
Algorithm Configuration Landscapes:
More Benign than Expected?

Yasha Pushak1 and Holger Hoos2,1

1 Department of Computer Science, The University of British Columbia, Vancouver,
Canada

2 LIACS, Universiteit Leiden, The Netherlands

ypushak@cs.ubc.ca, hh@liacs.nl

Abstract Automated algorithm configuration procedures make use of
powerful meta-heuristics to determine parameter settings that often sub-
stantially improve the performance of highly heuristic, state-of-the-art
algorithms for prominent NP-hard problems, such as the TSP, SAT
and mixed integer programming (MIP). These meta-heuristics were ori-
ginally designed for combinatorial optimization problems with vast and
challenging search landscapes. Their use in automated algorithm con-
figuration implies that algorithm configuration landscapes are assumed
to be similarly complex; however, to the best of our knowledge no work
has been done to support or reject this hypothesis. We address this gap
by investigating the response of varying individual numerical parameters
while fixing the remaining parameters at optimized values. We present
evidence that most parameters exhibit uni-modal and often even convex
responses, indicating that algorithm configuration landscapes are likely
much more benign than previously believed.

1 Introduction

Automated algorithm configuration procedures are able to find configurations
that are often substantially better than expert-determined default settings. Cur-
rent methods are heavily-based on meta-heuristics (such as ParamILS [12], an
iterated local search procedure; GGA [2], a gender-based genetic algorithm, and
SMAC [9], a model-based stochastic search algorithm), which are typically used
to solve NP-hard combinatorial optimization problems with complex search
landscapes. To the best of our knowledge, the properties of the algorithm con-
figuration search landscapes have not been investigated so far. In this work, we
conduct such an investigation, focusing on numerical parameters, which prom-
inently occur in many algorithm configuration scenarios, and provide evidence
that these configuration landscapes are more benign than one might assume.

As a motivating example, consider the problem of configuring a stochastic
local search algorithm A with a numerical parameter p that controls the tradeoff
between intensification and diversification. Let us assume that low values res-
ult in low intensification, and high values in high intensification. Intuitively, one

would expect a single optimal setting to exist for this parameter; for lower values
of p, the performance of A would deteriorate due to insufficient diversification
(resulting in stagnation behaviour), and for higher values of p, insufficient in-
tensification would degrade the performance of A. Therefore, the response of
A’s performance to p would be uni-modal, perhaps even convex. We hypothesize
that many – perhaps: most – numerical parameters have similar characteristics.

Specifically, in this work, we investigate two research questions regarding the
way the performance of a given algorithm depends on its parameter settings.
RQ 1. When all other parameters are fixed, are the responses of in-
dividual numerical parameters uni-modal or convex; if so, how often?
Here, the response of a parameter p refers to the function mapping values of p
to the performance of the given algorithm. In the context of automated config-
uration of a given target algorithm A, the performance of A is assessed (and
optimized) on a set I of problem instances. Following many state-of-the-art con-
figurators [9,12,14], we asses the performance of A using PAR10 on I, i.e., mean
running time with timed-out runs counted at 10 times their running time cutoff.
Ideally, the response of A to its parameters would be identical for all instances
in I; however, we cannot assume that this will always be the case. This gives
rise to our second research question: RQ 2. When all other parameters
are fixed, are the responses of individual numerical parameters uni-
modal or convex on individual instances; if so, how often? To obtain
robust estimates for the performance of A on each i ∈ I, we took medians over
10 independent runs per instance. We note that the aggregation of performance
over a set of instances (as in RQ 1) could lead to more complex parameter re-
sponses – i.e., a negative answer to RQ 1 – even if the responses on individual
instances were benign. However, more likely, aggregation should have a smooth-
ing effect on the parameter responses, so that a negative answer to RQ 2 might
still be consistent with a positive answer to RQ 1.

The answers to these research questions matter, because existing configurat-
ors make only weak assumptions about the landscapes they search. Indeed, the
only assumption made by well-known, high-performance configurators, such as
SMAC [9], ParamILS [12] and GGA [2], is that the performance of one configur-
ation is likely to be correlated with the performance of nearby configurations. Of
the configurators we consider here, only irace [14] (by the nature of the gener-
ative probabilistic model it uses to sample promising configurations) assumes a
smooth response for numerical parameters. Additional structural insights, such
as uni-modality or convexity of individual parameter responses, could at least in
theory be exploited to substantially improve configurator performance.

In the literature on combinatorial optimization and meta-heuristics, land-
scape analysis is a well-established topic. Two particularly prominent approaches
are based on the analysis of fitness-distance correlation and of landscape correl-
ation functions (see, e.g., Chapter 5 of [8] and the references therein). When
used in empirical work for the characterization of landscapes, both approaches
assess global landscape properties, while our work is focused on local properties.
Furthermore, to yield reasonably accurate results, they both require large sets

2

of samples from a given landscape, which, in the context of algorithm config-
uration, are expensive to obtain (every sample involves many runs of the given
target algorithm, one for each problem instance in the given training set.) Finally,
both approaches require normalization to deal with parameters whose domains
show large differences in range or number of values (for discrete parameters),
as frequently encountered in typical algorithm configuration scenarios, and have
difficulties dealing with integer-valued parameters with small ranges (such as
BACKBONE_TRIALS for LKH [7] considered in our study).

Somewhat related to our work, in the algorithm configuration literature,
there has been a recent focus on analyzing parameter importance, i.e., the de-
gree to which individual parameters affect the performance of a given algorithm.
Importance analysis approaches such as ablation analysis [6], fANOVA [11] and
forward selection based on empirical performance models [10] are orthogonal to
our work, since they quantify the impact of parameters on algorithm perform-
ance, but do not provide direct insights into the shape of the parameter responses
or structural aspects of the configuration landscapes arising from these shapes.

The remainder of this paper is structured as follows. In Section 2, we explain
our methods for investigating the structure of configuration landscapes. Then,
in Section 3, we introduce the setup used for our experimental investigation. The
results of this investigation are presented in Section 4, and finally, in Section 5,
we summarize our findings and outline several avenues for future work.

2 Methods

Our approach to analyzing configuration landscapes is severely constrained by
the fact that for typical configuration scenarios, obtaining performance measure-
ments for all configurations or even sampling a substantial fraction of the land-
scape would be prohibitively expensive. For example, the smallest configuration
scenario we study (which involves two integer-valued parameters for the TSP
solver, EAX [17]), would take over 500 CPU years on our reference machines to
obtain complete evaluation of the corresponding configuration landscape. Con-
figuration spaces grow exponentially with the number of parameters, so even
relatively sparse samples quickly become unaffordable. Therefore, to perform
our analysis of configuration landscapes, we restricted ourselves to a small num-
ber of configurations. In the light of this, and consistent with the aims of our
investigation, we focused on individual slices of the parameter responses.

2.1 Parameter Response Slices

Given a target algorithm A, a response slice for parameter p is obtained by fixing
all other parameters of A to some value and measuring the performance of A as
a function of p. Intuitively, this corresponds to a slice through the configuration
landscape of A, and technically, it can be seen as a conditional response, subject
to all other parameters taking a specific value. Since we are primarily interested
in the parameter responses near high-quality configurations, we first performed

3

25 independent runs of SMAC [9] for each scenario (configuring both numerical
and categorical parameters), and subsequently evaluated the resulting configur-
ations on the entire training set. We then used the best-performing configuration
on the training set as the centre point for each parameter slice.

Even evaluating every possible value for each parameter response slice in our
EAX scenario (described in more detail in Section 3) would take 6 CPU years,
so we further reduced our slices to only 15 parameter values each. If a parameter
had less than 15 possible values, then we used all of them; otherwise, to obtain
high resolution near the best-known parameter setting, we increased the spacing
between adjacent values exponentially with increasing distance from the best-
known value. We added an additional constraint to ensure that we obtained some
coverage of the parameter response on either side of the best-known parameter
setting: we restricted at most 75% of the points to be on one side of the best-
known value (note that if the best-known value took the maximum or minimum
allowed value, we could not enforce this constraint). Since there were still many
possible locations for the points satisfying these constraints, we multiplied the
grid of points by a randomly chosen weight to choose their exact location. For any
integer-valued parameter, we first determined a set of values as for real-valued
parameters, and then rounded each setting thus obtained to the nearest valid
and previously unused value. Finally, to obtain robust performance estimates
for each value in a given parameter slice, we performed 10 independent runs per
instance and determined a median performance value from these.

2.2 Bootstrap Analysis and Confidence Intervals

To account for the variance between independent target algorithm runs and
problem instances, we used a nested bootstrap procedure similar to the one by
Mu et al. [15] with 1 001 outer and inner bootstrap samples. To be precise, for
each parameter value and problem instance, we created 1 001 (inner) bootstrap
samples of the 10 independent runs to obtain a distribution of median perform-
ance values; from these, we determined 95% bootstrap confidence intervals. Next,
we created 1 001 bootstrap samples of the instance set, and for each occurrence
of an instance in a sample we sampled at random from the corresponding distri-
bution of median performance values. Finally, we calculated medians and 95%
confidence intervals for the performance observed at each parameter value. We
used Bonferroni multiple testing correction when calculating confidence inter-
vals, since each slice had up to 15 parameter values, and linear interpolation to
estimate confidence intervals between adjacent parameter values.

2.3 Tests for Convexity and Uni-Modality

We designed two testing procedures to determine if there is sufficient evidence
to reject the hypotheses of convexity and uni-modality of a given parameter re-
sponse slice with 95% confidence. These tests attempt to fit a piece-wise linear
curve that is constrained to be uni-modal or convex, respectively, through the
previously described bootstrap confidence intervals. We say that a test rejects

4

uni-modality or convexity if no such line exists. If the upper bound of a para-
meter value was censored, we excluded it from the test, since there is insufficient
information to properly reason about it. When considering individual instance
response slices (RQ 2), if there were too few uncensored data points to perform a
test, we considered it to be insufficient data to reject the hypotheses of convexity
or uni-modality. For aggregate response slices (RQ 1), we used PAR10 scores,
counting censored runs at 10 times our running time cutoff).

2.4 Identifying “Interesting” Parameter Response Slices

Parameters with almost flat responses (i.e., robust ones, whose settings have
little or no effect on the performance of the algorithm) are of limited interest
to our investigation. We therefore used a simple heuristic procedure to identify
parameters with interesting (i.e., non-flat or sensitive) responses, based on the
sizes of and overlap between the bootstrap confidence intervals for each value in
the respective parameter response slice. To be precise, we define a parameter’s
response to be interesting if the size (in terms of the log of the performance
measure) of the overlap between the two confidence intervals with the least
amount of overlap is at most half of the average size of the confidence intervals.

2.5 Counting the Number of Modes (Local Minima)

One commonly used feature to describe the ruggedness of a search landscape is
the number and density of local optima (see, e.g., Chapter 5 of [8]). We partially
capture this notion of ruggedness by counting the number of modes that occur
along a parameter response slice. To do this, we use a very similar procedure to
our tests for uni-modality and convexity: we fit the flattest possible piece-wise
linear curve within the region defined by the 95% confidence intervals along a
given parameter response slice and then count the number of modes in that line.

2.6 Fitness Distance Analysis

Since traditional fitness distance analysis would have been too expensive, con-
sidering the constraints on our computational budget, we applied it locally to
the sets of data points belonging to each parameter response slice. We also calcu-
lated the FDC for each bootstrap sample of a parameter response slice to obtain
medians and confidence intervals for each slice.

3 Experimental Setup

We studied 10 different algorithm configuration scenarios, spanning three widely
studied, NP-hard problems (SAT, MIP and TSP), 6 prominent algorithms for
these and 5 well-known instance sets. All of these scenarios involve the minim-
ization of running time, measured in terms of PAR10, i.e., mean running time
with timed-out runs counted at 10 times the running time cutoff. In Table 1, we

5

Table 1. The instance sets we studied from ACLib scenarios and the configuration
budgets and training/testing running time cutoffs we used for their scenarios.

Configuration Training Running Test Running
Problem Instance Set Budget time cutoff time cutoff

[CPU days] [CPU sec] [CPU sec]

SAT circuit-fuzz 2 300 600
BMC08 2 300 600

MIP CLS 2 10000 10000
Regions200 2 10000 10000

TSP tsp-rue-1000-3000 1 86 3600

Table 2. The 6 algorithms we studied. *We configured all 185 numerical parameters,
but only studied slices for the 10 most important (see text for details).

Problem Algorithm Version Numerical Categorical
Parameters Parameters

CaDiCaL sc17 40 22
SAT lingeling azf 185* 137

cryptominisat 4.1 22 36
MIP CPLEX 12.6 22 52

TSP EAX+restart JDL 2 0
LKH+restart 2.0.7 12 9

summarize the configuration budgets and running time cutoffs used for our scen-
arios. All instance sets are readily available online in ACLib scenarios that have
been identified as interesting and challenging benchmarks for algorithm config-
urators [13]. For the SAT and MIP instance sets, we used the same budgets and
running time cutoffs as specified in the corresponding ACLib scenarios. We in-
creased the running time cutoff for the test set (and parameter slices) for the SAT
and TSP scenarios, in order to better assess poorly performing configurations.

Table 2 provides an overview of the 6 algorithms we studied. We introduce
a few new, state-of-the-art algorithms not found in existing ACLib scenarios.

For SAT, we studied CaDiCaL [3], because it was one of the top-performing,
configurable solvers in the application track of the 2017 SAT competition; lin-
geling [3], because it was the winner of the 2014 Configurable SAT Solver chal-
lenge on the circuit-fuzz and BMC08 instances; and cryptominisat [18], because
it is a variant of the well-known and commonly used minisat algorithm. Refer-
ence implementations of lingeling and cryptominisat were directly obtained from
ACLib 2.0, whereas that of CaDiCaL was taken from the 2017 SAT competition.

For TSP, we chose two extensively studied [4,16], state-of-the-art, inexact
solvers: EAX [17] and LKH [7]. We used the same implementations as Mu et
al. [16] and Dubois-Lacoste et al. [4], which were modified to use a restarting
mechanism and terminate upon reaching optimal solution quality values (known
from long runs of an exact solver). The TSP scenarios in ACLib configure for
solution quality, so we chose these solvers to focus on running time minimization.

For MIP, we studied the high-performance commercial solver IBM ILOG
CPLEX [1], version 12.6 (featured in several ACLib scenarios), which terminates
upon finding an optimal solution to a given MIP instance and completing a
proof of optimality. We slightly modified the CPLEX scenarios from ACLib, by

6

Table 3. PAR10 values on the test sets for the default configuration versus the con-
figuration with the best training PAR10. All times are in CPU seconds.

Problem Algorithm Instance Set Default Configured SpeedupPAR10 PAR10

SAT

CaDiCaL circuit-fuzz 468.71 252.34 1.86
BMC08 638.57 637.93 1.00

lingeling circuit-fuzz 382.23 279.29 1.37
BMC08 692.80 691.51 1.00

cryptominisat circuit-fuzz 444.68 276.83 1.61
BMC08 938.61 970.07 0.97

MIP CPLEX CLS 40.39 3.39 11.91
Regions200 106.77 6.40 16.68

TSP EAX tsp-rue-1000-3000 65.99 56.84 1.16
LKH tsp-rue-1000-3000 428.60 228.62 1.87

treating CPLEX as a randomized algorithm. Earlier versions of CPLEX used a
fixed random seed that was not exposed to the user; however, CPLEX is in fact
a randomized solver, and treating it as such avoids potential problems arising
from bias due to the use of a specific random seed.

For every algorithm except lingeling we were able to evaluate parameter
slices for all of their numerical parameters; however, since lingeling had so many
parameters, we restricted our analysis to a subset of them. Falkner et al. [5]
reported the 10 most important parameters according to fANOVA [11] (all of
which were numerical) for lingeling on the circuit-fuzz instance set, so we only
used these 10. We also slightly modified the ranges for a few parameters for
LKH and CPLEX. Some of the numerical parameters use values 0 or -1 to
encode special behaviour, e.g., the automatic setting of the parameter value
or deactivation of the mechanism controlled by the parameter. In cases where
the documentation was unclear, we erred on the side of caution and removed a
parameter value or treated the special value as a categorical parameter.

In Table 3, we show the results from configuring our 10 scenarios, using 25
runs of SMAC [9] per scenario. These results are consistent with the literature.
We note that in some cases, configuration did not result in significant perform-
ance improvements over the default parameter settings of a given algorithm; this
is unproblematic, since our goal in performing automated configuration was not
to obtain improved performance, but rather to ensure we used high-performance
configurations as reference points for the parameter response slices that formed
the basis for our configuration landscape analysis.

We ran all of our experiments on Ada, a cluster of 20 nodes, equipped with
32 2.10GHz Intel Xeon E5-2683 v4 CPUs with 40960KB cache and 96 GB RAM
each, running openSUSE Leap 42.1 (x86_64). To minimize detrimental cache
effects and memory contention, in all experiments, we used a single core per
CPU and limited RAM use to 3 GB. In total, we used 43.5 CPU years for
automated configuration and collection of parameter response slice data.

7

102

103

 0 10 20 30 40 50 60 70 80

C
P

U
 S

ec
on

ds

keepglue

101

102

103

104

105

 0 1 2 3 4 5

C
P

U
 S

ec
on

ds

BACKBONE TRIALS

101

102

103

104

 0 200 400 600 800 1000

C
P

U
 S

ec
on

ds

Npop

100

101

 150 200 250 300 350

C
P

U
 S

ec
on

ds

mip limits submipnodelim

Median of PAR10
95% Confidence Interval

Figure 1. Four parameter response slices. From left to right top to bottom: CaDiCaL’s
keepglue on the circuit-fuzz instance set, LKH’s BACKBONE_TRIALS on the tsp-rue-1000-
3000 instance set, EAX’s Npop on the tsp-rue-1000-3000 instance set and CPLEX’s
mip_limits_submipnodelim on the Regions200 instance set.

4 Results

We collected and analyzed 193 parameter slices for instance sets and individual
problem instances, as motivated in Section 1 and outlined in Sections 2 and 3.

4.1 RQ 1. Uni-Modality and Convexity on Instance Sets

Overall, the parameter response slices for instance sets appear to be more be-
nign than one might expect. Our tests for uni-modality and convexity failed
to reject for all but 1 of the 193 parameter slices. That is, 99.48% of the
slices we measured appear to be both uni-modal and convex. Somewhat sur-
prisingly, our heuristic method outlined in Section 2.4 identified only 18 of the
slices as interesting. In Figure 1, we show 4 parameter response slices that
are representative of the qualities we observed in this set of 18 (the remain-
ing 14 are available in our online, supplementary material, available at http:
//ada.liacs.nl/projects/ac-landscapes). To our surprise, neither lingeling
nor cryptominisat had any interesting parameter response slices. The parameter
that fANOVA rated to be the most important for lingeling [5] shows a slight
dip at the smallest parameter value in the slice for the circuit-fuzz instance set.
To investigate further, we evaluated an additional 15 parameter values, but still
found it to be un-interesting according to our criterion.

The only parameter we found having a non-unimodal and non-convex re-
sponse was LKH’s BACKBONE_TRIALS parameter (see Figure 1), which specifies
the number of backbone trials in each run. Apart from BACKBONE_TRIALS=0,
even this response slice appears to be convex and uni-modal. To the best of our

8

knowledge, a value of 0 does not have special meaning, apart from the obvious
semantic difference of some versus no backbone trials, which may alone account
for this difference, since it likely corresponds to a (poorly performing) heuristic
component of the algorithm that is turned on or off.

Some of the parameter responses (e.g., keepglue in Figure 1), appear to be
flat for poorly performing parameter values, and hence non-convex overall. Our
tests were unable to reject convexity, despite this visual evidence, because of the
relatively wide bootstrap confidence intervals. However, we believe that these
flat regions are an artifact of how PAR10 scores treat censored runs, and that a
sufficiently large running time cutoff would yield convex responses.

Interestingly, in the three SAT scenarios involving the BMC08 instance set,
we found only one parameter response slice considered interesting according to
our criterion: CaDiCaL’s restartmargin. This is consistent with the fact that
SMAC was unable to achieve significant performance improvements for these
scenarios. We further note that the default value for restartmargin is very near
to the best-known value. Hence, it appears that better configurations may not
exist rather than being hard to find due to highly irregular or rugged landscapes.

4.2 RQ 2. Uni-Modality and Convexity on Individual Instances

To study our second research question, we ran our tests for convexity and uni-
modality on the parameter response slices for each individual problem instance.
We consider the parameters independently by looking at statistics of their re-
sponses on each instance. For example, on the left pane of Figure 2 we plot
a cumulative distribution function (CDF) showing on the y-axis the percent-
age of parameters that had convex responses on a percentage of instances less
than or equal to the value specified on the x-axis. Surprisingly, there is a large
percentage of parameters with convex responses slices for most instances. How-
ever, nearly half of the parameters with interesting response slices on the entire
instance set tend to have much fewer convex parameter responses on the indi-
vidual instances. Our procedure (outlined in Section 2.3), sometimes assumes
uni-modality or convexity when there is insufficient data to perform a test. On
average, over all parameters, this happened for only 6.2% of the instances we
considered, and at most, on 16.9% of the instances. Hence, even if all of these
cases were instead assumed to be non-unimodal or non-convex, our overall results
would not be substantially different.

Furthermore, looking at the CDF of the average numbers of modes for each
instance parameter slice on the right pane of Figure 2, we see that just under
50% of the interesting parameters have an average of more than one mode for
their individual instance responses. On the other hand, most of the parameters
have an average of only one mode per instance, which is consistent with the
fraction of parameters with primarily convex instance response slices.

Overall, there are a surprisingly large number of parameter response slices
that are both uni-modal and convex on most or all of their individual instances.
In Table 4, we show a summary of these results, in addition to the corresponding
results for the parameter responses on entire instance sets. Note that for the

9

 0

 25

 50

 75

 100

 0 25 50 75 100

%
 o

f P
ar

am
et

er
 R

es
po

ns
es

% of Instances with Convex Responses

Interesting Parameters
All Parameters

 0

 25

 50

 75

 100

 1 1.5 2 2.5 3 3.5 4

%
 o

f P
ar

am
et

er
 R

es
po

ns
es

Average Number of Modes Per Instance

All Parameters
Interesting Parameters

Figure 2. CDFs summarizing our findings for individual instances. Left: for each para-
meter we computed the percentage of instances on which it had a convex response, and
then we plot the CDF of these percentages; right: the CDF of the average number of
modes observed in the responses for a parameter on each instance.

Table 4. Left: the percentages of uni-modal and convex parameter response slices on
entire instance sets; right: we computed the percentage of instances with convex or uni-
modal responses for each parameter, and then show the average percentages over the
parameters, i.e., we show the percentage of convex and uni-modal instance responses
for the “average parameter”.

Instance Set Individual Instances

% Uni-Modal % Convex Average Average

Parameters Parameters % Uni-Modal % Convex
Instances Instances

All Parameters 99.5 99.5 95.3 92.6
Interesting Parameters 94.4 94.4 76.1 66.1

aggregate instance set parameter responses, we show the percentage of uni-modal
and convex parameter response slices observed on different instance sets, whereas
for the individual instances, we first computed the percentage of instances with
uni-modal and convex responses for each parameter, and then report the average
percentages over the set of all parameters.

Our analysis of the fitness distance correlation coefficient (FDC) for the para-
meter response slices supports our hypothesis that parameter responses on indi-
vidual instances are more rugged than the aggregate responses on entire instance
sets. In particular, we found that 80% of the parameters have an average instance
response slice FDC less than 0.25, compared to 0.4 for the instance set responses.
However, through manual inspection of the instance parameter slices, we found
that some responses obtained low FDC scores simply because they are relatively
flat (hence deviations in parameter value have low correlation with deviations in
algorithm performance). Still, the high average numbers of modes observed for
some of the parameters indicate that these responses are truly rugged.

To check that these were not spurious results, we performed exact replicates
for three scenarios that were near the Pareto front of the largest average number
of modes and the smallest average FDC: CaDiCaL’s posize and elimint on
circuit-fuzz instances, and CPLEX’s mip_limits_cutpasses on CLS instances.

10

Then, for each parameter, we chose three instances near to their respective
Pareto fronts. In all cases, the replicates were qualitatively identical to the ori-
ginal ones. Additional details on these experiments and our FDC analysis can
be found at http://ada.liacs.nl/project/ac-landscapes.

5 Conclusions and Future Work

Overall, we found strong support for our hypothesis that parameter responses
on instance sets tend to be uni-modal and convex. We also found evidence that
many parameters have convex and uni-modal responses on individual problem
instances; however, these responses tend to be (in some cases substantially) more
rugged than their aggregate counterparts. We were surprised to find that a small
percentage of parameters appear to have highly rugged responses on most of the
instances. However, even though these parameters have rugged response slices
on individual instances, their aggregate responses still tend to be uni-modal
and convex on the entire instance set, after performing bootstrap sampling to
account for the variability over instances. This may be why the simple Gaussian
model used for generating promising configurations in irace [14], which inherently
exploits smoothness in individual parameter responses, works rather well.

Our results do not preclude the possibility of complex parameter interactions
that result in configuration landscapes with many local optima. Future work
could study parameter interactions and investigate whether or not local minima
are rare, or at least easy to escape. Categorical parameters also play an im-
portant role in many algorithm configuration scenarios. Here, we set categorical
parameters to values found in high-quality solutions; however, it would be inter-
esting to explore whether similar results to those we reported here hold for other
settings of the categorical parameters of a given target algorithm. Moreover, it
would be very interesting to investigate to which extent our findings interact
with parameter importance, as assessed by fANOVA and ablation analysis.

We note that our method for collecting data is focussed on high-performance
regions of the configuration spaces we considered, as is the search process of
algorithm configurators. Therefore, our results may only hold in these regions;
this would be at least of theoretical interest and could be investigated in future
work. Another direction is to extend our analysis to scenarios that involve op-
timization of solution quality, such as loss scenarios involving hyperparameter
optimization of machine learning algorithms. Finally, and perhaps most inter-
estingly, we strongly believe that our results open the door to designing new
algorithm configuration procedures that exploit the relatively benign character-
istics of typical configuration landscapes discovered in this work.

Acknowledgements

YP was supported by an NSERC Vanier Scholarship. HH acknowledges funding
through an NSERC Discovery Grant, CFI JLEF funding and startup funding
from Universiteit Leiden.

11

References

1. IBM Corp. IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/
data-science/prescriptive-analytics/cplex-optimizer, 2018. Last accessed
on March 30th, 2018.

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Proceedings of CP 2009. pp. 142–157
(2009)

3. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT Competition 2017. In: Proceedings of SAT Competition 2017: Solver and
Benchmark Descriptions. pp. 14–15 (2017)

4. Dubois-Lacoste, J., Hoos, H., Stützle, T.: On the empirical scaling behaviour of
state-of-the-art local search algorithms for the Euclidean TSP. In: Proceedings of
GECCO. pp. 377–384 (2015)

5. Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: Automated configuration and
performance analysis of SAT solvers. In: SAT. pp. 215–222 (2015)

6. Fawcett, C., Hoos, H.: Analysing differences between algorithm configurations
through ablation. JOH 22(4), 431–458 (2016)

7. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. EJOR 126, 106–130 (2000)

8. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2005)

9. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Proceedings of LION. LNCS, vol. 6683, pp.
507–523 (2011)

10. Hutter, F., Hoos, H., Leyton-Brown, K.: Identifying key algorithm parameters
and instance features using forward selection. In: Proceedings of LION. LNCS,
vol. 7997, pp. 364–381 (2013)

11. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyper-
parameter importance. In: Proceedings of ICML. pp. 754–762 (2014)

12. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

13. Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-Brown,
K., Stützle, T.: AClib: A benchmark library for algorithm configuration. In: Pro-
ceedings of LION. pp. 36–40 (2014)

14. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L., Stützle, T., Birattari, M.: The
irace package: Iterated racing for automatic algorithm configuration. ORP 3, 43–58
(2016)

15. Mu, Z., Hoos, H.: Empirical scaling analyser: An automated system for empirical
analysis of performance scaling. In: Proceedings of GECCO. pp. 771–772 (2015)

16. Mu, Z., Hoos, H., Stützle, T.: The impact of automated algorithm configuration
on the scaling behaviour of state-of-the-art inexact TSP solvers. In: Proceedings
of LION. LNCS, vol. 10079, pp. 157–172 (2016)

17. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly cros-
sover for the traveling salesman problem. INFORMS JOC 25(2), 346–363 (2013)

18. Soos, M.: CryptoMiniSat v4. In: Proceedings of SAT Competition 2014: Solver and
Benchmark Descriptions. p. 23 (2014)

12

