SMAC outputs a variety of information to log files, trajectory files, and state files. Most of the files are
human readable, and this section describes these files.
NOTE: All output is written to the outdir in the --runGroupName sub-directory.

0.1 Logging Output

SMAC uses slf4j (http://www.slf4j.org/), a library that allows for abstracting and replacing the logging system
with ease, and uses logback (http://logback.qos.ch/) as the default logging system. While there is limited ability
to change logging options via the command line (e.g.,--logLevel,--consoleLogLevel,--logAllCallStrings,- -
logAllProcessOutput), one can edit conf/logback.xml, to get much more control over the logging of
SMAC. For more details of how to edit this file consult the logback documentation.

NOTE: If you replace the logger in SMAC or modify the configuration file, the logging command line
options may no longer work.

By default SMAC writes the following logging files out to disk (NOTE: The NV represents the --numRun
setting):

log-runNV.txt A log file that contains a full dump of all the information logged, and where it was logged
from.

log-warnN.txt Contains the same information as the above file, except only from warning and higher level
messages.

log-err NV.txt Contains the same information as the above file, except only from error messages.

runhashes-runV.txt A file that contains only the Run Hash Codes for a given run see the corresponding
entry in the FAQ.

0.1.1 Interpreting the Log File
SMAC basically goes through three phases when executing:

e Setup Phase Input files are read, and their arguments validated. Everything necessary to execute the
Automatic Configuration Phase is constructed. This phase ends (baring anything that must be lazily
loaded), once the message Automatic Configurator Started islogged.

o Automatic Configuration Phase: SMAC is now actively configuring the target algorithm. SMAC will
spend most of it’s time here, and outputs it’s progress. The most important output is the Runtime
Statistics which will appear like:

[INFO ] *xx*xRuntime Statisticssxxxx
Iteration: 35
Incumbent ID: 64 (0x18824F)
Number of Runs for Incumbent: 70
Number of Instances for Incumbent: 70
Number of Configurations Run: 67
Performance of the Incumbent: 1589.1414639125514
Total Number of runs performed: 242
Wallclock time: 18.213 s
Wallclock time remaining: 2.147483628787E9 s
Configuration time budget used: 84056.83939320213 s
Configuration time budget remaining: 2343.160606797872 s
Sum of Target Algorithm Execution Times \

(treating minimum value as 0.1): 84036.36939320213 s



CPU time of Configurator: 20.47 s

User time of Configurator: 19.6 s

Total Reported Algorithm Runtime: 84033.27806288192 s
Sum of Measured Wallclock Runtime: 0.0 s

Max Memory: 3505.8125 MB

Total Java Memory: 1249.0625 MB

Free Java Memory: 719.8940582275391 MB

[INFO ] #kkhkkhkhhhhhkhkkhkkkkkkkhkh kA kA kA kA kA kA KAk *k Kk kK
While most of the fields are self-explanatory some deserve special attention:

Incumbent ID

The second ID (0x18824F) is a hex-code that represents the configuration anywhere / everywhere it is
logged. The first ID, 64, occurs in context where we know the configuration is intended to be run. This
ID will corresponding to the ID in the state files. The second ID will always associate with a unique
first ID, but not conversely. The second ID roughly represents the specific configuration in memory !.

Performance of the Incumbent

This represents the performance of the incumbent under the given run_obj and overall_obj on the runs
so far.

Configuration time budget used
The tuner time that has been used so far.
Sum of Target Algorithm Execution Times

This represents the contribution of the algorithm runs to the Tuner Time (if applicable), in general each
run contributes the minimum of 0.1 and it’s reported runtime. This parameter differs from Sum of
Measurement Wallclock Runtime in that the latter is a direct sum. If you are only running
on algorithms with large runtime, this difference may be 0.

e Validation Phase, depending on the options used this can also take a large fraction of SMAC’s runtime.
The logic here is actually quite simple, as it largely only requires running many algorithm runs and
computing the objectives from them.

At the end of Validation the Runtime Statistics (from the Automatic Configuration Phase) are displayed
again, as is the following information

The performance of the incumbent on both the training and test set.
A sample call of the final incumbent (selected configuration)

The complete configuration selected (without inactive conditionals)

Eall A

The complete configuration selected (with inactive conditionals)
5. The Return value of SMAC (generally O if successful)

!Specifically every time a configuration is modified, this number is incremented. In cases where the configuration space is
small,or we are examining a small part of it, SMAC may end up back at the same configuration again. As far as the behaviour of
SMAC is concerned these are identical, the ID is only ever used for logging.



0.2 State Files

State files allow you to examine and potentially restore the state of SMAC at a specific point of it’s execution.
The files are written to the state-run/V/ sub-directory, where N is the value of --numRun option.

All files have the following convention as a suffix either it or CRASH followed by either the iteration
number M, or in some cases quick or quick-bak.

The state is saved for every iteration m, where m = 2" n € N, additionally it is saved when SMAC
completes whether successfully or due to crash.

The following files are saved in this state directory (ignoring the suffix):

java_obj_dump Stores (Java) serialized versions of the the incumbent and the random object state. In general
there is no need to look at this file, and it is not human readable.

paramstrings Stores a human readable setting of each configuration ran, with a prefix of the numeric id of
the configuration (as used in the logs, and other state files).

uniq_configurations Stores the configurations ran in a more concise but effectively un-human readable form.
The first column again is the numeric id of the configuration (as used in the logs, and other state files).

run_and_results Stores the result of every run of the target algorithm that SMAC has done. The first 13
columns (after the header row are designed to be backwards compatible with SMAC versions 1.xx.
Each column is labelled with what data it contains, the following columns deserve some description.
Instance ID This is the instance used, and is the n‘"* Instance Name specified in the instance_file option.
Response Value (y) This is the value determined by the run_obj on the run.

Censored Indicates whether the Cutoff Time Used field is less than the cutoff_time in the original
run. 0 means false, 1 means true.

Run Result Code This is a mapping from the Run Result to an integer for use with previous versions.
param-file If --saveContext is enabled, a copy of the paramfile will be in the state folder
instances If --saveContext is enabled, a copy of the instance_file will be in the state folder

instance-features If - -saveContext is enabled, and SMAC is running with features, then a copy of the
feature file will be in the state folder.

scenario If --saveContext is enabled, and SMAC is using a scenario file, then a copy of the --scenarioFile
will be in the state folder.

0.3 Trajectory File

SMAC also outputs a trajectory file into identical files t raj—run-N.txt 2 and traj-run-N.csv.
These files outline the incumbent (by id) over the course of execution and it’s performance. The first line
gives the —runGroupName, and then the —-numRun.

The rest of the file follows the following format:

*This file is outputted for backwards compatibility with existing scripts.



Column Name Description

Total Time Sum of all execution times
and CPU time of SMAC
Incumbents Mean Performance Performance of the Incumbent under the given

—-runObjective and —overallObjective

Incumbent’s Performance o Outputs -1 Currently

Incumbent ID The ID of the incumbent

as listed in the param_strings file 0.2.

acTime CPU Time of SMAC

Remaining Columns Give a name value mapping for the
configuration value as given by the Incumbent ID column

0.4 Validation Output

When Validation is completed four files are outputted, (again /N is the value of the —numRun argument):

1. rawValidationExecutionResults—runlN.csv:

CSV File containing a list of the configuration, seeds & instance run and the corresponding result and
the result of the target algorithm execution. This file is mainly for debugging.

2. validationInstanceSeedResult—-runlN.csv:

CSV File containing a list of seeds & instances and the resulting response value. Again this file is
mainly for debugging, but is easier to parse than the previous.

3. validationResultsMatrix—-runN.csv:

CSV File containing the list of instances on each line, the next column is the aggregation of the
remaining columns under the overall_obj. Finally there is one additional row that gives the aggregation
of all the individual overall_obj, aggregated in the same way.

classicValidationResults—-runN.csv
CSV File containing the result of the validation. The columns are defined as follows:

Column Name Description
Tuner Time The tuner time when validation occurred
Emperical Performance The incumbent’s performance on the training set
Test Set Performance The incumbent’s performance on the test set
AC Overhead Time Total CPU Time Used by the Automatic Configurator




