPLICATIONS FOR DESIGN

An important finding of our study is the notion of
customization sharing ecosystems: different tools and
people in various roles working together to support various
aspects of sharing and re-using of customizations.
Considering the multiplicity of tools that are used to
support sharing and re-using in each ecosystem, we could
have not reached our current understanding of sharing
practices had we only studied an individual component
(e.g., a forum) within the ecosystem—an approach taken by
some of the other studies of customization sharing [4,26].

Grounded in our findings, we discuss some implications for
the design of customization sharing ecosystems, and
highlight important design tradeoffs.

Both the pipeline and the one-stop shop can be appropriate

approaches for customization sharing ecosystems;

choosing one depends on the complexity of customizations.
The degree of integration between an ecosystem’s
components impacts ease of sharing and reuse. Compared
to the collection-of-islands ecosystems, both the one-stop
shop and pipeline ecosystems make it easier for sharers to
publish customizations and distribute updates, as well as
for re-users to find customizations and keep them up-to-
date. But a one-stop shop may only be applicable for
relatively simple, lightweight-to-create customizations as in
IFTTT, given that for advanced customizations that require
programming, each of the components of the ecosystem
such as discussion places, customization repositories, and
code repositories are complex systems in their own right.

Using generic well-used code repositories such as GitHub

has advantages. Most customization sharers in our study
(except for IFTTT sharers) share their customizations’
source code on GitHub. Sublime Text sharers have to do so
in order for their customization to be listed in the
customization manager, which is integrated with GitHub.
However, Alfred and Minecraft sharers are not required to
use GitHub, but choose to because: 1) of the importance of
having a good GitHub profile (which ties into reputation
building as one of the motivations for sharing), and 2)
GitHub facilitates tracking and organization of bug reports
and feature requests for their customizations (which points
to its maturity as a tool, offering useful functionality).

Motivations to create and share customizations overlap

considerably with those in FOSS, but there are some

differences. Having a personal need, self-development,
building reputation, and a sense of obligation to share
because of using FOSS are common motivations across
online customization sharing ecosystems and FOSS. This
degree of overlap in motivations was not entirely expected
because the contexts are different – although many shared
customizations are open source, they are often contributing

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2367

to closed source commercial software. Indeed, this
difference in context helps explain some differences in
motivations. For example, while no one motivation tends to
dominate in FOSS [15], we found personal needs to be the
dominant motivation across the customization sharers. In
addition, the zero to minimal effort needed for sharing a
customization in some ecosystems actually motivated some
of our participants to share. This motivation does not seem
to exist in FOSS, and it could be explained by the intense
peer review process there, which is required, since the
contributions affect a common code base [29]. Such a
process can, in fact, add to the effort needed to contribute
to a FOSS project as it raises the bar for the contributions –
they need to reach a quality level and meet project-specific
code styles and conventions. In contrast, the review process
is much lighter weight in customization sharing
ecosystems, if it happens at all. Ecosystems could be
designed to make sharing a customization almost as
effortless as not sharing it. Indeed, we saw with IFTTT that
some participants were motivated to share a recipe because
it was so easy to do so.

Discussion places are beneficial to both sharers and re-

users. MacKay identified a lack of feedback to lead users
who created and shared customizations in her early within-
organization study [19]. We found that discussion places in
online customization sharing are helping to address this
problem. Some of the key benefits of dedicated discussion
places are building trust between the sharers and re-users,
clarifying problems with customizations, and providing
feedback to the sharers, which sometimes led to
customization improvements. While having a discussion
place is critical, we saw a tradeoff in having one versus
multiple such places. In both the Alfred and Minecraft
ecosystems, some users report bugs in one place (forum)
and others in another place (GitHub). On one hand, this
makes it hard for sharers to keep track of reported bugs. On
the other hand, it lowers the barrier to bug reporting. For
example, reporting an issue in GitHub requires an account.
To resolve this tension, ecosystems could do more to
integrate their various discussion places. For example,
users could flag their forum post as a bug report causing the
post to be filed as a bug in another component of the
ecosystem (e.g., the issue tracker of the source code
repository).

Customization packs can add value. The idea of
customization packs and the role of packers, appeared only
in the Minecraft ecosystem, but could be valuable for other
sharing ecosystems. Grouping relevant customizations
would make it easier for users to discover and use relevant
customizations without having to worry about potential
conflicts between the customizations: a concern raised in
prior studies [25]. Further study is needed to understand the
motivation of packers and how such a role can be
encouraged and supported in other customization sharing
ecosystems.

Demoing customizations should increase their adoption,

and thus keep the sharers encouraged to share. We learned
that many sharers care about the popularity of their
customizations, yet they rarely publicize them. The
publicizer role in the Minecraft ecosystem is the one
exception. All our Minecraft participants reported
discovering new mods mostly through publicizers and mod
managers that feature popular and new mods. Publicizers
effectively create awareness of customizations and
demonstrate how to use them in video. Other ecosystems
could leverage this approach by providing, for example, a
video channel. Sharers could be incentivized to
demonstrate their customizations, perhaps through a
“weekly winner” mechanism. Altogether, publicizing
should help increase the adoption of the shared
customizations, which will in turn keep sharers, the most
crucial role in these ecosystems, encouraged.

Trust deserves more attention. Our participants expressed
almost no concern about using others’ customizations. This
was unexpected given that prior work had shown that
people tend to trust their colleagues more than strangers
when re-using customizations [5]. In retrospect, however,
heavy sharers may not be representative when it comes to
trust concerns, and so this finding should be interpreted
with caution. The factors that engender their trust, however,
point to possible areas for improvement. For example,
many of the Sublime Text and Minecraft participants were
confident in the security of others’ customizations because,
through their own sharing, they were aware of the
moderation process. The visibility of this moderation for
re-users, especially novice re-users, is questionable.
Readability of customizations is another factor that aids
trust, however, this will again be limited to people, like our
participants, who can easily read others’ customization
code. Source code repositories could leverage the effort of
those re-users who choose to read a customization’s source
code by allowing them to indicate their trust of a
customization. Although we found that re-users rely on
popularity in part as a proxy for trustworthiness, this
penalizes newly shared customizations that have not yet
had time to gain popularity. Publishing trust data could help
these new customizations find an audience more quickly.

Providing formal support for the reviewer role would bring

both benefits and costs. Related to reading customizations
for their trustworthiness, we found that some sharers
voluntarily review others’ customizations to provide
feedback. Formalizing the reviewer role within an
ecosystem could be useful, but there are tradeoffs. It could
encourage newcomers to attempt creating a customization
(knowing feedback will come) and it will increase re-users’
trust. The flip side, however, is the time it takes to review.
Either reviewing needs to become easier, or an incentive
structure needs to be in place to motivate users to
contribute in this role.

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2368

Unpublished customizations may be a lost opportunity: In
some ways, understanding when people do not share is as
interesting as learning when they do. Reasons for not
sharing included uncertainty about how useful a
customization would be for others, too much effort to ready
it for others, or it being too straightforward. This could be a
lost opportunity. For example, a customization might
indeed be deemed too straightforward for another top
sharer to bother with, but what about a newcomer? In
essence, the straightforwardness of a customization may be
in the eye of the re-user. If the ecosystems could support
sharers to announce a possible customization, in order for
the sharer to assess interest, this could help the sharer
decide if it is worth the effort to publish it, or even solicit
effort from others who want to re-use it to do the
“cleaning” and publishing.

Perceived difficulty/ease of authoring a customization

affects both sharing and re-using: As mentioned above,
when authoring a customization is perceived easy, the
authors choose not to share. We also saw with Minecraft
that the difficulty of authoring does not justify keeping a
customization private once it is authored. In addition, some
IFTTT participants mentioned authoring a customization
without bothering to search existing ones, because the cost
of searching and re-using was equivalent to the cost of
authoring for them. In the latter case, the ease of authoring
affected the decision about whether to reuse or to author.

Customization authors in different ecosystems decide about

sharing their customizations in different points in time: In
the Minecraft ecosystem, the decision to share appears to
precede the authoring, since our participants reported
authoring a mod only with the intention to share it. On the
other hand, the majority of Alfred and Sublime Text
participants reported authoring a customization to address a
personal need, and sharing it once it proves its value or they
think it might be useful for other people too. In IFTTT,
authors often decided about whether or not to share a recipe
while authoring a recipe. We attribute that to how IFTTT
supports sharing, i.e. selecting a checkbox to make the
created recipe public as part of the process of authoring it.

LIMITATIONS

The sample size in our study from a per-system perspective
was small (five participants per system). We intentionally
chose breadth over depth to explore differences in
customization sharing mechanisms. Future studies with
larger samples could further examine some of the system-
specific dynamics and issues that we have uncovered.

Our sample included only people who had extensive
experience with sharing customizations. Although this
focus allowed us to collect rich data about the sharing
ecosystems, it did not fully capture the perspectives of
those who do not share but only reuse customizations. All
of our sharers were also re-users and so we do capture
some of the re-user perspective here. Future studies with

re-users would provide additional insights into their
motivations for re-use, their motivations for reporting
problems with customizations, how they trust the shared
customizations, and how the difficulty of the language for
authoring customizations affects reusing practices.

CONCLUSION

In our efforts to understand how customization sharers go
about sharing and what motivates them, our study
uncovered online customization sharing ecosystems. We
documented various components of these ecosystems,
described the design of the ecosystems based on how their
various components are connected, and discussed the
tradeoffs among designs. We also identified various roles
that occur in the ecosystems, compared and contrasted
them with similar roles in customization sharing in
organizational settings as well as in FOSS projects, and
discussed how to provide support for those roles.

Our study has only scratched the surface of the online
customization sharing landscape, and raises some
interesting directions for future work. In addition to the
future work described above, we would also like to track
particular shared customizations from multiple ecosystems
over time, to see how they evolve from the point of
publishing. Uncovering how success is defined, and the
factors that make some shared customizations more
successful than others, will further contribute to our
understanding of how to design customization sharing
ecosystems.

ACKNOWLEDGMENTS

We thank all of our participants for volunteering their time
and contributing to this research. We also thank Syavash
Nobarany, Gail Murphy, Francesco Tordini, Izabelle
Janzen and all the reviewers for their helpful comments on
previous versions of this document. We are grateful for
NSERC’s support.

REFERENCES

1. Richard Bentley and Paul Dourish. 1995. Medium
versus mechanism: supporting collaboration through
customisation. In Proceedings of the fourth conference

on European Conference on Computer-Supported

Cooperative Work (ECSCW’95), 133–148. Retrieved
October 31, 2012 from
http://dl.acm.org/citation.cfm?id=1241958.1241967

2. Will Bond. 2015. About - Package Control. Retrieved
May 6, 2016 from https://packagecontrol.io/about

3. Virginia Braun and Victoria Clarke. 2006. Using
thematic analysis in psychology. Qualitative research

in psychology 3, 2: 77–101.

4. Giorgos Cheliotis and Jude Yew. 2009. An Analysis of
the Social Structure of Remix Culture. In Proceedings

of the Fourth International Conference on

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2369

Communities and Technologies (C&T ’09), 165–174.
https://doi.org/10.1145/1556460.1556485

5. Sebastian Draxler and Gunnar Stevens. 2011.
Supporting the Collaborative Appropriation of an Open
Software Ecosystem. Computer Supported

Cooperative Work (CSCW) 20, 4: 403–448.
https://doi.org/10.1007/s10606-011-9148-9

6. Sebastian Draxler, Gunnar Stevens, Martin Stein,
Alexander Boden, and David Randall. 2012.
Supporting the Social Context of Technology
Appropriation: On a Synthesis of Sharing Tools and
Tool Knowledge. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems
(CHI ’12), 2835–2844.
https://doi.org/10.1145/2207676.2208687

7. Jeff Dyck, David Pinelle, Barry Brown, and Carl
Gutwin. 2003. Learning from Games: HCI Design
Innovations in Entertainment Software. In Graphics

Interface, 237–246. Retrieved March 25, 2014 from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.122.6347&rep=rep1&type=pdf

8. Michelle Gantt and Bonnie A. Nardi. 1992. Gardeners
and Gurus: Patterns of Cooperation Among CAD
Users. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’92), 107–
117. https://doi.org/10.1145/142750.142767

9. Mona Haraty and Joanna McGrenere. 2016. Designing
for Advanced Personalization in Personal Task
Management. In Proceedings of the 2016 conference

on Designing interactive systems.

10. Alexander Hars and Shaosong Ou. 2001. Working for
free? Motivations of participating in open source
projects. In System Sciences, 2001. Proceedings of the

34th Annual Hawaii International Conference on, 9–
pp. Retrieved April 10, 2016 from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=9
27045

11. E. Haruvy, Fang Wu, and Sujoy Chakravarty. 2003.
Incentives for Developers. Contributions and Product

Performance Metrics in Open Source Development’.

Working Paper. Available from: http://www. iimahd.

ernet. in/publications/data/2005-03-04sujoy. pdf

[accessed 13 August 2010].

12. Helge Kahler. 2001. More Than WORDs -
Collaborative Tailoring of a Word Processor. Journal

of Universal Computer Science 7, 8: 826–847.

13. Benjamin Lafreniere, Andrea Bunt, Matthew Lount,
Filip Krynicki, and Michael A. Terry. 2011.
AdaptableGIMP: designing a socially-adaptable
interface. In Proceedings of the 24th annual ACM

symposium adjunct on User interface software and

technology (UIST ’11 Adjunct), 89–90.
https://doi.org/10.1145/2046396.2046437

14. Karim R. Lakhani and Eric Von Hippel. 2003. How
open source software works: “free” user-to-user
assistance. Research policy 32, 6: 923–943.

15. Karim R. Lakhani and Robert G. Wolf. 2003. Why

Hackers Do What They Do: Understanding Motivation

and Effort in Free/Open Source Software Projects.
Social Science Research Network, Rochester, NY.
Retrieved May 7, 2016 from
http://papers.ssrn.com/abstract=443040

16. Josh Lerner and Jean Triole. 2000. The simple

economics of open source. National Bureau of
Economic Research. Retrieved January 14, 2016 from
http://www.nber.org/papers/w7600

17. Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. 2008. CoScripter: automating & sharing
how-to knowledge in the enterprise. In Proceedings of

the twenty-sixth annual SIGCHI conference on Human

factors in computing systems (CHI ’08), 1719–1728.
https://doi.org/10.1145/1357054.1357323

18. Wendy E Mackay. 1990. Patterns of sharing
customizable software. In Proceedings of the 1990

ACM conference on Computer-supported cooperative

work (CSCW ’90), 209–221.
https://doi.org/http://doi.acm.org.proxy.lib.sfu.ca/10.11
45/99332.99356

19. Wendy E Mackay. 1990. Users And Customizable
Software: A Co-Adaptive Phenomenon. Retrieved
March 23, 2011 from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1
.1.38.7497

20. Wendy E Mackay. 1991. Triggers and barriers to
customizing software. In Proceedings of the SIGCHI

conference on Human factors in computing systems:

Reaching through technology (CHI ’91), 153–160.
https://doi.org/http://doi.acm.org.proxy.lib.sfu.ca/10.11
45/108844.108867

21. Allan MacLean, Kathleen Carter, Lennart Lövstrand,
and Thomas Moran. 1990. User-tailorable systems:
pressing the issues with buttons. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI ’90), 175–182.
https://doi.org/10.1145/97243.97271

22. Jennifer Marlow and Laura Dabbish. 2013. Activity
traces and signals in software developer recruitment
and hiring. In Proceedings of the 2013 conference on

Computer supported cooperative work, 145–156.
Retrieved December 17, 2015 from
http://dl.acm.org/citation.cfm?id=2441794

23. Jennifer Marlow, Laura Dabbish, and Jim Herbsleb.
2013. Impression formation in online peer production:
activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer

supported cooperative work, 117–128. Retrieved

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2370

December 16, 2015 from
http://dl.acm.org/citation.cfm?id=2441792

24. Audris Mockus, Roy T. Fielding, and James D.
Herbsleb. 2002. Two case studies of open source
software development: Apache and Mozilla. ACM

Transactions on Software Engineering and

Methodology (TOSEM) 11, 3: 309–346.

25. Emerson Murphy-Hill and Gail C. Murphy. 2011. Peer
interaction effectively, yet infrequently, enables
programmers to discover new tools. In Proceedings of

the ACM 2011 conference on Computer supported

cooperative work (CSCW ’11), 405–414.
https://doi.org/10.1145/1958824.1958888

26. Lora Oehlberg, Wesley Willett, and Wendy E.
Mackay. 2015. Patterns of physical design remixing in
online maker communities. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in

Computing Systems, 639–648. Retrieved July 26, 2016
from http://dl.acm.org/citation.cfm?id=2702175

27. R. Oppermann and H. Simm. 1994. Adaptability: User-
initiated individualization. Adaptive User Support–

Ergonomic Design of Manually and Automatically

Adaptable Software. Hillsdale, New Jersey.

28. Hector Postigo. 2007. Of mods and modders chasing
down the value of fan-based digital game
modifications. Games and Culture 2, 4: 300–313.

29. Eric S. Raymond. 1998. The cathedral and the bazaar.
First Monday 3, 2. Retrieved April 10, 2016 from
http://ojphi.org/ojs/index.php/fm/article/view/578

30. Justin Scott. 2011. How many Firefox users have add-
ons installed? 85%! Mozilla Add-ons Blog. Retrieved
May 19, 2016 from
https://blog.mozilla.org/addons/2011/06/21/firefox-4-
add-on-users/

31. Olli Sotamaa. 2010. When the game is not enough:
Motivations and practices among computer game
modding culture. Games and Culture. Retrieved May
12, 2016 from
http://gac.sagepub.com/content/early/2010/03/16/1555
412009359765.abstract

32. Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. 2014. Practical Trigger-action
Programming in the Smart Home. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems (CHI ’14), 803–812.
https://doi.org/10.1145/2556288.2557420

33. Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner,
Jiyun Lee, Sarah Mennicken, Noah Picard, Diane
Schulze, and Michael L. Littman. 2016. Trigger-Action
Programming in the Wild: An Analysis of 200,000
IFTTT Recipes. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems
(CHI ’16), 3227–3231.
https://doi.org/10.1145/2858036.2858556

Session: All About Sharing CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

2371

