
Computers & Operations Research 39 (2012) 875–889
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m

leo.lope
journal homepage: www.elsevier.com/locate/caor
Review
Measuring instance difficulty for combinatorial optimization problems
Kate Smith-Miles �, Leo Lopes

School of Mathematical Sciences, Monash University, Victoria 3800, Australia
a r t i c l e i n f o

Available online 12 July 2011

Keywords:

Algorithm selection

Combinatorial optimization

Hardness prediction

Instance difficulty

Landscape analysis

Phase transition

Traveling salesman problem

Assignment problem

Knapsack problem

Bin-packing

Graph coloring

Timetabling
48/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cor.2011.07.006

esponding author.

ail addresses: kate.smith-miles@monash.edu

s@monash.edu (L. Lopes).
a b s t r a c t

Discovering the conditions under which an optimization algorithm or search heuristic will succeed

or fail is critical for understanding the strengths and weaknesses of different algorithms, and for

automated algorithm selection. Large scale experimental studies – studying the performance of a

variety of optimization algorithms across a large collection of diverse problem instances – provide the

resources to derive these conditions. Data mining techniques can be used to learn the relationships

between the critical features of the instances and the performance of algorithms. This paper discusses

how we can adequately characterize the features of a problem instance that have impact on difficulty in

terms of algorithmic performance, and how such features can be defined and measured for various

optimization problems. We provide a comprehensive survey of the research field with a focus on six

combinatorial optimization problems: assignment, traveling salesman, and knapsack problems, bin-

packing, graph coloring, and timetabling. For these problems – which are important abstractions of

many real-world problems – we review hardness-revealing features as developed over decades of

research, and we discuss the suitability of more problem-independent landscape metrics. We discuss

how the features developed for one problem may be transferred to study related problems exhibiting

similar structures.

& 2011 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . 875

2. Algorithm selection . 877

3. Problem independent feature construction. 877

4. Problem specific feature construction . 878

4.1. Assignment problems . 878

4.2. Traveling salesman problems . 880

4.3. Knapsack problems . 881

4.4. Bin-packing problems . 882

4.5. Graph problems . 882

4.6. Timetabling problems . 884

4.7. Constraint satisfaction problems . 885

5. Discussion and future directions . 885

6. Conclusions . 886

Acknowledgments . 886

References . 886
ll rights reserved.

(K. Smith-Miles),
1. Introduction

For many decades, researchers have been developing ever-
more sophisticated algorithms for solving hard optimization
problems. These algorithms include mathematical programming
approaches, constraint programming, and many heuristics includ-
ing meta-heuristics and nature-inspired heuristics. Experimental

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.07.006
mailto:kate.smith-miles@monash.edu
mailto:leo.lopes@monash.edu
dx.doi.org/10.1016/j.cor.2011.07.006
dx.doi.org/10.1016/j.cor.2011.07.006

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889876
studies have been conducted to determine which algorithms
perform best, usually based on publicly available collections of
benchmark datasets. The conclusions from these comparisons are
often not insightful [69], limited by the scale of the studies which
typically restrict either the type or quantity of benchmark
problem instances used, or consider only a small number of
algorithms [12]. The no-free-lunch (NFL) theorems [153] tell us
that there does not exist a single algorithm that can be expected
to outperform all other algorithms on all problem instances. If a
study demonstrates the superiority of one algorithm over a set of
other algorithms, then one may claim that there are probably
untested problem instances where we could expect this algorithm
to be outperformed. A description of the conditions under which
an algorithm can be expected to succeed or fail is rarely included
in the study [41].

The true value of good experimental studies lies in their ability
to answer two key questions. The first question is: which algo-

rithm in a (broad) portfolio is likely to be best for a relevant set of

problem instances? Useful are studies where diverse algorithms
are compared across enough instances (making statistical conclu-
sions valid), with the types of instances matched to the interests
of the study (e.g. real-world instances, or intentionally challen-
ging instances [88]). A good experimental study can uncover
relationships between features of instances and algorithmic
performance. The outcome can be an automated algorithm selec-
tion model predicting the algorithm from a given portfolio that is
likely to be best for a given instance. The second question that can
potentially be addressed by good experimental studies is a more
general and far-reaching one: for which types of problem instances

can we expect a given algorithm in a portfolio to perform well, and

why? Answers to this second question hold the key to under-
standing the strengths and weaknesses of algorithms, and have
implications for improved algorithm design.

These questions have been raised by various research com-
munities. In the meta-heuristics community statements such as
‘‘currently there is still a strong lack of understanding of how
exactly the relative performance of different meta-heuristics
depends on instance characteristics’’ [134] have highlighted the
need to measure key characteristics of optimization problems and
explore their relationship with algorithm behavior. In the artifi-
cial intelligence community, a similar concept has lead to the
development of algorithm portfolios, whereby knowledge of the
relationship between instance characteristics and algorithm per-
formance based on training data is used to build a regression
model to predict which algorithm is likely to perform best for a
new problem instance [59,85]. This approach of selecting the
likely best algorithm from a portfolio after gaining knowledge
into that relationship has been most successful, winning the 2007
SAT (constraint satisfaction) competition [155]. There have also
been extensions of these ideas beyond static or off-line algorithm
selection to reactive search [14] and racing algorithms [19,91],
where knowledge of the characteristics or features of the search
space is exploited to fine-tune or re-select an algorithm during
run-time [51,119,133].

A key challenge with all of these approaches is to adequately
characterize the problem instance search space by devising
suitable measures. In order for any useful knowledge to be
learned from modeling the relationships between problem
instance characteristics and algorithm performance we need to
ensure that we are measuring features of the problem instances
that are revealing of the relative hardness of each problem
instance as well as revealing of the strengths and weaknesses of
the various algorithms.

So how can we determine if an optimization problem, or an
instance, is hard or challenging for a particular algorithm? And
what are the characteristics or features of the instance that
present this challenge? The most straightforward features of an
optimization problem instance are those that are defined by the
sub-class of the instance: features like the number of variables
and constraints, whether the matrices storing instance para-
meters are symmetric, etc. There are numerous candidate fea-
tures that can be derived by computational feature extraction
processes applied to instance parameters that often serve well as
proxy measures for instance difficulty. We note here the distinc-
tion between the definition of a feature, and the suitable mea-
surement of that feature.

Measuring hardness of an instance for a particular algorithm is
typically done by comparing the optimization precision reached
after a certain number of iterations compared to other algorithms,
and/or by comparing the number of iterations taken to reach the
best solution compared to other algorithms [154]. More sophis-
ticated measures of hardness of a problem for a particular
algorithm include measuring the fraction of the search space that
corresponds to a better solution than the algorithm was able to
find [89]. These performance metrics may enable us to determine
if an algorithm struggles with a problem instance or solves it
easily, and have been used to demonstrate that there are indeed
classes of problems that are intrinsically harder than others for
different algorithms [89]. However, they do not help us to explain
why this might be the case.

To understand the challenging features or properties of the
problem instance, there have been numerous efforts to character-
ize the objective function and search space, identifying challenges
such as isolation, deception, multi-modality, and features such as
the size of basins of attraction [10,61,87,154], as well as landscape
metrics (reviewed in Section 3) based on analysis of autocorrela-
tion structures and number and distributions of local minima
[108,121]. Obviously these features can only be measured after an
extensive analysis of the landscape, and are not suitable as inputs
to a performance prediction model that seeks to answer our first
question about which algorithm is likely to perform best for a
given instance. They are useful for our second question—for
gathering insights into the relationship between the structure of
the problem and the performance of algorithms for the purposes
of algorithm design and explaining performance. As a preliminary
step for automated algorithm selection though, we need to ensure
that the set of features used to characterize problem instances are
quickly measurable.

Despite the importance of this key task, very little focus has
been given in the literature as to how to construct features for
characterizing a set of problem instances as a preliminary step for
algorithm selection and performance modeling. As early as 1976,
Rice posed the algorithm selection problem [110], defined as
learning a mapping from feature space to algorithm performance
space, and acknowledged the importance of selecting the right
features to characterize the hardness of problem instances. For
any optimization problem there is a variety of problem-specific
metrics that could be used to expose the relative hardness of
problem instances, as recent studies on phase transitions have
shown [1,143]. In addition, we may wish to include metrics to
expose the relative strengths (and weaknesses) of algorithms in
the portfolio. Further, rules of guidance may be appropriate, in
order to select the candidate features that are likely to be most
useful for studying the difficulty of a given optimization problem.

This paper aims to provide a starting point for answering the
critical question: how do we devise a suitable set of hardness-
revealing features and/or metrics for an optimization problem?
We tackle this question by first revisiting the framework for
algorithm selection of Rice [110], presented in Section 2. We have
recently used this framework to tackle our first question focused
on automated algorithm selection for a number of optimization
problems (traveling salesman [126,130], timetabling [129],

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 877
quadratic assignment [128], and job shop scheduling [131]), and
have achieved excellent accuracy in predicting the best algorithm.
The success of this framework depends critically upon the chosen
features, where one must ensure that the relationship to algo-
rithm performance can be learned. This paper describes the
efforts to date on the identification and construction of suitable
hardness-revealing problem features: problem-independent fea-
tures based on search space and landscape analysis in Section 3,
and problem-specific features that have been constructed for a
wide range of combinatorial optimization problems in Section 4.
We have chosen broad classes of combinatorial optimization
problems, providing new generalized formulations in some cases,
that form the core of other variations and many real-world
problems. These formulations allow us to unify the literature
and highlight where features from one problem can be adapted to
study another related problem. Promising directions for future
research are discussed in Section 5, and conclusions are drawn in
Section 6.
2. Algorithm selection

As early as 1976, Rice [110] proposed a framework for the
algorithm selection problem (ASP), which seeks to predict which
algorithm from a portfolio is likely to perform best based on
measurable features of a collection of problem instances. There
are four essential components of the model:
�
 the problem space P represents the set of instances of a
problem;

�
 the feature space F contains measurable characteristics of the

instances generated by a computational feature extraction
process applied to P;

�
 the algorithm space A is the set (portfolio) of all considered

algorithms for tackling the problem;

�
 the performance space Y represents the mapping of each

algorithm result for a given problem instance to a vector of
performance metrics (e.g. running time, solution quality, etc.).

In addition, we need to find a mechanism for generating the
mapping from feature space to algorithm space. The algorithm
selection problem can be formally stated as: For a given problem
instance xAP, with feature vector f ðxÞAF , find the selection
mapping Sðf ðxÞÞ into algorithm space A, such that the selected
algorithm aAA maximizes the performance metric JyJ for
yða,xÞAY. The collection of data describing fP,A,Y,F g is known
as the meta-data. Rice’s framework for algorithm selection is
summarized in Fig. 1.

There have been many studies in the broad area of algorithm
performance prediction, which is strongly related to algorithm
selection in the sense that supervised learning or regression
models are used to predict the performance ranking of a set of
Fig. 1. The algorithm selection problem.
algorithms, given a set of features of the instances. In the artificial
intelligence (AI) community, most of the relevant studies
[71,84,85] have focused on constraint satisfaction problems like
SAT (P, in Rice’s notation), using solvers like DPLL, CPLEX or
heuristics ðAÞ, and building a regression model (S) to use the
features of the problem structure ðF Þ to predict the run-time
performance of the algorithms ðYÞ. In recent years these studies
have extended into the algorithm portfolio approach [155] and a
focus on dynamic selection of algorithm components in real-time
[119,133]. In the machine learning community, research in the
field of meta-learning [2,26,146] (learning about learning) has
focused on classification problems ðPÞ, solved using typical
machine learning classifiers such as decision trees, neural net-
works, or support vector machines ðAÞ, where supervised learning
methods (S) have been used to learn the relationship between the
statistical and information theoretic measures of the instances
ðF Þ and the accuracy ðYÞ of the classifier algorithms. In the
operations research community, there has been more focus on
studying search space characteristics using landscape analysis
metrics [18,77,94,132,134]. The developments in hyper-heuristics
[28], which use a higher-level heuristic to select amongst simple
heuristic search algorithms, can also be discussed within Rice’s
framework since the performance of simple heuristics can be seen
as features ðF Þ as an alternative to calculating intrinsic character-
istics of the problem instances. Clearly, Rice’s framework is a
useful approach to unifying the cross-disciplinary literature. Our
survey paper [127] has discussed the developments in algorithm
selection across a variety of disciplines, using Rice’s notation as a
unifying framework, through which ideas for cross-fertilization
can be explored.

It is interesting to note though that Rice’s framework provides
no advice about the mapping from problem instance space P to
the feature space F , which is the focus of this paper. Rice and co-
authors went on to use the approach to automatically select
algorithms for solving partial differential [149], numerical inte-
gration problems [107] and scientific software packages [111],
but they acknowledged ‘‘the way problem features affect methods
is complex and algorithm selection might depend in an unstable
way on the features actually used’’ [107]. While the construction
of suitable features cannot be incorporated readily into Rice’s
abstract model, largely due to the problem-specific nature of the
feature construction process (to be discussed in Section 4), we
acknowledge here the criticality of the task of constructing
suitable candidate features that adequately measure the relative
difficulty of the instances. Once suitable candidate features have
been constructed, well-studied feature selection methods (see for
example [104,140,144,156]) can be employed to determine an
optimal subset of the features. We refer the interested reader to
[63], an excellent survey paper on feature selection. We now
focus on the construction of suitable candidate features via
problem-independent metrics (in Section 3) before turning to
the construction of problem-specific features (in Section 4).
3. Problem independent feature construction

One successful approach to characterize the degree of diffi-
culty of an optimization problem has been to consider the search
space and its properties. Fitness landscape analysis [108,121] is
the term used to characterize the search space. We start by
reviewing the definition of a fitness landscape, and then we
review metrics to characterize its properties.

A fitness landscape is a tuple composed of a set of solutions O,
a fitness function F, which assigns a numeric value to each
solution, and a neighborhood Nk defined over the set O, which
is given by a distance metric of size k. More precisely, the fitness

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889878
landscape L is defined as

L¼ ðO,F,NkÞ ð1Þ

where

F : O-R ð2Þ

NkðuÞ ¼ fvAO : dðu,vÞrkg ð3Þ

with the distance metric dðu,vÞ defined as the number of applica-
tions of an elementary operator (such as flipping binary variables)
to transform one solution uAO to another vAO. The fitness
landscape L can be viewed equivalently as a graph with O as
the vertices and the edges included if they connect vertices within
the neighborhood Nk [136]. We note that the landscape for a
problem is not defined until the solution set O is known, so it can
only be useful for gaining insights into algorithm design (our
second question), and not for automated algorithm selection (our
first question).

Now that the fitness landscape has been defined, we describe
metrics that have been developed to characterize it. One feature
of a fitness landscape is its ruggedness, measured by calculating
the autocorrelation of the time series recording the solution
quality generated by a random walk process. The autocorrelation
function

rðsÞ � 1

s2
Fðm�sÞ

Xm�s

t ¼ 1

ðFðutÞ�FÞðFðutþ sÞ�FÞ ð4Þ

of a time series fFðutÞg defines the correlation of two points
s steps away along a random walk of length m through the
fitness landscape (s2

F denotes the variance of the fitness values).
The landscape is considered to be rugged if the autocorrelation
function is low. A hierarchy of combinatorial optimization pro-
blems has been proposed [5] in relation to the ruggedness of their
associated landscape, defined by the neighborhood and cost
function; it supports well the relative performance of local search
algorithms found in the literature.

Another common feature used to characterize fitness land-
scapes is the fitness distance correlation (FDC) [75] which tries to
measure the difficulty of problem instances by determining the
correlation between the fitness value and distance to the nearest
optimum in the search space. The FDC can be estimated by

rðF,dÞ �
1

jOjsFsd

X

uAO

ðFðuÞ�FÞðdðuÞ�dÞ ¼
covðF,dÞ

sFsd
ð5Þ

with d(u) being the minimum distance from a solution (local
optimum) to a globally optimal solution. A value of r¼�1 shows
that the fitness and the distance to the optimum are perfectly
negatively correlated; thus, for problems where the goal is
maximization of the fitness function, the search is relatively easy.
A FDC of r¼ 1 provides a more challenging task for a local search
algorithm seeking to maximize fitness. Several studies have been
conducted to show that the FDC can be misleading for certain
types of functions, and that scatter plots of fitness against
distance can reveal the structure of the landscape in these
circumstances [105].

Other landscape analysis features include the number and
distribution of local minima [151], the structure of the basins of
attraction [10], the degree of randomness in the location of the
optima [87], the density of the states in the landscape [114], and
the Kolmogorov complexity of the landscape which measures the
degree of structure (as opposed to randomness) that algorithms
may be able to exploit [23].

Many of these metrics have been used to characterize a variety
of combinatorial optimization problems, including the traveling
salesman problem [132], job shop scheduling [18], quadratic
assignment problems [95], and knapsack problems [136], to name
just a few examples. Extensions of landscape analysis to multi-
objective functions has also been extensively studied [44,77].
Most of these studies have supported the view that some of these
features are useful predictors of problem difficulty (except some
types of functions like ridge functions [105]). Certainly, minimi-
zation problems with low FDC and short autocorrelation length
seem to be hard for all local search methods in general, but
‘‘despite extensive analyses of the fitness landscapes of numerous
combinatorial optimization problems, the link between problem
difficulty and fitness landscape structure is poorly understood’’
[18]. Considering in addition the need for these features to be able
to explain variation in algorithm performance, relying solely on
the use of landscape features to discriminate between the
performance of different algorithms is unlikely to be very
revealing.

The final set of problem-independent features that can be
constructed to characterize a search space or landscape are based
on the concept of landmarking [101]. Here, metrics gathered from
the performance of simple and quick algorithms (such as gradient
descent) are used to characterize the relative difficulty of the
problem instances, as a proxy measure and as an alternative to a
computationally expensive feature calculation or exploration of
the entire landscape. The use of landmarks as features within an
algorithm selection framework is similar to the hyper-heuristics
approach [28] whereby a higher-level heuristic is used to deter-
mine the switch between lower-level simple heuristics selected
from a portfolio, without any problem-specific knowledge
included as features.

If our goal is to obtain a good set of features within a time
constrained setting, as required for automated algorithm selec-
tion, then it makes sense to combine landmarking with problem-
specific features constructed with knowledge of what makes
problem instances challenging. If our goal extends beyond auto-
mated algorithm selection to the (time-unconstrained) develop-
ment of genuine insights to inform algorithm design, then the
problem-independent landscape analysis metrics, combined with
problem-specific features, may provide the richest set of features
from which to explore the constituents of problem difficulty. This
is a hypothesis that we leave for a future paper.
4. Problem specific feature construction

In this section we present some common combinatorial
optimization problems, and review some of the features that
have been constructed to characterize problem difficulty.
We focus on broad classes of combinatorial optimization problems,
which form the core of many practical optimization problems:
assignment, traveling salesman, and knapsack problems, bin-pack-
ing, graph coloring, and timetabling. Throughout this section, we
adopt a uniform style for formulating the problems which, in many
cases, results in a weak formulation. It should be noted that many
formulations are possible for each of these problems, and much
effort has been spent by many researchers over several decades to
improve integer programming representations [139] (for example,
by redefining constraint sets with tighter linear relaxations). It is
not our goal here to give a state-of-the-art review of integer
programming formulations for combinatorial optimization pro-
blems, but rather to summarize these problems in terms of a
common notation; it will be helpful for a coherent discussion of
problem-specific features.

4.1. Assignment problems

Assignment problems are generally concerned with assigning
labels to objects, whether those objects are people or machines

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 879
assigned to tasks, facilities being assigned locations, etc. Depend-
ing on the costs of the assignments, the objective function may be
linear or quadratic, and the constraints may include budget or
capacity constraints. We present here a generalized formulation
of the assignment problem between N objects and M labels, from
which most commonly studied variations are special cases.
We express all families of assignment problem in this generalized
form for convenience of discussing the literature only. Special
cases with related formulations are not necessarily related in
complexity. Furthermore, for some special cases there are tighter
formulations than the most generic one.

Let:
�
 xi,j ¼ 1 if object i is assigned label j, and 0 otherwise;

�
 D¼ ðdj,lÞ, the M�M distance matrix between labels;

�
 V ¼ ðvi,kÞ, the N�N volume of flow between objects;

�
 W ¼ ðwi,jÞ, the N�M weight matrix for each assignment;

�
 C ¼ ðci,jÞ, the N�M matrix of fixed assignment costs;

�
 wi, the capacity of each object;

�
 s1,s2, artificial slack variables, included to generalize the

formulation for either equality or inequality constraints.

Then the generalized quadratic assignment problem (GQAP) can
be expressed as

minimize
XN

i ¼ 1

XM

j ¼ 1

XN

k ¼ 1

XM

l ¼ 1

xi,jdj,lvi,kxk,lþ
XN

i ¼ 1

XM

j ¼ 1

ci,jxi,j ð6Þ

subject to
X

i

xi,jþs1,j ¼ 1 8jAf1, . . . ,Mg ð7Þ

X

j

wi,jxi,jþs2,i ¼ wi 8iAf1, . . . ,Ng ð8Þ

xi,jAf0,1g 8ði,jÞAf1, . . . ,Ng � f1, . . . ,Mg ð9Þ

s1,jZ0, s2,iZ0 8ði,jÞAf1, . . . ,Ng � f1, . . . ,Mg ð10Þ

Cario et al. [29] considered the impact of the parameters of the
linear generalized assignment problem (GAP) (with no quadratic
cost term, D¼ 0Þ in Eq. (6), and s1 ¼ 0 in Eq. (7) on the perfor-
mance of two solvers and four heuristics. The problem instances
were characterized by a set of features including the problem size
N (with N¼M), the magnitude of the cost coefficients ci,j, the
tightness of the constraints, as well as the correlation structure
between the objective function parameters ci,j, and the constraint
coefficients wi,j and the capacity requirements wi in Eq. (8). Their
conclusions stated that the correlation between the objective
function costs and the capacity constraint coefficients can have a
significant impact on the ability of algorithms to solve the GAP.
Specifically, the branch-and-bound solvers LINDO and CPLEX
performed poorly on problem instances with strongly negatively
correlated coefficients, perhaps due to the difficulty they experi-
ence pruning the tree when the choice is between variables with
high cost and low weights versus low costs and high weights. The
heuristics (mostly greedy) performed better with increasing
absolute values of the correlation feature. They also considered
the gap between the objective function of the linear programming
relaxation of the GAP (relaxing the integrality constraint given
by Eq. (9)) and the known optimal 0–1 solution as a feature to
characterize the problem difficulty. The heuristics performed
better on problem instances where this gap was small, while
the exact solvers were largely unaffected by this feature. Correla-
tion structure is clearly a relevant problem-specific feature, and
has been shown to be revealing of algorithm performance on
other problems involving similar constraints, such as knapsack
problems [68,109].
If we set s1 ¼ 0,s2 ¼ 0,W ¼ 1, and w¼ 1 so that Eqs. (7) and (8)
become the standard permutation constraints:
X

i

xi,j ¼ 1 8jAf1, . . . ,Mg ð11Þ

X

j

xi,j ¼ 1 8Af1, . . . ,Ng ð12Þ

then we arrive at the quadratic assignment problem (QAP). Unlike
in the case of the linear assignment problem, in the QAP we must
explicitly keep the integrality constraint Eq. (9). The QAP is
concerned with assigning a set of N facilities to a set of N (again
with N¼M) locations in such a way as to minimize the total cost
of the volume of flow between facilities. In some variants the
fixed cost component C is also kept. Lawler [82] proposed a more
general version of the QAP, with a four-dimensional matrix C

replacing matrices D, V and C.
The QAP is one of the most well-studied NP-hard optimization

problems. Despite the breakthrough of solving the well-known
instance NUG30 in a week using a massively parallel branch-and-
bound code [7], proving optimality is still not practical for general
QAPs significantly larger than N¼30, although a variety of
good lower bounds exist [8,27,103,106]. Commercial solvers like
Gurobi and CPLEX are often able to produce good solutions on
careful QAP formulations, but are only able to prove optimality if
some of the bounds mentioned are incorporated into the search,
since the LP relaxations of the pure models tend to be weak. Even
for meta-heuristics researchers the QAP offers a great challenge,
despite the fact that there are natural formulations of the QAP
based on permutations of short strings – every permutation being
feasible – a structure that in theory is especially amenable to
meta-heuristic searches.

The difficulty of the problem varies considerably depending on
the nature of the objective function, captured in the matrices D, V

and C. There has been much research over many years focused on
measuring the characteristics of the search space for QAPs.
The earliest feature was the dominance approach of Vollmann
and Buffa [147] which measures the extent to which the matrices
demonstrate dominant patterns (e.g. a large volume of flow
between a small number of facilities corresponds to a high flow
dominance, and likewise, large distances between a small number
of facilities corresponds to a high distance dominance).
The dominance feature is calculated as the standard deviation of
the matrix entries divided by their average value. Presence of high
dominance of either D or C, can indicate that there is significant
variation in the costs of the optimal solution and the worst
solution, and the landscape of the problem is more rugged.
Additional features of the QAP problem structure include the
problem size N as well as the sparsity of the volume and distance
matrices, defined as N0=N2 where N0 is the number of zero entries
in the matrix. Analytic expressions for the mean and variance of
the QAP objective function across the search space have also been
used as a feature to characterize instance difficulty [90] and were
shown to account for variations in algorithm performance on
some key benchmark problems not explained by dominance
metrics alone. Additional features used in numerous studies of
algorithm performance include the problem-independent land-
scape analysis metrics such as ruggedness [6,95,134].

For these studies, the generation of test problem instances
displaying a range of characteristics is critical, and the QAP is
relatively well served in this regard. The well-studied benchmark
collection of QAP instances, QAPLIB, contains about 130 instances
that have been grouped into four classes [135], based on the
methods for generating D and V: (i) unstructured, randomly
generated instances (entries in matrices D and V generated at
random according to a uniform distribution), (ii) grid-based

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889880
distance matrix (distance matrix D based on Manhattan distance
of grid locations), (iii) real-life instances (generated from real
practical applications of the QAP, characterized by flow matrices V

containing frequent zero entries), and (iv) real-life like instances
(larger artificial datasets with similar distributions to class iii).
Other instances have been designed to be hard [45]. The most
systematic and comprehensive set of QAP instances has been
generated by Stutzle and Fernandes [134], who generated six
different classes of QAP instances of different sizes ranging from
N¼50 to 500, resulting in a total of 644 new benchmark
instances.

4.2. Traveling salesman problems

The traveling salesman problem (TSP) involves finding the
minimal cost tour visiting each of N cities exactly once and
returning to the starting city. The travel cost between city i and
city j is notated as ci,j and asymmetry of the travel cost matrix C

ðci,jacj,iÞ renames the problem to the asymmetric traveling sales-
man problem (ATSP) [74]. This problem variant is more general
and challenging; it describes also certain scheduling problems.
Another important feature of (A)TSP instances is whether or not
the costs in C satisfy the triangle inequality [100].

Let xi,j ¼ 1 if city i is followed by city j in the tour, and
0 otherwise. Then the ATSP can be expressed as

minimize
XN

i ¼ 1

XN

j ¼ 1

ci,jxi,j ð13Þ

subject to
X

iAS

X

jAS

xi,jr jSj�1 8Saf0g, S� f1,2, . . . ,Ng ð14Þ

and Eqs: ð9Þ, ð11Þ,ð12Þ ð15Þ

This formulation of the ATSP resembles that of the assignment
problem, with the additional subtour elimination constraint (14).
An alternative formulation, which does not require the subtour
elimination constraint, involves redefining the binary variable xi,j

to be 1 if city i is visited at stop j in the tour, and 0 otherwise. The
permutation constraints given by Eqs. (9), (11), (12) remain, but
Eq. (14) can be dropped if this quadratic objective function is used
instead of the linear one; and the (now quadratic) objective
function is

minimize
XN

i ¼ 1

XN

j ¼ 1

XN

k ¼ 1

xi,jci,kðxk,jþ1þxk,j�1Þ ð16Þ

The quadratic formulation, while avoiding the subtour pro-
blems, creates a non-convex quadratic objective function with
many local minima, and has been used primarily within the
neural network community due to the internal dynamics of the
Hopfield neural network naturally minimizing quadratic energy
functions [125]. For most other communities, the integer linear
programming formulation, often strengthened by dynamic con-
straints produced during the traversal of the branch-and-bound
tree, or simpler formulations based on defining a permutation
vector of cities, have been used.

The difficulty of this problem has been well-studied for many
years. Properties of the cost matrix C naturally govern the
difficulty. For example, if all of the inter-city costs were identical,
the problem is extremely easy to solve and there are ðn�1Þ!
equally minimal cost solutions. Christofides’ [33] polynomial
time approximation algorithm showed that ATSP instances with
costs satisfying the triangle inequality were much easier to solve
that those where the triangle inequality did not hold, and the
proof of this was demonstrated soon after Papadimitriou and
Steiglitz [100].
By the early 1990s, the AI community had started to explore
the question of whether all NP-complete problems could be
characterized as easy or hard depending on some critical para-
meter embedded within the problem. Cheeseman et al. [30]
conjectured that this was the case, that phase transitions exist
for all NP-complete problems including the TSP, and contain at
least one critical control parameter around which the most
difficult problem instances are clustered. The degree to which
the triangle inequality is satisfied is a strong candidate for such a
parameter, as are several metrics of variance within the cost
matrix C. The value of these metrics has been demonstrated for
both exact approaches [30] and heuristics such as ant colony
optimization [112]. But are there other parameters that can be
constructed from C that could demonstrate such a phase transi-
tion from easy to hard?

Some researchers have shown for the Euclidean TSP in the
plane that phase transitions exist for the TSP decision problem
[54,138], which seeks to determine a binary (yes/no) response to
the question, does a tour of length less than l exist? If the N cities
are distributed randomly within a square of area A, then the
decision problem becomes extremely difficult for instances with
ðl=

ffiffiffiffiffiffiffi
NA
p
Þ� 0:75Þ [54]. Below this phase transition boundary,

instances are over-constrained and the decision problem is easy
(there is not likely to be a tour of length less than l), and above
this boundary the instances are under-constrained and the
decision problem is also easy (there is likely to be a tour of length
less than l). The decision problem is only difficult around the
boundary provided by the critical phase transition parameter
ðl=

ffiffiffiffiffiffiffi
NA
p
Þ� 0:75Þ. Returning to the optimization version of the

general ATSP, Zhang and colleagues have examined the distribu-
tion of costs (distances) and shown that the number of distinct
distance values affects algorithm performance [158], and that
phase transitions exist controlled by the fraction of distinct
distances [157]. The critical control parameter b given by the
relation ðb�2Þ log10ðNÞ ¼ 2:1 was determined by numerical
experiments of heuristics based on Nr1500 cities.

Similar to the concept of landmarking [101] and hyper-
heuristics [28], the difficulty of the ATSP can also be characterized
by the cost of the assignment problem solution when the subtour
elimination constraints (14) are relaxed. Studies have shown that
the difference between the costs of the ATSP and the relaxed
assignment problem is influenced by the number of zero costs
(distances) in the matrix C [49]. Landscape metrics have also been
calculated for the ATSP and TSP [132], and have shown that the
landscape is highly correlated and can be well understood in
terms of the mean and variance of the costs, the value of N, as well
as the average number of exchanges of edges (switching place-
ment of cities in the tour) permitted by various algorithms. These
landscape metrics require a thorough search of the solution
space; as such they are not useful for automated algorithm
performance prediction. Metrics related to the size of the back-
bone [76] also fall into this category. A backbone variable has
fixed values amongst all optimal solutions, and if its value is
changed it becomes impossible to reach an optimal solution.
A larger backbone corresponds to a highly constrained, more
difficult problem. So the fraction of the variables that comprise
the backbone correlates well with problem difficulty, but this
fraction cannot readily be calculated until all optimal solutions
have been found.

The final contribution towards characterizing the difficulty
of TSP instances comes from those who have been seeking
to generate hard instances. van Hemert [142] has used genetic
algorithms to evolve TSP instances that are difficult for the
Lin–Kernighan algorithm [86] and its variants to solve. This is
not done by studying structural properties of hard instances, and
then generating instances that exhibit those properties, but by

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 881
using the performance of the Lin–Kernighan algorithm as a proxy
for instance difficulty, which becomes the fitness function for an
evolutionary algorithm to evolve instances that maximize their
difficulty (for that algorithm). The statistical properties of the
generated instances can then be studied to glean some insight
into the properties that these instances share, and what distin-
guishes them from randomly generated instances. This approach
[141] has shown the importance of the cluster distribution of the
cities, and the location and distribution of outliers. The ratio of the
number of clusters to the number of cities was demonstrated
experimentally ðNr200Þ to create an easy–hard–easy phase
transition, with instance difficulty maximized when the ratio is
in the range [0.1,0.11]. In this region, the average number of steps
required for the Lin–Kernighan algorithm to reach a ‘‘good
solution’’ was 5.9 times greater than that required for randomly
generated instances [141]. By such an analysis of evolved hard
instances, one can extract ideal instance features for automated
algorithm selection, as shown recently by Smith-Miles and
van Hemert in a series of studies of two variations of the
Lin–Kernighan algorithm [130,126].

4.3. Knapsack problems

A generalization of the knapsack problem (GKP) involves
placing up to ki copies of N kinds of items into M knapsacks. Each
item of kind i is worth ci and measures wi,p along dimension
pA1, . . . ,P. Each knapsack j has capacity wj,p along dimension p.
The goal is to maximize the value in the knapsacks while
respecting all the capacities.

Let xi,j be the number of items of kind i included in knapsack j.
Then the GKP can be expressed as

maximize
XN

i ¼ 1

XM

j ¼ 1

cixi,j ð17Þ

subject to
X

i

wi,pxi,jrwj,p 8ðj,pÞAf1, . . . ,Mg � f1, . . . ,Pg ð18Þ

X

j

xi,jrki 8i¼ 1, . . . ,N ð19Þ

xi,jAZ 8ði,jÞAf1, . . . ,Ng � f1, . . . ,Mg ð20Þ

By far the most studied case of the GKP is the traditional
Knapsack problem from Held and Karp when M¼ P¼ 1 and k¼ 1
(0–1 Knapsack problem). In another important case, commonly
referred to as the multi-dimensional knapsack (MKP), M¼1 and
k¼ 1 while P41. Of special interest is the case where P¼2
(known as 2KP or bi-dimensional knapsack). The difficulty of
several variants of the MKP has been characterized [68,109] by
using a set of features related to the correlations between the
instance parameters (weights, profits, and capacities) and the
constraint slackness ratio for each knapsack j defined as wj=

P
wi.

Based on this ratio alone, instances are classified as tightly
constrained (ratio around 0.3) or loosely constrained (ratio
around 0.7). An examination of the commonly used MKP bench-
mark instances [16] utilizing these metrics revealed that they are
rather similar in terms of correlations and slackness ratios, and
the new set of instances generated by Hill and Reilly [68]
controlled the characteristics of the instances to enable their
relative difficulty for various algorithmic approaches to be
explored. Cho et al. [32] utilized these features to demonstrate
that both enumerative methods (like dynamic programming) and
heuristics (like greedy search) were affected by variation in the
constraint characteristics and correlations with item values. They
examined the effect of instance features on the performance of
three greedy heuristics, developing rules based on observations
rather than a predictive model. Instances were classified into
various types based on their features, and rules developed to
determine which heuristic should be used. In addition, a heuristic
was developed with a new gradient function for the greedy
search, based on knowledge gleaned from exploration of the
meta-data. This new heuristic improved the solution quality in
69% of unseen test instances. Clearly, this is a case of meta-data
being used for both automated algorithm selection (with the
mapping S based on inspection of the relationships in the data
rather than any machine learning process) as well as the creation
of insights to assist with the development of new and improved
algorithms.

The difficulty of the 0–1 Knapsack problem with only one
knapsack, ðM¼ 1, P¼ 1,k¼ 1Þ and capacity w, has been well-
studied for many decades. Chvatal [36] described in 1980 a class
of problems that are hard for recursive algorithms such as
dynamic programming, with run-times growing exponentially
and bounded from below by 2N=10. These problems have ci ¼wi

randomly selected from the range ½1,10N=2
�, and the capacity

w¼
P

wi=2. Balas and Zemel [11] showed that instances with
li ¼ ci=wi ratios close to each other for all i are indeed difficult for
enumeration methods, but not for their new heuristic. They
proposed a new measure of difficulty to characterize instances,
based on the gap between the linear programming solution
(relaxing the constraint (20)) and the optimal solution to the
0–1 problem, notated as d. If do1 the instance is deemed to be
easy, but otherwise, the degree of difficulty is measured as

D¼
2d

maxijci�wil
%

j
ð21Þ

where l% is the critical ratio of item values to weights that
provides a unique solution to the pair of inequalities:

S1ðlÞowrS2ðlÞ ð22Þ

where

S1ðlÞ ¼
X

ijli 4l

wi and S2ðlÞ ¼ S1ðlÞþ
X

ijli ¼ l

wi ð23Þ

Clearly this metric cannot be used unless the optimal solution
is known. Chung et al. [34] described a set of hard instances for
the unbounded general knapsack problem as those with
wi ¼wþ i�1 and ci ¼wiþz for all i, with the instances fully
parameterized by the set fw,N,z,wg. They noted that such pro-
blems have d41 and usually have a narrow range of li ratios
making them challenging, consistent with the observations of
others [11,36]. They observed that if the capacity w is a multiple of
w (the weight of the first item), then the problem is trivial. Other
observations included that if the difference between an item’s
weight and value is zero (z¼0) then the instance is easy to solve
for branch-and-bound algorithms [34]. For instances with a near
constant difference between ci and wi values though, regardless of
whether this difference (z) is positive or negative, the instances
are hard to solve for branch-and-bound algorithms, at least for
certain values of w that are not multiples of w.

The relationship between ci, wi, and the range ½1,R� from which
they are randomly generated has been the focus of several 0–1
Knapsack investigations [68,81,92,102]. Pisinger [102] generated
several classes of instances, from strongly correlated to weakly
correlated, and increased the data range R with a view to challen-
ging the run-time of a dynamic programming algorithm. Weakly
correlated instances, with wi randomly generated from ½1,R� and ci

randomly generated from the range ½wi�R=10,wiþR=10� were
easier than strongly correlated instances, and are believed to be
more realistic of real-world knapsack problems [55,102]. They are
also more stable as R increases. For strongly correlated instances
with ci ¼wiþR=10 the value of d used by Balas and Zemel [11] is

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889882
large, and the instances are ill-conditioned and hard. As the range R

is increased the instances tend to become even more challenging,
but correlation alone does not explain the performance of algo-
rithms, and the skewness of the distribution of ci values in feasible
solutions has also been used to explain the relationship between
correlation structure and run-time performance [55].

The goal of using such metrics to learn the relationship between
instance characteristics and algorithm performance has been
tackled by Cho et al. [32] for the MKP, as discussed above, and
also by Hall and Posner [65] for the 0–1 Knapsack problem. While
Cho et al. focused only on the correlation and constraint slackness
metrics, Hall and Posner considered a wide range of features to
characterize instance difficulty, some of which are based on the
intrinsic properties of the instance, and others requiring knowledge
of the optimal solutions. Their feature set included: N, the
coefficients of variation of the item values and the weights, the
knapsack size w, the ratio of w=N, the proportion of dominant item
pairs (i,j) for which ciZcj and wirwj, and a number of metrics
related to the gap between the upper bound provided by the linear
programming relaxation and the lower bound from the first
feasible solution, the proportion of the variables that are backbone
variables in both the relaxed and binary solutions, and the Balas–
Zemel difficulty metric D provided in Eq. (21). Their meta-data (see
Section 2), generated according to their previously published
guidelines for such experimental studies [64], included the perfor-
mance of two algorithms: dynamic programming and a branch and
search algorithm [65]. A regression model was used to learn the
relationship between the feature set and algorithm performance,
producing R2 ¼ 97:7% for predicting the run-time of dynamic
programming, but only R2 ¼ 30% for predicting the performance
of the branch and search algorithm. This was despite utilizing
much domain knowledge of the conditions under which the branch
and search algorithm performs well or poorly when devising
suitable features. Feature subset selection was not discussed
however, and it is likely that the optimal subset of features to
predict algorithm performance is algorithm-dependent.

4.4. Bin-packing problems

Bin-packing is closely related to the MKP. We use the same
decision variable xi,j, but the objective changes; it is now to
minimize the number of knapsacks M used to pack all items,
rather than maximizing the value from the subset of items packed
into a fixed number M of knapsacks. To count the number of
knapsacks used, we define a new variable yjAf0,1g that is 1 if the
jth knapsack (bin) is used. Choosing M large enough, we define
the generalized bin-packing problem (GBPP) to be

minimize
XM

j ¼ 1

yj ð24Þ

subject to
X

i

wi,jxi,jrwj,pyj,

8ðj,pÞAf1, . . . ,Mg � f1, . . . ,Pg ð25Þ

X

j

xi,j ¼ ki, 8iAf1, . . . ,Ng ð26Þ

and Eq: ð20Þ

In the classical bin-packing problem (BPP) we have P¼1, k¼ 1,
and wj,k ¼ w (identical capacities for all knapsacks). There is not
much to parametrize BPP instances apart from the weight vector
and the capacity. Several researchers have investigated the effect
of the range of the weights [48,122], showing that a smaller range
makes the problem more difficult for common algorithms such as
the first-fit-decreasing algorithm [38]. Suppose the weights are
generated from the range ½vL � w,vU � w� so that vL and vU corre-
spond to the lower and upper bounds on the weights respectively,
relative to the bin capacity w. Instances generated with vL ¼ 1=4
and vU ¼ 1=2 are considered to be special cases, known as
‘‘triplets’’, since a well-filled bin must contain one heavy and
two small items. These instances are difficult since a solution that
deviates only slightly from this strategy is likely to lead to much
wastage of capacity, and will be far from optimal [122]. Thus the
backbone is quite large for triplet instances. Other ranges also
create difficult instances when the average weight wC1=3.
Instances with average weights close to 1/n for nZ3 have also
been shown to be difficult [48].

The analysis conducted by Gent [52] suggests another useful
set of measures could be constructed based on the proportion of
item pairs whose weights sum to the capacity, since this provides
some proxy measure of constrainedness, and the likelihood of
have two large items or a triplet solution. The genetic algorithm of
Ross et al. [117] selects one of four heuristics to switch to during
run-time, but this method does not utilize any metrics about the
relative difficulty of the instance. There seems to be much room
for additional analysis of hard instances of bin-packing, particu-
larly examining statistical properties of the weight vector and
dominance metrics.

4.5. Graph problems

Many combinatorial optimization problems can be formulated
as optimization problems on graphs. In many other cases,
concrete relationships from specific domains can be expressed
using graphs, and the features of those graphs provide insight into
algorithmic behavior.

A graph G is defined as G¼ ðV ,EÞ comprising a set of N vertices
or nodes V, and a set of edges E connecting pairs of vertices. The
adjacency matrix A of the graph G is an N�N matrix whose
elements Ai,j are 1 if there is an edge from vertex i to vertex j,
otherwise 0. Common optimization problems on graphs include
finding subgraphs, coloring problems, routing and network flow
problems, and covering problems, but a review of graph problems
is not the purpose of this section and excellent and comprehen-
sive descriptions of the wide variety of optimization problems
based on graph structures can be found elsewhere [20,25,40,62].
In this section we will focus on a few key optimization problems
arising from graphs, and discuss how properties of graphs have
been used to characterize the relative difficulty of instances of
these problems.

Regardless of the optimization problem, a graph can readily be
characterized by a number of simple features such as its size N,
whether its edges are directed or undirected, the degree of
connectivity (edge density), and statistics of the vertex degrees.
The density of a graph is the ratio of the number of edges M of the
graph to the number of possible edges in the complete graph, and
is given by

rðGÞ ¼ 2M

NðN�1Þ
ð27Þ

For specific optimization problems on graphs, we may be
interested in measuring certain properties. Spectral analysis of
the adjacency matrix A and the Laplacian matrix L¼D�A, where
D is a diagonal matrix containing the degree of each vertex as its
entries, can be used to provide information about the properties
of the graph [35], with certain eigenvalues revealing information
about partitioning characteristics for example [60]. The connec-
tivity of the graph can also be measured, not just by its density,
but by its resistance to becoming disconnected after removal of
edges. If removal of a single edge causes the graph to become

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 883
disconnected, then that edge is called a bridge, and the number of
bridges in a graph can be measured [99]. The connectivity of a
graph can be summarized by Cheeger’s constant or isoperimetric
number [98], given by

hG ¼ min
SDV :SaØ

jEðS,SÞj

minðjSj,jSjÞ
ð28Þ

with hG ¼ 0 corresponding to a disconnected graph, and hG40
showing the degree of connectedness.

The density metric can be modified to consider the minimum
number of edges needing to be removed or added to achieve
certain properties (such as being connected, planar, bipartite, etc.)
and the conditional density can then be measured [152]. If a
graph does not possess a certain property, it is sometimes useful
to know how far off it is from having the property. A graph G is
said to be e-far from satisfying a property if eN2 edges need to be
added and/or deleted to G in order to convert it into a graph
which satisfies the property. Certain algorithms may rely on
assumptions about graph properties, and it is useful to explore
how the presence of these properties, or the distance from these
properties, contributes to algorithm performance. For example,
genetic algorithms are premised on the building blocks hypoth-
esis [56,148] that assumes that if two good disjoint sub-solutions
are suitably combined then a better solution can be obtained.
Establishing whether the building block hypothesis holds for a
given graph optimization problem and an instance may be no
trivial task however.

Certainly algorithms exist for testing various properties of
graphs including regularity [78], isomorphism, triangle-freeness,
partitionability, and cycles [4]. While these may be useful features
to describe an instance, it is important to examine the computa-
tional complexity of algorithms required to determine these
properties and ensure that they are indeed simple to measure
as features for automated algorithm selection. Property testing
has attracted much attention in recent years [3,57,58,113], and
defines a test to be efficient and therefore ‘‘testable’’ if the
number of queries made by the testing algorithm is a constant
regardless of the size of the graph. So while there are many
features or properties of graphs that may be valuable to shed light
on variation in algorithm performance, the concept of testable
features is a relevant one for first question about automated
algorithm selection. For our second question about understanding
the types of instances for which we can expect a given algorithm
to perform well, we may be prepared to consider a computation-
ally expensive calculation of features if it will lead to the desired
insights.

We describe now some examples of optimization problems on
graphs and research that has contributed to knowledge about
what makes instances of these problems hard. Much of this
research has focused on showing the existence of phase transi-
tions [30,67]. The first problem we consider is graph coloring,
where the goal is to color each vertex of the graph in such a way
that no two vertices connected by an edge are of the same color.
Variations of this problem include finding the minimum number
of colors needed to color the whole graph, or finding the max-
imum sub-graph that can be colored with k colors. Most research
has focused on the Erdös–Rényi model [47] of a random graph
GðN,pÞ where p is the probability of an edge being connected,
given by p¼ d=ðN�1Þ, and d is the average degree of the vertices.
Random instances of graph coloring have been shown to be hard
[145], and the chromatic number required to color a random
graph has been shown to be ld or ldþ1 where ld is the smallest
integer l such that do2lðlnðlÞÞ [1]. Suppose however that the
number of colors available, k, is less that the chromatic number?
The k-colorability problem has been shown to undergo a phase
transition when the average degree of the vertices is around
d¼ 2k lnðkÞ�1þoð1Þ [80]. Phase transitions can also be controlled
by the edge connectivity parameter p. Culberson and Luo [42]
explored the difficulty of instances of the k-colorability problem
for various combinations of N, k, and p and showed that the
hardest instances are those where the optimal solution involves
equal distribution of colors across the graph, or where the graphs
are equi-partite. Other factors that contribute to hard instances
include minimal variation in the degree of the vertices [46].
The location of the phase transition in p has been explored as a
function of the size of the graph [37], and the hardest random
instances of 3-colorable graphs have been shown by Eiben et al.
[46] to be for p in the range ½7=N,8=N�, tested on a range of
approaches including genetic algorithms.

Another important optimization problem based on a graph is the
minimum vertex cover problem. This problem involves finding the
smallest subset V̂ DV such that each edge of the graph G is incident
to at least one vertex in V̂ . The decision form of this problem is to
determine if a vertex cover exists for a given cover of size C.
The phase transition for the decision form of the problem
with random graphs has been shown to occur at a critical value
of C at approximately 0:39N for graphs with low connectivity
(po1=ðlnðN�1ÞÞ, with the critical point for more densely connected
graphs being harder to quantify [66,150]. This observation has been
further explored by clustering the optimal solutions in the landscape
and observing that optimal solutions are collected in a finite number
of tight clusters for graphs with low connectivity, while for denser
graphs the number of clusters diverges and structure is lost [13].

The set covering problem aims to find a minimal number of
krN of N defined subsets of the universe set f1, . . . ,Mg, such that
the union of the k subsets is the universe set f1, . . . ,Mg. This is
equivalent to finding a minimal cover of the incidence matrix
which contains information on whether a vertex is connected to
an edge [120]. Difficult instances of the set covering problem have
been studied by Avis [9], who was motivated by earlier analysis of
the difficulty of knapsack problems [36] and took a similar
approach to develop insights into why the set covering instances
of Fulkerson et al. [50] were hard for branch-and-bound algo-
rithms. These instances are generated from a class known as
Steiner triple systems, which have three one’s in each row of the
incidence matrix, so properties of the incidence matrix are clearly
significant for this problem [120].

The maximum clique problem aims to find the largest subset of
vertices V̂ DV such that each vertex in V̂ is connected by an edge
to every other vertex in V̂ . Battiti and Protasi [15] have investi-
gated the factors affecting the run-time performance of several
heuristics utilized in a reactive local search algorithm, and found
that the run-time tends to be proportional to the number of
missing edges, with dense graphs being easier to solve quickly.
Bomze [21] has transformed the landscape of the problem by
regularization of the adjacency matrix, and showed that this helps
to isolate the global minima, so properties of the adjacency matrix
are also likely to impact on algorithm performance. The decision
form of the maximum clique problem is equivalent to the
decision form of the minimum vertex cover problem [22] since
a graph G¼ ðV ,EÞ has a vertex cover W with jWjrC if and only if
W is in a clique in the graph ðV ,EÞ with jW jZ jV j�C. This
equivalency makes the features discussed earlier for the mini-
mum vertex cover problem suitable candidates for the maximum
clique problem, and vice-versa.

It is clear that there are many properties of graphs that can be
measured or tested, beyond the connectivity and vertex degree
measures that are common to most phase transition studies.
For automated algorithm selection, promising directions include
considering the spectral properties of the incidence and adjacency
matrices [35] which has received relatively little attention.

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889884
4.6. Timetabling problems

Timetabling problems, in their most generic form [43], involve
assigning classes and teachers to rooms at certain time periods in
such a way that no person is assigned to more than one room at any
time, and no room has more than one class and teacher in it at any
time. Such a timetable is considered to be feasible (meaning clash-
free), but a number of context-specific constraints may need to be
considered for the timetable to become operational. Timetabling
problems studied in the literature range from school timetabling
[137], to university examination timetabling [116], and university
course timetabling [118]. Further information about several kinds
of timetabling problems and a wealth of research resources can be
found associated with the International Timetabling Competition
[93]. In order to discuss these variants efficiently, we introduce a
common notation to describe them mathematically, although this is
far from the most efficient integer programming representation
of any of the problems. We define an event as the entity requiring
assignment to a room and time period as follows:

Let xi,j,k ¼ 1 if event i is assigned to period j in room k, and
0 otherwise. Suppose there are N events, P periods, M rooms, K

classes, and T teachers. In addition, data about the problem is
stored in the following matrices:

Ĉ c,i ¼ 1 if class c is included in event i (and 0 otherwise); and
T̂ t,i ¼ 1 if teacher t is included in event i (and 0 otherwise).

Then a feasible solution to the timetabling problem (TTP)
satisfies the following constraints:
X

k

xi,j,k ¼ 1 8ði,jÞAf1, . . . ,Ng � f1, . . . Pg ð29Þ

X

j

xi,j,k ¼ 1 8ði,kÞAf1, . . . ,Ng � f1, . . .Mg ð30Þ

X

i

xi,j,kĈ c,ir1 8ðk,j,cÞAf1, . . . ,Mg � f1, . . . Pg � f1, . . . ,Kg ð31Þ

X

i

xi,j,kT̂ t,ir1 8ðk,j,tÞAf1, . . . ,Mg � f1, . . . Pg � f1, . . . ,Tg ð32Þ

xi,j,kAf0,1g 8ði,j,kÞAf1, . . . ,Ng � f1, . . . Pg � f1, . . . ,Mg ð33Þ

These constraints are rather similar to assignment constraints,
and the allocation of events to time periods can also be viewed as
a form of bin-packing. Such timetabling problems are also well
represented as a graph coloring problem, where the vertices of
the graph represent the N events, edges are present if two events
cannot occur at the same time, and the task is to assign one of p

colors (where p is the number of time periods available) to each
vertex in such a way that no vertices connected by an edge share
the same color. Edges can also be weighted by the severity of the
clash. Let ni be the number of students involved in event i, then it
makes sense to also include the product weight ninj on the edges
(i,j) as a measure of the severity of the clash.

The difficulty of various timetabling problems has been studied,
and depends largely on the additional constraints and objectives
that are added to the problem beyond these basic feasibility
constraints. For example, studies of classic school timetabling, where
an event is defined as a pairing of class and teacher, have shown
[137] that the computational complexity of the problem is affected
by adding or removing constraints such as block requirements
(where 2 lessons are blocked consecutively). Exam timetabling
defines an event as an exam paper, and adds hard constraints
related to seat capacity for the rooms in addition to avoiding student
clashes. A soft constraint that is often added is to avoid students
undertaking exams in two consecutive time periods. Adding the seat
capacity constraint requires the addition of a knapsack-capacity type
of constraint, similar to Eq. (18), and the seat capacity relative to the
number of students clearly would have a strong influence over the
difficulty of an instance. Ross et al. [116] explored the effect of seat
capacity, as well as graph metrics such as edge density, and
concluded that edge density alone was no guide to the difficulty
experienced by their genetic algorithm. In fact much of the
explanation they found for the failure of the GA to solve certain
problems had to do with the encoding used by the GA to represent
the problem, and the failure to simultaneously tackle the bin-
packing problem component, especially for large exams. Gent and
Walsh [53] considered exam timetabling with the additional con-
straint that lecturers could exclude certain exams from being
scheduled in specific time slots. They compared the properties of
randomly generated instances with real-world instances and found
significant differences in the kinds of large scale structures and
properties of the resulting graphs. In particular, the real-world
examination scheduling problems they considered frequently con-
tained large cliques which made feasible solutions impossible to
find when the number of time periods was insufficient to ensure
that each of the vertices in the clique was assigned a unique color.
Other studies of examination timetabling have shown the impor-
tance of the topology of the graph and its influence on difficulty for
various algorithms [115], including the existence of phase transi-
tions based on connectivity and homogeneity.

University course timetabling defines an event as a course or unit
of study, where each course is associated with a list of students, a set
of required features of a room (e.g. data projector, blackboard, etc.),
and sometimes the name of the lecturer who will teach the course
(although the teaching allocation is often treated as part of the
problem). Data is provided about the number of available rooms,
their capacities and their features. The hard constraints of the course
timetabling problem are to avoid student and room clashes, and to
ensure that the room allocated has the required features. Additional
soft constraints are often considered including avoiding any student
having two consecutive classes, a class in the last period of the day,
or only one class on a given day. Several large scale studies [31,118]
have compared the performance of a variety of meta-heuristic
approaches on this challenging problem. Chiarandini and Stutzle
[31] concluded that the hardness of an instance for a given
algorithm appears to be an intrinsic property of the instance itself,
rather than depending on the algorithm. Instances which were hard
for one algorithm tended to be hard for all algorithms. A detailed
analysis of run-time distributions, correlated with various properties
of the instances was used to explore what makes an instance
difficult. Apart from the parameters that determine the size of the
instance (the number of events, the number of students, and the
maximum number of events per student), they explored the impact
of the maximum number of students per event, and the number of
rooms available, as well as a ratio of the average number of features
per room compared to the number of features available. This last
ratio was suggested to behave like a phase transition parameter,
with the degrees of freedom considerably increased in the search
space if many rooms are well equipped [31]. Rossi-Doria et al. [118]
observed that, based on the parameters of the instance generator
(but not specially constructed features), it was not possible to
predict which meta-heuristic would perform best for a given
instance, but they did observe that heuristics that tackle the
problem as a two-stage solution, solving the bin-packing problem
first, tend to perform better. This approach was taken in Lewis and
Paechter [83] who designed a special-purpose genetic algorithm to
solve the bin-packing sub-problem first to find a feasible solution,
and then to satisfy the soft constraints. Exploring the effectiveness of
this approach on various algorithms, and the dependence of the
instance difficulty on factors known to cause challenges for bin-
packing (as discussed in Section 4.4) was not considered however.

The closest approach to automated algorithm selection for
timetabling problems comes from a study of how well

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 885
MAX2MIN ant systems perform on a set of randomly gener-
ated university course timetabling instances [79]. The authors
measure hardness as proportional to the solution quality achieved
after a fixed running time of the algorithm, and developed a
regression model to predict hardness based on a refined set of
8 features (pruned using a cross-validation method from an
original candidate set of 27 features). Four of these selected
features are based on graph representations of the problem which
include only student clashes for one graph, and then student and
room clashes for a second graph. The four features selected from
the graph properties are the average weighted vertex degree
(weighted by the number of student clashes), the average number
of students per event, the average vertex degree in the first graph,
and the standard deviation of the average vertex degree in the
second graph. Other graph properties were considered insignif-
icant for the linear model. Additional selected features included
statistical properties of room constraints: the average weighted
number of room options per event, the number of events
with only one room option, and the standard deviation of the
number of events that were suited to a given room. The most
important feature according to their model, was the slackness
of the instance, defined as the number of rooms multiplied by the
number of available time periods. If this quantity exceeds the
number of events that need to be timetabled, then the instance
contains slackness and is more easily solved, otherwise it is
constrained. The full set of candidate features considered in this
study is not included in the paper [79], but there is certainly room
to consider a wide range of graph properties, and non-linear
models, to extend this work and gain insights into hardness
prediction. The chromatic number of a graph, which is the
number of colors needed to color the graph to find a clash-free
solution to the timetabling problem, is often greater than the
number of available time periods, and surely provides some
valuable information about the difficulty of an instance. While
calculating the chromatic number may not be efficient as a
feature of the instance for automated algorithm selection, a recent
study has shown that the clustering coefficient and edge density
combined are useful predictors of chromatic numbers of time-
tabling conflict graphs [17]. The clustering coefficient is defined as
the probability that two neighboring vertices of a given vertex are
also neighbors of each other, and may provide another useful
feature to characterize instance difficulty for graph based pro-
blems like timetabling. Our previous work [129] has shown that
features related to the timetabling problem and the graph color-
ing problem can be combined to partition the instance space into
different classes of instances, with strong correlation to the source
of the instances (randomly generated versus real-world).

4.7. Constraint satisfaction problems

This paper has focused on optimization problems, which
typically involve satisfying a set of constraints while minimizing
or maximizing some objective function. There is an enormous body
of literature, predominantly from the AI community, focused on
constraint satisfaction problems (with no objective function) such
as the SAT problem: a generic constraint satisfaction problem with
binary variables and arbitrary constraints expressed as clauses. In
recent years, many studies have contributed considerable progress
towards studying the empirical hardness of instances of such
problems. Selman et al. [123] demonstrated the existence of
algorithm-independent phase transitions for random 3-SAT pro-
blems, and later provided a formal proof [96], showing that when
the ratio of the number of clauses to variables is approximately
4.26 the instance becomes hard (i.e. takes longer to solve for all
algorithms). Following these findings, much research has been
conducted in the AI community to study algorithm performance
empirically, particularly focusing on identifying features that
correlate with the empirical hardness of problem instances (see
for example [1,24,70,84,85,97,124,155]). Much of this work falls
well under the automated algorithm selection framework of Rice
[110], where regression models are used to predict the (usually
run-time) performance of algorithms based on features of the
instances. Typical features used to characterize the properties of
SAT instances include metrics of the size of instance (number of
clauses and variables, and several ratios), statistical features of the
variable–clause graph, variable graph, and clause graph, ratios of
positive and negative literals in each clause, features based on the
LP relaxation (objective value, fraction of binary variables, variable
integer slack statistics), search space size estimates based on DPLL
algorithm statistics, and often several measures based on local
search statistics [97]. Since this paper is focused on optimization
problems, rather than constraint satisfaction problems, we refer
the reader to the survey paper of Smith-Miles [127] and the
references in this section for further details of approaches to
measuring the difficulty of SAT and other constraint satisfaction
problem in the context of algorithm selection.
5. Discussion and future directions

In our previous work [127], we have provided a unified perspec-
tive on the multi-disciplinary literature on algorithm selection
utilizing the framework of Rice [110], and shown how the meta-
data generated can be used for both automated algorithm selection
as well as obtaining insights into why certain algorithms perform
well on certain classes of problems and not others. The primary
challenge to doing this effectively is the quality of the meta-data,
and the dependence on choosing suitable features of the instances to
reveal relationships to algorithm performance. This paper has
focused on how suitable features can be devised for various optim-
ization problems. The definition of whether the features are suitable
depends greatly on our goal. If we are restricting our attention to
automated algorithm selection, as a form of time-saving to avoid
future trial and error approaches to finding the best algorithm for a
given instance, then features are only suitable if the time taken to
calculate them is significantly less than the time taken to run all of
the candidate algorithms. Landmarking approaches [101] have been
shown to be useful as features to quickly characterize an optimiza-
tion problem instance (e.g. by relaxing integrality constraints and
taking information from a linear programming solution as a proxy
measure of instance difficulty).

While many studies have measured the properties of particu-
lar combinatorial optimization problems, it is also apparent that
there is very little borrowing of concepts and ideas for suitable
features between problem classes. Many of the problems we have
considered in this paper are related to each other in pivotal ways,
such as the one-to-one assignment constraints found in QAP, TSP,
TTP; the capacity constraints found in GQAP, MKP, BPP, TPP; the
relationship between TPP, BPP, and graph coloring, etc. Under-
standing these relationships helps us to identify opportunities for
considering new features to characterize problem difficulty based
on the shared properties of the problems. Some of the more
revealing features that seem to correlate with instance difficulty
(either algorithm-dependent, or as an algorithm-independent
phase transition control parameter) include:
�
 for problems with capacity constraints—slackness metrics, the
correlations between capacities and profit coefficients, ratios
of coefficients to capacities, the ranges of the coefficients;

�
 for problems with matrices—the dominance and sparsity of

the matrices, the distribution of the matrix entries, spectral
properties of the matrices;

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889886
�
 for problems involving distances—the clustering properties of
the locations, the degree to which the triangle inequality is
satisfied;

�
 for problems with graph representations—the statistical prop-

erties of the graph (vertex degrees and edge density), the size
of the cliques, the spectral properties of the adjacency and
Laplacian matrices of the graph.

When statistical properties of problem instances are described,
they are invariably restricted to the mean and variance of some
observation, but additional statistical metrics that consider
distributions may create an additional wealth of candidate features
from which to learn the relationships to algorithm performance.

For automated algorithm selection for combinatorial optimiza-
tion problems, only a few studies have utilized the extended
methodology of Rice [110] to devise suitable features of problem
instances and learn their relationship to algorithm performance,
enabling prediction of the algorithm most likely to be best for a new
instance. Studies of this nature include Nudelman et al. [97] and Xu
et al. [155] for SAT problems, Cho et al. [32] and Hall and Posner [65]
for knapsack problems, Leyton-Brown et al. [84] for combinatorial
auctions, and Smith-Miles and colleagues for the TSP [130,126], QAP
[128], timetabling [129], and job shop scheduling [131]. Most of
these studies have used regression models to learn the linear
relationship between the features and algorithm performance, with
the exception of the studies of Smith-Miles [128–131,126] which
have used non-linear modeling (neural networks) and rule-based
learners, as well as clustering to infer relationships and visualize the
similarities and differences between classes of instances. Clearly
there is significantly more potential to apply this approach to a
wider range of optimization problems, and to utilize the full
repertoire of knowledge discovery processes to explore the relation-
ships that may be hidden in the meta-data.

Further opportunities exist to extend the definition of an
algorithm to include a particular instantiation of an algorithm,
with unique parameter setting. Thus the same optimization
algorithm run with different parameter settings (e.g. simulated
annealing with two different cooling schedules) can be viewed as
two different algorithms in the portfolio, and we can use this
methodology to explore the optimal parameter settings for an
algorithm for different classes of problem instances. Parameter
optimization [72,73] falls well within the scope of intelligent
optimization and algorithm selection frameworks.

For the second question posed by this paper, understanding
which instance classes match the strengths and weaknesses of
different algorithms, there is much more work to be done. Firstly,
our hypothesis that the richest possible set of features will come
from a combination of both problem-independent and problem-
specific metrics needs to be confirmed or denied. Do generic
features provide additional discrimination or explanatory power
beyond those provided by problem-specific metrics? Could new
generic features be derived that make obsolete problem-specific
metrics, and lead the way to a generic approach for all optimization
problems? We suspect not, but this issue deserves to be explored in
greater depth. Critical to this question is an understanding of when
the meta-data is sufficient for the required insights to be revealed by
data mining techniques. We will be developing a mathematical
definition of sufficiency of the meta-data in future research. Instance
generation techniques, and commonly used benchmark test
instances, must come under the spotlight to determine if they
provide sufficient coverage of the instance space, and we have
already begun to explore this issue [88]. We will also need to
develop a mechanism for visualizing the strengths and weaknesses
of an algorithm in the high-dimensional instance space character-
ized by relevant features. Recent ideas on this topic have defined an
algorithm footprint [39] as the boundary in instance space where
strong algorithm performance is expected to generalize beyond the
training examples. The mathematical definition of this boundary
and its visualization in high-dimensional instance space is an
exciting challenge for future research.
6. Conclusions

The aim of this paper has been to present a coherent summary of
work relevant to measuring the difficulty of instances of combina-
torial optimization problems. Such measures are critical for identify-
ing the particular conditions under which an algorithm is likely to
perform well. In order to provide a starting point for researchers
focused on this task, we have provided a comprehensive review of
the numerous studies over many decades that have sought to
understand the intrinsic properties that determine the difficulty of
a set of problem instances for certain algorithms. While there is
much literature that has established easy–hard phase transition
control parameters for a particular optimization problem, there is
little work that seeks to generalize what has been learned to provide
possible measures of instance difficulty for other related problems.
It is timely to take stock of what has been learned about specific
optimization problems, and how this knowledge can be applied to
related problems. In this paper we have presented generalized
formulations of classical problems. A wide collection of problem-
specific features have been reviewed, and we have discussed the
opportunities to adapt these features to other problems exhibiting
similar structures. Our generalized formulations are intended to
reveal the relationships between specific problem formulations, and
to suggest suitable features from related problems that may be
predictive of algorithm performance. We have also reviewed a
number of problem-independent features of an optimization pro-
blem in the form of landscape analysis. Landscape metrics are
usually not suitable as features for automated algorithm selection,
due to the fact that they require knowledge of all local and global
minima of the problem. Nevertheless, they can provide a useful set
of features to explore why some algorithms struggle on certain
classes of problem instances, and can assist with the goal of insight
and improved algorithm design.

The algorithm selection framework of Rice provides a firm
foundation upon which future research can develop. The construc-
tion of candidate features to measure instance difficulty is an
important first step. If the quality of the meta-data is sufficient,
particularly in how we generate a diverse enough set of test
instances while measuring and selecting the ‘‘right features’’,
we will have greater chance of success when answering both
questions addressed in this paper: which algorithm in a broad portfolio

is likely to be best for a relevant set of problem instances? As well as the
more ambitious question, for which types of problem instances can we

expect a given algorithm in a portfolio to perform well, and why?
Acknowledgments

The authors are grateful to the two reviewers and editor for
their valuable suggestions which greatly improved the clarity of
this paper.

References

[1] Achlioptas D, Naor A, Peres Y. Rigorous location of phase transitions in hard
optimization problems. Nature 2005;435(7043):759–64.

[2] Ali S, Smith KA. On learning algorithm selection for classification. Applied
Soft Computing Journal 2006;6(2):119–38.

[3] Alon N, Fischer E, Krivelevich M, Szegedy M. Efficient testing of large graphs.
Combinatorica 2000;20(4):451–76.

[4] Alon N, Fischer E, Newman I, Shapira A. A combinatorial characterization of
the testable graph properties: it’s all about regularity. In: Proceedings of the

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 887
38th annual ACM symposium on theory of computing. New York, NY, USA:
ACM; 2006. p. 251–60.

[5] Angel E, Zissimopoulos V. On the classification of NP-complete problems in
terms of their correlation coefficient. Discrete Applied Mathematics
2000;99(1–3):261–77.

[6] Angel E, Zissimopoulos V. On the hardness of the quadratic assignment
problem with metaheuristics. Journal of Heuristics 2002;8(4):399–414.

[7] Anstreicher K, Brixius N, Goux JP, Linderoth J. Solving large quadratic
assignment problems on computational grids. Mathematical Programming
2002;91(3):563–88.

[8] Anstreicher KM, Brixius NW. A new bound for the quadratic assignment
problem based on convex quadratic programming. Mathematical Program-
ming 2001;89(3):341–57.

[9] Avis D. A note on some computationally difficult set covering problems.
Mathematical Programming 1980;18(1):138–45.

[10] Bachelet V. Métaheuristiques parall�eles hybrides: application au probl�eme
d’affectation quadratique. PhD thesis, Universite des Sciences et Technolo-
gies de Lille; 1999.

[11] Balas E, Zemel E. An algorithm for large zero–one knapsack problems.
Operations Research 1980:1130–54.

[12] Barr RS, Golden BL, Kelly JP, Resende MGC, Stewart WR. Designing and
reporting on computational experiments with heuristic methods. Journal of
Heuristics 1995;1(1):9–32.

[13] Barthel W, Hartmann AK. Clustering analysis of the ground-state structure
of the vertex-cover problem. Physical Review E 2004;70(6):66120.

[14] Battiti R. Reactive self-search: toward tuning heuristics. In: Modern heur-
istic search methods; 1996. p. 61–83.

[15] Battiti R, Protasi M. Reactive local search for the maximum clique problem
1. Algorithmica 2001;29(4):610–37.

[16] Beasley JE. OR-library: distributing test problems by electronic mail. Journal
of the Operational Research Society 1990:1069–72.

[17] Beyrouthy C, Burke EK, McCollum B, McMullan P, Parkes AJ. Enrollment
generators, clustering and chromatic numbers. In: Proceedings of the 7th
international conference on the practice and theory of automated time-
tabling (PATAT 2008), Montreal, Canada; 2008.

[18] Bierwirth C, Mattfeld DC, Watson JP. Landscape regularity and random
walks for the job-shop scheduling problem. In: Lecture notes in computer
science, vol. 3004; 2004. p. 21–30.

[19] Birattari M, Balaprakash P, Dorigo M. The ACO/F-RACE algorithm for
combinatorial optimization under uncertainty. In: Metaheuristics-progress
in complex systems optimization. Operations research/computer science
interfaces series. Berlin, Germany: Springer Verlag; 2006. p. 189–203.

[20] Bollobas B. Modern graph theory. Springer Verlag; 1998.
[21] Bomze IM. Evolution towards the maximum clique. Journal of Global

Optimization 1997;10(2):143–64.
[22] Bomze IM, Budinich M, Pardalos PM, Pelillo M. The maximum clique

problem. In: Handbook of combinatorial optimization, vol. 4(1); 1999.
p. 1–74.

[23] Borenstein Y, Poli R. Kolmogorov complexity, optimization and hardness.
In: IEEE congress on evolutionary computation, 2006. CEC 2006; 2006.
p. 112–9.

[24] Boukeas G, Halatsis C, Zissimopoulos V, Stamatopoulos P. Measures of
intrinsic hardness for constraint satisfaction problem instances. In: Lecture
notes in computer science, vol. 2932; 2004. p. 184–95.

[25] Brandstädt A, Spinrad JP. Graph classes: a survey. Society for Industrial
Mathematics; 1999.

[26] Brazdil PB, Soares C, Da Costa JP. Ranking learning algorithms: using IBL and
meta-learning on accuracy and time results. Machine Learning 2003;50(3):
251–77.

[27] Burer S, Vandenbussche D. Solving lift-and-project relaxations of binary
integer programs. SIAM Journal on Optimization 2006;16(3):726–50.

[28] Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S. Hyper-
heuristics: an emerging direction in modern search technology. In: Inter-
national series in operations research and management science; 2003.
p. 457–74.

[29] Cario MC, Clifford JJ, Hill RR, Yang I, Yang K, Reilly CH. An investigation of
the relationship between problem characteristics and algorithm perfor-
mance: a case study of the GAP. IIE Transactions 2002;34(3):297–312.

[30] Cheeseman P, Kanefsky B, Taylor WM. Where the really hard problems are.
In: Proceedings of the 12th IJCAI; 1991. p. 331–7.

[31] Chiarandini M, Stutzle T. Experimental evaluation of course timetabling
algorithms. Technical Report, Technical Report AIDA-02-05, FG Intellektik,
TU Darmstadt; 2002.

[32] Cho YK, Moore JT, Hill RR, Reilly CH. Exploiting empirical knowledge for bi-
dimensional knapsack problem heuristics. International Journal of Indus-
trial and Systems Engineering 2008;3(5):530–48.

[33] Christofides N. Worst-case analysis of a new heuristic for the traveling
salesman problem, Technical Report, Report 388, Graduate School of
Industrial Administration, Carnegie Mellon University; 1976.

[34] Chung CS, Hung MS, Rom WO. A hard knapsack problem. Naval Research
Logistics 1988;35(1).

[35] Chung FRK. Spectral graph theory. American Mathematical Society; 1997.
[36] Chvatal V. Hard knapsack problems. Operations Research 1980:1402–11.
[37] Clearwater SH, Hogg T. Problem structure heuristics and scaling behavior

for genetic algorithms. Artificial Intelligence 1996;81(1–2):327–47.
[38] Coffman Jr EG, Garey MR, Johnson DS. Approximation algorithms for bin
packing: a survey. In: Approximation algorithms for NP-hard problems.
PWS Publishing Co.; 1996. p. 46–93. ISBN 0534949681.

[39] Corne DW, Reynolds AP. Optimisation and generalisation: footprints in
instance space. In: Proceedings of the 11th international conference on
parallel problem solving from nature: part I. Springer-Verlag; 2010.
p. 22–31. ISBN 3642158439.

[40] Crescenzi P, Kann V. Approximation on the web: a compendium of NP
optimization problems. Randomization and Approximation Techniques in
Computer Science 1997:111–8.

[41] Culberson JC. On the futility of blind search: an algorithmic view of ‘‘no free
lunch’’. Evolutionary Computation 1998;6(2):109–27.

[42] Culberson JC, Luo F. Exploring the k-colorable landscape with iterated
greedy. In: Cliques, coloring, and satisfiability: second DIMACS implemen-
tation challenge, October 11–13, 1993; 1996. p. 245.

[43] de Werra D. An introduction to timetabling. European Journal of Opera-
tional Research 1985;19(2):151–62.

[44] Deb Jr K. Multi-objective genetic algorithms: problem difficulties and
construction of test problems. Evolutionary Computation 1999;7(3):
205–30.

[45] Drezner Z, Hahn PM, Taillard ÉD. Recent advances for the quadratic
assignment problem with special emphasis on instances that are difficult
for meta-heuristic methods. Annals of Operations Research 2005;139(1):
65–94.

[46] Eiben AE, Van Der Hauw JK, Van Hemert JI. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics 1998;4(1):25–46.

[47] Erd +os P, Rényi A. On random graphs I. Publicationes Mathematicae
Debrecen 1959;6:290–7.

[48] Falkenauer E. Tapping the full power of genetic algorithm through suitable
representation and local optimization: application to bin packing. Evolu-
tionary Algorithms in Management Applications 1995:167–82.

[49] Frieze A, Sorkin GB. The probabilistic relationship between the assignment
and asymmetric traveling salesman problems. In: Proceedings of the 12th
annual ACM–SIAM symposium on discrete algorithms. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics; 2001. p. 652–60.

[50] Fulkerson DR, Trotter LE, Nemhouser GL. Two computationally difficult set
covering problems that arise in computing the 1-width of incidence
matrices of Steiner triple systems. Mathematical Programming Study
1974;2:72–84.

[51] Gagliolo M, Schmidhuber J. Learning dynamic algorithm portfolios. Annals
of Mathematics and Artificial Intelligence 2006;47(3):295–328.

[52] Gent IP. Heuristic solution of open bin packing problems. Journal of
Heuristics 1998;3(4):299–304.

[53] Gent IP, Walsh T. Phase transitions from real computational problems. In:
Proceedings of the 8th international symposium on artificial intelligence;
1995.

[54] Gent IP, Walsh T. The TSP phase transition. Artificial Intelligence 1996;88(1–2):
349–58.

[55] Ghosh D, Tathagata B, Ghosh D, Tathagata B. Spotting difficult weakly
correlated binary knapsack problems. Technical Report, Indian Institute of
Management Ahmedabad, (IIMA) Working Papers 2006-01-04; 2006.

[56] Goldberg DE. In: Genetic algorithms in search and optimization; 1989.
[57] Goldreich O. Combinatorial property testing (a survey). In: Randomization

methods in algorithm design: DIMACS Workshop, December 12–14, 1997.
American Mathematical Society; 1998. p. 45.

[58] Goldreich O, Ron D. Property testing in bounded degree graphs. Algorith-
mica 2008;32(2):302–43.

[59] Gomes CP, Selman B. Algorithm portfolio design: theory vs. practice. In:
Proceedings of UAI-97; 1997. p. 190–7.

[60] Gotsman C. On graph partitioning, spectral analysis, and digital mesh
processing. In: Proceedings of the shape modeling international; 2003.
p. 165.

[61] Gras R. How efficient are genetic algorithms to solve high epistasis
deceptive problems? In: IEEE congress on evolutionary computation,
2008. CEC 2008. (IEEE world congress on computational intelligence); 2008.
p. 242–9.

[62] Gross JL, Yellen J. Graph theory and its applications. CRC Press; 2006.
[63] Guyon I, Elisseeff A. An introduction to variable and feature selection. The

Journal of Machine Learning Research 2003;3:1157–82.
[64] Hall NG, Posner ME. Generating experimental data for computational

testing with machine scheduling applications. Operations Research
2001:854–65.

[65] Hall NG, Posner ME. Performance prediction and preselection for optimiza-
tion and heuristic solution procedures. Operations Research 2007;55(4):
703.

[66] Hartmann AK, Weigt M. Statistical mechanics of the vertex-cover problem.
Journal of Physics A—Mathematical and General 2003;36(43):11069–94.

[67] Hartmann AK, Weigt M. Phase transitions in combinatorial optimization
problems: basics, algorithms and statistical mechanics. VCH Verlagsge-
sellschaft Mbh; 2005.

[68] Hill RR, Reilly CH. The effects of coefficient correlation structure in two-
dimensional knapsack problems on solution procedure performance. Man-
agement Science 2000:302–17.

[69] Hooker JN. Testing heuristics: we have it all wrong. Journal of Heuristics
1995;1(1):33–42.

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889888
[70] Hoos HH, Stutzle T. Towards a characterisation of the behaviour of stochastic
local search algorithms for SAT. Artificial Intelligence 1999;112(1–2):
213–32.

[71] Horvitz E, Ruan Y, Gomes C, Kautz H, Selman B, Chickering M. A Bayesian
approach to tackling hard computational problems. In: Proceedings the
17th conference on uncertainty in artificial intelligence (UAI-2001), vol.
216; 2001.

[72] Hutter F, Hoos HH, Leyton-Brown K, Murphy KP. An experimental investi-
gation of model-based parameter optimisation: SPO and beyond. In:
Proceedings of the 11th annual conference on genetic and evolutionary
computation. ACM; 2009. p. 271–8.

[73] Hutter F, Hoos HH, Leyton-Brown K, Stuetzle T. ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence
Research 2009;36(1):267–306.

[74] Johnson D, Gutin G, McGeoch L, Yeo A, Zhang W, Zverovitch A. Experimental
analysis of heuristics for the ATSP. The traveling salesman problem and its
variations.2004. p. 445–87.

[75] Jones T, Forrest S. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In: Proceedings of the 6th international
conference on genetic algorithms; 1995.

[76] Kilby P, Slaney J, Walsh T. The backbone of the travelling sales person. In:
International joint conference on artificial intelligence, vol. 19; 2005. p. 175.

[77] Knowles J, Corne D. Towards landscape analyses to inform the design of a
hybrid local search for the multiobjective quadratic assignment problem.
Soft computing systems: design, management and applications, vol.
12.2002. p. 271–9.

[78] Komlos J, Simonovits M. Szemerédi’s regularity lemma and its applications
in graph theory. Technical Report, Center for Discrete Mathematics &
Theoretical Computer Science; 1995.

[79] Kostuch P, Socha K. Hardness prediction for the university course time-
tabling problem. In: Lecture notes in computer science, vol. 3004; 2004.
p. 135–44.

[80] Krza̧ka"a F, Pagnani A, Weigt M. Threshold values stability analysis and
high-q asymptotics for the coloring problem on random graphs. Physical
Review E 2004;70(4):46705.

[81] Kulanoot A. Algorithms for some hard knapsack problems. PhD thesis,
Curtin University of Technology; 2000.

[82] Lawler EL. The quadratic assignment problem. Management Science
1963:586–99.

[83] Lewis R, Paechter B. Application of the grouping genetic algorithm to
university course timetabling. In: Lecture notes in computer science, vol.
3448; 2005. p. 144–53.

[84] Leyton-Brown K, Nudelman E, Shoham Y. Learning the empirical hardness
of optimization problems: the case of combinatorial auctions. In: Lecture
notes in computer science, vol. 2470; 2002. p. 556–72.

[85] Leyton-Brown K, Nudelman E, Andrew G, McFadden J, Shoham Y. A portfolio
approach to algorithm selection. In: International joint conference on
artificial intelligence, vol. 18; 2003. p. 1542–3.

[86] Lin S, Kernighan BW. An efficient heuristic algorithm for the traveling
salesman problem. Operations Research 1973;21(2).

[87] Locatelli M, Wood GR. Objective function features providing barriers to
rapid global optimization. Journal of Global Optimization 2005;31(4):
549–65.

[88] Lopes L, Smith-Miles KA. Generating applicable synthetic instances for
branch problems. Operations Research, under review.

[89] Macready WG, Wolpert DH. What makes an optimization problem hard.
Complexity 1996;5:40–6.

[90] Maia de Abreu NM, Netto POB, Querido TM, Gouvea EF. Classes of quadratic
assignment problem instances: isomorphism and difficulty measure using a
statistical approach. Discrete Applied Mathematics 2002;124(1–3):103–16.

[91] Maron O, Moore AW. The racing algorithm: model selection for lazy
learners. Artificial Intelligence Review 1997;11(1):193–225.

[92] Martello S, Pisinger D, Toth P. Dynamic programming and strong bounds for
the 0–1 knapsack problem. Management Science 1999:414–24.

[93] McCollum B, Schaerf A, Paechter B, McMullan P, Lewis R, Parkes AJ, et al. Setting
the research agenda in automated timetabling: the second international time-
tabling competition. INFORMS Journal on Computing 2010;22(1):120–30.

[94] Merz P. Advanced fitness landscape analysis and the performance of
memetic algorithms. Evolutionary Computation 2004;12(3):303–25.

[95] Merz P, Freisleben B. Fitness landscape analysis and memetic algorithms for
the quadratic assignment problem. IEEE Transactions on Evolutionary
Computation 2000;4(4):337–52.

[96] Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyansky L. Determining
computational complexity from characteristic’phase transitions. Nature
1999;400(6740):133–7. ISSN 0028-0836.

[97] Nudelman E, Leyton-Brown K, Hoos HH, Devkar A, Shoham Y. Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Lecture
notes in computer science, vol. 3258; 2004. p. 438–52.

[98] Oshikiri G. Cheeger constant and connectivity of graphs. Interdisciplinary
Information Sciences 2002;8(2):147–50.

[99] Ou J. Edge cuts leaving components of order at least m. Discrete Mathe-
matics 2005;305(1–3):365–71.

[100] Papadimitriou CH, Steiglitz K. Some examples of difficult traveling salesman
problems. Operations Research 1978:434–43.

[101] Pfahringer B, Bensusan H, Giraud-Carrier CG. Meta-learning by landmarking
various learning algorithms. In: Proceedings of the 17th international
conference on machine learning table of contents. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.; 2000. p. 743–50.

[102] Pisinger D. Where are the hard knapsack problems? Computers and
Operations Research 2005;32(9):2271–84.

[103] Povh J, Rendl F. Compositive and semidefinite relaxations of the quadratic
assignment problem. Discrete Optimization 2009;6(3):231–41.

[104] Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection.
Pattern Recognition Letters 1994;15(11):1119–25. ISSN 0167-8655.

[105] Quick RJ, Rayward-Smith VJ, Smith GD. Fitness distance correlation and
ridge functions. In: Lecture notes in computer science; 1998. p. 77–86.

[106] Ramakrishnan KG, Resende M, Ramachandran B, Pekny JF. Tight QAP bounds
via linear programming. Series on Applied Mathematics 2002;14:297–304.

[107] Ramakrishnan N, Rice JR, Houstis EN. GAUSS: an online algorithm selection
system for numerical quadrature. Advances in Engineering Software
2002;33(1):27–36.

[108] Reeves CR. Landscapes, operators and heuristic search. Annals of Operations
Research 1999;86:473–90.

[109] Reilly CH. Synthetic optimization problem generation: show us the correla-
tions. INFORMS Journal on Computing 2009;21(3):458–67. ISSN 1526-5528.
doi: http://dx.doi.org/10.1287/ijoc.1090.0330.

[110] Rice JR. The algorithm selection problem. Advances in Computers 1976:
65–118.

[111] Rice JR. Methodology for the algorithm selection problem. In: Performance
evaluation of numerical software: proceedings of the IFIP tc 2.5 working
conference on performance evaluation of numerical software, vol. 301.
North-Holland; 1979.

[112] Ridge E, Kudenko D. An analysis of problem difficulty for a class of
optimisation heuristics. In: Lecture notes in computer science, vol. 4446;
2007. p. 198.

[113] Ron D. Property testing. Combinatorial Optimization 2001;9(2):597–643.
[114] Rose H, Ebeling W, Asselmeyer T. The density of states—a measure of the

difficulty of optimisation problems. In: Parallel problem solving from
nature—PPSN IV: international conference on evolutionary computation,
the 4th international conference on parallel problem solving from nature,
Berlin, Germany, September 22–26, 1996: proceedings. Springer Verlag;
1996. p. 208.

[115] Ross P, Corne D, Terashima-Marı́n H. The phase-transition niche for
evolutionary algorithms in timetabling. In: Practice and theory of auto-
mated timetabling: first international conference, Edinburgh, UK, August
29–Septmber 1, 1995: selected papers. Springer Verlag; 1996. p. 309.

[116] Ross P, Hart E, Corne D. Some observations about GA-based exam time-
tabling. In: Lecture notes in computer science, vol. 1408; 1997. p. 115–29.

[117] Ross P, Marin-Blazquez JG, Schulenburg S, Hart E. Learning a procedure that
can solve hard bin-packing problems: a new ga-based approach to hyper-
heuristics. In: Lecture notes in computer science; 2003. p. 1295–306.

[118] Rossi-Doria O, Sampels M, Birattari M, Chiarandini M, Dorigo M, Gambar-
della LM, et al. A comparison of the performance of different metaheuristics
on the timetabling problem. In: Lecture notes in computer science; 2003.
p. 329–54.

[119] Samulowitz H, Memisevic R. Learning to solve QBF. In: Proceedings of
the national conference on artificial intelligence, vol. 22. Menlo Park, CA,
Cambridge, MA, London: AAAI Press, MIT Press; 1999. p. 255. [2007].

[120] Sassano A. On the facial structure of the set covering polytope. Mathema-
tical Programming 1989;44(1):181–202.

[121] Schiavinotto T, Stützle T. A review of metrics on permutations for search
landscape analysis. Computers & Operations Research 2007;34(10):3143–53.
ISSN 0305-0548.

[122] Schwerin P, Wascher G. The bin-packing problem: a problem generator and
some numerical experiments with FFD packing and MTP. International
Transactions in Operational Research 1997;4(5–6):377–89.

[123] Selman B, Mitchell DG, Levesque HJ. Generating hard satisfiability problems.
Artificial Intelligence 1996;81(1–2):17–29.

[124] Slaney J, Walsh T. Backbones in optimization and approximation. In:
International joint conference on artificial intelligence, vol. 17; 2001.
p. 254–9.

[125] Smith K. An argument for abandoning the travelling salesman problem as
aneural-network benchmark. IEEE Transactions on Neural Networks
1996;7(6):1542–4.

[126] Smith-Miles KA, van Hemert J. Discovering the suitability of optimisation
algorithms by learning from evolved instances. Annals of Mathematics and
Artificial Intelligence, doi: 10.1007/s10472-011-9230-5; published online
19th April 2011.

[127] Smith-Miles KA. Cross-disciplinary perspectives on meta-learning for algo-
rithm selection. ACM Computing Surveys 2008;41(1).

[128] Smith-Miles KA. Towards insightful algorithm selection for optimisation
using meta-learning concepts. In: IEEE international joint conference on
neural networks; 2008. p. 4118–24.

[129] Smith-Miles KA, Lopes L. Generalising algorithm performance in instance
space: a timetabling case study. In: Lecture notes in computer science,
vol. 6683; 2011. p. 524–39.

[130] Smith-Miles KA, van Hemert J. Understanding TSP difficulty by learning
from evolved instances. In: Lecture notes in computer science, vol. 6073;
2010. p. 266–80.

[131] Smith-Miles KA, James RJW, Giffin JW, Tu Y. Understanding the relationship
between scheduling problem structure and heuristic performance using

dx.doi.org/http://dx.doi.org/10.1287/ijoc.1090.0330
10.1007/s10472-011-9230-5

K. Smith-Miles, L. Lopes / Computers & Operations Research 39 (2012) 875–889 889
knowledge discovery. In: Lecture notes in computer science, vol. 5851;
2009. p. 89–103.

[132] Stadler PF, Schnabl W. The landscape of the traveling salesman problem.
Physics Letters A 1992;161(4):337–44.

[133] Streeter M, Golovin D, Smith SF. Combining multiple heuristics online. In:
Proceedings of the national conference on artificial intelligence, vol. 22.
Menlo Park, CA, Cambridge, MA, London: AAAI Press, MIT Press; 1999.
p. 1197. [2007].

[134] Stutzle T, Fernandes S. New benchmark instances for the QAP and the
experimental analysis of algorithms. In: Lecture notes in computer science,
vol. 3004; 2004. p. 199–209.

[135] Taillard ED. Comparison of iterative searches for the quadratic assignment
problem. Location Science 1995;3(2):87–105.

[136] Tavares J, Pereira FB, Costa E. Multidimensional knapsack problem: a fitness
landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics,
Part B 2008;38(3):604–16.

[137] Ten Eikelder HMM, Willemen RJ. Some complexity aspects of secondary
school timetabling problems. In: Proceedings of the 3rd international
conference on practice and theory of automated timetabling (PATAT
2000), Lecture Notes in Computer Sciences, vol. 2079; 2000. p. 18–29.

[138] Thiebaux S, Slaney J, Kilby P. Estimating the hardness of optimisation. In:
ECAI; 2000. p. 123–30.

[139] Trick M. Formulations and reformulations in integer programming. In:
Lecture notes in computer science, vol. 3524; 2005. p. 366–79.

[140] Tsymbal A, Pechenizkiy M, Cunningham P. Diversity in ensemble feature
selection. Technical Report TCD-CS-2003-44, The University of Dublin;
2003.

[141] van Hemert JI. Property analysis of symmetric travelling salesman problem
instances acquired through evolution. In: Proceedings of the European
conference on evolutionary computation in combinatorial optimization
(EvoCop 2005). Springer; 2005.

[142] van Hemert JI. Evolving combinatorial problem instances that are difficult
to solve. Evolutionary Computation 2006;14(4):433–62.

[143] van Hemert JI, Urquhart NB. Phase transition properties of clustered
travelling salesman problem instances generated with evolutionary com-
putation. In: Lecture notes in computer science, vol. 3242; 2004. p. 151–60.

[144] Vasconcelos N. Feature selection by maximum marginal diversity: optim-
ality and implications for visual recognition. In: 2003 IEEE computer society
conference on computer vision and pattern recognition, 2003. Proceedings,
vol. 1; 2003.

[145] Venkatesan R, Levin L. Random instances of a graph coloring problem are
hard. In: Proceedings of the 20th annual ACM symposium on theory of
computing. New York, NY, USA: ACM; 1988. p. 217–22.

[146] Vilalta R, Drissi Y. A perspective view and survey of meta-learning. Artificial
Intelligence Review 2002;18(2):77–95.

[147] Vollmann TE, Buffa ES. The facilities layout problem in perspective. Manage-
ment Science 1966:450–68.

[148] Watson RA, Hornby GS, Pollack JB. Modeling building-block interdepen-
dency. In: Lecture notes in computer science; 1998. p. 97–108.

[149] Weerawarana S, Houstis EN, Rice JR, Joshi A, Houstis CE. Pythia: a knowl-
edge-based system to select scientific algorithms. ACM Transactions on
Mathematical Software 1996;22(4):447–68. ISSN 0098-3500.

[150] Weigt M, Hartmann AK. Number of guards needed by a museum: a phase
transition in vertex covering of random graphs. Physical Review Letters
2000;84(26):6118–21.

[151] Weinberger ED. Local properties of Kauffman’s NK model: a tunably rugged
energy landscape. Physical Review A 1991;44(10):6399–413.

[152] White DR, Harary F. The cohesiveness of blocks in social networks:
node connectivity and conditional density. Sociological Methodology 2001:
305–59.

[153] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1997;1(1):67–82.

[154] Xin B, Chen J, Pan F. Problem difficulty analysis for particle swarm
optimization: deception and modality. In: Proceedings of the first ACM/
SIGEVO summit on genetic and evolutionary computation; 2009. p. 623–30.

[155] Xu L, Hutter F, Hoos HH, Leyton-Brown K. SATzilla-07: the design and
analysis of an algorithm portfolio for SAT. In: Lecture notes in computer
science, vol. 4741; 2007. p. 712.

[156] Yusta SC. Different metaheuristic strategies to solve the feature selection
problem. Pattern Recognition Letters 2009;30(5):525–34. ISSN 0167-8655.

[157] Zhang W. Phase transitions and backbones of the asymmetric traveling
salesman problem. Journal of Artificial Intelligence Research 2004;21:
471–97.

[158] Zhang W, Korf RE. A study of complexity transitions on the asymmetric
traveling salesman problem. Artificial Intelligence 1996;81(1–2):223–39.

	Measuring instance difficulty for combinatorial optimization problems
	Introduction
	Algorithm selection
	Problem independent feature construction
	Problem specific feature construction
	Assignment problems
	Traveling salesman problems
	Knapsack problems
	Bin-packing problems
	Graph problems
	Timetabling problems
	Constraint satisfaction problems

	Discussion and future directions
	Conclusions
	Acknowledgments
	References

