
Manual for SMAC version v2.04.01-master

Frank Hutter & Steve Ramage
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
{hutter,seramage}@cs.ubc.ca

February 16, 2013

Contents

1 Introduction 2
1.1 License . 3
1.2 System Requirements . 3
1.3 Version . 3

2 Differences Between SMAC and ParamILS 3

3 Commonly Used Options 4
3.1 ROAR Mode . 4
3.2 Adaptive Capping . 5
3.3 Wall-Clock Limit . 5
3.4 State Restoration . 5
3.5 Concurrent Algorithm Execution Requests . 6
3.6 Named Rungroups . 6
3.7 Offline Validation . 6

3.7.1 Limiting the Number of Instances Used in a Validation Run 6
3.7.2 Disabling Validation . 6
3.7.3 Standalone Validation . 7

4 File Format Reference 7
4.1 Option Files . 7

4.1.1 Scenario File . 7
4.2 Instance File Format . 9
4.3 Feature File Format . 9
4.4 Algorithm Parameter File . 10

4.4.1 Parameter Declaration Clauses . 10
4.4.2 Conditional Parameter Clause . 11
4.4.3 Forbidden Parameter Clauses . 11

4.5 Algorithm executable / wrapper . 11

1

4.5.1 Invocation . 11
4.5.2 Output . 12
4.5.3 Wrappers & Native Libraries . 13

5 Interpreting SMAC’s Output 14
5.1 Logging Output . 14

5.1.1 Interpreting the Log File . 14
5.2 State Files . 16
5.3 Trajectory File . 17
5.4 Validation Output . 17

6 Developer Reference 18
6.1 Design Overview . 18
6.2 Class Overview . 18
6.3 Target Algorithm Evaluator . 20
6.4 Plugin Versioning . 22
6.5 Run Hash Codes . 23

7 Acknowledgements 23

8 References 23

9 Appendix 23
9.1 Return Codes . 23
9.2 Version History of Java SMAC . 24
9.3 Known Issues . 25
9.4 Options Reference . 25

9.4.1 SMAC Options . 25
9.4.2 Scenario Options . 30
9.4.3 Algorithm Execution Options . 32
9.4.4 Random Forest Options . 34
9.4.5 Validation Options . 36

1 Introduction

This document is the manual for SMAC [2] (an acronym for Sequential Model-based Algorithm Configura-
tion). SMAC aims to solve the following algorithm configuration problem: Given a binary of a parameterized
algorithm A, a set of instances S of the problem A solves, and a performance metric m, find parameter
settings of A optimizing m across S.

In slightly more detail, users of SMAC must provide:

• a parametric algorithm A (an executable to be called from the command line),

• a description of A’s parameters θ1, . . . , θn and their domains Θ1, . . . ,Θn,

• a set of benchmark instances, Π, and

• the objective function with which to measure and aggregate algorithm preformance results.

2

SMAC then executes algorithm A with different parameter configurations (combinations of parameters
〈θ1, . . . , θn〉 ∈ Θ1 × · · · ×Θn, on instances π ∈ Π), searching for the configuration that yields overall best
performance across the benchmark instances under the supplied objective. For more details please see [2]; if
you use SMAC in your research, please cite that article. It would also be nice if you sent us an email – we are
always interested in additional application domains.

1.1 License

SMAC will be released under a dual usage license. Academic & non-commercial usage is permitted free of
charge. Please contact us to discuss commercial usage.

1.2 System Requirements

SMAC itself requires only Java 6 1 or newer to run. The included scripts are currently only available for
Unix-compatible operating systems. The included example scenarios require Ruby.

1.3 Version

This version of the manual is for SMAC v2.04.01-master-447.

Project Version Commit Dirty Flag
fastrf v1.05.01-master-89 37eb5bea2cc01327f8ce7b395e56310b7e0b493a 0
ACLib v2.04.01-master-429 7cdcd3c32a72c0c0f2af2a951b1f5f293eacf7ea 0
SMAC v2.04.01-master-447 7ac3348146a31faf66e573d500ee7ed749c1a504 0

NOTE: For non-master builds these commits may not contain everything in the build. (i.e.,non-master
builds can be built with uncommitted changes). If the dirty flag is 0 that means the commit contains this exact
copy, 1 means there were some uncommitted changes, and something else means some other error occurred
when we tried to generate this.

2 Differences Between SMAC and ParamILS

There are a number of differences between SMAC and ParamILS, including the following.

• Support for continuous parameters: While ParamILS was limited to categorical parameters, SMAC
also natively handles continuous and integer parameters. See Section 4.4.1 for details.

• Run objectives: Not all of ParamILS’s run objectives are supported at this time. If you require an
unsupported objective please let us know.

• Order of instances: In contrast to ParamILS, the order of instances in the instance file does not matter
in SMAC.

• Configuration time budget and runtime overheads: Both ParamILS and SMAC accept a time
budget as an input parameter. ParamILS only keeps track of the CPU time the target algorithm reports
and terminates once the sum of these runtimes exceeds the time budget; it does not take into account

1Sun Java version 1.6.0 23 or later recommended

3

overheads due to e.g. command line calls of the target algorithm. In cases where the reported CPU
time of each target algorithm run was very small (e.g. milliseconds), these unaccounted overheads
could actually dominate ParamILS’s wall-clock time. SMAC offers a more flexible management of
its runtime overheads through the options --countSMACTimeAsTunerTime and --wallClockLimit.
See Section 3.3 for details on the wall clock time limit.

• Resuming previous runs: While this was not possible in ParamILS, in SMAC you can resume
previous runs from a saved state. Please refer to Section 3.4 for how to use the state restoration feature.
Section 5.2 describes the file format for saved states.

• Feature files: SMAC accepts as an optional input a feature file providing additional information about
the instances in the training set; see Section 4.3.

• Algorithm wrappers: The wrapper syntax has been extended in SMAC to support additional results in
the “solved” field. Specifically, there is a new result ABORT signalling that the configuration process
should be aborted (e.g. because the wrapper is in an inconsistent state that should never be reached).
A similar behaviour is triggered if option - -abortOnFirstRunCrash is set and the first run returns
CRASHED. Additionally, the wrapper can also return additional data to SMAC that is associated with
the run 2. For more information see Section 4.5.2.

• Instance files vs. instance/seed files: The instance file parameter now auto-detects whether the file
conforms to ParamILS’s instance file or instance seed file format. SMAC treats the latter option
as an alias for the former. See Section 4.2 for details. While SMAC is backwards compatible with
previous (space-separated) files, the preferred format is now .csv.

3 Commonly Used Options

To get started with an existing configuration scenerio you simply need to execute smac as follows:

./smac --scenarioFile <file> --numRun 0

This will execute SMAC with the default options on the scenario specified in the file. Some commonly-
used non-default options of SMAC are described in this section. The --numRun argument controls the seed
and names of output files (to support parallel independent runs)

3.1 ROAR Mode

./smac --scenarioFile <file> --executionMode ROAR --numRun 0

This will execute the ROAR algorithm, a special case of SMAC that uses an empty model and random
selection of configurations. See [2] for details on ROAR.

2This data will be saved in the run and results file (Section 5.2) that is used in state saving

4

3.2 Adaptive Capping

./smac --scenarioFile <file> --adaptiveCapping true --numRun 0

Adaptive Capping (originally introduced for ParamILS [3], but also applicable in SMAC [1]) will cause
SMAC to only schedule algorithm runs for as long as is needed to determine whether they are better than
the current incumbent. Without this option, each target algorithm runs up to the runtime specified in the
configuration scenario file --cutoffTime.
NOTE: Adaptive Capping should only be used when the - -runObj is RUNTIME. Adaptive capping can
drastically improve SMAC’s performance for scenarios with a large difference between --cutoffTime and the
runtime of the best-performing configurations. Related configuration options are --capSlack, --capAddSlack,
and --imputationIterations.

3.3 Wall-Clock Limit

./smac --scenarioFile <file> --runtimeLimit <seconds> --numRun 0

SMAC offers the option to terminate after using up a given amount of wall-clock time. This option is useful
to limit the overheads of starting target algorithm runs, which are otherwise unaccounted for. This option
does not override --tunerTimeout or other options that limit the duration of the configuration run; whichever
termination criterion is reached first triggers termination.

3.4 State Restoration

./smac --scenarioFile <file> --restoreStateFrom <dir>
--restoreIteration <iteration> --numRun 0

SMAC will read the files in the specified directory and restore its state to that of the saved SMAC run at the
specified iteration. Provided the remaining options (e.g. --seed, --overall obj) are set identicially, SMAC
should continue along the same trajectory.

This option can also be used to restore runs from SMAC v1.xx (although due to the lossy nature of Matlab
files and differences in random calls you will not get the same resulting trajectory). By default the state
can be restored to iterations that are powers of 2, as well as the 2 iterations prior to the original SMAC run
stopping. If the original run crashed, additional information is saved, often allowing you to replay the crash.

NOTE: When you restore a SMAC state, you are in essence preloading a set of runs and then running the
scenario. In certain cases, if the scenario has been changed in the meantime, this may result in undefined
behaivor. Changing something like - -tunerTimeout is usually a safe bet, however changing something
central (such as --runObj) would not be.

To check the available iterations that can be restored from a saved directory, use:

./smac-possible-restores <dir>

To disable saving any state information to disk, use

./smac --scenarioFile <file> --stateSerializer NULL --numRun 0

5

3.5 Concurrent Algorithm Execution Requests

./smac --scenarioFile <file> --maxConcurrentAlgoExecs <num> --numRun 0

In certain circumstances, it may be much faster to allow more than one target algorithm execution at once,
(e.g., when multiple cores are available or when actual algorithm execution is I/O bound). To exploit this,
you can have SMAC schedule multiple runs at a time. If - -adaptiveCapping is not set, this will result in
the same trajectory as a sequential version (when --maxConcurrentAlgoExecs is set to 1). When adaptive
capping is enabled, concurrent runs are scheduled with cutoff times as if each were the first of the runs to be
scheduled.

3.6 Named Rungroups

./smac --scenarioFile <file> --runGroupName <foldername> --numRun 0

All output is written to the folder <foldername>; runs differing in --numRun will yield different output
files in that folder.

3.7 Offline Validation

SMAC includes a tool for the offline assessment of incumbents selected during the configuration process. By
default, given a test instance file with N instances, SMAC performs ≈ 1 000 target algorithm validation runs
per configuration (rounded up to the nearest multiple of N).

By default, SMAC limits the number of seeds used in validation runs to 1 000 seeds per instance. This
number can be changed as in the following example:

./smac --scenarioFile <file> --numSeedsPerTestInstance 50

(This parameter does not have any effect in the case of instance/seed files.)

3.7.1 Limiting the Number of Instances Used in a Validation Run

To use only some of the instances or instance seeds specified you can limit them with the --numTestInstances
parameter. When this parameter is specified, SMAC will only use the specified number of lines from the top
of the file, and will keep repeating them until enough seeds are used:

./smac --scenarioFile <file> --numTestInstances 10

For instance files containing seeds, this option will only use the specified number of instance seeds in the file.

3.7.2 Disabling Validation

Validation can be skipped alltogether as follows:

./smac --scenarioFile <file> --skipValidation

6

3.7.3 Standalone Validation

SMAC also includes a method of validating configurations outside of a smac run. You can supply a
configuration using the - -configuration option. All scenario options are applicable to the standalone
validator, but check the usage screen to see all the options available NOTE: Some options while present are
not applicable for validation but are presented anyway.

Here is an example call:

./smac-validate --scenarioFile <file> --numValidationRuns 10000
--configuration <config string> --maxConcurrentAlgoExecs 8 --numRun 0

Usage notes for the offline validation tool:

1. This validates against the test set only; the training instance set is not used.

2. By default this outputs into the current directory; you can change the output directory with the option
--runGroupName.

3. You can also validate against a trajectory file issued by --trajectoryFile option.

4 File Format Reference

4.1 Option Files

Option Files are a way of saving a different set of values frequently used with SMAC without having to
specify them on every execution. The general format for an option file is the name of the configuration option
(without the two dashes), an equal sign, and then the value (for booleans it should be true or false, lowercase).
Currently options that take multiple arguments are not supported. Additionally you can not use aliases that
are single dashed (e.g. to override the Experiment Directory, you must use --experimentDir and not -e)

When using Option Files it is important that no two files (including the Scenario File), specify the same
option, the resulting configuration is undefined, and in general this will not throw an error.

4.1.1 Scenario File

The Scenario Option File, or Scenario File, is the recommended way of configuring SMAC 3. The Scenario
Files used in SMAC are backwards compatible with ParamILS and the name of option names here reflect
that4. NOTE: cutoff length is not currently supported.

algo An algorithm executable or wrapper script around an algorithm that conforms with the input/output
format specified in section 4.5. The string here should be invokable via the system shell.

execdir Directory to execute <algo> from: (i.e. “cd <execdir>; <algo>”)
3Nothing in general prevents you from specifying non-scenario options in these files, but in general you should restrict your files

to these.
4Every option name listed here is in fact an alias for an existing option listed in the section 9.4 and it is entirely possible to use

SMAC without using Scenario Files.

7

deterministic A boolean that governs whether or not the algorithm should be treated as deterministic.
For backwards compatibility with ParamILS, this option also supports using 0 for false, and 1 for
true. SMAC will never invoke the target algorithm more than once for any given instance, seed and
configuration. If this is set to true, SMAC will never invoke the target algorithm more than once for
any given instance and configuration.

run obj Determines how to convert the resulting output line into a scalar quantifying how “good” a single
algorithm execution is, (e.g. how long it took to execute, how good of a solution it found, etc...).
Currently implemented objectives are the following:

Name Description
RUNTIME The reported runtime of the algorithm.
QUALITY The reported quality of the algorithm.

overall obj While run obj defines the objective function for a single algorithm run, overall obj defines
how those single objectives are combined to reach a single scalar value to compare two parameter
configurations. Implemented examples for this are as follows:

Name Description
MEAN The mean of the values

MEAN1000 Unsuccessful runs are counted as 1000 × cutoff time
MEAN10 Unsuccessful runs are counted as 10 × cutoff time

cutoff time The CPU time after which a single algorithm execution will be terminated as unsuccess (and
treated as a TIMEOUT). This is an important parameter: If chosen too high, lots of time will be
wasted with unsuccessful runs. If chosen too low the optimization is biased to perform well on easy
instances only.

tunerTimeout The limit of the CPU time allowed for configuration (i.e.The sum of all algorithm runtimes,
and by default the sum of the CPU time of SMAC itself).

paramfile Specifies the file with the parameters of the algorithm. The format of this file is covered in Section
4.4.

outdir Specifies the directory SMAC should write its results to.

instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC to use
during the Automatic Configuration Phase. The ParamILS parameter instance seed file aliases this
one and the format is auto-detected. The format of these files is covered in section 4.2.

test instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC
to use during Validation Phase. The ParamILS parameter test instance seed file aliases this one and
the format is auto-detected. The format of these files is covered in section 4.2.

feature file Specifies the a file with the features for the instances in the instance file and possibly the
test instance file 5. The format of this file is covered in section 4.3.

5The Validator will load features into memory for test instances if they exist.

8

4.2 Instance File Format

The files used by the instance file & test instance file options come in four potential formats, all of which
are CSV based6. Before specifying the formats it is important to note the three kinds of information that are
specified with instances 7.

Instance Name The name of the instance that was selected. This should be meaningful to the target algorithm
we are configuring 8.

Instance Specific Information A free form text string (with no spaces or line breaks) that will be passed to
the Target Algorithm whenever executed.

Seed A specific seed to use when executing the target algorithm.

The possible formats are as follows, and depend on what information you’d like to specify.

1. Each line specifies only a unique Instance Name. No Instance Specific Information will be used,
and Seed’s will be automatically generated.

2. Each line specifies a Seed followed by the Instance Name. Every line must be unique, but for each
Instance Name additional seeds will be used in order, when that instance is selected.

3. Each line specifies a Instance Name followed by the Instance Specific Information. Every Instance
Name must be unique, Seed’s will be automatically generated.

4. Each line specifies a Seed followed by the Instance Name followed by the Instance Specific Infor-
mation. Every line must be unique, and furthermore, for all Instance Name’s the Instance Specific
Information must be the same for all Seed values (i.e.You cannot specify different instance specific
information that is a function of the seed used).

4.3 Feature File Format

The feature file specifies features that are to be used for instances. Feature Files are specified in CSV format,
the first column of every row should list an Instance Name as it appears in the instance file. The subsequent
columns should list double values specifying a computed continuous feature. By convention the value
−512, and −1024 are used to signify that a feature value is missing or not applicable. All instances must
have the same number of features.

At the top of the file there MUST appear a header row, the cell that appears above the instance names is
unimportant, but for each feature a unique and non-numeric (i.e. it must contain atleast one letter) feature
name must be specified.

6Specifically each cell should be double-quoted (i.e.”), and use a comma as a cell delimiter. SMAC also supports the old method
of reading files that use space as a cell delimiter and do not enclose values. However these files cannot handle Instance Name’s that
contain spaces.

7Features which are required for SMAC but not ParamILS are specified in a seperate file see section 4.3.
8Generally Instance Names reference specific files on disk.

9

4.4 Algorithm Parameter File

The parameter configuration space of your algorithm need to be defined in a file that is specified by the
paramfile option. Comments in the file begin with a #, and run to the end of the line.

The file consists of three types of statements:

Parameter Declaration Clauses specifies the name of parameters, and their domains.

Conditional Parameter Clauses specify when a parameter is active.

Forbidden Parameter Clauses specify when a combination of parameter settings is illegal and should be
ignored.

4.4.1 Parameter Declaration Clauses

SMAC supports two types of parameters, categorical and numeric. The former is specified as follows:
name { value1, ..., value n } [defaultValue]

Example:
timeout { 1,5,10,50,100,500,1000,5000,10000 } [500]
Here a categorical parameter is declared named timeout, its values must be one of the values listed,

and it has a default of 500.
Numeric Parameters (both continuous and integral) are specified as follows:

name [minValue, maxValue] [defaultValue](i)(l)

Example 1:
timeout [1, 10000] [500]
We have specified timeout as numeric with a default value of 500. Any value is legally permitted so long

as it’s in the Real interval of [1, 10000]. When drawing a random configuration out of this space they are
drawn uniformly.

Example 2:
timeout [1, 10000] [500]l
This example is identical to the previous, except that when drawing random configurations we do so

uniformly on a log10 scale (e.g. a value between [1, 100] is as likely to be selected as between [100, 10000]).

Example 3:
timeout [1, 10000] [500]i
In this example the only legal values are integers in the range [1, 10000], we select from these integers

uniformly.

Example 4:
timeout [1, 10000] [500]il
In this example integers in the range [1, 10000] are the only values permitted, and when randomly

selecting them we do so on a log10 scale.

Restrictions

Integer Numeric integral parameters must have all values specified as integers, even though strictly speaking
the notation should permit fractional values. Additionally the default value must be a integer.

10

Log Log parameters must have strictly positive lower and upper bounds.

4.4.2 Conditional Parameter Clause

Conditional parameter clauses specify when a parameter is active. A parameter is active when for each clause
that lists it as a dependent, the independent variable is active and has a value that satisfies the operation 9.
Conditional Parameter Clauses have the following syntax:

dependentName | independentName operation { value1, ... , value n}
Example:

sort-algo { quick, insertion, merge, heap, stooge, bogo } [bogo]
quick-revert-to-insertion { 1,2,4,8,16,32,64 } [16]
quick-revert-to-insertion | sort-algo in { quick }
In the above example the quick-revert-to-insertion is conditional on the sort-algo pa-

rameter being set to quick, and will be ignored otherwise.

4.4.3 Forbidden Parameter Clauses

Forbidden Parameters are combinations of parameter settings which should not be treated as valid by SMAC.
During the search phase, parameters matching a forbidden parameter configuration, will not be explored 10.

The Syntax is as follows:
{ name1=val1 , name2=val2, ...}
Example

quick-sort { on, off } [on]
bubble-sort { on, off } [off]
{ quick-sort=on, bubble-sort=on }
{ quick-sort=off, bubble-sort=off }
The above example implements an exclusive-or 11. The first forbidden parameter clause prevents both

sort techniques from being on at the same time. The second ensures that atleast one of them is on. NOTE:
The default parameter setting cannot itself be a forbidden parameter setting.

4.5 Algorithm executable / wrapper

The target algorithm as specified by the algo parameter must obey the following general contracts. While
modifying your own code to directly achieve this is one option there are other methods outlined in section
4.5.3.

4.5.1 Invocation

The algorithm must be invokable via the system command-line using the following command with arguments:
<algo executable> <instance name> <instance specific information> <cutoff time>

<cutoff length> <seed> <param> <param> <param>...

algo executable Exactly what is specified in the algo argument in the scenario file.
9The only supported operation presently is in.

10Specifying a large number of forbidden parameters may degrade SMAC’s performance substantially.
11Admittedly it could be better modelled with a simple categorical parameter.

11

instance name The name of the problem instance we are executing against.

instance specific information An arbitrary string associated with this instance as specified in the in-
stance file . If no information is present then a “0” is always passed here.

cutoff time The amount of time in seconds that the target algorithm is permitted to run. It is the responsibility
of the callee to ensure that this is obeyed. It is not necessary that that the actual algorithm execution
time (wall clock time) be below this value (e.g.If the algorithm needs to cleanup, or it’s only possible
to terminate the algorithm at certain stages).

cutoff length A domain specific measure of when the algorithm should consider itself done.

seed A positive integer that the algorithm should use to seed itself (for reproducibility). “-1” is used when
the algorithm is deterministic

param A setting of an active parameter for the selected configuration as specified in the Algorithm Parameter
File. SMAC will only pass parameters that are active. Additionally SMAC is not guaranteed to pass
the parameters in any particular order. The exact format for each parameter is:
-name ’value’

All of the arguments above will always be passed, even if they are inapplicable, in which case a dummy
value will be passed.

4.5.2 Output

The Target Algorithm is free to output anything, which will be ignored but must at some point output a line
(only once) in the following format12

Result for ParamILS: <solved>, <runtime>, <runlength>, <quality>, <seed>,
<additional rundata>

solved Must be one of SAT (signifying a successful run that was satisfiable), UNSAT (signifying a suc-
cessful run that was unsatisfiable), TIMEOUT if the algorithm didn’t finish within the allotted time,
CRASHED if something untoward happened during the algorithm run, or ABORT if something
prevents the target algorithm for successfully executing and it is believed that further attempts would
be futile.

SMAC does not differentiate between SAT and UNSAT responses, and the primary use of these is
historical and serves as a check that the algorithm is executing correctly by outputting whether the
instance in question is satisfiable or not. See the −-verifySAT option for information on how to utilize
this feature.

SMAC also supports reporting SATISFIABLE for SAT and UNSATISFIABLE for UNSAT. NOTE:
These are only aliases and SMAC will not preserve which alias was used in the log or state files.

ABORT can be useful in cases where the target algorithm cannot find required files, or a permission
problem prevents access to them. This will cause SMAC to stop running immediately. Use this
option with care, it should only be reported when the algorithm knows for CERTAIN that subsequent

12ParamILS in not a typo. While other values are possible including SMAC, HAL. ParamILS is probably the most portable. The ex-
act Regex that is used in this version is: ˆ\s*(Final)?\s*[Rr]esult\s+(?:(for)—(of))\s+(?:(HAL)—(ParamILS)—(SMAC)—(this
wrapper))

12

results may fail. For things like sporadic network failures, and other cosmic-ray induced failures, one
should consider using CRASHED in combination with the --retryTargetAlgorithmRunCount and
--abortOnCrash options, to mitigate these.

runtime The amount of CPU time used during this algorithm run. SMAC does not measure the CPU time
directly, and this is the amount that is used with respect to tunerTimeout. You may get unexpected
performance degredation when this amount is heavily under reported 13.

NOTE: The runtime should always be strictly less than the requested cutoff time when reporting
SAT or UNSAT.

If an algorithm reports TIMEOUT or CRASHED the algorithm can report the actual CPU time
used, and SMAC will treat it correctly as a timeout for optimization purposes, but count the actual time
for −−tunerTimeout purposes.

runlength A domain specific measure of how far the algorithm progressed.

quality A domain specific measure of the quality of the solution.

seed The seed value that was used in this target algorithm execution. NOTE: This seed MUST match the
seed that the algorithm was called with. This is used as fail-safe check to ensure that the output we are
parsing really matches the call we requested.

additional rundata A string that will be associated with the run as far as SMAC is concerned. This string
will be saved in run and results file (Section 5.2).

Like invocation, all fields are mandatory, when not applicable 0’s can be substituted.

4.5.3 Wrappers & Native Libraries

In order to optimize an algorithm, SMAC needs a method of invoking it. While modifying the code to manage
the timing and input mechanisms manually is possible, this can sometimes be invasive and difficult to manage.
There exist three other methods that one could consider using.

Wrappers Executable Scripts that manage the resource limits automatically and format the specified string
into something usable by the actual target algorithm. This approach is probably the most common,
but among its drawbacks are the fact that they often rely on third party scripting languages, and for
smaller execution times have a large amount of overhead that may not be accounted for as far as the
tunerTimeout limit is concerned. Most of the examples included in SMAC use this approach, and the
wrappers included can be adapted for your own projects.

NOTE: When writing wrappers it is important not to poll the output stream of the target algorithm,
especially if there is lots of output. Doing so often results in lock-contention and significantly modifies
the runtime performance of the algorithm enough that the resulting configuration is not well tuned to
the real algorithm’s performance.

13This typically happens when targeting very short algorithm runs with large overheads that aren’t accounted for.

13

Native Libraries Augmentation Libraries exist (See: TBD) for C and Java currently that facilitate adding
the required functionality directly to the code. While parsing the arguments into the necessary data
structures is still required, they do manage the timing and output requirements in most cases. Unlike
the previous approach however, certain crashes may not allow the the values to be outputted (e.g. a
segmentation fault occurs).

Target Algorithm Evaluators This is probably the most powerful, but also the most complicated approach.
SMAC is architected in a way that makes it fairly simple to replace the mechanism for execution with
something completely custom. This can be done without even recompiling SMAC by creating a new
implementation of the TargetAlgorithmEvalutor interface, which is responsible for converting
run requests (RunConfig objects) into run results (AlgorithmRun objects). Both the input and
output objects are simple Value Objects so the coupling between SMAC and the rest of your code is
almost zero with this approach. For more information see 6.3

5 Interpreting SMAC’s Output

SMAC outputs a variety of information to log files, trajectory files, and state files. Most of the files are human
readable, and this section describes these files.
NOTE: All output is written to the outdir in the --runGroupName sub-directory.

5.1 Logging Output

SMAC uses slf4j (http://www.slf4j.org/), a library that allows for abstracting and replacing the logging system
with ease, and uses logback (http://logback.qos.ch/) as the default logging system. While there is limited ability
to change logging options via the command line (e.g.,--logLevel,--consoleLogLevel,--logAllCallStrings,--
logAllProcessOutput), one can edit conf/logback.xml, to get much more control over the logging of
SMAC. For more details of how to edit this file consult the logback documentation.

NOTE: If you replace the logger in SMAC or modify the configuration file, the logging command line
options may no longer work.

By default SMAC writes the following logging files out to disk (NOTE: The N represents the --numRun
setting):

log-runN .txt A log file that contains a full dump of all the information logged, and where it was logged
from.

log-warnN .txt Contains the same information as the above file, except only from warning and higher level
messages.

log-errN .txt Contains the same information as the above file, except only from error messages.

runhashes-runN .txt A file that contains only the Run Hash Codes for a given run see the corresponding
entry in the FAQ.

5.1.1 Interpreting the Log File

SMAC basically goes through three phases when executing:

14

• Setup Phase Input files are read, and their arguments validated. Everything necessary to execute the
Automatic Configuration Phase is constructed. This phase ends (baring anything that must be lazily
loaded), once the message Automatic Configurator Started is logged.

• Automatic Configuration Phase: SMAC is now actively configuring the target algorithm. SMAC will
spend most of it’s time here, and outputs it’s progress. The most important output is the Runtime
Statistics which will appear like:

[INFO] *****Runtime Statistics*****
Iteration: 35
Incumbent ID: 64 (0x18824F)
Number of Runs for Incumbent: 70
Number of Instances for Incumbent: 70
Number of Configurations Run: 67
Performance of the Incumbent: 1589.1414639125514
Total Number of runs performed: 242
Wallclock time: 18.213 s
Wallclock time remaining: 2.147483628787E9 s
Configuration time budget used: 84056.83939320213 s
Configuration time budget remaining: 2343.160606797872 s
Sum of Target Algorithm Execution Times \
(treating minimum value as 0.1): 84036.36939320213 s
CPU time of Configurator: 20.47 s
User time of Configurator: 19.6 s
Total Reported Algorithm Runtime: 84033.27806288192 s
Sum of Measured Wallclock Runtime: 0.0 s
Max Memory: 3505.8125 MB
Total Java Memory: 1249.0625 MB
Free Java Memory: 719.8940582275391 MB
[INFO] **

While most of the fields are self-explanatory some deserve special attention:

Incumbent ID

The second ID (0x18824F) is a hex-code that represents the configuration anywhere / everywhere it is
logged. The first ID, 64, occurs in context where we know the configuration is intended to be run. This
ID will corresponding to the ID in the state files. The second ID will always associate with a unique
first ID, but not conversely. The second ID roughly represents the specific configuration in memory 14.

Performance of the Incumbent

This represents the performance of the incumbent under the given run obj and overall obj on the runs
so far.

Configuration time budget used

The tuner time that has been used so far.

Sum of Target Algorithm Execution Times

This represents the contribution of the algorithm runs to the Tuner Time (if applicable), in general each
run contributes the minimum of 0.1 and it’s reported runtime. This parameter differs from Sum of
Measurement Wallclock Runtime in that the latter is a direct sum. If you are only running
on algorithms with large runtime, this difference may be 0.

14Specifically every time a configuration is modified, this number is incremented. In cases where the configuration space is
small,or we are examining a small part of it, SMAC may end up back at the same configuration again. As far as the behaviour of
SMAC is concerned these are identical, the ID is only ever used for logging.

15

• Validation Phase, depending on the options used this can also take a large fraction of SMAC’s runtime.
The logic here is actually quite simple, as it largely only requires running many algorithm runs and
computing the objectives from them.

At the end of Validation the Runtime Statistics (from the Automatic Configuration Phase) are displayed
again, as is the following information

1. The performance of the incumbent on both the training and test set.

2. A sample call of the final incumbent (selected configuration)

3. The complete configuration selected (without inactive conditionals)

4. The complete configuration selected (with inactive conditionals)

5. The Return value of SMAC (generally 0 if successful)

5.2 State Files

State files allow you to examine and potentially restore the state of SMAC at a specific point of it’s execution.
The files are written to the state-runN / sub-directory, where N is the value of --numRun option.

All files have the following convention as a suffix either it or CRASH followed by either the iteration
number M , or in some cases quick or quick-bak.

The state is saved for every iteration m, where m = 2n n ∈ N, additionally it is saved when SMAC
completes whether successfully or due to crash.

The following files are saved in this state directory (ignoring the suffix):

java obj dump Stores (Java) serialized versions of the the incumbent and the random object state. In general
there is no need to look at this file, and it is not human readable.

paramstrings Stores a human readable setting of each configuration ran, with a prefix of the numeric id of
the configuration (as used in the logs, and other state files).

uniq configurations Stores the configurations ran in a more concise but effectively un-human readable form.
The first column again is the numeric id of the configuration (as used in the logs, and other state files).

run and results Stores the result of every run of the target algorithm that SMAC has done. The first 13
columns (after the header row are designed to be backwards compatible with SMAC versions 1.xx.
Each column is labelled with what data it contains, the following columns deserve some description.

Instance ID This is the instance used, and is the nth Instance Name specified in the instance file option.

Response Value(y) This is the value determined by the run obj on the run.

Censored Indicates whether the Cutoff Time Used field is less than the cutoff time in the original
run. 0 means false, 1 means true.

Run Result Code This is a mapping from the Run Result to an integer for use with previous versions.

param-file If --saveContext is enabled, a copy of the paramfile will be in the state folder

instances If --saveContext is enabled, a copy of the instance file will be in the state folder

instance-features If - -saveContext is enabled, and SMAC is running with features, then a copy of the
feature file will be in the state folder.

16

scenario If --saveContext is enabled, and SMAC is using a scenario file, then a copy of the --scenarioFile
will be in the state folder.

5.3 Trajectory File

SMAC also outputs a trajectory file into identical files traj-run-N.txt 15 and traj-run-N.csv.
These files outline the incumbent (by id) over the course of execution and it’s performance. The first line
gives the --runGroupName, and then the --numRun.

The rest of the file follows the following format:
Column Name Description

Total Time Sum of all execution times
and CPU time of SMAC

Incumbents Mean Performance Performance of the Incumbent under the given
–runObjective and –overallObjective

Wallclock Time σ Time of entry with respect to wallclock time.
Incumbent ID The ID of the incumbent

as listed in the param strings file 5.2.
acTime CPU Time of SMAC

Remaining Columns Give a name value mapping for the
configuration value as given by the Incumbent ID column

5.4 Validation Output

When Validation is completed four files are outputted, (again N is the value of the --numRun argument):

1. rawValidationExecutionResults-runN.csv:

CSV File containing a list of the configuration, seeds & instance run and the corresponding result and
the result of the target algorithm execution. This file is mainly for debugging.

2. validationInstanceSeedResult-runN.csv:

CSV File containing a list of seeds & instances and the resulting response value. Again this file is
mainly for debugging, but is easier to parse than the previous.

3. validationResultsMatrix-runN.csv:

CSV File containing the list of instances on each line, the next column is the aggregation of the
remaining columns under the overall obj. Finally there is one additional row that gives the aggregation
of all the individual overall obj, aggregated in the same way.

classicValidationResults-runN.csv
CSV File containing the result of the validation. The columns are defined as follows:

Column Name Description
Tuner Time The tuner time when validation occurred

Emperical Performance The incumbent’s performance on the training set
Test Set Performance The incumbent’s performance on the test set
AC Overhead Time Total CPU Time Used by the Automatic Configurator

15This file is outputted for backwards compatibility with existing scripts.

17

6 Developer Reference

This section is meant as a guide to those who need to modify the SMAC code base for whatever reason.

6.1 Design Overview

The SMAC Application is broken up into three distinct projects as follows:

SMAC Contains all of the logic that is specific to SMAC, (e.g.Validation, the SMAC algorithm, construction
of SMAC Objects). In essence it stitches together components of the Automatic Configurator Library.
The sources are included in smac-src.jar.

Automatic Configurator Library Contains all of the primary abstractions/models used by SMAC (e.g.Object
representations for Instances, Target Algorithm Configurations & methods for executing algorithms,...).
90% of the code that SMAC uses lives in this library. It also contains code for converting the data
from these abstractions into input needed to build the model. These are shipped with SMAC in the
aclib-src.jar file.

Random Forests The Random Forest model code. The sources are included in fastrf-src.jar.

The scope of this document governs only the first two projects. At the time of writing the Automatic
Configurator Library code base is in good shape, while the SMAC code base suffers from two key
problems:

• A sizable portion of the 30 or so classes exist only for the porting process of SMAC from MATLAB to
Java, and will be removed in future.

• The bulk of the code necessary to run SMAC lives in three classes
AbstractAlgorithmFramework,
SequentialModelBasedAlgorithmConfiguration and finally,
AutomaticConfigurator. Each of these three classes has problems with poor cohesion (i.e.They
are all basically doing too much, and could easily be broken up into smaller classes).

As most of the SMAC code is in the Automatic Configurator Library, these issues are hardly fatal, and
will most likely just be suprising at how disjoint the code bases seem. While the Automatic Configurator
Library is relatively stable, the SMAC portion of the code will be refactored over the coming months to
clean up many of its deficiencies.

6.2 Class Overview

The most important classes to SMAC are as follows:

18

Automatic Configurator Library Classes
Name Description

AbstractOptions Base class for creating new options for SMAC. While not important in
and of itself, you will generally be implementing or modifying one of
it’s subtypes to implement options.

AlgorithmRun Interface that represents the results of a target algorithm run. These
are created by a TargetAlgorithmEvaluator. Outside of
the TargetAlgorithmEvaluator these classes are generally im-
mutable.

AlgorithmExecutionConfig Immutable object containing the information required to invoke a target
algorithm.

InstanceSeedGenerator Interface that gets seeds for a ProblemInstance. These objects are
constructed by ProblemInstanceHelper

ModelBuilder Interface whose implementations should result in a constructed model.
OverallObjective Aggregates many RunObjective values under some statistic

(e.g.mean), to produce a value to be optimized.
ParamConfiguration Class that represents a specific setting of the target algorithm’s param-

eters. This class also implements the Map interface, though does not
support all the required operations. The ID associated with is object, is
used only for logging and should not be used in the code. Finally al-
though this class is not immutable the general life cycle is that the object
is created, given specific values, and then never changed again. In future
this may be augmented with the ability to prevent writes. These objects
are always constructed via the ParamConfigurationSpace.

ParamConfigurationSpace (Almost immutable) class that represents the entire configuration space
of a target algorithm. This class is constructed with the Algorithm
Parameter File described in section 4.4. This class also contains the
specifics of each parameter (e.g.domains, defaults, etc...). Currently the
Random object used is the only portion that is mutable, and this will
change in the future.

ProblemInstance Immutable class that represents a specific problem instance, constructed
by ProblemInstanceHelper.

ProblemInstanceSeedPair Immutable class that represents a problem instance and seed. Decisions
of which seed to use when scheduling a run are made in RunHistory.

RunConfig Immutable class that represents a problem instance seed pair, and config-
uration to execute.

RunHistory Interface that saves all the runs performed, and allows various queries
against this information.

RunObjective Converts an AlgorithmRun into a scalar value for optimization
SanitizedModelData Converts the run data into a format to use when building the model.

Other things such as PCA, and other data filtering are done here. This
interface and mechanism will likely be refactored in the future as it is
brittle at the moment.

SeedableRandomSingleton A global random object whose existence is a convincing case that Sin-
gleton’s are Anti-Patterns. This will, thankfully, go the way of the dodo
bird at some point.

StateFactory Interface that constructs StateSerializer &
StateDeserializer to manage saving and restoring state
respectively.

TargetAlgorithmEvaluator Interface whose implementations should be able to run the algo-
rithm (i.e. Implementations should convert RunConfig objects to
AlgorithmRun objects). See section 6.3 for more information.

19

SMAC Library Classes
Name Description

AutomaticConfigurator Constructs all objects necessary to execute
SMAC (SMAC entrypoint)

AbstractAlgorithmFramework Non-abstract class that provides a default
Automatic Configurator (ROAR)

SequentialModelBasedAlgorithmConfiguration Class that subtypes
AbstractAlgorithmFramework
and implements the methods required for
SMAC

Validator Performs Validation of selected configura-
tions

ValidatorExecutor Entry point to stand alone validation utility

6.3 Target Algorithm Evaluator

The Target Algorithm Evaluator subsystem is the part of the code you will be modifying if you would like
to change how target algorithms are run. On the next page is a UML class diagram showing most of how this
part of the code works.

20

21

Once constructed, the TargetAlgorithmEvaluator interface is simple, it simply needs to return
a new AlgorithmRun object, for each RunConfig object passed as input, and in the same order, via
the TargetAlgorithmEvaluator.evaluateRun() method. The construction of these objects is
where the complexity lies and so here is a run through of the construction.

1. When the code starts up, SMAC requests a specific Target Algorithm Evaluator (using some globally
unique String as a key), from TargetAlgorithmEvaluatorBuilder.getTargetAlgorithmEvaluator()

2. This invokes the similarly named method in TargetAlgorithmEvaluatorLoader, which uses
SPI (see 6.4 for more information on SPI) to find the TargetAlgorithmEvaluatorFactory
whose getName() method returns the matching string. The name MUST NOT have any white space.
For reference, the
CommandLineTargetAlgoirthmEvaluatorFactory returns CLI.

3. When an match is found, a no argument constructor (in the diagram this is shown under the CommandLineTargetAlgorithmEvaluatorFactory
class) is invoked.

4. Next the getTargetAlgorithmEvaluator() method is invoked which in the above diagram
would return a CommandLineTargetAlgorithmEvaluator

5. With this new instance in hand, the TargetAlgorithmEvaluatorBuilder then wraps this
object with various decorators (e.g.RetryCrashedRunTargetAlgorithmEvaluator) depending on the
options supplied (not-shown).

The use of SPI allows new implementations to be created without modifying the existing SMAC code,
and requires less mantinence to update to newer versions of SMAC. Unfortunately at the time of writing there
are two limitations to keep in mind with this approach.

1. You cannot supply options to the user to configure your TargetAlgorithmEvaluator.

2. You cannot use this method to add new decorators.

Neither of these seems significant at the current time. If a new decorator is needed, you can hard code the
base implementation and return a wrapped instance of it (i.e.Create a new TargetAlgorithmEvaluatorFactory
that returns a wrapped instance of an existing TargetAlgorithmEvaluator). Configuration of the
TargetAlgorithmEvaluator can be done via files at this point.

When using the SPI approach you are strongly encouraged to also implement Plugin Versioning; see
Section 6.4.

6.4 Plugin Versioning

Any plug-ins or changes to SMAC should contain an implementation of VersionInfo, and the implementor
should be labelled as a provider of VersionInfo via SPI 16.

In essence this interface simply has two getter methods getProductName() and getVersion().
If everything is done correctly when SMAC starts up you should see the product name and version printed in
the logs.

Example:
16SPI is the Service Provider Interface, see SPI on Wikipedia (http://en.wikipedia.org/wiki/Service provider interface) as

well as this utility which simplifies the process drastically (http://code.google.com/p/spi/)

22

[INFO] Version of Automatic Configurator Library is v1.00.04dev-307
[INFO] Version of Random Forest Library is v1.04.01dev-50
[INFO] Version of SMAC is v2.00.01dev-318
[INFO] Version of Surrogate is v1.01dev-227

This can make debugging and managing reproducability much easier.

6.5 Run Hash Codes

A Run Hash Code is a sequence of hashes that represent which runs were scheduled by SMAC. When calling
SMAC using
./smac --scenarioFile <file> --runHashCodeFile <logfile>,
SMAC logs all Run Hash Codes to <logfile>. This option allows reading of that log file for subsequent runs
to ensure that the exact same set of runs is scheduled. This is primarily of use for developers.

7 Acknowledgements

We are indebted to Jonathan Shen for porting our random forest code from C to Java in preparation for a
Java port of all of SMAC. We thank Marius Schneider for many valuable bug reports and suggestions for
improvements. Thanks also to Chris Thornton for being a secondary beta tester.

8 References

[1] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011a). Bayesian optimization with censored response
data. In 2011 NIPS workshop on Bayesian Optimization, Sequential Experimental Design, and Bandits.
Published online.

[2] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011b). Sequential model-based optimization for general
algorithm configuration. In Proc. of LION-5, LNCS, pages 507–523.

[3] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

9 Appendix

9.1 Return Codes

NOTE: All error conditions besides 255 are fixed. However in future some exceptions that previously
reported 255 may be changed to a non 255 value as needed / requested

23

Value Error Name Description
0 Success Everything completed successfully
1 Parameter Error There was a problem with the input arguments or files
2 Trajectory Divergence For some reason SMAC has taken a unexpected path

(e.g. SMAC executes a run that does not match a run
in the --runHashCodeFile)

3 Serialization Exception A problem occurred when saving or restoring state
255 Other Exceptions Some other error occurred

9.2 Version History of Java SMAC

Version 2.00 (Aug-2012) First Internal Release of Java SMAC (this is a port and extension of the original
Matlab version).

Version 2.02 (Oct-2012) First Public Release of SMAC v2 and contained many fixes from the previous
release.

Version 2.04 (Dec-2012) Second Release of Java SMAC including the following improvements:

1. Validation file output times consistent with Tuner Times

2. Some INFO log statements have been moved to DEBUG and some DEBUG to TRACE
3. Added support for verifying whether responses of SAT and UNSAT are consistent with Instance

Specific Information see --verifySAT option for more information

4. Added support for the SMAC MEMORY environment variable to control how much RAM (in
MB) SMAC will use when executed via the supplied shell scripts.

5. Context is now added to the state folders to make it easier to debug issues later, to disable consult
the --saveContext option.

6. Greatly improved memory usage in State Serialization code, and now we free the existing model
prior to building a new one, so for some JVMs this may improve memory usage.

Version 2.04.01 (Feb-2013) Minor Bug Fix of Java SMAC

1. Added option to validate over training set instances

2. Can now use <DEFAULT> as a configuration to validate against

3. Fixed bug where TIMEOUT runs below our requested cutoff time are not counted properly when
considering incumbent changes

4. Can now specify the initial incumbent with the --initialIncumbent option.

5. Wallclock time is now saved in the trajectory file instead of -1

6. FAQ Improvements

7. Git commit hash is now documented in Manual, FAQ, and Version strings

8. (BETA) Support for bash auto-completion of arguments for smac and smac-validate. You
can load the file by running:

. ./util/bash_autocomplete.sh

24

9.3 Known Issues

1. SMAC may crash with a ConvergenceException when --adaptiveCapping is true, this has
happened only once out of thousands of Runs, but we have no fix at this time other than trying a
different seed.

2. Trajectory file does not output standard deviation

3. Using any alias for --showHiddenParameters, --help, or --version as values to other arguments (e.g.
Setting --runGroupName --help) does not parse correctly (This is unlikely to be fixed until someone
complains).

4. Using large parameter values in continuous integral parameters, may cause loss of precision, and or
crashes if the values are too big.

5. On older versions of Java (<1.6.0 23), SMAC may get an IOException with Out Of Memory when
trying to execute the target algorithms

9.4 Options Reference

9.4.1 SMAC Options

General Options for Running SMAC

--adaptiveCapping Use Adaptive Capping

Aliases: --adaptiveCapping

Default Value: Defaults to true when –intraInstanceObjective is RUNTIME, false otherwise

Domain: {true, false}

--capAddSlack amount to increase computed adaptive capping value of challengers by (post scaling)

Aliases: --capAddSlack

Default Value: 1.0

Domain: (0,∞)

--capSlack amount to scale computed adaptive capping value of challengers by

Aliases: --capSlack

Default Value: 1.3

Domain: (0,∞)

--cleanOldStateOnSuccess will clean up much of the useless state files if smac completes successfully

Aliases: --cleanOldStateOnSuccess

Default Value: true

Domain: {true, false}

25

--consoleLogLevel default log level of console output (this cannot be more verbose than the logLevel)

Aliases: --consoleLogLevel

Default Value: INFO

Domain: {TRACE,DEBUG, INFO,WARN,ERROR,OFF}

--countSMACTimeAsTunerTime include the CPU Time of SMAC as part of the tunerTimeout

Aliases: --countSMACTimeAsTunerTime

Default Value: true

Domain: {true, false}

--doValidation perform validation when SMAC completes

Aliases: --doValidation, --validation

Default Value: true

Domain: {true, false}

--executionMode execution mode of the automatic configurator

Aliases: --executionMode

Default Value: SMAC

Domain: {SMAC,ROAR}

--expectedImprovementFunction expected improvement function to use during local search

Aliases: --expectedImprovementFunction

Default Value: EXPONENTIAL

Domain: {EXPONENTIAL, SIMPLE}

--experimentDir root directory for experiments Folder

Aliases: --experimentDir, -e

Default Value: <current working directory>

--help show help

Aliases: --help, -?, /?, -h

--imputationIterations amount of times to impute censored data when building model

Aliases: --imputationIterations

Default Value: 2

Domain: [0, 2147483647]

26

--initialIncumbent Initial Incumbent to use for configuration (you can use RANDOM, or DEFAULT as a
special string to get a RANDOM or the DEFAULT configuration as needed). Other configurations are
specified as: -(name) ’value’ -(name) ’value’ ...

Aliases: --initialIncumbent

Default Value: DEFAULT

--initialIncumbentRuns initial amount of runs to schedule against for the default configuration

Aliases: --initialIncumbentRuns, --defaultConfigRuns

Default Value: 1

Domain: (0, 2147483647]

--initialN initial amount of runs to request when intensifying on a challenger

Aliases: --initialN, --initialChallenge

Default Value: 1

Domain: (0, 2147483647]

--intensificationPercentage percent of time to spend intensifying versus model learning

Aliases: --intensificationPercentage, --frac rawruntime

Default Value: 0.5

Domain: (0, 1)

--logLevel Log Level for SMAC

Aliases: --logLevel

Default Value: DEBUG

Domain: {TRACE,DEBUG, INFO,WARN,ERROR,OFF}

--maskInactiveConditionalParametersAsDefaultValue build the model treating inactive conditional val-
ues as the default value

Aliases: --maskInactiveConditionalParametersAsDefaultValue

Default Value: true

Domain: {true, false}

--maxIncumbentRuns maximum number of incumbent runs allowed

Aliases: --maxIncumbentRuns, --maxRunsForIncumbent

Default Value: 2000

Domain: (0, 2147483647]

27

--numChallengers number of challengers needed for local search

Aliases: --numChallengers, --numberOfChallengers

Default Value: 10

Domain: (0, 2147483647]

--numEIRandomConfigs number of random configurations to evaluate during EI search

Aliases: --numEIRandomConfigs, --numberOfRandomConfigsInEI, --numRandomConfigsInEI, --
numberOfEIRandomConfigs

Default Value: 10000

Domain: [0, 2147483647]

--numIterations limits the number of iterations allowed during automatic configuration phase

Aliases: --numIterations, --numberOfIterations

Default Value: 2147483647

Domain: (0, 2147483647]

--numPCA number of principal components features to use when building the model

Aliases: --numPCA

Default Value: 7

Domain: (0, 2147483647]

--numRun number of this run (and seed)

REQUIRED
Aliases: --numRun, --seed

Default Value: 0

Domain: [0, 2147483647]

--optionFile read options from file

Aliases: --optionFile

--optionFile2 read options from file

Aliases: --optionFile2, --secondaryOptionsFile

--restoreStateFrom location of state to restore

Aliases: --restoreStateFrom

Default Value: N/A (No state is being restored)

28

--restoreStateIteration iteration of the state to restore

Aliases: --restoreStateIteration, --restoreIteration

Default Value: N/A (No state is being restored)

--runGroupName name of subfolder of outputdir to save all the output files of this run to

Aliases: --runGroupName

Default Value: RunGroup-<current date and time>

--runtimeLimit limits the total wall-clock time allowed during the automatic configuration phase

Aliases: --runtimeLimit, --wallClockLimit

Default Value: 2147483647

Domain: (0, 2147483647]

--saveContext saves some context with the state folder so that the data is mostly self-describing (Scenario,
Instance File, Feature File, Param File are saved)

Aliases: --saveContext, --saveContextWithState

Default Value: true

Domain: {true, false}

--seedOffset offset of numRun to use from seed (this plus --numRun should be less than LONG MAX)

Aliases: --seedOffset

Default Value: 0

--showHiddenParameters show hidden parameters that no one has use for, and probably just break SMAC
(no-arguments)

Aliases: --showHiddenParameters

--stateDeserializer determines the format of the files that store the saved state to restore

Aliases: --stateDeserializer

Default Value: LEGACY

Domain: {NULL,LEGACY }

--stateSerializer determines the format of the files to save the state in

Aliases: --stateSerializer

Default Value: LEGACY

Domain: {NULL,LEGACY }

29

--totalNumRunsLimit limits the total number of target algorithm runs allowed during the automatic
configuration phase

Aliases: --totalNumRunsLimit, --numRunsLimit, --numberOfRunsLimit

Default Value: 9223372036854775807

Domain: (0, 9223372036854775807]

--treatCensoredDataAsUncensored builds the model as-if the response values observed for cap values,
were the correct ones [NOT RECOMMENDED]

Aliases: --treatCensoredDataAsUncensored

Default Value: false

Domain: {true, false}

-v print version and exit

Aliases: -v, --version

9.4.2 Scenario Options

Standard Scenario Options for use with SMAC. In general consider using the –scenarioFile directive to
specify these parameters and Algorithm Execution Options

--checkInstanceFilesExist check if instances files exist on disk

Aliases: --checkInstanceFilesExist

Default Value: false

Domain: {true, false}

--cutoffTime CPU time limit for an individual target algorithm run

REQUIRED
Aliases: --cutoffTime, --cutoff time

Default Value: 0.0

Domain: (0,∞)

--instanceFeatureFile file that contains the all the instances features

Aliases: --instanceFeatureFile, --feature file

--instanceFile file containing a list of instances to use during the automatic configuration phase (see Instance
File Format section of the manual)

REQUIRED
Aliases: --instanceFile, -i, --instance file, --instance seed file

30

Default Value: null

--interInstanceObj objective function used to aggregate over multiple instances (that have already been
aggregated under the Intra-Instance Objective)

Aliases: --interInstanceObj, --inter instance obj

Default Value: MEAN

Domain: {MEAN,MEAN1000,MEAN10}

--intraInstanceObj objective function used to aggregate multiple runs for a single instance

REQUIRED
Aliases: --intraInstanceObj, --overallObj, --overall obj, --intra instance obj

Default Value: null

Domain: {MEAN,MEAN1000,MEAN10}

--outputDirectory Output Directory

Aliases: --outputDirectory, --outdir

Default Value: <current working directory>/smac-output

--runObj per target algorithm run objective type that we are optimizing for

REQUIRED
Aliases: --runObj, --run obj

Default Value: null

Domain: {RUNTIME,QUALITY }

--scenarioFile scenario file

Aliases: --scenarioFile

--testInstanceFile file containing a list of instances to use during the validation phase (see Instance File
Format section of the manual)

REQUIRED
Aliases: --testInstanceFile, --test instance file, --test instance seed file

Default Value: null

--tunerTimeout limits the total cpu time allowed between SMAC and the target algorithm runs during the
automatic configuration phase

Aliases: --tunerTimeout

Default Value: 2147483647

31

Domain: [0, 2147483647]

-p File containing algorithm parameter space information (see Algorithm Parameter File in the Manual)

REQUIRED
Aliases: -p, --paramFile, --paramfile

Default Value: null

9.4.3 Algorithm Execution Options

Options related to running the target algorithm

--abortOnCrash treat algorithm crashes as an ABORT (Useful if algorithm should never CRASH). NOTE:
This only aborts if all retries fail.

Aliases: --abortOnCrash

Default Value: false

Domain: {true, false}

--abortOnFirstRunCrash if the first run of the algorithm CRASHED treat it as an ABORT, otherwise
allow crashes.

Aliases: --abortOnFirstRunCrash

Default Value: true

Domain: {true, false}

--algoExec command string to execute algorithm with

REQUIRED
Aliases: --algoExec, --algo

Default Value: null

--deterministic treat the target algorithm as deterministic

Aliases: --deterministic

Default Value: false

Domain: {true, false}

--execDir working directory to execute algorithm in

REQUIRED
Aliases: --execDir, --execdir

Default Value: null

--logAllCallStrings log every call string

32

Aliases: --logAllCallStrings

Default Value: false

Domain: {true, false}

--logAllProcessOutput log all process output

Aliases: --logAllProcessOutput

Default Value: false

Domain: {true, false}

--numConcurrentAlgoExecs maximum number of concurrent target algorithm executions

Aliases: --numConcurrentAlgoExecs, --maxConcurrentAlgoExecs, --numberOfConcurrentAlgoExecs

Default Value: 1

--retryTargetAlgorithmRunCount number of times to retry an algorithm run before eporting crashed
(NOTE: The original crashes DO NOT count towards any time limits, they are in effect lost). Addition-
ally this only retries CRASHED runs, not ABORT runs, this is by design as ABORT is only for cases
when we shouldn’t bother further runs

Aliases: --retryTargetAlgorithmRunCount

Default Value: 0

Domain: [0, 2147483647]

--runHashCodeFile file containing a list of run hashes one per line: Each line should be: ”Run Hash Codes:
(Hash Code) After (n) runs”. The number of runs in this file need not match the number of runs that we
execute, this file only ensures that the sequences never diverge. Note the n is completely ignored so the
order they are specified in is the order we expect the hash codes in this version. Finally note you can
simply point this at a previous log and other lines will be disregarded

Aliases: --runHashCodeFile

--targetAlgorithmEvaluator Target Algorithm Evaluator to use when making target algorithm calls

Aliases: --targetAlgorithmEvaluator, --tae

Default Value: CLI

--targetAlgorithmEvaluatorSearchPath location to look for other target algorithm evaluators [See manual
but generally you can ignore this]

Aliases: --targetAlgorithmEvaluatorSearchPath, --taeSP

Default Value: <current working directory>/plugins/ amoung others

--verifySAT Check SAT/UNSAT/UNKNOWN responses against Instance specific information (if null then
performs check if every instance has specific information in the following domain SAT, UNSAT,
UNKNOWN, SATISFIABLE, UNSATISFIABLE

33

Aliases: --verifySAT

Default Value: null

Domain: {true, false}

9.4.4 Random Forest Options

Options used when building the Random Forests

--freeMemoryPecentageToSubsample when free memory percentage drops below this percent we will
apply the subsample percentage

Aliases: --freeMemoryPecentageToSubsample

Default Value: 0.25

Domain: (0, 1]

--fullTreeBootstrap bootstrap all data points into trees

Aliases: --fullTreeBootstrap

Default Value: false

Domain: {true, false}

--ignoreConditionality ignore conditionality for building the model

Aliases: --ignoreConditionality

Default Value: false

Domain: {true, false}

--logModel store response values in log-normal form

Aliases: --logModel

Default Value: true

Domain: {true, false}

--minVariance minimum allowed variance

Aliases: --minVariance

Default Value: 1.0E-14

Domain: (0,∞)

--numTrees number of trees to create in random forest

Aliases: --numTrees, --nTrees, --numberOfTrees

Default Value: 10

Domain: (0, 2147483647]

34

--penalizeImputedValues treat imputed values that fall above the cutoff time, and below the penalized max
time, as the penalized max time

Aliases: --penalizeImputedValues

Default Value: false

Domain: {true, false}

--preprocessMarginal build random forest with preprocessed marginal

Aliases: --preprocessMarginal

Default Value: true

Domain: {true, false}

--ratioFeatures ratio of the number of features to consider when splitting a node

Aliases: --ratioFeatures

Default Value: 0.8333333333333334

Domain: (0, 1]

--shuffleImputedValues shuffle imputed value predictions between trees

Aliases: --shuffleImputedValues

Default Value: false

Domain: {true, false}

--splitMin minimum number of elements needed to split a node

Aliases: --splitMin

Default Value: 10

Domain: [0, 2147483647]

--storeDataInLeaves store full data in leaves of trees

Aliases: --storeDataInLeaves

Default Value: false

Domain: {true, false}

--subsamplePercentage multiply the number of points used when building model by this value

Aliases: --subsamplePercentage

Default Value: 0.9

Domain: (0, 1]

35

--subsampleValuesWhenLowOnMemory subsample model input values when the amount of memory
available drops below a certain threshold (see --subsampleValuesWhenLowMemory)

Aliases: --subsampleValuesWhenLowOnMemory, --subsampleValuesWhenLowMemory

Default Value: false

Domain: {true, false}

9.4.5 Validation Options

Options that control validation

--maxTimestamp maximimum relative timestamp in the trajectory file to configure against. -1 means
auto-detect

Aliases: --maxTimestamp

Default Value: Auto Detect

Domain: [0,∞)
⋃
{−1}

--minTimestamp minimum relative timestamp in the trajectory file to configure against.

Aliases: --minTimestamp

Default Value: 0.0

Domain: [0,∞)

--multFactor base of the geometric progression of timestamps to validate (timestamps selected are: maxTime×multFactor−n

where n is {1, 2, 3, 4...} while timestamp ≥ minTimestamp)

Aliases: --multFactor

Default Value: 2.0

Domain: (0,∞)

--numSeedsPerTestInstance number of test seeds to use per instance during validation

Aliases: --numSeedsPerTestInstance, --numberOfSeedsPerTestInstance

Default Value: 1000

Domain: (0, 2147483647]

--numTestInstances number of instances to test against (will execute min of this, and number of instances
in test instance file). To disable validation in SMAC see the --doValidation option

Aliases: --numTestInstances, --numberOfTestInstances

Default Value: 2147483647

Domain: (0, 2147483647]

36

--numValidationRuns approximate number of validation runs to do

Aliases: --numValidationRuns, --numberOfValidationRuns

Default Value: 1000

Domain: (0, 2147483647]

--outputFileSuffix Suffix to add to validation run files (for grouping)

Aliases: --outputFileSuffix

--validateOnlyLastIncumbent validate only the last incumbent found

Aliases: --validateOnlyLastIncumbent

Default Value: true

Domain: {true, false}

--validationHeaders put headers on output CSV files for validation

Aliases: --validationHeaders

Default Value: true

Domain: {true, false}

--validationRoundingMode selects whether to round the number of validation (to next multiple of numTestIn-
stances

Aliases: --validationRoundingMode

Default Value: UP

Domain: {UP,NONE}

37

