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ABSTRACT 
The large amount of patterns generated by frequent pattern 
mining algorithms has been extensively addressed in the last few 
years. In geographic pattern mining, besides the large amount of 
patterns, many are well known geographic domain associations. 
Existing algorithms do not warrant the elimination of all well 
known geographic dependences since no prior knowledge is used 
for this purpose. This paper presents a two step method for mining 
frequent geographic patterns without associations that are 
previously known as non-interesting. In the first step the input 
space is reduced as much as possible. This is as far as we know 
still the most efficient method to reduce frequent patterns. In the 
second step, all remaining geographic dependences that can only 
be eliminated during the frequent set generation are removed in 
an efficient way. Experiments show an elimination of more than 
50% of the total number of frequent patterns, and which are 
exactly the less interesting. 

Categories and Subject Descriptors 
H.2.8 Database Applications: Data mining, Spatial databases, 
and GIS  

General Terms 
Design, algorithms 

Keywords 
Geographic databases, spatial association rules, frequent pattern 
mining, semantic knowledge constraints 

1. INTRODUCTION 
Association rules is a data mining technique that has been largely 
used for knowledge discovery in databases (KDD). As most  
discovery techniques it has the objective of identifying non-
trivial, valid, novel, potentially useful, and ultimately 
understandable patterns from data [10]. Their main drawback, 
however, is the generation of a large number of patterns. In 
geographic databases (GDB) this problem increases significantly. 
Besides the large amount of patterns, many are well known 

natural geographic dependences intrinsic to the data. Different 
thresholds and syntactic constraints have been proposed to reduce 
the number of patterns, but they do not warrant the elimination of 
well known geographic dependences. 
Figure 1 shows an example of a well known geographic 
dependence, where every gas station intersects at least one street. 
Figure 2 shows an example of non-standard spatial relationships, 
where gas stations and industrial residues repositories may either 
have a spatial relationship with water bodies or may not. There is 
no explicit pattern among these data. Considering, for example, 
that water analyses showed high chemical pollution, the 
extraction of spatial relationships among water resources, gas 
stations, and industrial residues repositories will be interesting for 
knowledge discovery. 

 
Figure 1. Examples of spatial relationships which produce 

well known patterns  

Relationships such as gas stations intersect streets or islands 
within water bodies, under rare exceptions or some geographic 
location inconsistency, hold for practical purposes in a 100% of 
the cases. The result is the generation of non-interesting rules, 
such as is_a (x,island)  intersects (x,waterBody) (100%) or is_a 
(x,GasStation)  intersects (x,Street) (100%). 
Although users might be interested in high confidence patterns or 
rules, not all strong patterns necessarily hold considerable 
information. Moreover, the mixed presentation of thousands of 
interesting and uninteresting rules can discourage users from 
interpreting them in order to find ‘patterns’ of either novel or 
unexpected knowledge. 
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Figure 2. Examples of non-standard spatial relationships  

Well known geographic dependences are mandatory spatial 
relationships which represent spatial integrity constraints. Such 
constraints must hold in order to warrant the consistency of 
spatial data in geographic databases. They are normally explicitly 
represented in geographic database schemas, as will be shown 
with two case studies. Existing algorithms for frequent pattern 
mining, however, have considered only data by themselves, while 
the schema, which is a rich knowledge repository, has not been 
considered so far in the discovery process. The result is that the 
same associations explicitly represented by the database designer 
are unnecessarily extracted by frequent pattern mining (FPM) 
algorithms and presented to the data mining user. 
We claim that well known associations explicitly represented in 
geographic database schemas should be eliminated in frequent 
pattern mining. For this purpose, this paper presents a two step 
method for mining frequent geographic patterns without well 
known dependences.    

1.1 Related Works and Contribution 
For extracting frequent patterns from geographic databases there 
are basically two approaches in the literature. One is based on 
quantitative reasoning, which mainly computes distance 
relationships during the frequent set generation. Quantitative 
reasoning approaches [22][23] deal with geographic data 
(coordinates x,y) directly. Although they have the advantage of 
not requiring the definition of a reference object, they have some 
general drawbacks: usually deal only with points, consider only 
quantitative relationships, and do not consider non-spatial 
attributes of geographic data, which may be of fundamental 
importance for knowledge discovery. For spatial objects/features 
represented by lines or polygons, their centroid is extracted. This 
process, however, might lose significant information and generate 
non-real patterns (e.g. the Mississippi River intersects many states 
considering its real geometry, but is far from the same states if 
only the centroid is extracted). 
The other is based on qualitative reasoning [2][8][9][13] and 
usually considers distance and topological relationships between a 
reference geographic object type and a set of relevant feature 
types represented by any geometric primitive (e.g. points, lines, 
and polygons). Relationships are normally extracted in a first step 
in data preprocessing tasks, while frequent patterns are generated 
in another step. 
Both qualitative and quantitative reasoning approaches, however, 
have not focused on interesting geographic aspects to be 
considered in FPM. Neither do they make use of prior knowledge 
to specify which spatial relationships should be computed nor 

reduce the number of well known semantic patterns. [13], for 
example, presented a top-down, progressive refinement method to 
extract spatial predicates where patterns and rules are reduced 
using only minimum support. [8] presented a similar method for 
mining association rules from geographic objects with broad 
boundaries. 
[2] proposed a method to extract all spatial features and spatial 
relationships to a deductive relational database. This process is 
computationally expensive since all spatial relationships are 
computed a priori. Although patterns and association rules can be 
reduced, the user has to specify a different pattern constraint for 
all different spatial relationships or possible association rules. 
Besides requiring a lot of background knowledge, pruning is 
performed in post processing steps, i.e., after both frequent sets 
and association rules have already been generated.  
In order to reduce the number of spatial joins in geographic data 
preprocessing [4] we proposed to use geo-ontologies [3]. In [5] 
we proposed to remove well known geographic dependences in 
spatial association rule mining using geographic database 
schemas as prior knowledge. 
In this paper we propose a general framework to completely 
eliminate geographic dependences in frequent geographic pattern 
mining. In a first step the input problem is reduced, and 
dependences are eliminated before computing any frequency. 
According to [6] this is still the most efficient way to prune 
frequent patterns. Additionally, in an efficient way, pairs of 
geographic objects with dependences are eliminated further and 
completely, during the frequent set generation. 
Our framework can be either partially or totally applied to any 
algorithm that generates frequent sets, being it an Apriori-like 
approach or not. Its main advantage is its simplicity. In two single 
steps all dependences are removed, and more interesting patterns 
and rules will be generated. While dozens of approaches define 
syntactic constraints and different thresholds to reduce the 
number of patterns and association rules, we consider semantic 
knowledge constraints, and eliminate the exact pairs of 
geographic objects that produce well known patterns. 

1.2 Scope and Outline 
This paper proposes an approach for mining non-standard 
frequent patterns from geographic databases. The proposed 
approach uses qualitative spatial reasoning. The results show an 
improvement on the existing techniques for knowledge discovery 
in geographic databases. 
The remainder of the paper is organized as follows: Section 2 
describes the problem of geographic dependences in FPM. 
Section 3 presents two case studies of GDB schemas to show the 
large amount of well known geographic dependences. Section 4 
presents a framework to eliminate well known geographic 
dependences in FPM. Section 5 presents experiments that show 
the significant frequent set reduction, while Section 6 concludes 
the paper and suggests some directions of future work. 

2. THE PROBLEM OF GEOGRAPHIC 
DEPENDENCES IN FPM   
At least two steps are required to extract patterns from GDB: the 
computation of spatial neighborhood relationships and the 
generation of frequent sets and association rules. Well known 
geographic dependences appear in both steps, and in different 
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ways, producing different amounts of well known patterns. In the 
following sections we show how geographic dependences appear 
in these two steps. 

2.1 Geographic Dependences in Spatial 
Predicate Extraction 

In transactional data mining, every row in the dataset to be mined 
is usually a transaction and columns are items, while in qualitative 
spatial data mining, every row is an instance of a reference object 
type (e.g. city), called target feature type, and columns are 
predicates. Every predicate is related to a non-spatial attribute 
(e.g. population) of the target feature type, or a relevant feature 
type that is spatially related to the target feature type (e.g. 
intersects(gasStation)). Table 1 shows an example of a spatial 
dataset where every row is a city (target feature type) and the 
predicates are different geographic object types (port, water body, 
hospital, treated water network, factory) spatially related to city. 
Spatial predicates can be represented at different granularity 
levels [12], according to the objective of the discovery. In Table 
1, data are represented at a general granularity level, but lower 
levels as, for example, chemical, metallurgical, and textile 
factories could be used instead of factory.  

Table 1.  Dataset in a high granularity level for FPM 
Tuple    
(city) 

Spatial Predicates 

1 contains(Port), contains(Hospital), contains(TreatedWaterNet),  
contains(Factory),  crosses(WaterBody) 

2 contains(Hospital),contains(TreatedWaterNet), crosses(WaterBody) 
3 contains(Port), contains(TreatedWaterNet), contains(Factory),   

crosses(WaterBody) 
4 contains(Port),      contains(Hospital),   contains(TreatedWaterNet),   

crosses(WaterBody) 
5 contains(Port), contains(Hospital), contains(TreatedWaterNet),   

contains(Factory), crosses(WaterBody) 
6 contains(Hospital),  contains(TreatedWaterNet),  contains(Factory) 

 

Spatial predicates are materialized spatial relationships extracted 
with spatial joins between all instances t (e.g. NewYorkCity) of a 
target feature type T (e.g. city) and all instances r (e.g. Route68) 
of every relevant feature type R (e.g. road) in a set of relevant 
feature types S (e.g. road, hospital, factory). In this step, a 
cartesian product between T and S is performed. Being T={t1, 
t2,…,tn), S = { R1, Ri,…, Rm}, and Ri = { r1, r2,…, rq}, the extraction 
of spatial predicates implies the comparison of every instance of T 
with all instances of R, for all R in S. This process is the 
bottleneck of computational time in spatial data mining. 
Well known geographic dependences may exist among T and any 
R in S, or between pairs of R in S. For example, in the dataset 
shown in Table 1, there is a well known dependence between the 
target feature type (city) and treated water network, because every 
city has at least one treated water network. This means that the 
predicate contains(TreatedWaterNet) has a 100% support and a 
large number of both patterns and rules with this predicate will be 
generated, such as, for example, contains(factory)  
contains(TreatedWaterNet). Such a rule expresses that cities that 
contain factories do also contain treated water networks. Although 
the rule seems to be interesting, it can be considered obvious due 
the simple fact that all cities have treated water networks, having 
they factories, or not. 
Predicates with 100% support appear in most generated patterns 
and rules. Table 2 shows the result of an experiment with the 

dataset in Table 1, using minimum support 20% and 50%. 
Considering 20% minimum support, 31 frequent sets and 180 
rules were generated. Among the 31 frequent sets and the 180 
rules, 16 frequent sets and 130 rules had the dependence 
contains(TreatedWaterNet). Increasing minimum support to 50% 
does not warrant the elimination of the geographic dependence. 
Although the number of frequent sets is reduced to 25 and rules to 
96, 13 frequent sets and 72 rules still had the dependence.  

Table 2. Frequent Patterns and rules with dependences   
MinSup 
% 

All Frequent 
Sets/ 
Rules 

Rules with 
Dependence / 
Rules without  
Dependence 

FrequentSets with  
dependence /  
FrequentSets without  
dependence 

20 31 / 180 130/ 50 16/15 
50 25 / 96 72 / 24 13/12 

 

In the previous example, the high number of patterns including 
the geographic dependence was generated because of a 
dependence between the target feature type and a relevant feature 
type. This kind of dependences can be eliminated by pruning the 
input space, because such dependences with a 100% support only 
hind the discovery process. However, dependences may also exist 
among relevant features. In the dataset shown in Table1, there is 
also a dependence between Port and Water Body, where all cities 
which have Ports do also have Water Bodies, because every Port 
must be related to at least one Water Body. In this case, however, 
we cannot prune the input space because either Water Body or 
Port may have an interesting association with any other relevant 
feature type (Hospital, Treated Water Network, Factory). In the 
following section we introduce the problem of geographic 
dependences among relevant feature types. 

2.2 Geographic Dependences in Frequent Sets 
According to [1], the general problem of mining frequent 
predicate sets and association rules can be decomposed in two 
steps: 
• Find all large/frequent predicates sets: a set of predicates is 

large if its support is at least equal to a certain threshold, 
called minsup.   

• Generate strong rules: a rule is strong if its support is at least 
equal to minimum support and the confidence is higher or 
equal to a certain threshold, called minconf.  

Assertion 1. If a predicate set Z  is frequent, then every subset of 
Z will also be frequent. If the set Z is infrequent, then every set 
that contains Z is infrequent too. All rules derived from Z satisfy 
the support constraint if Z satisfies the support constraint. 
To find frequent predicate sets and extract strong association 
rules, relevant feature types R in S are combined with each other 
for the different instances of the target feature type T, and not 
among T and R as in the previous problem. 
To illustrate the geographic dependence replication process in 
frequent pattern mining, let us consider the well known method 
for frequent set generation introduced by [1]. Table 3 shows the 
frequent sets extracted from the dataset in Table 1 with 50% 
minimum support, where k is the number of elements in the 
frequent sets. 
Geographic dependences appear the first time in frequent sets 
with 2 elements, where k=2. Notice that since the dependence has 
minimum support, i.e., is a frequent predicate set, this dependence 
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is replicated to many frequent sets of size k>2 with predicates that 
reach minimum support, as shown in bold style in Table 3. 
Considering such a small example and high minimum support 
(50%), one single geographic dependence participates in 6 
frequent sets, which represents 30% of the total number of 
frequent sets. Notice that the number of rules having a geographic 
dependence will be much larger than the frequent sets, mainly 
when the largest frequent set (with 4 elements) contains the 
dependence. 
In Table 3 we can clearly observe that the technique of generating 
closed frequent sets [17] does not warrant the elimination of 
geographic dependences. Geographic dependences generate their 
own closed frequent set, which in the example, are the two largest 
sets. 

Table 3. Frequent predicate sets with minimum support 50%  
k Frequent sets with support 50% 
1 {contains(Port)},  {contains(Hospital)}, {contains(TreatedWaterNet)},  

{contains(Factory)},  {crosses(WaterBody)} 
2 {Contains(Port),contains(Hospital)}, 

{Contains(Port),contains(TreatedWaterNet)},  
{Contains(Port),contains(Factory)}, 
{Contains(Port),crosses(WaterBody)},                                           
{Contains(Hospital),contains(TreatedWaterNet)}, 
{Contains(Hospital),contains(Factory)},  
{Contains(Hospital),crosses(WaterBody)}, 
{Contains(TreatedWaterNet),contains(Factory)}, 
{Contains(TreatedWaterNet),crosses(WaterBody)}, 
{Contains(Factory),crosses(WaterBody)}, 

3 {Contains(Port),contains(Hospital),contains(TreatedWaterNet)}, 
{Contains(Port),contains(Hospital),crosses(WaterBody)}, 
{Contains(Port),contains(TreatedWaterNet),crosses(WaterBody)},                
{Contains(Port),contains(Factory),crosses(WaterBody)},  
{Contains(Port),contains(TreatedWaterNet),contains(Factory)}, 
{Contains(Hospital),contains(TreatedWaterNet),contains(Factory)} 
{Contains(Hospital),contains(TreatedWaterNet),crosses(WaterBody)}, 
{Contains(TreatedWaterNet),contains(Factory),crosses(WaterBody)}   

4 {Contains(Port),contains(Hospital),contains(TreatedWaterNet),crosses(WaterBody)} 
{Contains(Port),contains(TreatedWaterNet),contains(Factory),crosses(WaterBody)} 

 

After understanding the replication process of geographic 
dependences in FPM, the next section presents two case studies to 
evaluate the amount of well known dependences in real GDB. 

3. GEOGRAPHIC DEPENDENCES:  
A CASE STUDY 
Geographic dependences are mandatory spatial relationships 
among geographic objects, and are normally represented through 
associations with cardinality constraints one-one and one-many 
[18][19 pp.36-37]. Geographic dependences are well known 
because they are explicitly represented by database designers to 
warrant the spatial integrity [18] of geographic data. In 
geographic database schemas, geographic dependences are given 
by a spatial relationship or a single association, aggregation with 
cardinalities one-one or one-many. 
In order to evaluate the amount of well known geographic 
dependences explicitly represented in real geographic databases, 
two real schemas were analyzed: the Brazilian Army data model, 
which has been the basis to construct geographic maps for the 
whole country, and the data warehouse developed in the project 
iPara for the Para state, in Brazil. 
The geographic database schema developed by the Brazilian 
Army contains all geographic elements that are part of the 
Brazilian terrain model, which under a few variations, is similar 
to any terrain model represented in geographic databases. On 

account of the large number of objects and relationships to be 
represented, geographic data conceptual schemas are usually 
designed in different packages/superschemas. The geographic 
database schema developed by the Brazilian Army has 8 
packages: edification, infra-structure, hydrography, vegetation, 
administrative regions, referential, relief, and toponymy. The 
package infra-structure, for example, is divided in six sub-
schemes, including information about transportation, energy, 
economy, communication, etc. The hydrography package, for 
example, represents objects such as rivers, oceans, and lakes.  
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Figure 3.  Part of the conceptual object-oriented schema of the 

Brazilian Geographic Territory (MCOO of EBG - Brazilian 
Army – STI – DSG - 1°DL) 

Information of different packages may be extracted for data 
mining, and the number of one-one and one-many relationships 
varies from one package to another. For example, the 
hydrography package, which is shown in Figure 3, has a total of 
24 geographic objects (15 from its own package and 8 from 
others) which share 2 one-many relationships and 16 one-one 
relationships if super classes are concrete, and more that 20 if 
super classes are abstract. 
The infra-structure level, for example, has 73 geographic objects 
in its own package and has relationships with 88 objects from 
other packages. Among the 88 relationships, 70 are mandatory 
one-one dependences. 
The conceptual schema of the project iPara is a geographic data 
warehouse developed in cooperation with II/UFRGS, COHAB-
PA, and SEIR-PA. It integrates general geographic data of the 
state of Para (SIGIEP) and the urban geographic database (SIME). 
The complete conceptual schema of iPara has more than 20 
different packages such as Hidrography, Infra-Structure, and 
Transportation. The Transportation package, for example, has 29 
objects with 19 one-one or one-many associations. Because of 
space limitations, a very small part of the Water Distribution 
schema is shown in Figure 4, where among 7 objects there are 2 
one-many and 4 one-one associations. 
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The case study with two real schemas showed that a large number 
of mandatory well known geographic dependences is explicitly 
represented. If used as prior knowledge in frequent pattern 
mining, their extraction can be avoided and the generation of 
obvious patterns and rules significantly reduced. 

 
Figure 4.  Part of the iPara conceptual schema   

4. A FRAMEWORK FOR MINING FREQUENT 
GEOGRAPHIC PATTERNS WITH 
KNOWLEDGE CONSTRAINTS 
Aiming to provide a complete and integrated framework for 
frequent geographic pattern mining without well known 
associations, Figure 5 shows an interoperable framework that 
supports the complete discovery process. To better understand the 
process, the framework can be viewed at three levels: data 
repository, data preprocessing, and pattern mining.  
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Figure 5. A Framework for FPM in geographic databases 

At the bottom are the geographic data repositories, stored in 
GDBMS (geographic database management systems), constructed 
under OGC [16] specifications. There is also a knowledge 
repository which stores the pairs of geographic objects with 
dependences. These pairs can be either specified by the user or 
automatically retrieved with processes of reverse engineering [7] 
if the schema is not available. Different approaches to extract 

dependences from relational databases with reverse engineering 
are available in the literature. For knowledge discovery in non-
geographic databases reverse engineering has been used to 
understand the data model [15] in legacy systems, or to 
automatically extract SQL queries [20], but not as prior 
knowledge to reduce well known patterns. In [5] we presented an 
algorithm to extract geographic dependences from database 
schemas. When provided by the user, a larger set of dependences 
can be specified; not only associations explicitly represented in 
the schema, but other application domain dependences which 
generate well known patterns.   
In the center of the figure is the spatial data preprocessing level 
which covers the gap between data mining tools and geographic 
databases. At this level the data repositories are accessed through 
JDBC/ODBC connections and data are retrieved, preprocessed, 
and transformed into the single table format. At this level, 
dependences among the target feature and relevant features are 
removed. This step prunes the input space and reduces the number 
of spatial joins, as will be explained in the next section. 
On the top are the algorithms for FPM. At this level a method for 
generating frequent sets for geographic data is proposed to 
eliminate all dependences between the relevant features types, 
i.e., those which cannot be removed from the input dataset. This 
step is explained in more detail in section 4.2.  

4.1 Data Preprocessing: Eliminating Geographic 
Dependences among the Target Feature Type 
and the Relevant Feature Types 

There are four main steps to implement the tasks of extracting 
spatial predicates for mining frequent geographic patterns:  
metadata retrieval, dependence elimination, spatial join, and 
transformation. 
The Metadata Retrieval step retrieves all relevant information 
from the database, including the target feature type T, the target 
feature non-spatial attributes and the set of relevant feature types 
S, defined by the user, that may have some influence on T. The 
feature types are retrieved through the Open GIS database schema 
metadata.  
In general words, the process described in this section can be 
summarized in the algorithm shown in Figure 6, where GDB is 
the geographic database, φ  is the set of pairs of geographic 
objects with dependences, T is the target feature type, S is the set 
of relevant feature types R, and  x is the spatial relationship (e.g. 
topology, distance). 
The Dependence Elimination step verifies all associations 
between the target feature type and all relevant feature types. It 
searches the knowledge base and if T has a dependence with any 
R in S, then R  is eliminated from S. For each relevant feature type 
removed from S, no spatial join is required to extract spatial 
relationships.  By consequence, neither frequent sets nor spatial 
association rules will be generated with this relevant feature type.   
The Spatial Join step computes and materializes the user-
specified spatial relationships between the T and all R in S, 
retrieved by the Metadata Retrieval step and filtered by 
Dependence Elimination. 
Spatial joins to extract spatial predicates are performed on-the-fly 
with operations provided by the GIS. Following the OGC 
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specifications makes our framework interoperable with all 
GDBMS constructed under OGC specifications (e.g. Oracle, 
PostGIS). Before computing spatial joins, MBR (minimum 
boundary rectangle) is performed for accelerating the extraction 
of spatial relationships.   
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Pseudo-code of the preprocessing function to extract 
spatial predicates 

The Transformation step transposes the Spatial Join step output 
into a single table Ψ, understandable by FPM algorithms.  

4.2 Pattern Mining: Eliminating Geographic 
Dependences among Relevant Feature Types 

Frequent pattern and association rule mining algorithms, under 
rare exceptions [11] generate candidates and frequent sets. In 
spatial data mining, the candidate generation is not a problem 
because the number of predicates is much smaller than the 
number of items in transactional databases [19 p.205]. The 
computational coast relies on the spatial predicate extraction 
(number of instances of both target and relevant feature types), 
which our method reduces by pruning the input space. 
Approaches that generate closed frequent sets [17] and eliminate 
redundant rules [24] do previously compute the frequent sets, and 
than verify if they are closed. Although they reduce the number of 
frequent sets, they do not warrant the elimination of all well 
known geographic patterns.   
Considering that Apriori [1] has been the basis for dozens of 
algorithms for mining spatial and non-spatial frequent sets we 
illustrate the method of geographic dependence elimination 
during the frequent set generation using Apriori-KC [5], as shown 
in Figure 7. 

Given φ as the set of pairs of geographic objects with 
dependences (e.g. Island, Water) called knowledge constraints,Ψ 
as the input dataset generated in the previous step, and minsup as 
minimum support, well known geographic dependences are 
removed from the frequent sets with 2 elements, when the 
dependence appears the first time.  
Similarly to [21], which eliminates in the second pass frequent 
sets that contain both parent and child specified in concept 
hierarchies, we propose to eliminate all frequent sets which 
contain geographic dependences, independently of any concept 
hierarchy. 

The dependences are eliminated in an efficient way, in one step, 
in the second pass, when generating candidates with 2 elements, 
and when it appears at the first time. Through this elimination, no 
frequent sets with two or more predicates having the dependence 
will be generated. According to Assertion1, this step warrants 
that the pairs of geographic objects with dependences in φ will 
neither appear together in the frequent sets nor in the spatial 
association rules. This makes the method effective and 
independent of any threshold such as minimum support, minimum 
confidence, lift, etc.  

 
Figure 7. Frequent set generation function with Apriori-KC 

The main strength of this method in our framework is its 
simplicity. This single, but very effective and efficient step, 
removes all well known geographic dependences, and can be 
implemented by any algorithm that generates frequent sets. 
Considering the example of frequent sets shown in Table 3, the 
dependence is eliminated when it appears at the first time, in the 
second pass, such that no larger frequent sets or association rules 
with the dependence will be generated. 
It is important to emphasize that no information is lost with our 
method, only well known patterns are eliminated. For instance, 
suppose that AB is a frequent set having a dependence. This pair 
is eliminated with the purpose to avoid the generation of larger 
frequent sets that contain the dependence, such as ABC, for 
example. If the set ABC has minimum support, then the pairs AB, 
AC, and BC reached minimum support too. As we eliminate only 
pairs with dependences, AC and BC which combine the attribute 
C with both A and B separately, are still generated, and no 
information is lost. Our method only eliminates patterns that are 
well known, and does not sacrifice the result quality. 

5. EXPERIMENTS AND EVALUATION 
The proposed framework was implemented in Weka, which we 
extended to support automatic spatial predicate extraction with 
intelligent input pruning. In order to evaluate the interoperability 
of the framework, experiments were performed with real 
geographic databases stored under Oracle 10g and PostGIS. 
Census sectors and districts, with non-spatial attributes such as 
population, sanitary condition, etc, were defined as the target 
feature types for different experiments. Datasets with different 
relevant feature types (e.g. bus routes, slums, water bodies, 

Given: φ,Ψ, minsup; 
Find: frequent geographic pattern without well 
      known dependences 
 
Method: 
L1 = {large 1-predicate sets}; 
For ( k = 2; Lk-1 != ∅; k++ ) do  begin 
    Ck = apriori_gen(Lk-1);// New  candidates     
    If (k=2)    
       C2  = C2 - φ; // frequent set prunning 
    Forall  rows w ∈ Ψ  do begin 
        Cw = subset(Ck, w); // Candidates in w 
        Forall candidates c ∈ Cw do 
            c.count++; 
    End; 
    Lk = {c ∈ Ck | c.count ≥ minsup}; 
End; 
Answer = ∪kLk 

Given: GDB, φ, T, S, x; 
Find: a dataset Ψ without geographic  
      dependences between T and S; 
  
Method:  
     Ψ = T – geometric_abribute; 
     Dependence_Elimination 
     Begin 
        For (i=1; i=#R in S, i++) do begin   
           If (T has a dependence with Ri in φ) 
               Remove Ri from S; //input pruning 
           Else 
           Ψ = Ψ ∪ spatial_join (x,T,Ri); 
        End;  
     End; 
     Transformation (Ψ);   
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factories, gas stations, cellular antennas) were preprocessed and 
mined, using prior knowledge and without using prior knowledge.   
To precise the time reduction to compute spatial joins for mining 
frequent patterns is very difficult, since this step is totally data 
dependent. The computational time reduction to extract spatial 
joins depends on three mains aspects: the number of dependences 
(relevant feature types) eliminated in data preprocessing; the 
geometry type of the relevant feature (point, line or polygon); and 
the number of instances of the eliminated feature type (e.g. 60000 
rows). For example, if a relevant feature type with 57580 
polygons is eliminated, spatial join computation would 
significantly decrease. If the eliminated feature type has 3062 
points, for instance, time reduction would be less significant. 
However, for every eliminated relevant feature type, no spatial 
join is necessary, and this warrants preprocessing time reduction.  
To evaluate the frequent pattern reduction by pruning the input 
space, Figure 8 describes an experiment where one dependence 
between the reference object and the relevant feature types was 
eliminated. Notice that input space pruning reduces frequent 
patterns for all different values of minimum support. Considering 
minsup 10%, 20%, and 30%, the elimination of one single 
dependence in data preprocessing pruned the frequent sets around 
50%. The rule reduction is still more significant than the frequent 
set pruning, reaching 70% by eliminating one single dependence.  
Algorithms that generate closed frequent sets [17], reduce the 
number of rules [14], and eliminate redundant rules [24] can 
reduce still further the number of both frequent sets and 
association rules if applied to the geographic domain using our 
method for pruning the input space.  
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Figure 8.  Input space pruning 

Figure 9 shows the result of an experiment where two 
dependences among relevant feature types were eliminated during 
the frequent set generation without input pruning. Even pruning 
only the frequent sets, our method reduces the number of frequent 
sets for all different values of minimum support. Indeed, the 
higher the number of dependences, the more significant is the 
reduction. 
Figure 10 shows an experiment where dependences were 
eliminated in both input space (between the target feature and 
relevant features) and during the frequent set generation (among 
relevant features). The total number of frequent sets is reduced in 
an average of 60% by removing one dependence, independently 
of minimum support. This experiment shows that in the 
geographic domain most frequent sets contain well known 
geographic dependences, and our method completely eliminates 

such dependences very fast. Because of space limitations, time 
reduction experiments are not presented. 
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Figure 9. Frequent set pruning   
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Figure 10. Input space and frequent set pruning 

6. Conclusions and Future Works 
This paper presented an intelligent framework for mining frequent 
geographic patterns without well known geographic dependences. 
Dependences are mandatory geographic associations which are 
explicitly represented in geographic database schemas. We 
showed that explicit mandatory relationships produce irrelevant 
patterns, while the non-standard spatial relationships may lead to 
more interesting knowledge.  
Experiments showed that independent of the number of elements, 
geographic dependences generate a large number of frequent 
patterns without interesting knowledge. The elimination of one 
dependence is enough to prune a large number of patterns, but the 
higher the number of well known dependences to be eliminated, 
the larger is the pattern reduction. We showed that well known 
dependences can be partially eliminated by either pruning the 
input space or the frequent sets. Applying both steps eliminate 
known geographic dependences completely! 
The main contribution is for the data mining user, which will 
analyze much less obvious patterns. The method is effective 
independently of other thresholds, and it warrants that known 
geographic domain associations will not appear among the 
discovered patterns.  
The use of prior knowledge in geographic pattern mining has 
three main advantages: spatial relationships between feature types 
with dependences are not computed; the number of both frequent 
sets and association rules is significantly reduced; and the most 
important, the generated frequent sets and rules are free of 
associations that are previously known as non-interesting. 
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Next ongoing steps of this work include the evaluation of our 
methods with the closed frequent sets approach. 
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