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Protocol for obtaining the empirical RTD for an LVA A applied
to a given instance 7 of a decision problem:

» Perform k independent runs of A on 7 with cutoff time t’.
(For most purposes, k should be at least 50-100, and ¢’
should be high enough to obtain at least a large fraction of
successful runs.)

» Record number k' of successful runs, and for each run,
record its run-time in a list L.

» Sort L according to increasing run-time; let rt(j) denote
the run-time from entry j of the sorted list (j = 1,..., k).

» Plot the graph (rt(j),j/k), i.e., the cumulative empirical RTD
of Aon 7.
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Distribution of median search cost for WalkSAT /SKC over
set of 1000 randomly generated, hard 3-SAT instances:
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RTDs for WalkSAT /SKC, a prominent SLS algorithm for SAT,
on three hard 3-SAT instances:

P(solve)
o
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1 — 27*/m:
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1 — 27*/m:
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Marquardt-Levenberg algorithm passes the x? goodness-of-fit test at o = 0.05.
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RTD Approximation with Mixture of Exponential Distributions
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Performance differences detectable by the Mann-Whitney
U-test for various sample sizes (sign. level 0.05, power 0.95):

sample size my/my
3010 1.1
1000 1.18
122 1.5
100 1.6
32 2
10 3

m1/my is the ratio between the medians of the two empirical
distributions.
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Example of crossing RTDs for two SLS algorithms for the TSP
applied to a standard benchmark instance (1000 runs/RTD):

P(solve)
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Correlation between median run-time for two SLS algorithms
for the TSP over a set of 100 randomly generated instances:
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10 runs per instance.
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Performance improvements based on static restarts (1)

» Detailed RTD analyses can often suggest ways of improving
the performance of a given SLS algorithm.

» Static restarting, i.e., periodic re-initialisation after all integer
multiples of a given cutoff-time t/, is one of the simplest
methods for overcoming stagnation behaviour.

» A static restart strategy is effective, i.e., leads to increased
solution probability for some run-time t”, if the RTD of
the given algorithm and problem instance is less steep than
an exponential distribution crossing the RTD at some time
t<t"
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Example of an empirical RTD of an SLS algorithm on a
problem instance for which static restarting is effective:
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‘ed[18]' is the CDF of an exponential distribution with median 18; the arrows

mark the optimal cutoff-time for static restarting.
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Performance improvements based on static restarts (2)

» To determine the optimal cutoff-time t,p; for static restarts,
consider the left-most exponential distribution that touches
the given empirical RTD and choose t,,: to be the smallest

t value at which the two respective distribution curves meet.

(For a formal derivation of topt, see page 193 of SLS:FA.)

» Note: This method for determining optimal cutoff-times
only works a posteriori, given an empirical RTD.

» Optimal cutoff-times for static restarting typically vary

considerably between problem instances; for optimisation
algorithms, they also depend on the desired solution quality.
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Performance improvements based on static restarts (1)

» Detailed RTD analyses can often suggest ways of improving
the performance of a given SLS algorithm.

» Static restarting, i.e., periodic re-initialisation after all integer
multiples of a given cutoff-time t/, is one of the simplest
methods for overcoming stagnation behaviour.

» A static restart strategy is effective, i.e., leads to increased
solution probability for some run-time t”, if the RTD of
the given algorithm and problem instance is less steep than
an exponential distribution crossing the RTD at some time
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Example of an empirical RTD of an SLS algorithm on a
problem instance for which static restarting is effective:
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Performance improvements based on static restarts (2)

» To determine the optimal cutoff-time t,p; for static restarts,
consider the left-most exponential distribution that touches
the given empirical RTD and choose t,,: to be the smallest

t value at which the two respective distribution curves meet.

(For a formal derivation of topt, see page 193 of SLS:FA.)

» Note: This method for determining optimal cutoff-times
only works a posteriori, given an empirical RTD.

» Optimal cutoff-times for static restarting typically vary

considerably between problem instances; for optimisation
algorithms, they also depend on the desired solution quality.
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Overcoming stagnation using dynamic restarts

» Dynamic restart strategies are based on the idea of
re-initialising the search process only when needed,
i.e., when stagnation occurs.

» Simple dynamic restart strategy: Re-initialise search when
the time interval since the last improvement of the incumbent
candidate solution exceeds a given threshold 6.
(Incumbent candidate solutions are not carried over restarts.)

0 is typically measured in search steps and may be chosen
depending on properties of the given problem instance,
in particular, instance size.
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Example: Effect of simple dynamic restart strategy
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Multiple independent runs parallelisation

» Any LVA A can be easily parallelised by performing multiple
runs on the same problem instance 7 in parallel on p
Processors.

» The effectiveness of this approach depends on the RTD
of Aon 7

Optimal parallelisation speedup of p is achieved for
an exponential RTD.

» The RTDs of many high-performance SLS algorithms are
well approximated by exponential distributions; however,
deviations for short run-times (due to the effects of search
initialisation) limit the maximal number of processors
for which optimal speedup can be achieved in practice.
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Speedup achieved by multiple independent runs parallelisation
of a high-performance SLS algorithm for SAT:
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