0.1 Option Files

Option Files are a way of saving a different set of values frequently used with SMAC without having to
specify them on every execution. The general format for an option file is the name of the configuration option
(without the two dashes), an equal sign, and then the value (for booleans it should be true or false, lowercase).
Currently options that take multiple arguments are not supported. Additionally you can not use aliases that
are single dashed (e.g. to override the Experiment Directory, you must use —experimentDir and not -e)

When using Option Files it is important that no two files (including the Scenario File), specify the same
option, the resulting configuration is undefined, and in general this will not throw an error.

0.1.1 Scenario File

The Scenario Option File, or Scenario File, is the recommended way of configuring SMAC !. The Scenario
Files used in SMAC are backwards compatible with ParamILS and the name of option names here reflect
that?>. NOTE: cutoff_length is not currently supported.

algo An algorithm executable or wrapper script around an algorithm that conforms with the input/output
format specified in section 0.5. The string here should be invokable via the system shell.

execdir Directory to execute <algo> from: (i.e. “cd <execdir>; <algo>")

deterministic A boolean that governs whether or not the algorithm should be treated as deterministic.
For backwards compatibility with ParamILS, this option also supports using O for false, and 1 for
true. SMAC will never invoke the target algorithm more than once for any given instance, seed and
configuration. If this is set to t rue, SMAC will never invoke the target algorithm more than once for
any given instance and configuration.

run_obj Determines how to convert the resulting output line into a scalar quantifying how “good” a single
algorithm execution is, (e.g. how long it took to execute, how good of a solution it found, etc...).
Currently implemented objectives are the following:

| Name Description

RUNTIME | The reported runtime of the algorithm.
QUALITY | The reported quality of the algorithm.

overall_obj While run_obj defines the objective function for a single algorithm run, overall_obj defines
how those single objectives are combined to reach a single scalar value to compare two parameter
configurations. Implemented examples for this are as follows:

Name Description
MEAN The mean of the values
MEAN1000 | Unsuccessful runs are counted as 1000 x cutoff_time
MEAN10 Unsuccessful runs are counted as 10 x cutoff_time

"Nothing in general prevents you from specifying non-scenario options in these files, but in general you should restrict your files
to these.

Every option name listed here is in fact an alias for an existing option listed in the section ?? and it is entirely possible to use
SMAC without using Scenario Files.

cutoff_time The CPU time after which a single algorithm execution will be terminated as unsuccess (and
treated as a TIMEQUT). This is an important parameter: If chosen too high, lots of time will be
wasted with unsuccessful runs. If chosen too low the optimization is biased to perform well on easy
instances only.

tunerTimeout The limit of the CPU time allowed for configuration (i.e.The sum of all algorithm runtimes,
and by default the sum of the CPU time of SMAC itself).

paramfile Specifies the file with the parameters of the algorithm. The format of this file is covered in Section
0.4.

outdir Specifies the directory SMAC should write its results to.

instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC to use
during the Automatic Configuration Phase. The ParamILS parameter instance_seed _file aliases this
one and the format is auto-detected. The format of these files is covered in section 0.2.

test_instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC
to use during Validation Phase. The ParamILS parameter test_instance_seed file aliases this one and
the format is auto-detected. The format of these files is covered in section 0.2.

feature file Specifies the a file with the features for the instances in the instance_file and possibly the
test_instance_file . The format of this file is covered in section 0.3.

0.2 Instance File Format

The files used by the instance_file & test_instance_file options come in four potential formats, all of which

are CSV based*. Before specifying the formats it is important to note the three kinds of information that are

specified with instances °.

Instance Name The name of the instance that was selected. This should be meaningful to the target algorithm
we are configuring ©.

Instance Specific Information A free form text string (with no spaces or line breaks) that will be passed to
the Target Algorithm whenever executed.

Seed A specific seed to use when executing the target algorithm.
The possible formats are as follows, and depend on what information you’d like to specify.

1. Each line specifies only a unique Instance Name. No Instance Specific Information will be used,
and Seed’s will be automatically generated.

3The Validator will load features into memory for test instances if they exist.

“Specifically each cell should be double-quoted (i.e.”), and use a comma as a cell delimiter. SMAC also supports the old method
of reading files that use space as a cell delimiter and do not enclose values. However these files cannot handle Instance Name’s that
contain spaces.

3Features which are required for SMAC but not ParamILS are specified in a seperate file see section 0.3.

SGenerally Instance Names reference specific files on disk.

2. Each line specifies a Seed followed by the Instance Name. Every line must be unique, but for each
Instance Name additional seeds will be used in order, when that instance is selected.

3. Each line specifies a Instance Name followed by the Instance Specific Information. Every Instance
Name must be unique, Seed’s will be automatically generated.

4. Each line specifies a Seed followed by the Instance Name followed by the Instance Specific Infor-
mation. Every line must be unique, and furthermore, for all Instance Name’s the Instance Specific
Information must be the same for all Seed values (i.e. You cannot specify different instance specific
information that is a function of the seed used).

0.3 Feature File Format

The feature file specifies features that are to be used for instances. Feature Files are specified in CSV format,
the first column of every row should list an Instance Name as it appears in the instance_file. The subsequent
columns should list double values specifying a computed continuous feature. By convention the value —512,
and —1024 are used to signify that a feature value is missing or not applicable. All instances must have the
same number of features.

At the top of the file there MUST appear a header row, the cell that appears above the instance names is
unimportant, but for each feature a unique and non-numeric feature name must be specified.

0.4 Algorithm Parameter File

The parameter configuration space of your algorithm need to be defined in a file that is specified by the
paramfile option. Comments in the file begin with a #, and run to the end of the line.
The file consists of three types of statements:

Parameter Declaration Clauses specifies the name of parameters, and their domains.
Conditional Parameter Clauses specify when a parameter is active.

Forbidden Parameter Clauses specify when a combination of parameter settings is illegal and shouldn’t
be ignored.

0.4.1 Parameter Declaration Clauses

SMAC supports two types of parameters, categorical and numeric. The former is specified as follows:
name { valuel, ..., valuen } [defaultValue]
Example:

timeout { 1,5,10,50,100,500,1000,5000,10000 } [500]

Here a categorical parameter is declared named t imeout, its values must be one of the values listed,
and it has a default of 500.
Numeric Parameters (both continuous and integral) are specified as follows:

name [minValue, maxValue] [defaultValue] (1) (1)

Example 1:
timeout [1, 10000] [500]

We have specified timeout as numeric with a default value of 500. Any value is legally permitted so long
as it’s in the Real interval of [1, 10000]. When drawing a random configuration out of this space they are
drawn uniformly.

Example 2:

timeout [1, 10000] [500]1
This example is identical to the previous, except that when drawing random configurations we do so
uniformly on a logy scale (e.g. a value between [1, 100] is as likely to be selected as between [100, 10000]).

Example 3:

timeout [1, 10000] [500]71i
In this example the only legal values are integers in the range [1, 10000], we select from these integers
uniformly.

Example 4:

timeout [1, 10000] [500714il
In this example integers in the range [1, 10000] are the only values permitted, and when randomly
selecting them we do so on a log; scale.

Restrictions

Integer Numeric integral parameters must have all values specified as integers, even though strictly speaking
the notation should permit fractional values. Additionally the default value must be a integer.

Log Log parameters must have strictly positive lower and upper bounds.

0.4.2 Conditional Parameter Clause

Conditional parameter clauses specify when a parameter is active. A parameter is active when for each clause
that lists it as a dependent, the independent variable is active and has a value that satisfies the operation .
Conditional Parameter Clauses have the following syntax:

dependentName | independentName operation { valuel, ... , value,n}
Example:

sort-algo { quick, insertion, merge, heap, stooge, bogo } [bogo]
quick-revert-to-insertion { 1,2,4,8,16,32,64 } [16]
quick-revert-to-insertion | sort-algo in { quick }

In the above example the quick-revert-to-insertion is conditional on the sort-algo pa-
rameter being set to quick, and will be ignored otherwise.

0.4.3 Forbidden Parameter Clauses

Forbidden Parameters are combinations of parameter settings which should not be treated as valid by SMAC.
During the search phase, parameters matching a forbidden parameter configuration, will not be explored 8.
The Syntax is as follows:
{ namel=vall , name2=val2, ...}

"The only supported operation presently is in.
8Specifying a large number of forbidden parameters may degrade SMAC’s performance substantially.

Example

quick-sort { on, off } [on]

bubble-sort { on, off } [0ff]

{ quick-sort=on, bubble-sort=on }

{ quick-sort=off, bubble-sort=off }

The above example implements an exclusive-or °. The first forbidden parameter clause prevents both sort
techniques from being on at the same time. The second ensures that atleast one of them is on. NOTE: The
default parameter setting cannot itself be a forbidden parameter setting.

0.5 Algorithm executable / wrapper

The target algorithm as specified by the algo parameter must obey the following general contracts. While
modifying your own code to directly achieve this is one option there are other methods outlined in section
0.5.3.

0.5.1 Invocation

The algorithm must be invokable via the system command-line using the following command with arguments:
<algo_executable> <instance_name> <instance_specific_information> <cutoff_time>
<cutoff_length> <seed> <param> <param> <param>...

algo_executable Exactly what is specified in the algo argument in the scenario file.
instance_name The name of the problem instance we are executing against.

instance_specific_information An arbitrary string associated with this instance as specified in the in-
stance file . If no information is present then a “0” is always passed here.

cutoff_time The amount of time in seconds that the target algorithm is permitted to run. It is the responsibility
of the callee to ensure that this is obeyed. It is not necessary that that the actual algorithm execution
time (wall clock time) be below this value (e.g.If the algorithm needs to cleanup, or it’s only possible
to terminate the algorithm at certain stages).

cutoff_length A domain specific measure of when the algorithm should consider itself done.

seed A positive integer that the algorithm should use to seed itself (for reproducibility). “-1” is used when
the algorithm is deterministic

param A setting of an active parameter for the selected configuration as specified in the Algorithm Parameter
File. SMAC will only pass parameters that are active. Additionally SMAC is not guaranteed to pass
the parameters in any particular order. The exact format for each parameter is:
—name ’value’

All of the arguments above will always be passed, even if they are inapplicable, in which case a dummy
value will be passed.

° Admittedly it could be better modelled with a simple categorical parameter.

0.5.2 Output

The Target Algorithm is free to output anything, which will be ignored but must at some point output a line
(only once) in the following format!'?

Result for ParamILS: <solved>, <runtime>, <runlength>, <quality>, <seed>,
<additional rundata>

solved Must be one of SAT (signifying a successful run that was satisfiable), UNSAT (signifying a suc-
cessful run that was unsatisfiable), TIMEOUT if the algorithm didn’t finish within the allotted time,
CRASHED if something untoward happened during the algorithm run, or ABORT if something
prevents the target algorithm for successfully executing and it is believed that further attempts would
be futile.

SMAC does not differentiate between SAT and UNSAT responses, and the primary use of these is
historical and serves as a check that the algorithm is executing correctly by outputting whether the
instance in question is satisfiable or not.

SMAC also supports reporting SATISFIABLE for SAT and UNSATISFIABLE for UNSAT. NOTE:
These are only aliases and SMAC will not preserve which alias was used in the log or state files.

ABORT can be useful in cases where the target algorithm cannot find required files, or a permission
problem prevents access to them. This will cause SMAC to stop running immediately. Use this
option with care, it should only be reported when the algorithm knows for CERTAIN that subsequent
results may fail. For things like sporadic network failures, and other cosmic-ray induced failures, one
should consider using CRASHED in combination with the --retryTargetAlgorithmRunCount and
—abortOnCrash options, to mitigate these.

runtime The amount of CPU time used during this algorithm run. SMAC does not measure the CPU time
directly, and this is the amount that is used with respect to tunerTimeout. You may get unexpected
performance degredation when this amount is heavily under reported '!.

NOTE: The runtime should always be strictly less than the requested cutoff_time when reporting
SAT or UNSAT.

If an algorithm reports TIMEOUT or CRASHED the algorithm can report the actual CPU time
used, and SMAC will treat it correctly as a timeout for optimization purposes, but count the actual time
for — —tunerTimeout purposes.

runlength A domain specific measure of how far the algorithm progressed.
quality A domain specific measure of the quality of the solution.

seed The seed value that was used in this target algorithm execution. NOTE: This seed MUST match the
seed that the algorithm was called with. This is used as fail-safe check to ensure that the output we are
parsing really matches the call we requested.

19ParamlILS in not a typo. While other values are possible including SMAC, HAL. ParamILS is probably the most portable. The ex-
act Regex that is used in this version is: "\s*(Final)?\s*[Rr]esult\s+(?:(for)—(of))\s+(?:(HAL)—(ParamILS)—(SMAC)—(this
wrapper))

"'This typically happens when targeting very short algorithm runs with large overheads that aren’t accounted for.

additional rundata A string that will be associated with the run as far as SMAC is concerned. This string
will be saved in run and results file (Section ?7?).

Like invocation, all fields are mandatory, when not applicable 0’s can be substituted.

0.5.3 Wrappers & Native Libraries

In order to optimize an algorithm, SMAC needs a method of invoking it. While modifying the code to manage
the timing and input mechanisms manually is possible, this can sometimes be invasive and difficult to manage.
There exist three other methods that one could consider using.

Wrappers Executable Scripts that manage the resource limits automatically and format the specified string
into something usable by the actual target algorithm. This approach is probably the most common,
but among its drawbacks are the fact that they often rely on third party scripting languages, and for
smaller execution times have a large amount of overhead that may not be accounted for as far as the
tunerTimeout limit is concerned. Most of the examples included in SMAC use this approach, and the
wrappers included can be adapted for your own projects.

NOTE: When writing wrappers it’s important not to poll the output stream of the target algorithm,
especially if there is lots of output. Doing so often results in lock-contention and significantly modifies
the runtime performance of the algorithm enough that the resulting configuration is not well tuned to
the real algorithm performance.

Native Libraries Augmentation Libraries exist (See: TBD) for C and Java currently that facilitate adding
the required functionality directly to the code. While parsing the arguments into the necessary data
structures is still required, they do manage the timing and output requirements in most cases. Unlike
the previous approach however, certain crashes may not allow the the values to be outputted (e.g. a
segmentation fault occurs).

Target Algorithm Evaluators This is probably the most powerful, but also the most complicated approach.
SMAC is architected in a way that makes it fairly simple to replace the mechanism for execution with
something completely custom. This can be done without even recompiling SMAC by creating a new
implementation of the TargetAlgorithmEvalutor interface, which is responsible for converting
run requests (RunConfig objects) into run results (AlgorithmRun objects). Both the input and
output objects are simple Value Objects so the coupling between SMAC and the rest of your code is
almost zero with this approach. For more information see ??

