
A Appendix

Proof of Lemma 3.1. We need to show for any stochastic optimization problem, POC  L(z⇤two-stage;x)/L(z⇤;x).
By the definition of the price of correlation, POC = L(z0

;x)/L(z⇤;x), where z
0

is the optimal solution to a proxy stochastic
program over Boolean variables that makes the assumption that all random variables are mutually independent. This is equivalent
to reducing all Boolean variables to their marginals.

z
⇤
two-stage is the optimal solution to a proxy stochastic program where all random variables are reduced to their marginal

expectation E[y|x], which is equivalent for mutually independent Boolean variables y. Therefore z
⇤
two-stage and z

0
are optimal

solutions to the same proxy stochastic program. In case there are multiple optimal solutions, we assume z
⇤
two-stage and z

0

are found using the same tie-breaking scheme and therefore have the same loss, L(z0
;x) = L(z⇤two-stage). Therefore, POC

= L(z⇤two-stage;x)/L(z⇤;x).

Proof of Proposition 3.2. First, we provide some intuition for the proof. We define the end-to-end approach to be restricted
to outputting a deterministic prediction vector y for the downstream problem. We construct an example where this y vector
represents probabilities of two Boolean events. For end-to-end to be optimal, it must output marginal probabilities y that elicit
the optimal solution on the downstream task. The proof shows that there is no such setting of y to elicit the optimal solution. We
construct an example where to be optimal, end-to-end would need to output marginal probabilities for events 1 and 2 such that
only two scenarios have positive probability (1) when both events happen and (2) when neither event happens. The only way to
assign positive probability on both of these scenarios is to also assign positive probability on the two scenarios where only one
event happens. This causes the end-to-end approach to find the wrong solution.

Formally, we need to show there exist stochastic optimization problems such that L(z⇤;x) < L(z⇤end-to-end;x). We construct a
setting where L(z⇤;x) is a C factor better for any constant C > 2.

Let b1,b2 be Boolean events of a set S and ES2D[f(z, S)] be a stochastic optimization problem. The two-stage approach
returns the optimal solution given the marginal probabilities p1,p2 of events b1, b2 occurring. The end-to-end approach sets p1, p2
arbitrarily to produce a corresponding z with best downstream loss:

L(z⇤end-to-end;x) = min
p1,p2

ES2D[f(argmin
z

ES02p1,p2 [f(z, S
0], S)]

We define the following distribution over b1, b2:

D =

8
<

:

P (b1 = T, b2 = T ) = 0.5
P (b1 = F, b2 = F ) = 0.5
otherwise 0.

Let f(z, S) have the following cost matrix:

S1 S2 S3 S4

b1 = T, b2 = T b1 = F, b2 = F b1 = T, b2 = F b1 = F, b2 = T

z
⇤ 1 1 1 1

z1 ✏ C ✏ ✏

z2 C ✏ ✏ ✏

z
⇤ is optimal for C > 2. z1 and z2 both cost an O(C) factor greater than z

⇤. We prove that end-to-end must select either
suboptimal solutions z1 or z2 regardless of how p1 and p2 are set. There are two cases:

1. If end-to-end sets p1 and p2 such that all probability is on S1 or S2, z⇤ will not be chosen since z1 is best for S1 and z2 is
best for S2.

2. If end-to-end sets p1 and p2 such that there is non-zero probability on both S1 and S2, there must also be non-zero probability
on S3 and S4 because p1 and p2 are marginal probabilities. Since z

⇤ has infinite cost for S3 and S4, z1 and z2 will always
look better to end-to-end than z

⇤.

Proof of Theorem 3.3: Optimality of end-to-end for (i) two-stage minimum cost flow. This setting is from Example 1 of
Agrawal et al. (2012). There are n Boolean events with marginal probabilities p1, ..., pn. Each event corresponds to the
existence a sink node with unit demand. Each sink node connects to a single hub node. The optimization problem is to buy
capacity for the hub node such that all demand is satisfied. Before seeing the realization of sink nodes, in the first stage you can
buy capacity z at price c

I(z). Once you have seen the realization of sink nodes, you then must buy enough extra capacity x at
higher cost cII(x) to satisfy the demand requests. The goal is to optimize z to minimize expected costs. The problem can be
written formally in a single stage as follows:



argmin
z

c
I(z) +

nX

i=z

P

0

@(
X

j

yj) = i

1

A c
II(n� i)

s.t., y1, ..., yn are the realization of Boolean events, and c
II(k) > c

I(k), 8k
A two-stage approach wrongly estimates

P
n

i=z
P ((

P
j
bj) = i) by multiplying marginals together to compute probabilities of

sets of events occurring. We now prove L(z⇤end-to-end;x) = L(z⇤;x) for this setting:

The end-to-end approach can set p1...pn arbitrarily. For any given z
⇤, it is enough to construct p1...pn such that z⇤end-to-end = z

⇤.
Idea is to set p1...pn to make the two-stage costs sufficiently high for z > z

⇤ and low for z < z
⇤ so z

⇤ is optimal.
We can put all probability on a single set S such that p1, ..., pz⇤ = 1 and pz⇤+1, ..., pn = 0. That way, we pay zero second-stage

cost for increasing z above z
⇤ since we’ve satisfied all demand, but add first-stage costs. If we decrease z by k, we must pay

c
II(k) second-stage cost but only save c

I(k). Since c
II(k) > c

I(k), decreasing z also increases costs. Since any change in z

increases costs, z⇤end-to-end = argminEf (z, S) = z
⇤.

Proof of Theorem 3.3: Optimality of end-to-end for (i) two-stage stochastic set cover. This setting is from Example 2 of
Agrawal et al. (2012). There are n Boolean events with marginal probabilities p1, ..., pn. Each event corresponds to an item in a
set V . There are k disjoint subsets whose union is V . The optimization problem is to buy subsets to cover realized items. Before
seeing the realization of events, in the first stage you can buy any subset z1, ..., zk at price c

I each. Once you have seen the
realization, you then must pay a higher cost cII to buy the uncovered subset with the maximum number of realized items. The
goal is to optimize z to minimize expected costs. The problem can be written formally in a single stage as follows:

argmin
z

X

i

c
I
zi + c

II max
i=1..k

(
X

S2Si

P (S)|S| · (1� zi)

)

s.t. cI < c
II

S is subset of items in disjoint subset Si. i equals ith of k disjoint subsets, whose union is S. We now prove
L(z⇤end-to-end;x) = L(z⇤;x) for this setting:

For any given z
⇤, we need to construct p1...pn such that z⇤end-to-end = z

⇤. For a given z
⇤, put all probability on a single set S by

assigning probability 1 to all events covered by z
⇤ and probability 0 to all events uncovered. z⇤ can never be improved by adding

sets, since all events are already covered and there is only one set that can cover each event (i.e., disjoint subsets). Therefore, z⇤
will always be optimal as long as cI (the cost saved by uncovering a set in first stage) is less than c

II |S| (the cost of covering in
second stage) for smallest S that is covered. Every covered set has a least one event by our construction, therefore uncovering a
set would incur a cost of at least cII but only save c

I . Since c
I
< c

II , we can never reduce costs by reducing the covered sets in
z. Therefore, z⇤end-to-end = argmin f(z, S) = z

⇤.

Proof of Theorem 3.3: Optimality of end-to-end for (i) stochastic optimization with monotone submodular cost function. This
setting is from Example 3 of Agrawal et al. (2012). There are n Boolean events with marginal probabilities p1, ..., pn. Let the
realized set of Boolean events be S. Suppose you have a monotone submodular cost function c(S). You want to decide whether
to (1) pay the expected cost of the subset ES [c(S)] or (2) pay a constant cost C.

argmin
z

c(S)z1 + Cz2

z1 + z2 = 1, z1, z2 2 {0, 1}

We now prove L(z⇤end-to-end;x) = L(z⇤;x) for this setting:

Given marginal probabilities p1, ..., pn, the expected subset cost is
P

S
P (S)c(S) where P (S) is the product of probabilities

for all events in that set S. For optimality, end-to-end needs to find p1, ..., pn such that
P

S
P (S)c(S) = ES [c(S)]. Let

C
⇤ = ES [c(S)]. First, there must be some set of events S that costs � C

⇤, since C
⇤  maxSc(S). Second, among the

sets that satisfy this property, by monotonicity there must be some set S0 and event e such that c(S0 � {e})  C
⇤ since

C
⇤ � minSc(S). Setting aside event e, we set probabilities to 1 for events in S

0 and 0 otherwise. For event e, set pe 2 [0, 1]
such that pec(S0) + (1� pec(S0 � {e}) = C

⇤. (i.e., linear interpolation between S
0 and S

0 � {e}). There must be a solution for
pe since c(S0 � {e})  C

⇤  c(S0)



Proof of Theorem 3.4. We first define the optimization problem and distribution that we will use to construct our gap. Our
construction only depends on the distribution over Y , so without loss of generality, we let P (Y |X) = P (Y ); an analogous
construction could be made for every x. We set the optimization problem to be,

minEP (Y )[C +
dX

i=1

(yi,1yi,2zi,1) + (yi,3yi,4zi,2)]

subject to
dX

i=1

zi,1 + zi,2 � d, 8i 1 � zi,1, zi,2 � 0,

where y 2 Rd⇥4 and z 2 Rd⇥2. Note that any basic solution to this optimization problem must set at least half of the z

variables to be equal to 1.
Now define some large positive N 2 R and some small ✏ > 0. Let P (Y ) = P (Y1, Y2)P (Y3, Y4) be distributed as follows.

P (Y1, Y2) =

⇢
0.5 yi,1 = 0, yi,2 = N

0.5 yi,1 = N, yi,2 = 0

P (Y3, Y4) =
�
1. yi,3 = yi,4 = N

2 � ✏

The intuition behind this distribution is that 8i, yi,1yi,2 = 0 and yi,3yi,4 > 0 despite the fact that yi,1 and yi,2 have higher
expected values than yi,3 and yi,4.

Notice that this means half of our z variables have coefficients of 0 and we can satisfy our constraints without raising the
objective. Therefore, the optimal end-to-end solution is to set z to be 0 anytime the product of targets is nonzero in expectation;
i.e., z⇤end-to-end sets zi,1 = 1, zi,2 = 0, for all i.

The loss obtained by choosing z
⇤
end-to-end is,

L(z⇤end-to-end;x) = EP (Y )[C +
dX

i=1

(yi,1yi,21.0) + (yi,3yi,40)] = C.

The last equality follows from the fact that 8i, yi,1yi,2 = 0.
However, as mentioned above yi,1 and yi,2 have higher expected values than yi,3 and yi,4. Therefore, the optimal two-stage

solution is to set z to be 1 for each pair with the lower individual expected values i.e. z⇤two-stage sets zi,1 = 0, zi,2 = 1 for all i.
The loss obtained by choosing z

⇤
two-stage,

L(z⇤two-stage;x) = EP (Y )[C +
dX

i=1

(yi,1yi,20.0) + (yi,3yi,41.0)]

= C +
dX

i=1

(
N

2
� ✏)21.0 ⇡ dN

2

8
.

Therefore, the multiplicative gap
⇣

L(z⇤
two-stage;x)

L(z⇤
end-to-end;x)

⌘
is dN2 up to constant factors.

Proof of Lemma 3.5. We set end-to-end to output y0|x such that y0
i,1 = Ey⇠P (Y |x)[�(yi,1, yi,2)] for i = 1, . . . , d and y

0
i,2 = 1

for i = 1, . . . , d.
L(z⇤end-to-end;x) = minz

P
d

i=1 �(y
0
i,1, y

0
i,2) · fi(z)

We know that

L(z⇤;x) = min
z

Ey⇠P (Y |x)

 dX

i=1

�(yi,1, yi,2) · fi(z)
�

= min
z

dX

i=1

Ey⇠P (Y |x)[�(yi,1, yi,2) · fi(z)]

= min
z

dX

i=1

fi(z) · Ey⇠P (Y |x)[�(yi,1, yi,2)]



By the definition of �

L(z⇤;x) = min

d/2X

i=1

fi(z) · �(Ey⇠P (Y |x)[yi,1, yi,2], 1)

= min

d/2X

i=1

fi(z) · �(y0i,1, y0i,2)

= L(z⇤end-to-end;x)

Proof of Lemma 3.6. A function �(y, y0) is linear if and only if 8P (Y |x),ED[�(y, y0)] = �(ED[y],ED[y0]).
The reverse direction follows by linearity of expectation so we must show that if a function �(y) is nonlinear then

9D,ED[�(y)] 6= �(ED[y]).

A function � is linear if and only if �(↵y1 + (1 � ↵)y2) = ↵�(y1) + (1 � ↵)�(y2) 8y1, y2,↵. If a function is nonlinear
then by definition there must exist two points y1, y2 between which the function is nonlinear. This means there exists a point
y
0 = ↵y1 + (1� ↵)y2 such that �(y0) 6= �(↵y1 + (1� ↵)y2) therefore if we choose our distribution such that Pr[y = y1] = ↵

and Pr[y = y2] = 1� ↵, it is easy to see that ED[�(y)] 6= �(ED[y]).

Proof of Theorem 3.7. We consider the case of d = 2; the extension to arbitrarily many dimensions is trivial. We first define our
function f ,

f(y, z) = �(y1,1, y2,1)f1(z) + �(y2,1, y2,2)f2(z).

We construct P (Y ) and small ✏ > 0 such that EP (Y )[�(y1,1, y1,2)] 6= �(EP (Y )[y1,1],EP (Y )[y1,2]). Such a distribution is
guaranteed to exist by Lemma 3.6.

Now there are two cases,

1. EP (Y )[�(y1,1, y1,2)] < �(EP (Y )[y1,1],EP (Y )[y1,2]) where we choose point masses for our remaining two values such that
p(y2,1 = EP (Y )[y1,1]� ✏) = 1.0 and p(y2,2 = EP (Y )[y1,2]� ✏) = 1.0;

2. EP (Y )[�(y1,1, y1,2)] > �(EP (Y )[y1,1],EP (Y )[y1,2]), where we choose point masses for our remaining two values such that
p(y2,1 = EP (Y )[y1,1] + ✏) = 1.0, and p(y2,2 = EP (Y )[y1,2] + ✏) = 1.0.

Without loss of generality, we assume that we are in the first case and our constructed optimization problem will minimize f .
The example works symmetrically in the second case where we can construct the optimization problem to maximize f .

We show that two-stage is suboptimal for the following optimization problem

min
z

Ey⇠P (Y )[�(y1,1, y1,2)z1 + �(y2,1, y2,2)z2] subject to z1 + z2 � 1.

It is easy to see that the optimal choice of z is z
⇤
OPT

= {z1 = 1.0, z2 = 0.0}, which gives a loss of
L(z⇤

OPT
) = EP (Y )[�(y1,1, y1,2)]. However, since two-stage makes its choices with respect to �(EP (Y )[y1,1],EP (Y )[y1,2])

and �(EP (Y )[y2,1],EP (Y )[y2,2]), it chooses the solution z
⇤
two-stage = {z1 = 0.0, z2 = 1.0}, giving it a loss of L(z⇤two-stage) =

EP (Y )[�(y2,1, y2,2)].
If we choose a small enough ✏,EP (Y )[�(y1,1, y1,2)] < EP (Y )[�(y2,1, y2,2)], and hence L(z⇤

OPT
) < L(z⇤two-stage). This

construction trivially extends to d > 2 by making fi(z) = 0, 8i > 2.

Proof of Theorem 3.8, Condition 1. We know that LOPT = minEy⇠P (Y |x)[f(y, z)] and Ltwo stage = minz f(Ey⇠P (Y |x)[y], z)]
Plugging in our definition of f(y, z) from Equation 5 we get

LOPT = minEy⇠P (Y |x)[
dX

i=1

�(yi,1, yi,2) · fi(z)]

= min
dX

i=1

Ey⇠P (Y |x)[�(yi,1, yi,2) · fi(z)]

= min
dX

i=1

fi(z) · Ey⇠P (Y |x)[�(yi,1, yi,2)].



Since we know � is a linear function, by linearity of expectation

LOPT = min
z

dX

i=1

fi(z) · �(Ey⇠P (Y |x)[yi,1],Ey⇠P (Y |x)[yi,2])

= Ltwo stage.

Proof of Theorem 3.8, Condition 2. We know that LOPT = minEy⇠P (Y |x)[f(y, z)] and Ltwo stage = minz f(Ey⇠P (Y |x)[y], z)]
Plugging in our definition of f(y, z) from Equation 5 we get

LOPT = min
z

Ey⇠P (Y |x)[
dX

i=1

�(yi,1, yi,2) · fi(z)]

= min
z

dX

i=1

Ey⇠P (Y |x)[�(yi,1, yi,2) · fi(z)]

= min
z

dX

i=1

fi(z) · Ey⇠P (Y |x)[�(yi,1, yi,2)].

Since �(y, y0) = y · y0:

LOPT = min
z

dX

i=1

fi(z) · Ey⇠P (Y |x)[yi,1 · yi,2]

= min
z

dX

i=1

fi(z) ·
Z

y⇠P (Y |x)
yiP (yi,1) · yi,2P (yi,2|yi,1)).

Since P (yi,2) = P (yi,2|yi,1), by independence:

min
z

dX

i=1

fi(z) ·
Z

y⇠P (Y |x)
yi,1P (yi,1) ·

Z

y⇠P (Y |x)
yi,2P (yi,2)

min
z

dX

i=1

fi(z) · �(Ey⇠P (Y |x)[yi,1],Ey⇠P (Y |x)[yi,2])

= Ltwo stage.

Generalization of Theorem 3.8 for objective functions that are linear in y. We know that LOPT = minEy⇠P (Y |x)[f(y, z)]
and Ltwo stage = minz f(Ey⇠P (Y |x)[y], z)]. Since f(y, z) is linear in y, by linearity of expectation we can move expectation
inside f :

LOPT = min
z

f(Ey⇠P (Y |x)[y, z])

= min
z

f(Ey⇠P (Y |x)[y], z) pulling out z since expectation over y

= Ltwo stage.


