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Abstract

In this paper, we propose a new method of solving the RNA inverse folding problem,
which includes a heuristic for initializing the sequence of bases and a Stochastic Local
Search (SLS) algorithm for finding an optimal solution. The new algorithm is consis-
tently able to solve structures for which the Vienna Package algorithm is unable to
find solutions. The heuristic approach and the SLS optimization are also able to solve
these structures significantly faster.

1 Introduction

The central dogma of molecular biology was originally described by Francis Crick and
George Gamov in 1957 [1, 2] which described the relations between deoxyribose nucleic
acids (DNA), ribose nucleic acids (RNA) and proteins as best it could be summarized
at that time. As the research became better understood and the central dogma was
fleshed out, it became apparent that the relations between these large biomolecules was
much more complex than the simple transcription and translation scheme that had been
originally proposed. DNA and proteins have been shown to interact in a great many
ways that are vital to the functioning of the cell, and we now know that translation is
carried out by an RNA-protein complex called a ribosome [3]. While the central dogma
of molecular biology remains accepted as the canonical schematic of cell function, it has
been supplemented to the point where it is simply an abstract formulation of a vastly
more complex set of processes.

Even in the simplest version of the central dogma, RNA plays a number of roles. The exact
transcript created from the DNA template is synthesized as messenger RNA (mRNA),
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the ribosome which translates the RNA message into proteins does so using ribosomal
RNA (rRNA), and the carriers of the free amino acids are made of transfer RNA (tRNA).
In more complex systems, short RNA fragments play a role in spliceosome recognition of
splice sites, as well as essential functions including telomere extensions [4]. In these and a
great number of other processes, RNA plays an integral role as a simple linear molecule,
involved in pattern recognition. However, the secondary structure of both rRNA and
tRNA plays a vital role in determining their function. What has become obvious for both
proteins and RNA is that knowing their primary structure, which is their sequence, is
insufficient to determine either their function or their role in the cell.

The problem of folding RNA molecules is considered less challenging than that of folding
proteins. Although a great amount of work has been published on protein folding, often
referred to as the "Holy Grail” of molecular biology [5], secondary structure remains a
challenge and tertiary structure prediction still remains beyond our reach. Designing
RNA secondary structures, however, can be relatively accessible, despite the challenges
involved in predicting three dimensional conformation or tertiary structure. The two
main challenges remaining to be solved include predicting pseudo-knots [6], which are the
interactions between sub-elements of the fold, and the assembly of the secondary structure
into its three dimensional form. Unlike protein folding, however, the number of RNA folds
being solved is quite small and, in general, limited to a small set of ribosomal RNA
molecules.

Despite the current relative lack of work in the field of RNA structure prediction, research
into catalytic RNA molecules, termed rybozymes, may prompt a greater interest in the
study of RNA molecules [7, 8]. Rybozymes, which have the ability to catalyze cleavage of
other RN A molecules, have been demonstrated in a number of systems and have broadened
the modern view of the role of RNA outside the central dogma of molecular biology [9].
It has been hypothesized that catalytic RNA molecules may have played a greater role
in early evolution, before the complex proteins were evolved. As well, it has also been
suggested that rybozymes may provide novel paths to the design of new drugs [10, 11, 12]
or active molecules which may find an industrial use [13]. These applications may also
help to broaden the current interest in RNA molecules and their folding.

One of the challenges that will certainly be faced in the future in the laboratory setting
is the ”"Inverse RNA folding” problem [14] discussed here. Rather than predicting the
structure for a given sequence, the more challenging problem of finding a sequence for a
given structure is tackled. Among the many difficulties in solving this problem is that
a single given structure may be solved by a great number of possible sequences. Like
protein folding, it is possible for multiple distinctly different sequences to yield the same
final structure, once folded.

With a great number of potential future applications for designed catalytic RN A molecules,
there is much to be gained by the study of inverse RNA folding.
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2 RNA Secondary Structure and Notational Conventions

Simple Watson-Crick basepairing involves the hydrogen bonding of either cytosine (C)
and guanine (G) or adenine (A) and uracil (U), forming three or two hydrogen bonds
respectively. However, in addition to these two possible pairings, a third type of pairing
between guanine and adenine (G-A), not predicted by the Watson-Crick or Chargaff rules,
can be observed. This unusual pairing is termed a ”wobble” pair and is thermodynamically
less stable than either of the cannonical Watson-Crick pairings. Base pairs are most often
found stacked onto other base pairs in substructures called stems or helices. Sometimes,
free bases are interspersed in stems; these are known as internal loops or bulges. Loops
occurring at the ends of stems are called hairpins, and loops from which more that 2 stems
originate are known as multi-branched loops, or simply multiloops. An intuition as to how
these substructures form a secondary structure can be gained from Figure 1.

Single g5 3
Stranded p
Region

Hairpin By 5 Internal Loop

Hairpin

Figure 1: An example RNA structure showing a variety of features that are commonly found

The RNA structures we consider can be represented as nested strings. Each base in an
RNA sequence is either a member of a single-stranded subsequence, that is, unpaired with
another base, or of a base-paired subsequence, which forms hydrogen bonds with a base
that is not adjacent to it in the sequence. However, because of the difference in the number
of hydrogen bonds formed, C-G pairings (where C-G denotes hydrogen bonding between
two non-adjacent bases) are able to form the most thermodynamically stable helices, while
A and U are more frequently found as non hydrogen bonded free bases.

A convenient representation of secondary structure that captures the above features is
known as dot-and-parenthesis notation. In Figure 1, an example RNA structure is shown,
with the bases that constitute it denoted at each location. Note the presence of stacked
pair regions, internal loops, a multiloop and single-stranded regions. Figure 2 shows the
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equivalent notation for the structure. Each open-closed parenthesis pair represents a base
pair in a nested fashion; the dots signify the unpaired bases. Hence, regions of open
parentheses correspond to helices, regions of dots between open and closed parentheses
to hairpins, and areas where the parentheses switch from closed to open with remaining
unpaired open parentheses signify multi-loops.

Single-Stranded Regions
\

Hairpin Internal Loop

LT e

(G (((G((((EMN)R(((EA(CH)I))B)))E)E
S

Stem

Multiloop

Figure 2: The dot-and-parentheses notation for the structure given in Figure 1. Some represen-
tative structural features are also shown.

3 RNA Folding and Inverse Folding: Definition and Ap-
proaches

After we motivated the inverse RNA folding problem in the previous sections, we now move
on to a more algorithmic point of view on how to solve the problem. For this purpose,
we start by defining the forward folding problem and the problem of inverse RNA folding
(IRNAF) and then give an overview of current algorithms for these problems.

Let E(x,$2) denote the free energy of an RNA sequence z when folded into the secondary
structure  with respect to a given model to evaluate the energy. Furthermore, let ®
denote a function that assigns to each RNA sequence z the secondary structure €2 in
which z folds with minimal energy F(z,(2).

The RNA folding problem is the following: Given an RNA sequence z, determine ®(z).
Analogue, the inverse RNA folding problem can be defined as follows: Given an RNA
secondary structure *, find a sequence z* s.t. ®(z*) = Q*. In the optimization variant
of this problem, we determine the quality of a candidate solution Z by comparison of the
structure ) = ®(z) with the desired structure Q*; given a distance metric d, we attempt to
minimize d(£2, 2*). In our algorithm, the distance metric will merely measure the number
of bases that bond incorrectly; thus, d(€,Q*) is the number of bases in { that bond
differently than in Q*. It is also possible to include information on the stability of folds in
the distance metric.
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3.1 RNA Folding algorithms

When the energy E(z,{) of an RNA structure z folded into the secondary structure
2 is evaluated by the nearest neighbor thermodynamical model [24], the RNA folding
problem is efficiently solvable using a dynamic programming approach. Zuker’s optimal
algorithm [15] ignores pseudo-knots and runs in time O(n?®) with space requirements of
O(n?). Rivas and Eddy propose an algorithm that runs in time O(n®) and handles re-
stricted types of pseudo-knots [20].

3.2 Inverse RNA Folding algorithms

This section outlines a prominent inverse RNA heuristic by Hofacker et al. [16], which
is included in the Vienna RNA Secondary Structure package [25]; we will often refer to
this approach as the Vienna inverse folding algorithm or short Vienna algorithm. Ac-
cording to our best knowledge, the Vienna algorithm is the only method that has been
proposed to algorithmicly solve the inverse RNA folding problem. The algorithm per-
forms an “adaptive” walk search on so-called compatible sequences, i.e. segments that
can possibly form a base-pair at the required positions in the desired structure. These
sequences are candidates only; there is no guarantee that they will fold into the target
structure. The approach is to begin from a compatible sequence zy, randomly induce a
mutation (while ensuring that the sequence remains compatible) and accept it if and only
if the cost function decreases. This process is iterated until either a solution is found or a
certain number of mutations has been carried out. The trouble with this approach is that
calculating the distance for each mutation involves running a folding algorithm on the
sequence under observation, for which generally Zuker’s O(n?) algorithm is used, where n
is the length of the sequence to be folded. To counter this, Hofacker et al. propose that
individual substructures’ subsequences be determined first and the final sequence be the
one corresponding to a simple concatenation of the subsequences. The rationale is that it
is likely (but not assured) that the substructures which are optimal for subsequences will
also occur for the full sequence.

4 The Inverse RNA Folding algorithm (IRNAF) - Motiva-
tion

In this section, we introduce a new algorithm for the inverse RNA folding problem. The
algorithm performs a Stochastic Local Search on substructures and combines partial se-
quences to a complete solution. We start by motivating the Stochastic Local Search (SLS)
and state the problems occuring in a naive approach. We also give intuition on how to
initialize the SLS in a more promising way than at random.
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4.1 Stochastic Local Search

Stochastic Local Search (SLS) is a popular recent field of research in computer science.
Its main objective is to solve hard combinatorial decision and optimization problems [22].
SLS algorithms are randomized algorithms that perform local search in a given search
space, the search space consisting of candidate solutions; candidate solutions consist of a
complete assignment to the solution components of the problem. In the case of inverse
RNA folding, each base z; in a sequence z1,...,Z, is a solution component; the sequence
x comprises a candidate solution. In a candidate solution, each of the bases z; is assigned
one of the four bases {A,C,G,U}; the bases that have to pair in the desired structure have
complementary bases, i.e. C-G or A-U.

A straightforward local search approach for the inverse RNA folding problem starts by
initializing the assignment of bases to the positions in a sequence. After this initialization,
a series of reassignments to particular bases is performed (which we will refer to as the
flip of a base), always preserving a candidate solution. A very basic algorithm, known as
iterative improvement, executes a fixed number of flips and, if not having found a solution
restarts with a new initialization.

Given this background, we can view the approach described in Section 3.2 as a simple
SLS algorithm: after a random initialization, greedy base flips are executed, evaluating
the possibilities of flipping a base and choosing the first one that improves on the current
distance. !

Sometimes, it can be advantageous to do a random step (noise), regardless of how this
changes the evaluation function value. Much research has been conducted in the role of
noise in SLS, e.g. for Satisfiability [26, 27] and Constraint Satisfaction problems [28]. The
— on the first glance surprising — result is that quite often high noise ratios around 50
percent result in the most stable algorithms. Since the Vienna algorithm does not include
any noise there seems to be a great opportunity for improvement.

However, a simple first improvement strategy will not do a good job on its own. This is
due to the extraordinary expensive evaluation of candidate solutions. At this time there
is no faster available library for predicting the native structure of a given sequence more
efficiently than the fold function from the Vienna Package (which implements Zuker’s
O(n3) algorithm [15]). The inherent difficulty in this procedure occurs because a single
local reassignment of a base in the sequence can result in a completely different structure.
Since sometimes SLS algorithms need a lot of (usually reasonably cheap) flips, there is little
hope for SLS methods to work on large problem instances when the cost per evaluation
scales cubic with the input size.

This motivates a hierarchical approach similar to the one described in Section 3.2, in which
a structure is split into substructures, which are solved and merged together, hoping for a

When having a superficial look at the actual implementation of the Vienna algorithm, it appeared that
the possibilities of flipping a base in the sequence x = z1,...,x, are simply tried from z; to z,. Since
randomization often leads to superior algorithms [29], we assume that a randomized order would improve
much on this; however, we did not try this due to our infamiliarity with the code.
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minimal number of conflicts. As we will see later, this makes the algorithm perform much
better on longer structures. Next, we give further intuition on the initialization of the SLS
algorithm. Experiments to be described later have shown that a good initialization helps
to achieve higher performance for various lengths of structures.

4.2 Intuitions for the Initialization Heuristic

In Section 2, we have mentioned the thermodynamic difference in base pairing energy
between C-G pairs and A-U pairs. This provides the naive observation that a structure in
which helices are comprised of only C-G pairs and hairpins and bulges made of A-T pairs
would be the most stable, which can be measured by the Gibbs free energy of the system.
However, it might be difficult to guarantee that the helices and loops will not find alternate
conformations with a lower energy value. A heuristic initialization which assigns bases to
generate a specific structure may benefit from assigning bases according to a certain set of
probabilities, depending on the function of the region. Guided by thermodynamic stability
conferred by the greater hydrogen bonding capacity of the C-C pairing as opposed to that
of the A-U pairs, it makes sense to assign a high proportion of G’s and C’s to helices,
and a lower proportion of A’s and U’s. In contrast, loops would benefit from the opposite
arrangement. This provides the further advantage that the energy-minimized structure
(generated by Zuker [15]) is unlikely to find structures in which segments intended to be
helices bind to segments intended to be loops. Taking into account the pairing nature
of the bases in helices, it is obvious that by assigning a sequence to the portions of the
molecule that form helices, we are able to assign twice as many positions for half the work
(Chargaff’s rule.) In contrast, assigning bases to the loops presents a challenge because
of the potential for the slippage of pairing bases in the adjacent helices. This can be
prevented by altering the structures of helices as well as the bases adjacent to the last pair
of the helix.

These observations make a logical starting point for designing structures. By assigning
the positions in helices based on a statistical model, we can then skew the assignment of
the nucleotides in favor of the Cs and Gs, but allowing the incorporation of A’s and U’s to
introduce a greater variability. The issue of variability is paramount, as insufficient variety
in sequences generated will contribute to unexpected energy minimized folds. As a check
in the assignment of bases, it might be necessary to ensure that, at some level, assigned
sequences are not repeated at other points in the RNA molecule. This is a quality control
step that has also been used as the bases of the Vienna algorithm [16].

5 The Inverse RNA Folding algorithm (IRNAF) - Imple-
mentation

This section gives the actual implementation of the IRNAF algorithm; the outline of the
algorithm is described in Figures 3 and 4:
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While a given cutoff time is not reached do:

1. Initialize the sequence using the heuristic algorithm, described in Section 5.1;

2. Recursively split the given structure in two parts until it can no longer be split. The
splitting algorithm is described in Section 5.2;

3. Apply a stochastic local search algorithm on each substructure that can no longer
be split. This algorithm is described in Section 5.3;

4. Rejoin the subsequences and evaluate the result. If there is a conflict, go back into
the recursion and try to resolve it. If the distance is not 0 after a fixed number of
conflict repair tries, go back to step 1.

Output the best sequence found so far.

procedure InverseRNAFolder
input: options, structure
output: sequence
sequence = InitializeSequence (options, structure);
sequence = RN AInverse (options, structure, sequence, () ;
return sequence;

end InverseRNAFolder.

Figure 3: Pseudocode for the inverse folding algorithm

A variable called options is used to wrap parameters that are supplied to the algorithm.
These parameters are as follows:

e A set of complimentary probabilities, probCG and probAU, are used to randomly
assign values to nucleotides. These two parameters are used in the initialization
phase as well as in the stochastic local search procedure when bases are flipped;

e A terminate_split parameter that contains the maximum number of potential at-
tempts to split and join a substructure before an unsuccessful end of search is re-
ported;

e A ”choose probability” parameter p. - used in the stochastic local search procedure;

e An ”acceptance probability” parameter p, - used in the stochastic local search pro-
cedure;

e A terminate_sls parameter, that contains the maximum number of steps the SLS
procedure continues searching.
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procedure RNAInverse

input: options, structure, sequence, forbidden

output: sequence

if (structure cannot be split)
return StochasticLocalSearch (options, structure, sequence);

end if;

(substructurel, substructure2) = HierarchicalSplit (structure);

(subsequencel, subsequence2) = subsequences of sequence that correspond to

(substructurel, substructure2)

while (distance is not 0 and not terminate_split)
forbidden = bases in sequence that bond incorrectly
(forbiddenl, forbidden2) = parts of forbidden that correspond to

(substructurel, substructure2)

subsequencel = RN AInverse (options, substructurel, subsequencel);
subsequence2 = RN Alnverse (options, substructure2, subsequence2);
create sequence from subsequencel and subsequence2;
distance = evaluate (sequence);

end while;

return sequence;

end RNAlInverse.

Figure 4: Pseudocode for the algorithm of the recursive function

The evaluate (sequence) function is a call to the forward folding algorithm from the Vienna
package, whose time complexity is O(n3). Note that this is the most costly function of
our algorithm. This is why we call this function only once at this level, when we re-
assemble the two pieces. If the distance of the sequence is not 0 and the parameter
terminate_split still allows for another attempt, we split the structure again and look
for a new local minimum, forbidding the assignment to bases that just resulted in an
undesired bonding. The evaluate function is identical to the evaluate function called in
the StochasticLocal Search procedure, detailed in section5.3.

5.1 Initialization Phase

The first step is to split the structure into substructures of lengths not exceeding 10 bases,
such that all elements in the substructure are identical (i.e. either all left brackets, right
brackets or dots). A pool of accepted subsequences is created, which is empty before any
of the substructures have been assigned bases.

Each substructure is then assigned random bases, by using the probabilities in the param-
eters probCG and probAU, which take into account the different probabilistic models for
each type of substructure:

e greater probabilities for C and G and lesser probabilities for A and U for paired
bases: parameter probCG;
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procedure InitializeSequence
input: options, structure
output: sequence
create substructures setsubs from structure;
foreach substructure subs in the set setsubs that is of type left brackets
using probability model probCG, generate a random sequence randseq for subs;
add the complementary sequence of randseq in the pool;
foreach sequence poolseq in the pool
if (randseq and poolseq are complementary in more than k consecutive bases)
remove randseq from the pool and start a new search for subs;
else
assign the complementary sequence to the corresponding bases;
add randseq in the pool;
end if;
end foreach;
end foreach;
foreach substructure subs in the set setsubs that is of type dots
using probability model probAU, generate a random sequence randseq such that
the dots that are next to closing pairs of helices do not pair;
add the complementary sequence of randseq in the pool;
foreach sequence poolseq in the pool
if (randseq and poolseq are complementary in more than k consecutive bases)
remove randseq from the pool and start a new search for subs;
end if;
end foreach;
end foreach;
create sequence from the generated sequences;
return sequence;
end InitializeSequence.

Figure 5: Outline of the heuristic algorithm that initializes a sequence given the desired structure

e lesser probabilities for C and G and greater probabilities for A and U for free bases:
parameter probAU.

If these parameters are used in the opposite orientation, probCG for free bases and probAU
for helices, the likelihood that of the structure generated matching the intended sequence
is reduced. This is discussed in Section 5.

Once a substructure with a subsequence randseq is added to the pool, the complement of
randseq is also added.

Each time bases are assigned to a substructure composed of left brackets, the complemen-
tary bases are assigned to the corresponding right brackets, and the sequence assigned,
randseq, is added to the pool.

randseq is then compared to the subsequences in the pool to find if it can pair with more
than a constant number k£ bases. If they do, the last added sequence is removed from
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the pool, another sequence randseq is generated and the procedure is repeated. If the
new randseq does not form k pairs, randseq is considered good and the algorithm can
proceed to the next substructure. The complement of randseq is included into the pool
before checking in order to detect if there are conflicts within the same subsequence. The
possibility of such conflicts may increase for long subsequences of dots. For example, if
a substructure is ....ccceceveveanene. and we do not add it into the pool first, the algorithm
might generate a sequence that folds into ..(((((...)))))-.e... Adding randseq into the
pool before looking for pairing sequences eliminates some of the potential for obtaining
sequences that would behave unexpectedly.

Each time bases are assigned to a substructure composed of dots, we make sure that the
dots next to closing pairs of helices can not form a pair. For example, if the structure is

(o )))), the substructures ((((, ...-... and )))) are identified. If the first dot and
the last dot of the second substructure are able to pair, then the whole sequence will fold
into (((((..-..))))), instead of the desired structure.

The constant k& must be large enough to allow for sufficient number of combinations to be
used, as small values for k£ will toss out many more valid sequences. Initially, we used a
value of 5 for k, but there is likely to be room for improvement (see section 6).

The pseudocode of the initialization algorithm is outlined in Figure 5.

5.2 Hierarchical Splitting
5.2.1 Overview

This section describes the methods used to divide an RNA structure into substructures.
The motivation to do this is straightforward. As we shall see our algorithm’s search phase
relies heavily on computing the Vienna RNA [16] forward-folding function to determine
the structure of a hypothesized sequence and observe how “far” the structure is from
the desired one. The folding function is quite computationally expensive: it has time
complexity O(n3). Any method that can reduce the lengths of the structures that the
folding algorithm must operate on, while simultaneously keeping the amount of searching
to be performed to a minimum, would be of great value to our system. In the following,
we describe a previous method used to perform this subdivision, after which we give the
details of our scheme.

Working with the intuition that helices occuring stably on their own are likely (but not
guaranteed) to be preserved when joined to other helices at a multiloop, Hofacker et al
[16] observe that it makes sense to divide the structure at the multiloops, perform the
sequence search on the substructures, concatenate the 2 sequences derived, and perform
any additional “fine tuning” that may be required (or reiterate the search phase a certain
number of times).

The question remains, however, as to how to choose the divisions. A structure that
contains many multiloops will yield many substructures emanating from the loops which
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can be combined in a number of ways. To clarify this, we note from [16] that the structure
is representable as an ordered, rooted tree. In Figure 6 we show the equivalent tree for the
structure shown in Figure 1. White and black nodes correspond to unpaired and paired
bases respectively; the nodes can contain the position numbers in the original structure
or the bases in the sequence (the black nodes contain 2 values, of course.) Performing
a pre-order traversal of this tree returns the structural representation or the sequence,
depending on what the nodes contain. Clearly, multiloops are areas where more than 1
black node originates from a parent.

ROOT

Figure 6: The tree representation of the structure shown in Figure 1. Free bases and paired bases
are shown as white and black nodes respectively. Note the location of the multiloop, with 2 black
nodes originating from a common parent. Adapted from Hofacker et al. [16]

One option for dividing the structure, as Hofacker et al [16] have done is to begin with the
hairpins (i.e, the leaves of the tree where no black nodes are neighboring), to iteratively
add base pairs and perform the sequence search, to concatenate the hairpins at multiloops,
and to optimize the remaining base pairs connecting multiloops. The disadvantage is
that as small substructures are added, the O(n?) forward-folding costs begin to increase.
Towards the end of the search, if 7 small substructures are to be concatenated to a large
substructure of length slightly less that N, (where N is the length of the full structure),
then each time a substructure is added and the folding function is run, then slightly
less the O(N3) computations are needed. For i “small” substructures, the complexity
could approach O(iN?). The slight addition in length is unlikely to affect the stochastic
search performance, and so the bottleneck will be the forward folding. Furthermore, if
no solution is found on a large, concatenated substructure, backtracking and searching
through the (slightly) smaller substructure can also be time-consuming. To circumvent
these problems, we chose to subdivide the structure into two substructures of as close to
equal lengths as possible, subject to the constraint that the split take place at a multiloop.
In the tree representation, this corresponds to finding the base pair node at a multiloop
such that the subtree with that node as root has roughly equal length to the original subtree
with that node and its subtree removed. Note that this procedure can be repeated on the
two generated subtrees if they also contain multiloops. The effect of this division of the
structure displayed in Figure 1 is shown in tree representation in Figure 7. In Figure 8,
we show a larger RNA structure and the two substructures it has been divided into.
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rROOT ~ ROOT

Figure 7: The tree representation for the 2 substructures resulting from splitting the one shown
in Figure 1 and whose tree is displayed in Figure 6.

Figure 8: An example of a structure divided into two substructures using the method outlined in
the text.

The pseudocode for the hierachical splitting procedure is shown in Figure 9. The idea
is to first generate the tree representation of the structure and then find the node at a
multiloop that divides the structure most evenly.
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One technical difference between the tree we described in the previous section and the one
we implemented is that instead of having each base be represented by a node in the tree,
each substructure is contained in a node. The children of a substructure are those stems
that are nested within it; to conserve the ordering the postions of the bases in the original
sequence were stored along with the structure elements. Thus, the tree was equivalent to
the one described. For example, a multiloop with 5 stems radiating from it would have 4
children: the parent node is the substructure of the stem entering (from the 5’ end) and
leaving (to the 3’ end) the loop.

procedure HierarchicalSplit
input: structure
output: substructurel, substructurel
Part I: Create the tree
while (not terminate_create_tree)
if (current_substructure_encountered) is a multiloop
push current_substructure onto stack;
push current_working_postions onto stack;
New current_substructure;
else
append element from structure to current_substructure— > stringlinked_list;
append position number in structure to current_substructure— > position_linked_list;
end if;
if traversed_substructure and stack is not empty
pop old_substructure from stack;
increment old_substructure— > number_children;
old_substructure— > children[number_children] = current_substructure;
else if traversed_substructure and stack is empty
terminate_create_tree;
else
parse next forward and backward position of structure;
end if;
Part II: Find the most close to equal-sized subtrees
mid-node = argminnoqe||length(node) — length(tree)/2||;
substructurel = subtree(mid_node);
substructure2 = tree — subtree(mid-node);
return (substructurel, substructurel);
end HierarchicalSplit.

Figure 9: Pseudocode for the hierarchical split algorithm

Two further modifications to the splitting heuristic were also tried. We discovered after
running the search on the divided structures that sometimes there was no sequence that
could fold to the desired substructure. In other words, when they were part of the original
structure, they were viable, but not on their own, or vice versa (see 2. below). Two such
cases were found to be especially prominent:

1. Structures that contained a free base directly after the first parenthesis when it was
the first substructure element. For example: (.((((....)))))
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2. Structures that, as an artifact of the splitting procedure, contained “hairpins.” The
issue arose when the other substructures were re-inserted to create the original struc-
ture, and the free bases stacked with the base pairs located at the stem’s end rather
than remain free. In the following examples, we insert bars (—) in the structural
representation as visual aids to show the relevant locations of insertion. The follow-
ing example element of a substructure:

(GO )));

which had the following stem inserted:

((C(C.-)))))
should have yielded:

(CCCee [ CCCCCDND) | eeee))))

but instead, the forward folding algorithm would often fold the concatenated se-
quence to:

GO DN 1))

In other words, the free bases which were stable on their own in the substructure
would form stacked pairs in the concatenated structure.

Our solution to the first problem was to prefix and append the substructure with free
bases, so that our example would become:

| ) |

We hypothesize that this remedies the situation because it now creates a target that is in
fact realistic relative to the energy models used by the Vienna forward-folding algorithm.

The second problem was fixed by artificially inserting a stem between free bases that have
been determined to have been split. This is found by checking whether their position
numbers in the original structure are consecutive in the substructure. If not, a split was
performed, and a stem of length 3 with a three base hairpin is attached. Thus, our
substructure example is augmented to:

(o | (D)) | eeee))))

the optimization is performed, and when concatenated to the other stem, the artificial
hairpin is discarded. Choosing to insert this “3-3-3” helix was an intuitively reasonable
way to force force “boundary conditions” similar to those that were found in the original
structure while maintaining a short length. An alternative would have been to take, a
stem of a certain length from the original structure, for example all the bases contained
up to and including the third paired base leaving the stem, and attaching a hairpin to the
end. Our preliminary experiments showed that this offered no clear advantage over the
generic structure that we insert.

5.3 Stochastic Local Search on Small Substructures

Here, we give a Stochastic Local Search algorithm for substructures of the original struc-
ture. Since structures might still be of size around 100, and 100® = 1000000, it is of high
importance to keep the number of objective function evaluations of long sequences as low
as possible. This leads to the first improvement strategy depicted in figure 10. The initial
assignment of bases is locally changed in order to reduce conflicts. A flip of a base that
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should pair in the structure implicitly flips the base it pairs with, such that the pairing is
preserved. If a base does not bond like in the desired structure, it is said to be in conflict.

procedure StochasticLocalSearch
input: options, structure, sequence, forbidden
output: sequence, an RNA sequence with native structure
identical or similar to structure
and sequence; # forbidden;
while (not terminate_sls)
do
with probability p.: % ¢ index of a random base.
otherwise: ¢ < index of a random base that bonds incorrectly.
x; = flip(i,probCG, probAU);
while (z; = forbidden;);
distance = evaluate (sequence);
if (distance is better or equal than before the flip)
sequence; < Tj;
else with probability p,: sequence; ¢ x;;
end while;
return sequence
end StochasticLocalSearch.

Figure 10: Stochastic Local Search for substructures

With a predefined choose probability p., a random base is chosen to be flipped. Otherwise,
one of the bases in conflict is flipped randomly. If the result of this flip is a forbidden value
for the base, the flip is undone and a new flip is tried. When the value is allowed, this
flip is evaluated to determine if it results in a better structure than before (note, that this
implies a call of Zuker’s O(n?) algorithm). The flip is accepted if the resulting structure
does not have a higher distance from the intended structure than the original one. In
addition, worsening moves are accepted with an acceptance probability p,.

The process of flipping bases is iterated until a predefined number of flips has been per-
formed, or an optimal sequence z* has been found.

5.4 Random Structure Generator

A random structure generator was designed in order to create simple artificial structures
of any size that do not contain pseudoknots. By combining the simple elements that
make up bracket notation, (, ) and . in a rational manner, an unambiguous and complex
structure can be created. Based on the simple rules upon which RNA folding is based, the
complexity and size of generated structures can range from extremely simple and small to
highly nested and large sequences. This flexibility allows a very wide variety of challenges
to be presented to the folding algorithms.

The generated structures are composed of four separate elements:
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1. Free Bases, represented by . may be added anywhere.

2. Helices, represented by (m)m, to which multiloops or hairpins can be attached.

w

. Multiloops, represented by .,, to which helices can be attached.

4. Hairpins, represented by .}, to which no further elements are attached.

These elements are sufficient to generate any potential structure that does not contain
pseudoknots. However we have added the further restriction that no free base may be
added where it would cause the structure .(. or .). to be created. In the initialization, a
basic structure of six free bases is created as a starting point. To this structure, a number
of helices are added. Each of these helices can be considered a separate domain, since the
final structure will have no interaction between the nested helices on these domains. The
same effect could be achieved by creating separate structures and concatenating them.

Legend:

NewStructure: The structure being generated;

HelicesEnds: A structure which records positions where () is added;

Number Domains: The number of helices added to the initialized NewStructure;
MultiLoopLocations: A structure which records positions where multiloops have been

added;
m,n,z: Parameters set or randomly generated to determine the length of each structure.

Functions:

Initialize: Initializes NewSequence to ...... and an appropriate number of helices are
added, depending on the number of domains;

AddHelices: Adds (m)m to the structure at a specified position, recording where multi-
loops or hairpins are to be added;

AddMwultiloops: Adds ., to the structure at a specified position, recording where helices
are to be added;

AddHairpin: Adds .x to the structure at a specified position, between ();
AddFreeBaseAfter: Adds . at a specified position.

Proposed changes

The mechanism by which free bases are added to the structure does not reflect any sig-
nificant biological intuition. A number of much more elegant functions for the generation
of bulges (free base inserts of length greater than one) or loops (free base inserts on both
sides of a helix at complementary positions) could be generated with little effort.
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procedure GenerateStructure

input: parameters for length of elements added
output: NewStructure
(NewStructure, MultiloopLocations) = Initialize (NewStructure, Number Domains) ;
(NewStructure, PositionO fMultiloop) = AddMultiloops (NewStructure, NumberMultiloops) ;
(NewStructure, HelicesEnds) = AddHelices (NewStructure, HelicesPer MultiLoop) ;
while (more multiloops desired)

MultiloopLocations = AddMultiloops (NewStructure, HelicesEnds) ;

foreach (Helices desired per Multiloop)

HelicesEnds = AddHelices (NewStructure, MultiLoopLocations) ;

end foreach;
end while;
while (HelicesEnds still contains positions)

NewStructure = AddHairpin (NewStructure, HelicesEnd) ;
end while;
foreach (PositionInStructure)

if (Rand%101 < AcceptProbability)

NewStructure = AddFreeBaseAfter (BaselInStructure) ;

end if;
end foreach;
return NewStructure;

end GenerateStructure.

Figure 11: Pseudocode for the Random Structure Generator

6 Experiments and Results

In this section, we study the performance of IRNAF. We investigate its sensitivity to the
noise parameters p, and p., and determine the importance of hierarchical splitting and
heuristic initialization. Finally, we demonstrate superior performance over the Vienna
inverse folding algorithm [16].

6.1 Conventions and Data for Empirical Analysis

We used two data sets for the empirical analysis. The first data set, rand_gen, is created
with the random structure generator introduced in Section 5.4. The structures vary in
number of domains and length. None of them has any bulges. The second data set, which
we refer to as rrna is created from rRNA sequences obtained from the Ribosomal Database
Project [23]. We folded sequences obtained from there using the fold function from the
Vienna RNA Secondary Structure Package [25], which implements Zuker’s algorithm [15]
to fold a sequence into the minimum energy structure. This forward folding algorithm is
the one used in our algorithm to evaluate sequences; thus, by obtaining structures as folds
of sequences, we can be certain that at least one solution to each of the structures exist.
Shorter structures are extracted from these structures by means of the hierarchical splitting
described in Section 5.2. We refer to complete rRNA structures by the “definition” used
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in the original database [23].

The algorithms we investigate are highly randomized; thus, it is advantageous to base
their analysis on more than one try. Runtime distributions (RTDs) [30] are a good way
to visualize the behaviour of randomized algorithms. Unfortunately, the execution of the
algorithms we are comparing is often so slow that we cannot afford to run them too often.
Thus, we mainly base our analysis on the execution of 10 runs per algorithms and instance.
An exception are the 2D sensitivity surface plots in Figure 12; to reduce the noise in the
plots we ran the algorithm for 100 tries for each parameter setting.

Each try of an algorithm is cut off after 100 seconds if not otherwise stated. If the run
finishes earlier and solves the problem, it terminates; if it does not solve the problem but
is still within the time limit, it is simply restarted. When the cutoff time is reached and
the current run finishes, the best result obtained so far is returned together with the total
runtime.

For structures longer than 300 bases, the Vienna inverse algorithm rarely finds a solution.
Thus, in order to do a proper analysis, we need to represent both runtime and distance. A
very computationally inexpensive way to achieve this is chosen here. For various instances,
we only do a single try (which still can entail more than one run if it stays within the time
limit); however, for structures longer than around 700 bases, the Vienna inverse algorithm
still often does not terminate after hours of CPU time. In these cases, we terminated
the runs manually and report the user time after which the runs were terminated.? The
shortcomings of only performing one try are obvious; however, given the restricted amount
of time and the apparent computational hardness of inverse RNA folding, this is the best
compromise we could achieve.

6.2 Characteristics of IRNAF

In this section, we describe experiments we carried out in order to set the noise param-
eters of IRNAF and determine which components of the algorithm are important for its
performance.

Our first experiment was to study IRNAF’s noise sensitivity. Figure 12 shows surface
plots for various noise settings and problem instances. Only one instance from rand gen
was tested due to the longer runtime of instances from this data set.®> Due to the small
number of tested structures only limited conclusions can be drawn. Values of p, > 0.3
seem to result in bad performance; also, too high values of p. seem to perform worse
than reasonably small ones. We do not want to draw premature conclusions regarding the
optimality of any values, but fix the values to p, = 0.2 and p. = 0.2 for the rest of the
paper; these values seemed to be reasonably robust.

2All experiments reported here were carried out on Pentium III double processor machines with 1 GHz;
each terminated run constantly had a CPU load on one processor of over 95%.

3We suppose the longer runtimes are solely based on the longer length of the shortest sequences in
rand_gen. Unfortunately, we did not generate structures shorter than 200 bases for this data set. For
comparison, the structures rrnal00* have lengths between 20 and 100.
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Figure 12: Noise sensitivity for three secondary structures from the rrna data set and
one structure from the rand_gen data set (bottom, right); noise accept = 100 x p,, noise
choose = 100 * p,

As can be seen in figure 13, the RTDs of IRNAF do not always look like typical RTDs
of SLS algorithms. In particular, some of them do not have a clear exponential shape;
however, they come close to mixtures of exponentials. The RTDs of the Vienna inverse
folding algorithm look more regular, which suggests less stagnation behaviour. Note that
the algorithms are restarted when they end unsuccessfully. Stagnation behaviour of the
SLS algorithm could explain the curves: in the beginning of each run, it is more likely
to find a solution then in a later stage. This would hinge on decreasing the number
of flips that each try is allowed to perform before cutoff. However, when dealing with
large structures, the initialization is done for the whole sequence, such that a complete
restart with a new initialization can not be performed too often. Further analysis needs to
clarify this issue; since numerous restarts are infeasible for longer structures, stagnation
behaviour would have disastrous effects on the algorithm. An improvement on this would
thus appear especially promising.
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The structures for which RTDs are plotted are:
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Figure 13: Empirical run-time distributions (RTDs) for IRNAF and the Vienna inverse

folding algorithm. Problems from the domain rrna.

In Figure 14, we evaluate how the performance of IRNAF degrades when omitting the
splitting of large structures(left) and the heuristic initialization(right). We come to the
intuitive conclusion that the splitting becomes more important when the structures are
getting longer (15 of the 20 longest structures were not finished within the cutoff time
despite the fact that these structures were smaller than 300 bases). The heuristic ini-
tialization on the other hand seems to yield improvements rather independently from the

structure length.
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Figure 14: Improvements due to splitting (left) and heuristic initialization (right). For the
splitting, note that the 15 points (from rrna300) with x-value 1000 did not succeed after
a total runtime of 10000 CPU seconds for 10 runs. Problem domain: rrna

6.3 IRNAF vs Vienna inverse folding

Figure 15 compares IRNAF with the Vienna inverse folding algorithm. For the short
structures in this plot, we observe a performance improvement of about an order of mag-
nitude. For the data set gen_rand, it can be seen that the performance difference grows
with structure hardness. This reflects the the better scaling behaviour of IRNAF and we
believe data set rrna would show the same trend for harder instances.
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Figure 15: Comparison of TRNAF and the Vienna algorithm. Problem domains:
rrna (left), rand gen (right). For the left plot, note that the cutoff time per run was
set to 100 CPU seconds, meaning all runs corresponding to a data point with an x-value
> 100 are not guaranteed to have succeeded with Vienna
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In Tables 1 and 2, we give the results of only one run of IRNAF, as compared to one run of
the Vienna inverse folding algorithm for some complete rRNA secondary structures. We
know about the limits of this approach when dealing with randomized algorithms, but do
hope to give first evidence on the superior behaviour of IRNAF. A more detailed analysis
needs to be done in the near future. Entries marked with an @ correspond to incomplete
runs of Vienna that had to be interrupted manually. For each of these instances, the user
time until interruption is given. Entries marked with a + correspond to a run of our
algorithm that returned an error message. We believe this quirky bug is most likely due
to the unstable C command strepy; this issue will be dealt with as soon as possible.

7 Possible Improvements and Future Work

Various improvements to this algorithm may be possible. First, a possible improvement in
running time, one could use a custom implementation of the forward algorithm in which the
matrix V(i,j), containing the dynamic programming solutions to the energy minimization,
would be updated rather than completely re-calculated. The recalculation of V(i) is
wasteful in large parts when many of the matrix elements are unchanged between calls
from either the heuristic or the SLS iterations. Note, however, that the complexity of such
an update would still be O(n), where n is the number of bases in the structure.

The second possible improvement would be to use a dynamic value for the constant &k in
the initialization phase, rather than a single fixed value. Thus, the number of possible
combinations available could be expanded for longer helices, which may also allow for
larger structures with more helices to be solved.

With respect to the SLS, we believe there is room for improvement. The optimal noise
parameter values have only been estimated from 4 short structures. It is likely that the
optimal values for a long structure with a lot of recursive calls might have quite different
optimal settings. Furthermore, the basic SLS might be improved, for example using a
TABU-like mechanism as introduced for Constraint Satisfaction problems in [28].

Future work on this algorithm should include a more detailed RTD-based empirical anal-
ysis. Also, the testing done to date has mainly been performed on ribosomal sequences
which have been converted to structures using a forward folding function from the Vienna
Package. However, a wider variety of structures should be used and evaluated. What is
clearly needed is a standard data set of structures for comparative empirical analysis. To
this end, a sequence generator, which is able to create randomly generated structures, was
produced. Interestingly, some structures that are produced by the random structure gen-
erator cannot be solved by IRNAF (nor the Vienna algorithm). It might be interesting to
investigate if these structures are just particularly hard or simply not viable. A complete
algorithm could be used to answer these questions.

Furthermore, the algorithmic ideas of this approach might carry over to more advanced
problems like the design of multistable RNA molecules, as dealt with in [19]. Stochastic
Local Search methods are very likely to find application in this domain as well.
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Definition of structure | Length || IRNAF | IRNAF Vienna | Vienna In-

distance | time Inverse | verse time
distance

Sargasso Sea 10m depth 299 0 786.080 9 1390.773

bacterioplankton DNA

clone BDA1-10

Clone pM9-23 299 0 22.258 12 733.410

Clone pB7-128R 299 0 378.598 4 1555.210

str. DCM FREE 299 0 170.783 2 698.762

Unidentified soil bac- 299 0 5.023 2 867.784

terium from soybean

field clone FIE3

Leptospira interrogans 299 4 1032.644 15 1393.612

str. 94-7997013

Str. NR64, Dbac- 300 0 7.989 2 1272.369

terium expressing pSym

plasmid

Acetobacter LMG 1529 348 0 16.608 37 4039.679

LMG 1529

Ochrobactrum BL200-8 357 0 7.781 2 262.201

str. BL200-8

Str. Marine sediment 357 0 245.820 4 1747.893

sample A2 from be-

neath salmon fish cage,

first2

Methanobrevibacter 359 0 715.433 @ 3:02h @

FMBK1

Micrococcus uncultured 359 0 15.074 22 2489.510

bacterium SY2-74

Anabaena uncultured 359 0 206.738 10 1548.105

bacterium SY2-21

Octopus Spring micro- 417 8 1095.179 10 3153.804

bial mat DNA from Yel-

lowstone NP clone Type

E

Prevotella albensis str. 419 28 1096.816 17 2678.361

M384 DSM 11370 (T)

Unnamed organism 419 0 16.884 20 2435.991

Clone 3-25 419 0 244.009 8 2805.905

Mud Volcano area of 474 0 140.628 2 4144.913

Yellowstone NP (”Black

Pool”) hot spring DNA

Unnamed organism 478 31 1071.219 20 10078.846

Table 1: Runtimes and distances for IRNAF and the Vienna inverse folding algorithm for
various rRNA secondary structures
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Definition of structure | Length || IRNAF | IRNAF Vienna | Vienna In-

distance | time Inverse | verse time
distance

Str. ST9630 479 2 1146.429 11 4093.585

Unnamed organism 479 0 889.529 37 8792.324

Clone CRO-FL22 479 0 640.432 20 2586.165

Clone CRE-FLT72 479 34 1066.446 27 7226.848

Clone LLBS8 479 5 1091.351 8 2855.989

Unnamed organism 479 0 715.576 14 2947.360

Neisseria lactamica 479 3 1005.220 41 4917.567

DSM 4691

Stenotrophomonas sp. 534 + + 20 9790.491

str. P-9-8

Clone vadinTA59 539 0 150.109 8 8820.554

Nitrobacter Nb4 str. 659 21 1098.328 15 7005.243

Nb4

Wolbachia pipientis 659 + + 8 4750.398

Clone ST1-4 776 0 100.409 37 9819.491

Bradyrhizobium sp. str. 780 4 1063.200 @ 4:02h @

283A

Sulfolobus acidocaldar- 899 67 2901.292 @) 3:48h @

ius str. N8

Spirochaeta sp 899 + + @ 4:12h @

Str. 1200m deep water 960 + + @ 6:36h @

sample of Lake Baikal,

Russia

Dendrodoa grossularia 1019 2 2074.461 16 19847.821

Table 2: Runtimes and distances for IRNAF and the Vienna inverse folding algorithm for
various rRNA secondary structures
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8 Conclusions

We have introduced a new algorithm for the inverse RNA folding problem, which we call
IRNAF. IRNAF demonstrates a significant increase in both the accuracy and speed as
compared to the Vienna inverse folding algorithm. The use of both an SLS algorithm with a
heuristic initialization provides a good starting point in the exploration of alternate means
of solving a difficult biological problem. It validates both the use of a priori knowledge
from a biological perspective as well as the application of modern computational methods
to a biologically significant problem.

We have demonstrated that the simple biological insights which have been incorporated
into the heuristic algorithm are a good starting point for further work. Although they do
not effectively solve this problem, they are able to generate a good initial assignment for
the SLS algorithm. Through key insights, we were able to improve the heuristic algorithm
and demonstrate that simple biological principles can have a significant optimizing impact
upon the generation of solutions to this problem.

We have shown here that for a great number of cases, the SLS optimization is able to
propose changes which yield optimal solutions, in which the distance between the input
structure and the structure generated by folding the solution sequence is zero. Although
not all structures could be solved by this method, in particular, artificially generated hard
sequences, the increases in performance, the size of the structures that can be solved
and the number of sequences which can be solved demonstrate the overall validity of this
approach. It is hoped that this algorithm can provide a significant contribution to a
biologically difficult problem which may have great relevance in the future.
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