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Abstract

In this supplementary material, we describe in full the structured conditional log-linear model (struc-
tured CLLM) used in the CONTRAfold program. We also provide detailed pseudocode explicitly show-
ing the dynamic programming recurrences needed to reproduce the CONTRAfold algorithm, specifically
CONTRAfold version 1.10.

1 Preliminaries

Let Σ = {A, C, G, U, N} be an alphabet, and consider some string x ∈ ΣL of length L. In the RNA secondary
structure prediction problem, x represents an unfolded RNA string, and xi refers to the ith character of x,
for i = 1, . . . , L. For ease of notation, we say that there are L+1 positions corresponding to x—one position
at each of the two ends of x, and L−1 positions between consecutive nucleotides of x. We will assign indices
ranging from 0 to L for each position. This is illustrated in Figure 1.

Let Y be the space of all possible structures of a sequence x. Structured conditional log-linear models
(structured CLLMs) define the conditional probability of a structure y ∈ Y given an input RNA sequence x

as

P (y | x;w) =
exp(wT F(x, y))

∑

y′∈Y exp(wT F(x, y′))
(1)

=
1

Z(x)
· exp(wT F(x, y)) (2)

where F(x, y) ∈ R
n is an n-dimensional vector of feature counts describing x and y, w ∈ R

n is an n-
dimensional vector of parameters, and Z(x) (known as the partition function of a sequence x) is a nor-
malization constant ensuring that P (y | x;w) forms a legal probability distribution over the space of pos-
sible structures Y. In this representation, the “weight” associated with a structure y for a sequence x is
exp(wT F(x, y)). Because the logarithm of the weight is a linear function of the features F(x, y), this is
typically known as the log-linear representation of a CRF.

Now, consider the following reparameterization of (2). For each entry wi of w, define φi = exp(wi). It
follows that (2) may be rewritten as

P (y | x;w) =
1

Z(x)
·

n
∏

i=1

φ
Fi(x,y)
i (3)

where Fi(x, y) is the ith component of F(x, y). In this alternative representation, the weight associated with

a structure y for a sequence x is a product,
∏n

i=1 φ
Fi(x,y)
i . We refer to this as the potential representation of

a CRF, where each parameter φi is called a potential.
In Figure 2, we list all of the potentials {φi} involved in scoring a structure y. Then, in Section 2, we

define the feature counts {Fi(x, y)} for a sequence x and its structure y. Finally, in the remaining sections, we
describe the dynamic programming recurrences needed to perform inference using our probabilistic model.
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position 4 position 5

nucleotide 5

Figure 1: Positions in a sequence of length L = 10.

φhairpin base φhairpin length[·] φhelix base pair(·, ·)
φhairpin extend φhelix change[·] φhelix closing(·, ·)
φhelix extend φbulge length[·] φsingle base pair stacking left((·, ·), ·)
φmulti base φinternal length[·] φsingle base pair stacking right((·, ·), ·)
φmulti unpaired φinternal asymmetry[·] φterminal mismatch((·, ·), ·, ·)
φmulti paired φinternal full[·][·] φhelix stacking((·, ·), (·, ·))

Figure 2: List of all potentials used in the CONTRAfold model.

2 Basic feature set

In this section, we define the feature counts {Fi(x, y)} for a sequence x and a structure y. One way to do
this is to give, for each potential φi shown in Figure 2, a formula explicitly specifying how to compute the
corresponding feature Fi(x, y).

Here, we will instead define feature counts implicitly by

1. decomposing a secondary structure y into four fundamental types of substructures: hairpins, single-
branched loops, helices, and multi-branched loops;

2. defining a factor1 for each type of substructure as a product of potentials from Figure 2;

3. defining the product
∏n

i=1 φ
Fi(x,y)
i as a product of factors for each substructure in y.

By specifying which potentials are included in the computation of the factor for each type of substructure,
we thus define the feature counts {Fi(x, y)} implicitly as the number of times each potential φi is used in

the product of factors for a structure y.

2.1 Hairpins

A hairpin is a loop with only one adjacent base pair, known as its closing base pair. For 1 ≤ i ≤ j < L,
we say that a hairpin spans positions i to j if xi and xj+1 form the closing base pair (see Figure 3). For
hairpins, energy-based secondary structure folding algorithms such as Mfold assign free energy increments
for each of the following:

• energies corresponding to the length of the loop (i.e., a hairpin spanning positions i to j has length
j − i),

• terminal mismatch stacking energies as a function of the closing base pair (xi, xj+1) and the first
unpaired nucleotides in the loop, xi+1 and xj ,
• bonus free energies for loops containing specific nucleotide sequences, and
• other special cases.

1To be clear, a factor is simply a collection of potentials that are associated with the presence of a particular secondary

structure subunit in a structure y. For example, the factor associated with a hairpin loop is simply the product of the parameter

potentials which are involved in “scoring” the hairpin loop.
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Figure 3: A hairpin loop of length 6 spanning positions i to j.

CONTRAfold uses a simplified scoring model for hairpins which ignores the latter two cases. In particular,
the factor ϕhairpin(i, j) of a hairpin spanning positions i to j is

ϕhairpin(i, j) =

φterminal mismatch((xi, xj+1), xi+1, xj)

·

{

φhairpin length[j − i] if 0 ≤ j − i ≤ 30

φhairpin base · (φhairpin extend)
ln(j−i)

if j − i > 30.
(4)

In the above expression, the first term accounts for terminal mismatches arising from the fact that (xi, xj+1)
are paired, but xi+1 and xj are not.2 The second term scores the hairpin based on its length. For loops
under size 30, potentials are read directly from a table. For longer loops, the factor above directly imitates
typical energy-based scoring schemes, which estimate the free energy increment of a loop of length j − i as

a + b · ln(j − i), (5)

for fixed constants a and b. By analogy, we have

φhairpin base · (φhairpin extend)
ln(j−i)

= exp(ln(φhairpin base) + ln(φhairpin extend) · ln(j − i)) (6)

= exp(a′ + b′ · ln(j − i)) (7)

where

a′ = ln(φhairpin base) (8)

b′ = ln(φhairpin extend). (9)

2.2 Single-branched loops

A single-branched loop is a loop which has two adjacent base pairs. The outermost base pair is called the
external closing base pair whereas the innermost base pair is called the internal closing base pair. Suppose
1 ≤ i ≤ i′ and j′ ≤ j < L. We say that a single-branched loop spans positions i to i′ and j′ to j if xi and
xj+1 form the external closing base pair and xi′+1 and xj′ form the internal closing base pair. To ensure
that the internal closing base pair is well-defined, we require that i′ + 2 ≤ j′ (see Figure 4).

A single-branched loop for which i′ = i and j = j′ is called a stacking pair. A single-branched loop for
which either i′ = i or j = j′ (but not both) is called a bulge. Finally, a single-branched loop for which both

2Here, note that the order of the arguments is important so as to ensure that the parameters are invariant with respect to

the orientation of the substructure. For example, we expect the parameter for AG stacking on top of CU to be the same as the

parameter for UC stacking on top of GA.
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Figure 4: A single-branched (internal) loop of lengths 2 and 1 spanning positions i to i′ and j′ to j. Here,
A-U is the external closing base pair and G-U is the internal closing base pair.

i′ > i and j > j′ is called an ℓ1 × ℓ2 internal loop, where ℓ1 = i′ − i and ℓ2 = j − j′. For now, we will treat
the problem of only scoring bulges and internal loops; we consider the scoring of stacking pairs separately
in the next section.

Energy-based scoring methods typically score internal loops and bulges by accounting for the following:

• energies based on the total loop length, ℓ1 + ℓ2,
• energies based on the asymmetry in sizes of each side of the loop, |ℓ1 − ℓ2|,
• special corrections for highly asymmetric 1× ℓ (or ℓ× 1) loops
• terminal mismatch stacking energies for the external closing base pair (xi, xj+1) and its adjacent

nucleotides in the loop, xi+1 and xj ,
• terminal mismatch stacking energies for the internal closing base pair (xj′ , xi′+1) and its adjacent

nucleotides in the loop, xj′+1 and xi′ , and
• specific free energy increments for 1 × 1, 1 × 2, and 2 × 2 interior loops as a function of their closing

base pairs and the nucleotides in the loop.

For computational tractability, many programs such as Mfold limit total loop lengths of single-branched
loops to a small constant c (typically, c = 30).

In CONTRAfold, the total loop length, loop asymmetry, and terminal mismatch stacking interaction
terms are retained. The special corrections for asymmetric interior loops are replaced with a more general
two-dimensional table for scoring ℓ1 × ℓ2 interior loops. Finally, the large lookup tables which exhaustively
characterize the energies of all 1× 1, 1× 2, and 2× 2 interior loops are omitted.

Specifically, for all 1 ≤ i ≤ i′ and j′ ≤ j ≤ L − 1 such that i′ + 2 ≤ j′ and 1 ≤ i′ − i + j − j′ ≤ c, the
factor ϕsingle(i, j, i

′, j′) for a bulge or internal loop is given by

ϕsingle(i, j, i
′, j′) =



















φbulge length[i′ − i + j − j′] if i′ − i = 0 or j − j′ = 0

φinternal length[i′ − i + j − j′] if i′ > i and j > j′

· φinternal asymmetry[|(i
′ − i)− (j − j′)|]

· φinternal full[i
′ − i][j − j′]

· φterminal mismatch((xi, xj+1), xi+1, xj)

· φterminal mismatch((xj′ , xi′+1), xj′+1, xi′). (10)

Like most energy-based methods, we use c = 30 for computational tractability.

2.3 Helices

A single-branched loop for which i′ = i and j = j′ is known as a stacking pair. A sequence of one or more
consecutive stacking pairs is called a helix (or stem); informally then, a helix consists of several consecutive
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Figure 5: A helix of length ℓ = 6 spanning positions i to j.

nucleotides of an RNA molecule directly base pairing to a set of consecutive nucleotides which appear later
in the RNA sequence.

Now, consider a helix that matches nucleotides xi+1xi+2 . . . xi+ℓ in a sequence x to nucleotides xj−ℓ+1xj−ℓ+2 . . . xj

which appear later in the sequence. We say that this is a helix of length ℓ starting at positions i and j.
Nucleotides xi+1 and xj form the external closing base pair of the helix whereas nucleotides xi+ℓ and xj−ℓ+1

form the internal closing base pair (see Figure 5).
Traditional energy-based methods such as Mfold score helices using

• a sum of interaction terms for each stacking pair, and
• penalties for each non-GC terminal closing base pair.

Since stacking pair interaction terms are based on the nearest neighbor model, only Watson-Crick and wobble
GU base pairs are allowed; other pairings are necessarily treated as small symmetric interior loops.

CONTRAfold extends on traditional energy-based methods by including penalties for all possible closing
base pairs (not just the “canonical” pairings). CONTRAfold also considers the interaction of every pair of
bases in the stem rather than ignoring the non-canonical/non-GU base pairs which are not found in the regular
nearest neighbor energy rules. Finally, CONTRAfold includes scores for helix lengths, allowing arbitrary
scores for helix lengths of at most d (in practice, we set d = 5), and assigning affine scores for helices of
length greater than d.

In particular, for 0 ≤ i ≤ i + 2ℓ + 2 ≤ j ≤ L, the factor ϕhelix(i, j, ℓ) for a helix of length ℓ starting at i

and j is:

ϕhelix(i, j, ℓ) =

φhelix closing(xi+1, xj)

· φhelix closing(xj−ℓ+1, xi+ℓ)

·

ℓ
∏

k=1

φhelix base pair(xi+k, xj−k+1)

·

ℓ−1
∏

k=1

φhelix stacking((xi+k, xj−k+1), (xi+k+1, xj−k))

· ϕhelix length(ℓ), (11)

where

ϕhelix length(ℓ) =





min(d,ℓ)
∏

i=1

φhelix change[i]



 · (φhelix extend)
max(ℓ−d,0)

. (12)

In this formulation, φhelix closing(xi, xj) scores the use of a particular base pair for closing a helix. Similarly,
φhelix stacking((xi, xj), (xi+1, xj−1)) scores the interaction for stacking (xi+1, xj−1) on top of (xi, xj). Finally,
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Figure 6: A multi-branched loop spanning positions i to i1, j1 to i2, and j2 to j.

the helix length score ϕhelix length(ℓ) is designed so that the length component of the score for any helix of
length ℓ ≤ d is given explicitly as

(φhelix change[1]) · (φhelix change[2]) · . . . · (φhelix change[ℓ]), (13)

and helices of length ℓ > d have a correction potential of φhelix extend applied for each additional base pair.

2.4 Multi-branched loops

A multi-branched loop is a loop containing at least three adjacent base pairs. More formally, suppose
i ≤ i1 ≤ j1 ≤ i2 ≤ j2 ≤ . . . ≤ im ≤ jm ≤ j where m ≥ 2 and ik + 2 ≤ jk for k = 1, . . . ,m. We say that a
multibranch loop spans positions i to i1, j1 to i2, . . . , and jm to j if nucleotides (xi, xj+1) form the external
closing base pair, and (xjk

, xik+1) form the internal closing base pairs for k = 1, . . . ,m (see Figure 6).
Let the length ℓ of a multi-branched loop be the number of unpaired bases,

ℓ = i1 − i + j − jm +
m
∑

k=2

(ik − jk−1). (14)

For computational tractability, most programs score multi-branched loops using

• energy terms dependent on the length of the loop.
• single base pair stacking energies describing the attachment of each helix to the multi-branched loop,
• coaxial stacking terms for helices on the multi-branched loop that are separated by at most one unpaired

position

CONTRAfold uses a similar scoring scheme for multi-branched loops which ignores coaxial stacking.
Specifically, if 1 ≤ i ≤ i1 ≤ i1 + 2 ≤ j1 ≤ i2 ≤ . . . ≤ j ≤ L − 1, then the factor associated with a
multi-branched loop spanning positions i to i1, j1 to i2, . . . , and jm to j is

ϕmulti(i, j, i1, j1, . . . , im, jm) =

φmulti base · (φmulti unpaired)
ℓ
· (φmulti paired)

m+1

· ϕmulti mismatch((xi, xj+1), xi+1, xj)

·

m
∏

k=1

ϕmulti mismatch((xjk
, xik+1), xjk+1, xik

). (15)

where

ϕmulti mismatch((xi, xj+1), xi+1, xj) =

φsingle base pair stacking left((xi, xj+1), xi+1) · φsingle base pair stacking right((xi, xj+1), xj) (16)

This mirrors the affine energy models typically used for multi-branched loops in energy-based methods.
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3 The Viterbi algorithm

We now specify the Viterbi algorithm for computing the most likely structure via dynamic programming
recurrences. Let c be the maximum length of an internal loop or bulge.

3.1 Definitions

We define the following factors:

• ϕdo outer(i), 0 ≤ i ≤ L: the best possible score for folding the substring xi+1xi+2 · · ·xL, assuming that
the ends of this substring belong to the exterior loop of the RNA.

• ϕdo helix(i, j, n), 0 ≤ i ≤ j ≤ L

– 0 ≤ n < d: the best possible score for folding the substring xi+1xi+2 · · ·xj , assuming that exactly n

letters on each side of the substring are paired in a helix – i.e., (xi, xj+1), (xi−1, xj+2), . . . , (xi−n+1, xj+n)
all form base pairs, but xi−n and xj+n+1 do not base pair.

– n = d: the best possible score for folding the substring xi+1xi+2 · · ·xj , assuming that at least d let-
ters on each side of the substring are paired in a helix – i.e., (xi, xj+1), (xi−1, xj+2), . . . , (xi−d+1, xj+d)
all form base pairs, and possibly more.

• ϕdo multi(i, j, n), 0 ≤ i ≤ j ≤ L

– 0 ≤ n < 2: the best possible score for folding the substring xi+1xi+2 · · ·xj , assuming that the
substring is part of a multibranch loop that contains exactly contains n adjacent helices besides
the exterior helix.

– n = 2: the best possible score for folding the substring xi+1xi+2 · · ·xj , assuming that the substring
is part of a multibranch loop that contains exactly at least 2 adjacent helices besides the exterior
helix.

3.2 Recurrences

For each of the factors described in the previous subsection, we now give the appropriate recurrence along
with a description of the cases handled by the recurrence.

3.2.1 Exterior loop

When generating a substring belonging to the exterior loop, there are three cases:

1. the substring is of zero length,

2. the first base of the substring belongs to the exterior loop,

3. the first base belongs to a helix that is adjacent to the exterior loop.

This gives:

ϕdo outer(i) = max



















1 if i = L

φouter unpaired · ϕdo outer(i + 1) if 0 ≤ i < L

max
i′

i+2≤i′≤L

(φouter branch · ϕdo helix(i, i
′, 0) · ϕdo outer(i

′)) if 0 ≤ i ≤ L.

Note that in the last case, we require that i + 2 ≤ i′ so as to ensure that the definition of ϕdo outer(i) is not
circular (actually, it would suffice to require that i < i′; however, the requirement we make here works as
well since a helix must contain at least two base pairs).
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3.2.2 Helix

To generate a helix for the substring xi+1xi+2 · · ·xj , there are several cases:

1. no surrounding positions belong to the helix yet and (xi+1, xj) base pair,

2. n surrounding positions belong to the helix (where 0 < n < d) and (xi+1, xj) base pair,

3. at least d surrounding positions belong to the helix and (xi+1, xj) base pair,

4. at least one surrounding position belongs to the helix and xi+1xi+2 · · ·xj form a hairpin loop,

5. at least one surrounding position belongs to the helix and xi+1xi+2 · · ·xj form the beginning of a
single-branched loop,

6. at least one surrounding position belongs to the helix and xi+1xi+2 · · ·xj form the beginning of a
multi-branched loop.

This gives:

ϕdo helix(i, j, n) =

max















































φhelix change[1] · φhelix closing(xi+1, xj) if 0 ≤ i < i + 2 ≤ j ≤ L and n = 0

· φhelix base pair(xi+1, xj) · ϕdo helix(i + 1, j − 1, 1)

φhelix change[n + 1] · φhelix stacking((xi, xj+1), (xi+1, xj)) if 0 < i < i + 2 ≤ j < L and 0 < n < d

· φhelix base pair(xi+1, xj) · ϕdo helix(i + 1, j − 1, n + 1)

φhelix extend · φhelix stacking((xi, xj+1), (xi+1, xj)) if 0 < i < i + 2 ≤ j < L and n = d

· φhelix base pair(xi+1, xj) · ϕdo helix(i + 1, j − 1, d)

φhelix closing(xj+1, xi) · ϕdo loop(i, j) if 0 < i ≤ j < L and n > 0

Here, note that whenever a case depends on (xi, xj+1), we ensure that 0 < i and j < L. Also, if a case
depends on xi+1 and xj , we ensure that i + 2 ≤ j.

3.2.3 Loop

To generate a loop for the substring xi+1xi+2 · · ·xj , there are several cases:

1. xi+1xi+2 · · ·xj form a hairpin loop,

2. xi+1xi+2 · · ·xj form the beginning of a single-branched loop,

3. xi+1xi+2 · · ·xj form the beginning of a multi-branched loop.

This gives:

ϕdo loop(i, j) =

max



































ϕhairpin(i, j) if 0 < i ≤ j < L and n > 0

max
i′,j′

i≤i′<i′+2≤j′≤j

1≤i′−i+j−j′≤c

(

ϕsingle(i, j, i
′, j′) · ϕdo helix(i

′, j′, 0)
)

if 0 < i ≤ j < L and n > 0

φmulti base · φmulti paired if 0 < i ≤ i + 2 ≤ j < L and n > 0.

· ϕmulti mismatch((xi, xj+1), xi+1, xj) · ϕdo multi(i, j, 0)

Note that in the case of single-branched loops, i′ + 2 ≤ j′ since the inner helix must have at least one base
pairing, and 1 ≤ i′ − i + j − j′ ≤ c to ensure that the loop has length at least 1, but no more than c (for
efficiency).
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3.2.4 Multi-branched loops

To generate a multi-branched loop for the substring xi+1xi+2 · · ·xj , there are several cases:

1. the substring is of length zero and has at least 2 adjacent helices (other than the exterior helix),

2. the first letter of the substring is unpaired,

3. the first letter of the substring belongs to a helix that is adjacent to the multi-branch loop and fewer
than 2 adjacent helices (other than the exterior helix) have been generated already.

4. the first letter of the substring belongs to a helix that is adjacent to the multi-branch loop and at least
2 adjacent helices (other than the exterior helix) have been generated already.

From this, we obtain

ϕdo multi(i, j, n) =

max























1 if 0 ≤ i = j ≤ L and n = 2

φmulti unpaired · ϕdo multi(i + 1, j, n) if 0 ≤ i < j ≤ L and 0 ≤ n ≤ 2

max
j′

i+2≤j′≤j

(

φmulti paired · ϕmulti mismatch((xj′ , xi+1), xj′+1, xi)

· ϕdo helix(i, j
′, 0) · ϕdo multi(j

′, j,min(2, n + 1))

)

if 0 < i ≤ j < L and 0 ≤ n ≤ 2

As before, in the last case, the condition i + 2 ≤ j′ ensures that xj′ and xi+1 are valid, and the conditions
0 < i and j < L ensure that xj′+1 and xi are valid.
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4 The inside algorithm

The inside algorithm looks just like Viterbi, with max’s replaced by
∑

’s. We repeat these recurrences here,
for convenience:

For 0 ≤ i ≤ L,

αdo outer(i) =
∑























1 if i = L

φouter unpaired · αdo outer(i + 1) if 0 ≤ i < L
∑

i′

i+2≤i′≤L

(φouter branch · αdo helix(i, i
′, 0) · αdo outer(i

′)) if 0 ≤ i ≤ L

For 0 ≤ n ≤ d and 0 ≤ i ≤ j ≤ L,

αdo helix(i, j, n) =

∑















































φhelix change[1] · φhelix closing(xi+1, xj) if 0 ≤ i < i + 2 ≤ j ≤ L and n = 0

· φhelix base pair(xi+1, xj) · αdo helix(i + 1, j − 1, 1)

φhelix change[n + 1] · φhelix stacking((xi, xj+1), (xi+1, xj)) if 0 < i < i + 2 ≤ j < L and 0 < n < d

· φhelix base pair(xi+1, xj) · αdo helix(i + 1, j − 1, n + 1)

φhelix extend · φhelix stacking((xi, xj+1), (xi+1, xj)) if 0 < i < i + 2 ≤ j < L and n = d

· φhelix base pair(xi+1, xj) · αdo helix(i + 1, j − 1, d)

φhelix closing(xj+1, xi) · αdo loop(i, j) if 0 < i ≤ j < L and n > 0

For 0 ≤ i ≤ j ≤ L,

αdo loop(i, j) =

∑







































ϕhairpin(i, j) if 0 < i ≤ j < L and n > 0
∑

i′,j′

i≤i′<i′+2≤j′≤j

1≤i′−i+j−j′≤c

(

ϕsingle(i, j, i
′, j′) · αdo helix(i

′, j′, 0)
)

if 0 < i ≤ j < L and n > 0

φmulti base · φmulti paired if 0 < i ≤ i + 2 ≤ j < L and n > 0.

· ϕmulti mismatch((xi, xj+1), xi+1, xj) · αdo multi(i, j, 0)

For 0 ≤ n ≤ 2 and 0 ≤ i ≤ j ≤ L,

αdo multi(i, j, n) =

∑



























1 if 0 ≤ i = j ≤ L and n = 2

φmulti unpaired · αdo multi(i + 1, j, n) if 0 ≤ i < j ≤ L and 0 ≤ n ≤ 2
∑

j′

i+2≤j′≤j

(

φmulti paired · ϕmulti mismatch((xj′ , xi+1), xj′+1, xi)

· αdo helix(i, j
′, 0) · αdo multi(j

′, j,min(2, n + 1))

)

if 0 < i ≤ j < L and 0 ≤ n ≤ 2
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5 The outside algorithm

The outside algorithm corresponding to the inside algorithm given in the previous section is shown below:

For 0 ≤ i ≤ L,

βdo outer(i) =
∑























1 if i = 0

φouter unpaired · βdo outer(i− 1) if i > 0
∑

i′

0≤i′≤i′+2≤i

(φouter branch · αdo helix(i
′, i, 0) · βdo outer(i

′))

For 0 ≤ n ≤ d and 0 ≤ i ≤ j ≤ L,

βdo helix(i, j, n) =

∑















































































































































φouter branch · βdo outer(i) · αdo outer(j) if 0 ≤ i < i + 2 ≤ j ≤ L and n = 0
∑

i′,j′

0<i′≤i<j≤j′<L

1′≤i−i′+j′−j≤c

(

ϕsingle(i
′, j′, i, j) · βdo loop(i′, j′)

)

if 0 < i < i + 2 ≤ j < L and n = 0

1
∑

n′=0

∑

j′

j≤j′<L







φmulti paired · βdo multi(i, j
′, n′)

· ϕmulti mismatch((xj , xi+1), xj+1, xi)

· αdo multi(j, j
′, n′ + 1)






if 0 < i ≤ j < L and n = 0

∑

j′

j≤j′<L







φmulti paired · βdo multi(i, j
′, 2)

· ϕmulti mismatch((xj , xi+1), xj+1, xi)

· αdo multi(j, j
′, 2)






if 0 < i ≤ j < L and n = 0

φhelix change[1] · φhelix closing(xi, xj+1) if 0 < i ≤ j < L, and n = 1

· φhelix base pair(xi, xj+1) · βdo helix(i− 1, j + 1, 0)

φhelix change[n] · φhelix stacking((xi−1, xj+2), (xi, xj+1)) if 1 < i ≤ j < L− 1, and 1 < n ≤ d

· φhelix base pair(xi, xj+1) · βdo helix(i− 1, j + 1, n− 1)

φhelix extend · φhelix stacking((xi−1, xj+2), (xi, xj+1)) if 1 < i ≤ j < L− 1 and n = d

· φhelix base pair(xi, xj+1) · βdo helix(i− 1, j + 1, d)

For 0 ≤ i ≤ j ≤ L,

βdo loop(i, j) =

d
∑

n′=1

φhelix closing(xj+1, xi) · βdo helix(i, j, n
′) if 0 < i ≤ j < L and n > 0

For 0 ≤ n ≤ 2 and 0 ≤ i ≤ j ≤ L,

βdo multi(i, j, n) =

∑































































φmulti base · φmulti paired if 0 < i < i + 2 ≤ j < L and n = 0

· ϕmulti mismatch((xi, xj+1), xi+1, xj) · βdo loop(i, j)

φmulti unpaired · βdo multi(i− 1, j, n) if 0 < i ≤ j ≤ L and 0 ≤ n ≤ 2
∑

i′

1≤i′<i′+2≤i

(

φmulti paired · ϕmulti mismatch((xi, xi′+1), xi+1, xi′)

· αdo helix(i
′, i, 0) · βdo multi(i

′, j, n− 1)

)

if 2 < i ≤ j < L and 1 ≤ n ≤ 2

∑

i′

1≤i′<i′+2≤i

(

φmulti paired · ϕmulti mismatch((xi, xi′+1), xi+1, xi′)

· αdo helix(i
′, i, 0) · βdo multi(i

′, j, 2)

)

if 2 < i ≤ j < L and n = 2.
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6 Posterior decoding

Given the inside and outside matrices computed in the previous sections, we can now compute the posterior
probabilities for paired and unpaired residues. Specifically, the posterior probability pij that nucleotide i

pairs with nucleotide j (where 1 ≤ i < j ≤ L) is given by

pij =
1

Z(x)
·
∑



































































φhelix change[1] · φhelix closing(xi, xj) if 1 ≤ i < j ≤ L and n = 0

· φhelix base pair(xi, xj) · αdo helix(i, j − 1, 1)

· βdo helix(i− 1, j, 0)

d
∑

n=2







φhelix change[n] · φhelix stacking((xi−1, xj+1), (xi, xj))

· φhelix base pair(xi, xj) · αdo helix(i, j − 1, n)

· βdo helix(i− 1, j, n− 1)






if 1 < i < j < L

φhelix extend · φhelix stacking((xi−1, xj+1), (xi, xj)) if 1 < i < j < L

· φhelix base pair(xi, xj) · αdo helix(i, j − 1, d)

· βdo helix(i− 1, j, d)

(17)

where

Z(x) = αdo outer(0) = βdo outer(L). (18)

Using these posterior probabilities, the posterior decoding algorithm described in the full paper can be used
to find the maximum expected accuracy parse.
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7 Gradient

The gradient of the CONTRAfold conditional log-likelihood objective with respect to the parameters w is

∇wℓ(w : D) =
m
∑

i=1

(

F(x(i), y(i))− Ey′∼P (y|x(i);w)[F(x(i), y′)]
)

,

where the expectation is taken with respect to the conditional distribution over structures y′ for the sequence
x(i) given by the current parameters w. We now describe the construction of a dynamic programming
algorithm for computing the expectation Ey′∼P (y|x(i);w)[F(x(i), y′)] based on modifying an implementation
of the inside recurrences from Section 4.

First, initialize a vector z ∈ R
n to the zero vector. In a typical implementation of the inside algorithm,

computing entries of inside table involves repetitions of statements of the form

αa(i, j)← αa(i, j) + (product of some φ’s) · (product of some αa′(i′, j′)’s).

We will replace each such statement with several statements—one for each φk appearing in the product
above. Specifically, for each φk in the product, we will create a statement of the form

zk ← zk +
βa(i, j) · (product of some φ’s) · (product of some αa′(i′, j′)’s)

Z(x)

where Z(x) = αdo outer(0). At the end of this modified inside algorithm, then, the vector z will contain the
desired feature expectations.

For example, applying the transformation to the rules for the αdo outer recurrence gives the following:

z← 01

for i← 0 to L do2

if i < L then3

zouter unpaired ← zouter unpaired + βdo outer(i) · φouter unpaired · αdo outer(i + 1)4

end5

for i′ ← i + 2 to L do6

zouter branch ← zouter branch + βdo outer(i) · φouter branch · αdo helix(i, i
′, 0) · αdo outer(i

′)7

end8

end9
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