
0.1 Running SMAC

To get started with an existing configuration scenario you simply need to execute smac as follows:

./smac --scenarioFile <file> --numRun 0

This will execute SMAC with the default options on the scenario specified in the file. Some commonly-
used non-default options of SMAC are described in this section. The --numRun argument controls the seed
and names of output files (to support parallel independent runs)

0.2 Testing the Wrapper

SMAC includes a method of Testing Algorithm Execution, via the smac-algotest utility. It takes the
required scenario options 1 --execDir, --paramFile, --algo, --cutoff time the instance, and configuration to
run on.

For example:

./smac-algotest --execDir <dir> --paramFile <file> --algo <file>
--cutoff_time 300 --instance <instance> --config <config string>
-P[name]=[value] -P[name]=[value]...

Some parameters deserve special mention:

1. The config string syntax is a single string with “-name=‘value’ ” ... you can also specify RANDOM
which will generate a random configuration or DEFAULT which will generate the default configuration.

2. The -P parameters are optional and allow overriding specific values in the configuration (this is useful
primarily for RANDOM and DEFAULT, to allow you to set certain values). To set the sortalgo to
merge you would specify Psortalgo=merge.

0.3 ROAR Mode

./smac --scenarioFile <file> --executionMode ROAR --numRun 0

This will execute the ROAR algorithm, a special case of SMAC that uses an empty model and random
selection of configurations. See [? ] for details on ROAR.

0.4 Adaptive Capping

./smac --scenarioFile <file> --adaptiveCapping true --numRun 0

Adaptive Capping (originally introduced for ParamILS [? ], but also applicable in SMAC [? ]) will cause
SMAC to only schedule algorithm runs for as long as is needed to determine whether they are better than
the current incumbent. Without this option, each target algorithm runs up to the runtime specified in the
configuration scenario file --cutoffTime.
NOTE: Adaptive Capping should only be used when the - -runObj is RUNTIME. Adaptive capping can
drastically improve SMAC’s performance for scenarios with a large difference between --cutoffTime and the
runtime of the best-performing configurations. Related configuration options are --capSlack, --capAddSlack,
and --imputationIterations.

1Unfortunately it cannot read scenario files currently

1



0.5 Wall-Clock Limit

./smac --scenarioFile <file> --runtimeLimit <seconds> --numRun 0

SMAC offers the option to terminate after using up a given amount of wall-clock time. This option is useful
to limit the overheads of starting target algorithm runs, which are otherwise unaccounted for. This option
does not override --tunerTimeout or other options that limit the duration of the configuration run; whichever
termination criterion is reached first triggers termination.

0.6 Change Initial Incumbent

./smac --scenarioFile <file> --numRun 0 --initialIncumbent <config string>

SMAC offers the option to specify the initial incumbent, and by default uses the default configuration
specified in the parameter file. The argument to - -initialIncumbent follows the same conventions as in
Section 0.2.

0.7 State Restoration

./smac --scenarioFile <file> --restoreStateFrom <dir>
--restoreIteration <iteration> --numRun 0

SMAC will read the files in the specified directory and restore its state to that of the saved SMAC run at the
specified iteration. Provided the remaining options (e.g. --seed, --overall obj) are set identicially, SMAC
should continue along the same trajectory.

This option can also be used to restore runs from SMAC v1.xx (although due to the lossy nature of Matlab
files and differences in random calls you will not get the same resulting trajectory). By default the state
can be restored to iterations that are powers of 2, as well as the 2 iterations prior to the original SMAC run
stopping. If the original run crashed, additional information is saved, often allowing you to replay the crash.

NOTE: When you restore a SMAC state, you are in essence preloading a set of runs and then running the
scenario. In certain cases, if the scenario has been changed in the meantime, this may result in undefined
behaivor. Changing something like - -tunerTimeout is usually a safe bet, however changing something
central (such as --runObj) would not be.

To check the available iterations that can be restored from a saved directory, use:

./smac-possible-restores <dir>

To disable saving any state information to disk, use

./smac --scenarioFile <file> --stateSerializer NULL --numRun 0

0.8 Concurrent Algorithm Execution Requests

./smac --scenarioFile <file> --maxConcurrentAlgoExecs <num> --numRun 0

In certain circumstances, it may be much faster to allow more than one target algorithm execution at once,
(e.g., when multiple cores are available or when actual algorithm execution is I/O bound). To exploit this,
you can have SMAC schedule multiple runs at a time. If - -adaptiveCapping is not set, this will result in
the same trajectory as a sequential version (when --maxConcurrentAlgoExecs is set to 1). When adaptive
capping is enabled, concurrent runs are scheduled with cutoff times as if each were the first of the runs to be
scheduled.

2



0.9 Named Rungroups

./smac --scenarioFile <file> --runGroupName <foldername> --numRun 0

All output is written to the folder <foldername>; runs differing in --numRun will yield different output
files in that folder.

0.10 Offline Validation

SMAC includes a tool for the offline assessment of incumbents selected during the configuration process. By
default, given a test instance file with N instances, SMAC performs ≈ 1 000 target algorithm validation runs
per configuration (rounded up to the nearest multiple of N).

By default, SMAC limits the number of seeds used in validation runs to 1 000 seeds per instance. This
number can be changed as in the following example:

./smac --scenarioFile <file> --numSeedsPerTestInstance 50

(This parameter does not have any effect in the case of instance/seed files.)

0.10.1 Limiting the Number of Instances Used in a Validation Run

To use only some of the instances or instance seeds specified you can limit them with the --numTestInstances
parameter. When this parameter is specified, SMAC will only use the specified number of lines from the top
of the file, and will keep repeating them until enough seeds are used:

./smac --scenarioFile <file> --numTestInstances 10

For instance files containing seeds, this option will only use the specified number of instance seeds in the file.

0.10.2 Disabling Validation

Validation can be skipped alltogether as follows:

./smac --scenarioFile <file> --skipValidation

0.10.3 Standalone Validation

SMAC also includes a method of validating configurations outside of a smac run. You can supply a
configuration using the - -configuration option. All scenario options are applicable to the standalone
validator, but check the usage screen to see all the options available NOTE: Some options while present are
not applicable for validation but are presented anyway.

Here is an example call:

./smac-validate --scenarioFile <file> --numValidationRuns 10000
--configuration <config string> --maxConcurrentAlgoExecs 8 --numRun 0

Usage notes for the offline validation tool:

1. This validates against the test set only; the training instance set is not used.

2. By default this outputs into the current directory; you can change the output directory with the option
--runGroupName.

3. You can also validate against a trajectory file issued by --trajectoryFile option.

3


