
Raw run-time data (each spike one run)
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Run-Time Distribution
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RTD Graphs
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Protocol for obtaining the empirical RTD for an LVA A applied
to a given instance π of a decision problem:

I Perform k independent runs of A on π with cutoff time t ′.
(For most purposes, k should be at least 50–100, and t ′

should be high enough to obtain at least a large fraction of
successful runs.)

I Record number k ′ of successful runs, and for each run,
record its run-time in a list L.

I Sort L according to increasing run-time; let rt(j) denote
the run-time from entry j of the sorted list (j = 1, . . . , k ′).

I Plot the graph (rt(j), j/k), i.e., the cumulative empirical RTD
of A on π.

Stochastic Local Search: Foundations and Applications 35



Distribution of median search cost for WalkSAT/SKC over
set of 1000 randomly generated, hard 3-SAT instances:
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RTDs for WalkSAT/SKC, a prominent SLS algorithm for SAT,
on three hard 3-SAT instances:
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1− 2−x/m:
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1− 2−x/m:
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The optimal fit exponential distribution obtained from the

Marquardt-Levenberg algorithm passes the χ2 goodness-of-fit test at α = 0.05.
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RTD Approximation with Mixture of Exponential Distributions
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Performance differences detectable by the Mann-Whitney
U-test for various sample sizes (sign. level 0.05, power 0.95):

sample size m1/m2

3 010 1.1
1 000 1.18

122 1.5
100 1.6
32 2
10 3

m1/m2 is the ratio between the medians of the two empirical
distributions.
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Example of crossing RTDs for two SLS algorithms for the TSP
applied to a standard benchmark instance (1000 runs/RTD):

1010.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 1 000

run-time [CPU sec]

P
(s

ol
ve

)

ILS
MMAS

Stochastic Local Search: Foundations and Applications 61



Correlation between median run-time for two SLS algorithms
for the TSP over a set of 100 randomly generated instances:
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Performance improvements based on static restarts (1)

I Detailed RTD analyses can often suggest ways of improving
the performance of a given SLS algorithm.

I Static restarting, i.e., periodic re-initialisation after all integer
multiples of a given cutoff-time t ′, is one of the simplest
methods for overcoming stagnation behaviour.

I A static restart strategy is effective, i.e., leads to increased
solution probability for some run-time t ′′, if the RTD of
the given algorithm and problem instance is less steep than
an exponential distribution crossing the RTD at some time
t < t ′′.
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Example of an empirical RTD of an SLS algorithm on a
problem instance for which static restarting is effective:
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‘ed[18]’ is the CDF of an exponential distribution with median 18; the arrows

mark the optimal cutoff-time for static restarting.
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Performance improvements based on static restarts (2)

I To determine the optimal cutoff-time topt for static restarts,
consider the left-most exponential distribution that touches
the given empirical RTD and choose topt to be the smallest
t value at which the two respective distribution curves meet.

(For a formal derivation of topt , see page 193 of SLS:FA.)

I Note: This method for determining optimal cutoff-times
only works a posteriori, given an empirical RTD.

I Optimal cutoff-times for static restarting typically vary
considerably between problem instances; for optimisation
algorithms, they also depend on the desired solution quality.

Stochastic Local Search: Foundations and Applications 83



Performance improvements based on static restarts (1)

I Detailed RTD analyses can often suggest ways of improving
the performance of a given SLS algorithm.

I Static restarting, i.e., periodic re-initialisation after all integer
multiples of a given cutoff-time t ′, is one of the simplest
methods for overcoming stagnation behaviour.

I A static restart strategy is effective, i.e., leads to increased
solution probability for some run-time t ′′, if the RTD of
the given algorithm and problem instance is less steep than
an exponential distribution crossing the RTD at some time
t < t ′′.

Stochastic Local Search: Foundations and Applications 81



Example of an empirical RTD of an SLS algorithm on a
problem instance for which static restarting is effective:
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Performance improvements based on static restarts (2)
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Overcoming stagnation using dynamic restarts

I Dynamic restart strategies are based on the idea of
re-initialising the search process only when needed,
i.e., when stagnation occurs.

I Simple dynamic restart strategy: Re-initialise search when
the time interval since the last improvement of the incumbent
candidate solution exceeds a given threshold θ.
(Incumbent candidate solutions are not carried over restarts.)

θ is typically measured in search steps and may be chosen
depending on properties of the given problem instance,
in particular, instance size.
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Example: Effect of simple dynamic restart strategy
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Multiple independent runs parallelisation

I Any LVA A can be easily parallelised by performing multiple
runs on the same problem instance π in parallel on p
processors.

I The effectiveness of this approach depends on the RTD
of A on π:

Optimal parallelisation speedup of p is achieved for
an exponential RTD.

I The RTDs of many high-performance SLS algorithms are
well approximated by exponential distributions; however,
deviations for short run-times (due to the effects of search
initialisation) limit the maximal number of processors
for which optimal speedup can be achieved in practice.
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Speedup achieved by multiple independent runs parallelisation
of a high-performance SLS algorithm for SAT:
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