
SLS Algorithms

Stochastic local search (SLS) has become a widely accepted approach to
solving hard combinatorial optimisation problems. An important character-
istic of many recently developed SLS methods is the fact that they can be
applied to many different problems in a rather straightforward way. In this
chapter we present some of the most prominent SLS techniques, and illus-
trate their application to hard combinatorial problems using SAT and TSP
as example domains.

The techniques covered here range from simple iterative improvement
algorithms to more complex SLS algorithms such as Ant Colony Optimi-
sation or Evolutionary Algorithms. For each of these SLS methods, we
motivate and describe the basic technique and discuss important variants.
Furthermore, we identify and discuss important characteristics and features
of the individual methods and highlight relationships between the different
SLS techniques.

2.1 Iterative Improvement (revisited)

In Section 1.5, we introduced Iterative Improvement as one of the simplest,
yet reasonably effective SLS algorithms. We have pointed out that one of
the main limitations of Iterative Improvement is the fact that it can, and often
does, get stuck in local minima of the underlying evaluation function. Here,
we discuss how using larger neighbourhoods can help to alleviate this prob-
lem without making the exploration of local neighbourhoods prohibitively
expensive.
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Large Neighbourhoods

As pointed out before, the performance of any stochastic local search algo-
rithm depends significantly on the underlying neighbourhood relation and,
in particular, on the size of the neighbourhood. When using the standard�

-exchange neighbourhoods introduced in Section 1.5, it is easy to see that
for growing

�
, the size of the local neighbourhoods (i.e., the number of di-

rect neighbours for each given candidate solution), also increases. More
precisely, for a

�
-exchange neighbourhood, the size of the local neigh-

bourhoods is in �������	� , i.e., the neighbourhood size increases exponentially
with

�
.

Generally, larger neighbourhoods contain more and potentially better
candidate solutions, and hence they typically offer better chances of facil-
itating locally improving search steps. They also lead to neighbourhood
graphs with smaller diameters, which means that an SLS trajectory can
potentially more easily explore different regions of the underlying search
space. In a sense, the ideal case would be a neighbourhood relation for
which any locally optimal candidate solution is guaranteed to be globally
optimal. Neighbourhoods which satisfy this property are called exact; un-
fortunately in most cases exact neighbourhoods are exponentially large with
respect to the size of the given problem instance and searching an improv-
ing neighbouring candidate solution may take exponential time in the worst
case. 
 This situation illustrates a general tradeoff: Using larger neighbour-
hoods might increase the chance of finding (high quality) solutions of a
given problem in fewer local search steps when using SLS algorithms in
general and Iterative Improvement in particular; but at the same time, the
time complexity for determining improving search steps is much higher in
larger neighbourhoods. Typically, the time complexity of an individual lo-
cal search step needs to be polynomial (w.r.t. the size of the given problem
instance), where depending on problem size, even quadratic or cubic time
per search step might already be prohibitively high.

Fortunately, the evaluation function values of individual neighbours of a
candidate solution can be done more efficiently by caching and updating the

�
Efficiently searchable exact neighbourhoods exist in a few cases; for example, the

simplex algorithm in linear programming is an iterative improvement algorithm which uses
a polynomially searchable, exact neighbourhood and is hence guaranteed to find a globally
optimal solution.
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respective values after each search step rather than computing them from
scratch. As a simple example, consider the

�
-exchange neighbourhood for

the TSP, where the length of a candidate tour after a search step can be com-
puted by subtracting the edge lengths of the removed edges from the current
tour length and then adding the sum of the length of the newly introduced
edges. In many cases, the use of this and similar techniques leads to very
significant speedups which are crucial for the success of the respective SLS
algorithms in solving combinatorial problems in practice.

Neighbourhood Pruning

Given the tradeoff between the benefits of using large neighbourhoods and
the associated time complexity of performing search steps, one attractive
idea for improving the performance of Iterative Improvement and other SLS
algorithms is to use large neighbourhoods but to reduce their size by never
examining neighbours which are unlikely to, or which provably cannot yield
any improvements in evaluation function value. While in many cases, the
use of large neighbourhoods is only practically feasible in combination with
pruning techniques, the same techniques can be applied to relatively small
neighbourhoods, where they can lead to substantial improvements in SLS
performance.

For the TSP, one such pruning technique, which has been shown to be
useful in practice, is the use of candidate lists that for each vertex in the
given graph contain a limited number of their closest direct neighbours, or-
dered according to increasing edge weight. The search steps performed by
an SLS algorithm are then limited to consider only edges connecting a ver-
tex

�
to one of the vertices in

�
’s candidate list. The use of such a candidate

list is based on the intuition that high quality solutions will be likely to in-
clude short edges between neighbouring vertices (cf. Figure 1.1). In fact, the
TSP is also an example, where pruning techniques have shown significant
impact on local search performance not only for large neighbourhoods but
also already for rather small sized neighbourhoods like 2-exchange. SLS
techniques for the TSP that make use of this pruning technique will be fur-
ther discussed in Chapter 8.

Other neighbourhood pruning techniques identify neighbours which prov-
ably cannot lead to improvements in the evaluation function based on in-
sights into the structure of a given problem. An example for such pruning
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techniques is described by Nowicki and Smutnicki in their Tabu Search ap-
proch to the Job Shop Problem [?]. We will introduce these techniques in
Chapter 9, where SLS algorithms for a variety of scheduling problems will
be discussed.

Best Improvement vs First Improvement

Another possible method for speeding up the local search is to select the
next search step more efficiently. In the context of iterative improvement
algorithms, the mechanism for selecting search steps, which implements
the step function from Definition 1.5 is also called pivoting rule [149], and
most widely used neighbour selection mechanisms are the so-called Best
Improvement and First Improvement strategies.

Iterative Best Improvement randomly selects in each search step one of
the neighbouring candidate solutions which result in a maximal improve-
ment in the evaluation function. Formally, the corresponding step func-
tion can be defined in the following way: Given a search position � , ��������
	�� ��� �� ��� ������ � � ��� is the best evaluation function value in the neigh-
bourhood of � . Then ���	� � ��� �������� � � ������� �� ��������� is the set of maxi-
mally improving neighbours of � , and  "!$#&% � � � � �  �'�)(+*�� � � � � �,� if �  � � � � � � ,-

otherwise. Best Improvement is also called greedy hill-climbing or dis-
crete gradient descent. Note that Best Improvement requires a complete
evaluation of all neighbours in each search step.

The First Improvement neighbour selection strategy tries to avoid the
time complexity of evaluating all neighbours by performing the first im-
proving step encountered during the inspection of the neighbourhood. For-
mally, First Improvement is best defined by means of a step procedure rather
than a step function. At each search position � , the First Improvement step
procedure evaluates the neighbouring candidate solutions �+.�/� � � � in a
particular fixed order and the first �" for which ��� �� �102��� � � , i.e., the first im-
proving neighbour encountered, is selected. Obviously, the order in which
the neighbours are evaluated can have a significant influence on the effi-
ciency of this strategy. Instead of using a fixed ordering for evaluating the
neighbours of a given search position, one can also use random ordering.
For fixed evaluation orderings, repeated runs of First Improvement starting
from the same initial solution will end in the same local optimum, while
by using random orderings, many different local optima can be reached (we
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will give some example results illustrating that issue for the TSP in Chapter
8). In this sense, randomised First Improvement inherently leads to a certain
diversification of the search process.

As in the case of large neighbourhoods, there is a tradeoff between the
number of search steps required for finding a local optimum and the com-
putation time for each search step. Typically, for First Improvement search
steps can be computed more efficiently than when using Best Improvement,
since especially as long as there are multiple improving search steps from
a current candidate solution, only a small part of the local neighbourhood
is evaluated by First Improvement. However, the improvement obtained by
each step of First Improvement local search is typically smaller than for Best
Improvement and therefore, more search steps have to be applied to reach
a local optimum. Additionally, Best Improvement benefits more than First
Improvement from the use of caching and updating mechanisms for evaluat-
ing neighbours efficiently. In Section ?? we will show an example in which,
as a result, Best Improvement can even be faster than First Improvement.

Remark: Besides First Improvement and Best Improvement,
iterative improvement algorithms can use a variety of other piv-
oting rules. One example is Random Improvement, which ran-
domly selects a candidate solution from the set � � � � � ���,��
� � � � � ��� �� � 0 ��� � ��� ; this selection strategy can be imple-
mented as First Improvement where a new random evaluation
ordering is used in each search step. Another example is the
Least Improvement rule, which selects an element from � � � �
which minimally improves the current candidate solution.

Variable Neighbourhood Descent

Another way to benefit from the advantages of large neighbourhoods with-
out incurring a high time complexity of the search steps is based on the idea
of using standard, small neighbourhoods until a local optimum is encoun-
tered, at which point the search process switches to a different (typically
larger) neighbourhood, which might allow further search progress. This ap-
proach is based on the fact that the notion of a local optimum is defined rela-
tive to a neighbourhood relation, such that if a candidate solution � is locally
optimal w.r.t. a neighbourhood relation � 
 it need not be a local optimum
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for a different neighbourhood relation � � . The general idea of changing the
neighbourhood during the local search has been applied in a number of SLS
algorithms [?], but was only recently systematised by the Variable Neigh-
bourhood Search (VNS) heuristic [99, 56]. VNS comprises a number of
algorithmic approaches including Variable Neighborhood Descent (VND),
an iterative improvement algorithm which is derived from the general VNS
idea. In VND,

�
neighbourhood relations � 
 �

� � ��������� � � are used, which
are typically ordered according to increasing size, are used. The algorithm
starts with neighbourhood � 
 and performs iterative improvement steps un-
til a local optimum is reached. Whenever no further improving step is found
for a neighbourhood ��� and

��� (
	 �
, VND continues the search in neigh-

bourhood ����� 
 ; if an improvement is obtained in �� , the local search starts
again in � 
 . In general, there are variants of this basic VND which switch
between neighbourhoods in different ways. It has been shown that Variable
Neighbourhood Descent can considerably improve the performance of iter-
ative improvement algorithms both w.r.t. to the solution quality of the local
optima reached, as well as w.r.t. the time required for finding (high quality)
solutions compared to using standard Iterative Improvement in large neigh-
bourhoods [56].

Variable Depth Search

A different approach to selecting search steps from large neighbourhoods
reasonably efficiently is to compose more complex steps from a number of
steps in small, simple neighbourhoods. This idea is the basis of Variable
Depth Search (VDS), an SLS method introduced first by Kernighan and
Lin [75, 82] for the Graph Partitioning Problem and the TSP. Generally,
VDS can be seen as an iterative improvement method in which the local
search steps are variable length sequences of simpler search steps in a small
neighbourhood. Constraints on the feasible sequences of simple steps help
to keep the time complexity of selecting complex steps reasonably low.

As an example for a VDS algorithm, consider the Lin-Kernighan (LK)
algorithm for the TSP. The LK algorithm performs iterative improvement
using complex search steps each of which corresponds to a sequence of
2-exchange steps. The underlying mechanism can be understood best by
considering a sequence of Hamiltonian paths, i.e., paths which visit each
vertex in the given graph � exactly once. Figure 2.1a shows an example in
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Figure 2.1: Schematic view of a Lin–Kernighan exchange move: (a) gives a
Hamiltonian path, (b) a possible

�
-path, (c) the next Hamiltonian path (the

dotted line should be introduced to close the tour again), and (d) indicates a
next possible

�
-path.

which a Hamiltonian path between nodes � and � is obtained from a valid
round trip by removing the edge ��� � � � . Let us fix one of the endpoints in
this path, say � ; the other endpoint is kept variable. We can now introduce a
cycle into this Hamiltonian path by adding an edge ��� ��� � (see Figure 2.1b).
The resulting subgraph can also be viewed as a spanning tree of � with one
additional edge; it is called a

�
-path or a one tree. The cycle in this

�
-path

can be broken by removing a uniquely defined edge � �� �  � incident to � ;
the result is a new Hamiltonian path which can be extended to a Hamilto-
nian cycle (and hence a candidate solution for the TSP) by adding an edge
between �  and the fixed endpoint � (this is the dotted edge ���  � � � in Fig-
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ure 2.1c). Alternatively, a different edge can be added, leading to a new
�
-path as indicated in Figure 2.1d.

Based on this fundamental mechanism, the LK algorithm computes com-
plex search steps as follows: Starting with the current candidate solution (a
Hamiltonian cycle) � , a

�
-path � of minimal path weight is determined by

replacing one edge as described above. If the Hamiltonian cycle � obtained
from � by adding a (uniquely defined) edge has weight smaller than � , then �
(and its weight) is memorised. The same operation is now performed with �

as a starting point, and iterated until no
�
-path can be obtained with weight

smaller than that of the best Hamiltonian cycle found so far. Finally, the
minimal weight Hamiltonian cycle �, which has been found in this iterative
process provides the end point of a complex search step. Note that this can
be interpreted as a sequence of 1-exchange steps which alternate between
paths and Hamiltonian cycles.

Additional restrictions on the edges that can be added or removed within
the construction of complex search steps help to further keep the length of
the considered sequence low. For example, in the original LK procedure,
any edge that has been added cannot be removed and any edge that has been
removed cannot be introduced anymore. This tabu restriction has the effect
that a candidate sequence for a complex step is never longer than � .

All VDS algorithms use two types of restrictions, cost restrictions and
tabu restrictions, to limit the time complexity of constructing complex search
steps by reducing the constituting simple search steps. Typically, these
conditions are very problem specific. Apart from the TSP, a number of
other problems have been attacked with considerable success by VDS al-
gorithms. Generally, the implementation of high-performance VDS algo-
rithms requires considerable effort. For example, the best currently avail-
able implementations of the LK algorithm for solving large TSP instances
represent many person-months of implementation effort (see [98, 72, ?] for
an overview of implementation issues and efficient variants of the basic LK
algorithm).

Dynasearch

An interesting variation of the general idea behind VDS forms the basis
of Dynasearch [?], an iterative improvement algorithm in which complex
search steps consist of the best possible combination of mutually indepen-
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dent simple steps. For example, given a TSP instance and a specific Hamil-
tonian cycle, two 2-exchange steps, �


 and � � can be considered indepen-
dent if all vertices adjacent to edges involved in �


 occur either before or
after those adjacent to edges involved in � � . The neighbourhood explored
in Dynasearch is exponentially large w.r.t. instance size, but based on an in-
genious dynamic programming algorithm, best neighbours can be identified
in polynomial time. The set of independent moves can then be executed
in parallel, leading to an overall improvement equal to the sum of the im-
provements achieved by the simple component steps. Only in the worst
case, one complex Dynasearch step consists of a single simple step; but in
general, it achieves significant improvements over simple Iterative Improve-
ment. Although Dynasearch is a very recent local search technique, it al-
ready has shown excellent performance on some combinatorial optimisation
problems, such as the Single Machine Weighted Total Tardiness Problem (a
well-known scheduling problem discussed in more detail in Chapter 9).

2.2 ‘Simple’ Stochastic Local Search Methods

The previous section introduced some ways of extending simple exchange
neighbourhoods which significantly can enhance the performance of Itera-
tive Improvement. Another way of addressing the same problem is to mod-
ify the step function such that for a fixed and fairly simple neighbourhood,
the search process can perform worsening steps which help it to escape
from local optima. As mentioned in Section 1.5, the simplest technique
for achieving this is to use randomised variants of Iterative Improvement
or with a restart strategy which re-initialises the search process whenever it
gets stuck in a local optimum. In this section we will discuss a number of
different techniques that achieve the same effect often in a more efficient and
robust way. These are simple in the sense that they essentially perform only
one type of search step, while later in this chapter we will discuss hybrid
SLS algorithms which combine various different types of search steps.

Randomised Iterative Improvement

One of the simplest ways in which iterative improvement algorithms can be
extended such that worsening steps can be performed and escaping from lo-
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procedure step-RII
���������	��
�

input problem instance
�

, candidate solution
�
, walk probability

��

output candidate solution

� ��� ������������� �����! "�
if
� �$# ��
�

then�  � �&%!')(+*
URW

���������
else�  � �&%!')(+*,-, ���������
end
return

� 
end step-RII

Figure 2.2: Standard implementation of the step function for
Randomised Iterative Improvement; .0/ 	21�3+� � - � ( � returns a
random number between zero and one using a uniform distri-
bution.

cal optima becomes possible, is to sometimes select a neighbour at random,
rather than an improving neighbour, within the individual search steps. Such
uninformed random walk steps may be performed with a fixed frequency
such that the alternation between improvement steps and random walk steps
follows a deterministic pattern. Yet, depending on the improvement startegy
used, this may easily lead to a situation in which the effect of the random
walk steps are immediately undone in subsequent improvement steps, lead-
ing to cycling behaviour and preventing local optima escape. Therefore, it is
more appropriate to probabilistically determine in each search step whether
to apply an improvement step or a random walk step. Typically, this is done
by introducing a parameter � � �54 - � (�6 , called walk probability or noise pa-
rameter, that corresponds to the probability of performing a random walk
step instead of an improvement step.

The resulting algorithm is called Randomised Iterative Improvement
(RII). Like Iterative Improvement, it typically uses a random initialisation
of the search, as described in Section 1.5. Its step function can be writ-
ten as  "!$#&%87:9;9 � � � � �  � � � �=<  "!$#&% URW � � � � �  � � �&(?> � � � <  "!$#&%�9;9 � � � � �  � ,
where  "!$#&% URW � � � � �� � is the step function for uninformed random walk and
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 "!$#&% 9;9 � � � � �� � the step function for the iterative improvement algorithm (cf.
Section 1.5). As shown in Figure 2.2, the RII step function is typically im-
plemented as a two level choice, where first a probabilistic decision is made
which of the two types of search steps is to be applied, and then the corre-
sponding search step is performed. Obviously, there is no need to terminate
this SLS algorithm as soon as a local optimum is encountered; instead, the
termination predicate can be realised in various ways. One possibility is to
end the search after a limit on the CPU time or the number of search steps
has been reached; alternatively, the search may be terminated if a given
number of search steps has been performed without achieving any improve-
ment.

A beneficial consequence of using a probabilistic decision on the type
of local search performed in each step is the fact that arbitrarily long se-
quences of random walk steps (or improvement steps, respectively) can oc-
cur, where the probability of performing � consecutive random walk steps is
� ��� . Hence, there is always a chance to escape even from a local optimum
which has a large “basin of attraction” in the sense that many worsening
steps may be required to make sure that subsequent improvement steps have
a chance of leading into different local optima.

[ The following might be moved to Chapter 4, where it would fit well
into a general discussion of convergence / probabilistic completeness.
This would also allow a slightly more formal treatment. ]

In fact, provided that the neighbourhood graph is strongly connected and
all solutions have a same neighbourhood size � � � � �,� , the property of arbi-
trary long sequences of random walk moves also leads to an easy and intu-
itive way of proving that RII will eventually find the optimal solution to any
combinatorial optimization problem: In this case from an arbitrary solution� exists a search trajectory to a globally optimal solution. For simplicity,
let us assume that the shortest possible such search trajectory of length

�
is

taken. Then we can compute the probability of exactly making this trajecto-
rie as � � � *�� � � � �,� ����� -

. Since the diameter � of the neighbourhood graph
is an upper bound for l, we can give a worst case estimate for the probability
of making the desired trajectory as � � � < (+*�� � � � �,� �
	�� -

. This considera-
tion holds for an arbitrary solution � and it is easy to see that for the number
of visted solutions tending to infinity, the probability of having visited the
global optimum tends to one.



62

Example 2.1: Randomised Iterative Improvement for SAT

RII can easily be applied to SAT by combining the uninformed random walk
algorithm presented in Example 1.5 and an iterative improvement algorithm
like that of Example 1.5, using the same search space, solution set, neigh-
bourhood relation, and initialisation function as defined there. The only
difference is that for this example, we will apply a best improvement local
search algorithm instead of the descent method proposed in Example 1.5: At
each step the best improvement algorithm flips a variable which leads to a
maximal increase in the evaluation function. Note that such a best improve-
ment algorithm need not stop at local optima, because at a local optimum the
maximally improving variable flip is a perfectly valid worsening step (ac-
tually a least worsening move). The step function is composed of the two
step functions for this greedy improvement algorithm and for uninformed
random walk as described above: With a probability � � a random neigh-
bouring solution is returned, otherwise with a probability ( > � � a greedy
improvement step is applied. We call the resulting algorithm GUWSAT.

Interesting, a slight variation of the GUWSAT algorithm for SAT, called
GSAT with Random Walk (GWSAT), has been proven rather successful (see
also Chapter 6). The only difference between GUWSAT and GWSAT is in
the random walk step: Instead of uninformed random walk steps, GWSAT
uses “informed” random walk steps by restricting the random neighbour se-
lection to variables occuring in currently unsatisfied clauses. Technically,
this is done by first selecting a currently unsatisfied clause � at random.
Then, one of the variables appearing in � is flipped, thus effectively forcing

� to become satisfied. When GWSAT was first proposed, it was among the
best performing SLS algorithms for SAT. Yet, apart from this success, Ran-
domised Iterative Improvement is rather rarely applied. This might be partly
due to the fact that it is such a simple extension of Iterative Improvement,
and more complex SLS algorithms often achieve better performance. Nev-
ertheless, RII certainly deserves attention as a simple and generic extension
of Iterative Improvement which can be generalised easily to more complex
SLS methods.
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Probabilistic Iterative Improvement

An interesting alternative to the mechanism for allowing worsening search
steps underlying Randomised Iterative Improvement is based on the idea of
that the probability of accepting a worsening step should depend on the re-
spective deterioration in the evaluation function value such that the worse
a step is, the less likely it would be performed. This idea leads to a family
of SLS algorithms called Probabilistic Iterative Improvement (PII), which is
closely related to the Simulated Annealing algorithms which we will discuss
later in this chapter. Let � � � � � � be a function that, based on the evaluation
function values in the current neighbourhood of a candidate solution � , de-
termines a probability distribution over neighbouring candidate solutions of� . In each search step, PII simply selects a neighbour of the current candi-
date solution according to � . Formally, the corresponding step function can
be written as  "!$#&% � � � � �" ��� � � � � � � .

Obviously, the choice of the function � � � � � � is of crucial importance to
the behaviour and performance of PII. Note that both, Iterative Improvement
as defined in Section 1.5 as well as Randomised Iterative Improvement, can
be seen as special cases of PII which are obtained for particular choices of

� � � � � � . Generally, PII algorithms for which � � � � � � assigns positive proba-
bility to all neighbours of � have properties similar to RII, in that arbitrarily
long sequences of worsening moves can be performed.

Example 2.2: PII / Constant Temperature Annealing for TSP

The following, simple application of PII to the TSP illustrates the underly-
ing approach and will also serve as a convenient basis for introducing the
more general SLS method of Simulated Annealing. Given a TSP instance
represented by a complete, edge-weighted graph � , we use the set of all
vertex permutations as search space, and the same set as our set of feasible
candidate solutions. This simply means that we consider each Hamiltonian
cycle in � as a valid solution. As a neighbourhood relation, we use a reflex-
ive variant of the 2-exchange neighbourhood defined in Section 1.5, which
for each candidate solution � contains � itself as well as all Hamiltonian
cycles that can be obtained by replacing two edges in � .

The search process uses a simple randomised initialisation function which
randomly picks a Hamiltonian cycle from

�
. The step function is imple-

mented as a two-stage process, in which first a neighbour �+�� � � � � is
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selected at random, which is then accepted according to the following prob-
ability distribution:

�
accept � � � � � �  ���

�� � ( if � � �� �10�� � � �
���
	 ����������
��������� � otherwise

(2.1)

This distribution is known as the Metropolis distribution. The parameter�
, which is also called temperature, determines how likely it is to perform

worsening search steps: at low temperature values, the probability of ac-
cepting a worsening search step is low, while at high temperature values,
the algorithm accepts even drastically worsening steps with a relatively high
probability. As for RII, various termination predicates can be used for de-
termining when to end the search process.

This algorithm corresponds to a Simulated Annealing algorithm in which
the temperature is being kept constant at

�
.

Simulated Annealing

Considering the example PII algorithm for the TSP, in which a temperature
parameter

�
controls the probability of accepting worsening search steps,

one rather obvious generalisation is to allow
�

to vary over the course of
the search process. Conceptually, this leads to a family of SLS algorithms
known as Simulated Annealing (SA), which was proposed independently
by Kirkpatrick, Gelatt, and Vecchi [77] and Cerný [14]. SA was originally
motivated by the annealing of solids, a physical process in which a solid
is melted and then cooled down slowly in order to obtain perfect crystal
structures, which can be modeled as a state of minimum energy (also called
ground state). To avoid defects, i.e. irregularities, in the crystal, which
correspond to meta-stable states in the model, the cooling needs to be done
very slowly.

The idea underlying SA was to solve combinatorial optimisation prob-
lems by a process analogous to the physical annealing. In this analogy, the
candidate solutions of the given problem instance correspond to the states
of the physical system, the evaluation function models the thermal energy of
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procedure step-SA
��������� � �

input problem instance
�

, candidate solution
�
, temperature

�
output candidate solution

� �  � � *�� � * ��%���� ����� % ��  � �&����� (+* ' ����� % � %  ��� �
return

� 
end step-SA

Figure 2.3: Standard step function for Simulated Annealing;
% . 3 % 3  0/�� randomly selects a neighbour of � , /
	�	�#&% ! chooses
probabilistically between � and �" , dependent on temperature

�
.

the solid, and the globally optimal solutions correspond to the ground state
of the physical system.

Like PII, Simulated Annealing typically starts from a random initial so-
lution. It then performs the same general type of PII steps as defined in Ex-
ample 2.2, where in each step first a neighbour �, of � is randomly chosen,
and then an acceptance criterion parameterised by the temperature parame-
ter

�
is used to decide whether the search accepts �, or whether it stays at� . One standard choice for this acceptance criterion is a probabilistic choice

according to the Metropolis distribution (cf. Equation 2.1), which was also
used in an early article on the simulation of the physical annealing process
[?], where the parameter

�
corresponded to the actual physical temperature.

Throughout the search process, the temperature is adjusted according to a
given annealing schedule (often also called cooling schedule).

Formally, an annealing schedule is a function which for each run-time
� (typically measured as the number of search steps) determines a tempera-
ture value

� � � � . Annealing schedules are commonly specified by an initial
temperature

���
, a temperature update scheme, a number of iterations to be

performed at each temperature and a termination condition. Simulated An-
nealing can use a variety of termination predicates; a specific termination
condition, which is often used for SA, is based on the acceptance ratio. In
this case, the search process is terminated if the ratio of proposed steps to
accepted steps falls below a certain threshold or if no improving candidate
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solution could be found for a given number of iterations.
In many cases, the initial temperature

� �
is determined based on prop-

erties of the given problem instances such as the estimated cost difference
between neighbouring candidate solutions [77, 71, 145]. A simple geomet-
ric cooling schedule in which temperature is updated as

� � ��� < � has been
shown to be quite efficient in many cases [77, 71]. Finally, the number of
steps performed at each temperature setting is often chosen as a multiple of
the neighborhood size.

Example 2.3: Simulated Annealing for the TSP

The PII algorithm for the TSP specified in Example 2.2 can be easily ex-
tended into a Simulated Annealing algorithm (see also [72]). The search
space, solution set, and neighbourhood relation are defined as in Exam-
ple 2.2. We also use the same initialisation and step functions, where % . 3 % 3  # ��� � � �
randomly selects a neighbour of � and /
	�	�#&% ! ��� � � � �, � � � probabilistically
accepts �� with a probability which is given by the Metropolis distribution
dependent on

�
. The temperature

�
is initialised such that only 3% of the

proposed steps are not accepted, and updated according to a geometric cool-
ing schedule with ��� - � ��� ; for each temperature value, � < ��� > ( � search
steps are performed, where � is the size (i.e., number of vertices) of the
given problem instance. The search is terminated for five consecutive tem-
perature values no improvement of the evaluation function was obtained and
the acceptance rate of new solutions has fallen below 2%.

Compared to standard iterative improvement algorithms including 3-opt
local search (an iterative improvement method based on the 3-exchange
neighbourhood on edges) and the Lin Kernighan procedure, the SA algo-
rithm presented in Example 2.2 performs rather poorly. By using additional
techniques, including neighbourhood pruning (cf. Section 2.1, greedy ini-
tialisation, low temperature starts, and look-up tables for the acceptance
probabilities, significantly improved results, competitive with those obtained
by the Lin-Kernighan algorithm, can be obtained. Greedy initialisation
methods, such as starting with a nearest neighbour tour, help SA to find
high-quality candidate solutions more rapidly. To avoid that the beneficial
effect of a good initial candidate solution is destroyed by accepting too many
worsening moves, the initial temperature is set to a low value. The use of
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look-up tables deserves particular attention. Obviously, calculating the ex-
ponential function in Equation 2.1 is computationally expensive. By pre-
computing a table of function values for a range of argument values, and
looking up the values of ���
	 ��� � � �2> � � �" � * � � from that table, a very signif-
icant speedup (in our example about 40%) can be obtained [72].
[ The following might be moved to Chapter 4, where it would fit well
into a general discussion of convergence / probabilistic completeness.
This would also allow a slightly more formal treatment. ]

A feature of Simulated Annealing that is often noted as particularly ap-
pealing is the fact that under certain conditions the convergence of the algo-
rithm, in the sense that any arbitrarily long trajectory is guaranteed to end
in an optimal solution, can be proven [38, 53, 84, 124]. However, the prac-
tical usefulness of these results is limited. Theoretically, an infinite number
of candidate solutions have to be visited by the SA algorithm to guaran-
tee convergence. Furthermore, practical annealing schedules decrease the
temperature much faster than required in the context of the theoretical con-
vergence results, which for such schedules do not apply any longer. Finally,
even if SA would be guaranteed to converge towards optimal solutions under
realistic conditions, it is not clear whether this notion of convergence would
be useful. It should be noted that optimal solutions can always be found
in finite time by exhaustive enumeration of the search space. Furthermore,
whether or not a search trajectory ends in an optimal solution is typically not
relevant for the performance of an SLS algorithm. Instead, since SLS algo-
rithms for optimisation generally keep track of the best candidate solution
found during the search process, the important question is whether an opti-
mal solution is encountered at some point during the search. But even for
simple SLS algorithms, such as Random Picking or Uninformed Random
Walk, optimal solutions are encountered during the search with probability
approaching one as arbitrarily high numbers of search steps are performed,
yet empirically it is known that these algorithms perform extremely poorly.

Tabu Search

A fundamentally different approach for escaping from local minima is to
use aspects of the search history rather than random or probabilistic tech-
niques for accepting worsening search steps. Tabu Search (TS) is a general
SLS method which systematically utilises memory for guiding the search
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process [43, 44, 45, 55]. In the simplest and most widely applied version
of TS (which is also called Simple Tabu Search), an iterative improvement
algorithm is enhanced with a form of short term memory which enables it
to escape from local optima.

Tabu Search uses an aggressive local improvement strategy, like Best
Improvement, to select a best possible neighbour of the current candidate
solution in each search step, which in a local optimum can lead to a wors-
ening or plateau step (plateau steps are local search steps which do not lead
to a change in evaluation function value). To prevent the local search to
immediately return to a previously visited candidate solution and to avoid
cycling, TS forbids steps to recently visited search positions. This can be
implemented by explicitly memorising a number of previously visited can-
didate solutions and ruling out any step that would lead back to those. More
commonly, reversing recent search steps is prevented by forbidding the re-
introduction of solution components (such as edges in the TSP) which have
just been removed from the current candidate solution. A parameter �

�
,

called tabu tenure, determines the duration (in search steps) for which these
restrictions apply. Forbidding possible moves using a tabu mechanism has
the same effect as dynamically restricting the neighborhood � � � � of the cur-
rent candidate solution � to a subset �  � � � � � of admissible neighbours.
Thus, Tabu Search can also be viewed as a dynamic neighborhood search
technique [61].

Sometimes, this tabu mechanism can forbid search steps leading to at-
tractive, unvisited candidate solutions. Therefore, many tabu search algo-
rithms implement so-called aspiration criteria which specify conditions un-
der which the tabu status of candidate solutions or solution components is
overridden. One of the most commonly used aspiration criteria overrides
the tabu status of steps which lead to an improvement in solution quality
compared to the best solution encountered so far.

Figure 2.4 shows the step function which forms the core of Tabu Search.
It uses a function / 1����   ��� � #�� # �����	� 3�
 .  to determine the neighbours of the
current candidate solution which are not tabu or satisfy the aspiration crite-
rion. In a second stage, a maximally improving step is randomly selected
from this set of admissible neighbours.

Example 2.4: Tabu Search for SAT

Using the same definition for the search space, solution set, and neighbour-
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procedure step-TS
��������� ��� �

input problem instance
�

, candidate solution
�
, tabu tenure

���

output candidate solution
� 

�  � �&� � ��� %;%���� � (
	 (
�������������% ����������  � ��%�( � ( �"'�� (�%!' � �  �
return

� 
end step-SA

Figure 2.4: Standard step function for Tabu Search;
/ 1����   ��� � #�� # �����	� 3�
 .  ��� � � � returns the set of admissible
neighbours of � ,  #�� #�	+!���#� "! � �  � randomly chooses an element
of �  with maximal evaluation function value.

hood relation as in Example 1.5, and the same evaluation function as in Ex-
ample 1.5, Tabu Search can be applied in a straightforward way to SAT. The
search starts with a randomly chosen variable assignment. Each search step
corresponds to a single variable flip, which is selected according to the asso-
ciated change in the number of unsatisfied clauses and its tabu status. More
precisely, in each search step, all variables are considered admissible that
either have not been flipped during the least �

�
steps, or that, when flipped,

lead to a lower number of unsatisfied clauses than the best assignment found
so far (this latter condition defines the aspiration criterion). From the set of
admissible variables, a variable which when flipped yields a maximal de-
crease (or, equivalently, a minimal increase) in the number of unsatisfied
clauses is selected at random. The algorithm terminates unsuccessfully if
after a specified number of flips no model of the given formula has been
found.

This algorithm is known as GSAT with Tabu Search; it has been shown
empirically to achieve very good performance on a broad range of SAT
problems. When implementing GSAT with Tabu Search, it is crucial to keep
the time complexity of the individual search steps minimal, which can be
achieved using special data structures and a dynamic caching and updating
technique for the evaluation function (this will be discussed in more detail
in Chapter 6). It is also very important to determine the tabu status of the
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propositional variables efficiently. This is done by storing with each variable
� the time (i.e., the search step number) ��� when it was flipped last and
comparing the difference between the current time � (in this case measured
as the number of steps performed since the beginning of the search) and ���
to the tabu tenure parameter, �

�
: if � > ��� is smaller than �

�
, then the variable

� is tabu.

In general, the performance of Tabu Search crucially depends on the set-
ting of the tabu tenure parameter, �

�
. If �

�
is chosen too small, cycling may

occur; if it is too large, the search path is too restricted and high quality
solutions may be missed. A good parameter setting for �

�
can only be found

empirically and often requires considerable fine tuning. Therefore, several
approaches to make the particular settings of �

�
more robust or to adjust

�
�

dynamically during the run of the algorithm have been introduced. Ro-
bust Tabu Search [141] achieves an increased robustness of performance
w.r.t. the tabu tenure by repeatedly choosing �

�
randomly from an interval4 �

�
min � �

�
max 6 . A slight variant of Robust Tabu Search is currently amongst

the best known algorithms for MAX-SAT, the optimisation variant of SAT
(see also Chapter 7).

Reactive Tabu Search [8] uses the search history to adjust the tabu tenure
�
�

dynamically during the search. In particular, if candidate solutions are
repeatedly encountered this is interpreted as evidence that cycling occurs
and the tabu tenure is increased. If, on the contrary, no repetitions are found
during a sufficiently long period, the tabu tenure is decreased gradually.
Additionally, an escape mechanism based on a series of random changes is
used to avoid getting trapped in a specific region of the search space.

Generally, the efficiency of Tabu Search can be further increased by
using techniques exploiting a long-term memory on the search process to
achieve an intensification or diversification of the search. Intensification
strategies correspond to efforts of revisiting promising regions of the search
space, for example by recovering elite candidate solutions, i.e. candidate
solutions which are amongst the best that have been found in the search pro-
cess so far. When recovering an elite solution, all tabu restrictions associated
to it can be cleared, in which case the search may follow a different search
path than when the solution was encountered the first time. Another possi-
bility is to freeze certain solution components and keep them fixed during
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the search. In the TSP case, this amounts to forcing certain edges to be kept
in the candidate solutions seen over a number of iterations. Diversification
can be achieved by generating new combinations of solution components,
which can help to exploring regions of the search space which have not been
visited yet. Many long term memory strategies for Tabu Search are based on
a frequency memory for the occurrence of solution components. For a de-
tailed discussion of particular diversification and intensification techniques
that exploit long-term memory we refer to [45, 46, 47].

Overall, tabu search algorithms are amonst the most successful SLS
methods to date. For several problems, TS implementations are among
the best known algorithms w.r.t. the tradeoff between solution quality and
computation time [108, 144]. Yet, to obtain maximum efficiency, a care-
fully chosen neighbourhood structure as well as a very significant effort of
fine-tuning a potentially large number of parameters and implementation
choices is typically required [61]. Despite its empirical success, the theoret-
ical knowledge on Tabu Search is very limited; a convergence proof similar
to the one for Simulated Annealing is only available for specific tabu search
variants, such as probabilistic tabu search [44, 32], and as discussed for SA,
the practical relevance of such results is extremely limited. For another,
deterministic TS variant, called xxx, recently it could be proved that it im-
plicitly enumerates the search space and stop when all candidate solutions
have been visited [?]. Unfortunately, in this enumeration process candidate
solutions may be revisited several times leading to the fact that a systematic
enumeration of the search space by a systematic algorithm gives the same
guarantee with less solution evaluations.

Dynamic Local Search

So far, the various techniques for escaping from local optima discussed in
this chapter were all based on allowing worsening steps during the search
process. A different approach for preventing iterative improvement meth-
ods from getting stuck in local optima is to modify the evaluation func-
tion whenever a local optimum is encountered in such a way that further
improvement steps become possible. This can be achieved by associating
penalty weights with individual solution components, which determine the
impact of these components on the evaluation function value. Whenever the
iterative improvement process gets trapped in a local optimum, the penalties
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procedure step-DLS
���������

input problem instance
�

, candidate solution
�

output candidate solution
� �  � ����������* (��:��� '	� ��
+�� � ��� ��
+����
 is a solution component ��  � � � � ������� ( ������ ����� �  �����

�!*�����')(���(��:��� '�� (�% �������  �
return

� 
end step-DLS

Figure 2.5: Step function for Dynamic Local Search;
% # 	 /�� !�� � � � is the penalty associated with solution component

�
, �
	21 � � � � � � is an indicator function for the set of solution com-

ponents used in a candidate solution � , � 3 	"/���� #"/ . 	 � ��� � �  � � � is
a lower level local search procedure, and 
 % 1 /�!$#���# 	 /�� ! � #� is a
procedure for updating the solution component penalties. (De-
tails are given in the text.)

of the corresponding solution components are increased, leading to a degra-
dation in the current candidate solution’s evaluation function value until it is
higher than the evaluation function values of some of its neighbours (which
are not affected in the same way by the penalty modifications), at which
point improving moves have become available. This general approach pro-
vides the basis for a number of SLS algorithms which we collectively call
Dyanmic Local Search (DLS).

Figure 2.5 shows the step function which forms the core of DLS. As
motivated above, the underlying idea is to find local optima of a dynami-
cally changing evaluation function �  using a simple local search algorithm
� 3 	"/���� #"/ . 	 � , which typically performs iterative improvement until a local
minimum in �  is found. The modified evaluation function �  is obtained
by adding penalties % # 	 /�� !�� � � � to solution components used in a candidate
solution � to the original evaluation function value ����� � � � :

�  ��� � � �'��� � % # 	 /�� !�� � � � <"�
	21 � � � � � � � �
is a solution component �

where �
	21 � � � is an indicator function which is used to only include
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penalties for solution components actually used in � :

�
	21 � � � � � ���
�� � ( if

�
is used in �

-
otherwise

The penalties % # 	 /�� !�� � � � are initially set to zero and subsequently up-
dated after each subsidiary local search. Typically, 
 % 1 /�!$#���# 	 /�� ! � #� in-
creases the penalties of some or all the solution components used by the
locally optimal candidate solution �, obtained from � 3 	"/���� #"/ . 	 � ��� � �  � � � ; in
many cases, this increase consists of incrementing the penalty by a con-
stant factor,

�
. Additionally, some DLS techniques might also decrease the

penalties of solution components which are not used in �+ (cf. [129, 130]).
Penalising all solution components of a locally optimal candidate solu-

tion can cause difficulties, if certain solution components which are required
for any optimal solution are also present in many other local optima. In this
case, it can be useful to only increase the penalties of solution components
which are least likely to occur in globally optimal solutions. One specific
mechanism which implements this idea uses the solution quality contribu-
tion of a solution component

�
at candidate solution �, , � � ��� � �� � to estimate

the utility of increasing % # 	 /�� !�� � � � :


 ! � � � � � � �'� � � ��� � � �
( � % # 	 /�� !�� � � �

Using this estimate of utility, 
 % 1 /�!$#���# 	 /�� ! � #� then only increases the
penalties of solution components with maximal utility values. Note that
dividing the solution quality distribution by ( � % # 	 /�� !�� � � � avoids overly
frequent penalisation of specific solution components by reducing their util-
ity.

It is worth noting that in many cases, the solution quality contribution of
a solution component does not depend on the current candidate solution. In
the case of the TSP, for example, the solution components are typically the
edges of the given graph, and their solution quality contribution is simply
given by their weight. There are cases, however, where the solution quality
contributions of individual solution components are dependent on the cur-
rent candidate solution �  , or, more precisely, on all the solution components
of �� . This is the case, for example, for the Quadratic Assignment Problem
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(cf. Section ??), where DLS algorithms typically use approximations of the
actual solution cost contribution [147].

Example 2.5: Dynamic Local Search for the TSP

This example follows the first application of DLS to the TSP, as presented
in [147], where the algorithm is called Guided LocalSearch. Given a TSP
instance in form of an edge-weighted graph, the same search space, solution
set, and 2-exchange neighbourhood is used as in Figure 1.4. The solution
components are the edges of � � � � ��� ��� � , and the cost contribution of
each edge � is given by its weight, � ��� � . The subsidiary local search pro-
cedure � 3 	"/���� #"/ . 	 � performs first-improvement steps in the underlying 2-
exchange neighbourhood and can be enhanced by using standard speed-up
techniques which are described in detail in Chapter 8.


 % 1 /�!$#���# 	 /�� ! � #� ��� � � � increments the penalties of all edges of maximal
utility contained in candidate solution � by a factor

�
, which should be cho-

sen in dependence of the average length of good tours; in particular a setting
of

� � - � � < � � � � ���	� 
 ��
where � � � � ���	� 
 � is the objective function value of a 2-optimal tour, and

� is the number of vertices in � , showed good results on a set of standard
TSP benchmark instances [147].

The fundamental idea underlying DLS of adaptively modify the evalu-
ation function during a local search process has also been used as the basis
of number of other algorithms. GENET [21], an algorithm that adaptively
modifies the weight of constraints to be satisfied, has directly inspired the
DLS algorithm of [147]. Closely related SLS algorithms, which can be
seen as instances of the general DLS algorithm presented here, have been
developed for Constraint Satisfaction and SAT, where penalties are typi-
cally associated with the clauses of a given CNF formula [132, 100, 15, 36];
this particular approach is also known as clause weighting. Some of the
best-peforming SLS algorithms for SAT and more general Boolean Integer
Programming problems are based on clause weighting schemes which are
inspired by Lagrangean relaxation techniques [148, 130].
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2.3 Hybrid Stochastic Local Search Algorithms

As we have seen earlier in this chapter, the behaviour and performance of
‘simple’ SLS techniques can often be improved significantly by combining
them with other SLS strategies. We have already presented some very sim-
ple examples of such hybrid SLS methods. Randomised Iterative Improve-
ment, for example, really is a hybrid SLS algorithm obtained by probabilis-
tically combining standard Iterative Improvement and Uninformed Random
Walk (cf. Section 2.2). Similarly, many SLS implementations make use of
a random restart mechanism, which terminates and restarts the search pro-
cess from a randomly chosen initial position based on standard termination
conditions, which can be seen as a hybrid combination of the underlying
SLS algorithm and Random Picking. In this section, we present a number
of well-known and very successful SLS algorithms, which can be seen as
hybrid combinations of various simpler SLS techniques.

Iterated Local Search

In the previous sections, we have discussed various mechanisms for prevent-
ing iterative improvement techniques from getting stuck in local optima of
the evaluation function. Arguably one of the simplest and most intuitive
ideas for addressing this fundamental issue is to use two types of SLS steps:
one for reaching local optima as efficiently as possible, and the other for
effectively escaping from local optima. This is the key idea underlying Iter-
ated Local Search (ILS) [?], an SLS method which essentially uses the two
types of search steps described above alternatingly to perform a walk in the
space of local optima w.r.t. a given evaluation function.

Figure 2.6 shows an algorithmic outline for ILS algorithms. As usual,
the search process can be initialised in various ways, e.g. by starting from
a randomly selected element of the search space. From the initial candidate
solution, a locally optimal solution is obtained by applying a subsidiary
local search procedure � 3 	"/���� #"/ . 	 � . Then, each iteration of the algorithm
consists of three major stages: First, a perturbation is applied to the cur-
rent candidate solution � ; this yields a modified candidate solution �+ from
which in the next stage, a subsidiary local search is performed until a local
optimum �   is obtained. In the last stage, an acceptance criterion /
	�	�#&% ! is
used to decide from which of the two local optima, � or �,  , the search pro-
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procedure
��� � ���  �

input problem instance
� ����  , objective function � ���2�

output solution �� �
	 ���  � or �� � � � � � ' ���  �� � � � � ������� ( ������ ���  �����
�� � � �
while not ')(������ �:��')( ���  � % � do�  � � * (��"'���� � ���  ������   � � � � ������� ( ������ ���  �����

if
� � � �   �� � � ����	�
�� � � �  

end� �&����� (+* ' ���  � % � %   �
end
if �� �
	  then

return ��
else

return �
end

end
��� �

Figure 2.6: Algorithmic outline of Iterated Local Search (ILS)
for optimisation problems. (For details, see text.)

cess is continued. Both functions, % #0."! 
 . � and /
	�	�#&% ! can use aspects of
the search history; e.g., when the same local optima are repeatedly encoun-
tered, stronger perturbation steps might be applied. As in the case of most
other SLS algorithms, a variety of termination predicates !$#0. ���
	 /�!$# can be
used for deciding when the search process ends.

The three procedures � 3 	"/���� #"/ . 	 � , % #0."! 
 . � , and /
	�	�#&% ! form the core of
any ILS algorithm. The concrete choice of these procedures has a crucial
impact on the performance of an ILS algorithm for any application. As we
will discuss in the following, these components need to complement each
other for achieving a good tradeoff between intensification and diversifica-
tion of the search process, which is critical for obtaining good performance
when solving hard combinatorial problems.
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It is rather obvious that the subsidiary local search procedure, � 3 	"/���� #"/ . 	 �
has a considerable influence on the final performance of any ILS algorithm.
In general, more effective local search methods lead to better performing
ILS algorithms. For example, when applying ILS to the Travelling Sales-
man Problem, using 3-opt local search (i.e. Iterative Improvement on the
3-exchange neighbourhood), typically leads to better performance than us-
ing 2-opt local search, while even better results than with 3-opt local search
are obtained when using the Lin-Kernighan algorithm as a subsidiary lo-
cal search procedure. (Note however, that results like this generally depend
strongly on the desired solution quality and the run-time allowed for the lo-
cal search process.) While often, iterative improvement methods are used
for the subsidiary local search within ILS, it is perfectly possible to use also
more sophisticated SLS algorithms, such as SA, TS, or DLS, instead.

The role of % #0."! 
 . � is to modify the current candidate solution in a way
which will not be immediately undone by the subsequent local search phase,
such that the search process can effectively escape from local optima and the
subsequent local search phase has a chance to discover different local op-
tima. In the simplest case, a random walk step in a larger neighborhood than
the one used by � 3 	"/���� #"/ . 	 � may be sufficient for achieving this goal. Typ-
ically, the strength of the perturbation has a strong influence on the length
of the subsequent local search phase; weak perturbations usually lead to
shorter local search phases than strong perturbations, because the iterative
improvement algorithm takes less steps to identify a local optimum. If the
perturbation is too weak, however, the local search will often fall back into
the local optimum just visited leading to a stagnation of the search process.
At the same time, if the perturbation is too strong, its effect can be simi-
lar to a random restart of the search process, which usually results in a low
probability of finding better solutions in the subsequent local search phase.
To address these issues, both the strength and the nature of the perturbation
steps may be changed adaptively during the search. Furthermore, there are
rather complex perturbation techniques, such as the one used in [83], which
is based on finding optimal solutions for parts of the given problem instance.

The acceptance criterion, /
	�	�#&% ! , also has a strong influence on the na-
ture and effectiveness of the walk in the space of the local optima performed
by ILS. A strong intensification of the search is obtained if the better of the
two solutions � and �   is always accepted. ILS algorithms using this accep-
tance criterion perform iterative improvement in the space of local optima.
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Figure 2.7: Schematic representation of the double-bridge move used in
ILK. The four dotted edges are removed and the remaining parts A, B, C, D
are reconnected by the dashed edges.

Conversely, if the new local optimum, �   , is always accepted regardless of
its solution quality, the behaviour of the resulting ILS algorithm corresponds
to a random walk over the local optima. Between these extremes, many in-
termediate choices exist; for example, the Metropolis acceptance criterion
known from Simulated Annealing has been used in one of the first classes
of ILS algorithms which was called large step Markov chains [89]. While
all these acceptance criteria are actually Markovian, it has been shown re-
cently that acceptance criteria which take into account aspects of the search
history, such as the number of search steps since the last improvement to
decide whether to trigger a diversification phase, often help to enhance ILS
performance ¸[136].

Example 2.6: Iterated Local Search for the TSP

In this example we describe the Iterated Lin-Kernighan algorithm (ILK),
an ILS algorithm which is currently amongst the best performing approx-
imation algorithms for the Travelling Salesman Problem. ILK is based on
the same search space and solution set as used as in Example 2.2. The
subsidiary local search procedure � 3 	"/���� #"/ . 	 � is the Lin-Kernighan ariable
depth search algorithm (LK) described in Section ??.

Like almost all ILS algorithms for the Travelling Salesman Problem,
ILK uses a particular 4-exchange step, called a double-bridge move, as a
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perturbation step. This double-bridge move is illustrated in Figure 2.7; it
has the desirable property that it cannot be directly reversed by a sequence
of 2-exchange moves as performed by the LK algorithm. Furthermore, it
was found in empirical studies that this perturbation is effective independent
of problem size.

Finally, an acceptance criterion is used which always returns the better
of the two candidate solutions � and �,  . In one of the first detailed studies
of the ILK algorithms, this was identified as the best amongst a number of
alternative acceptance criteria [70, 72]. Yet, more recent studies revealed
(see also Chapter 8) that for very long runs of the algorithm, better solu-
tion quality can be obtained by acceptance criteria which take into account
aspects of the search history [?].

Generally, ILS can be seen as a straight-forward, yet powerful technique
for extending “simple” SLS algorithms such as Iterative Improvement. The
conceptual simplicity of the underlying idea lead to frequent re-discoveries
and many variants, most of which are known under various names, such
as Large Step Markov Chains[89], Chained Local Search [88], or, when
applied to particular algorithms, to specific techniques such as Iterated Lin-
Kernighan [72].

ILS algorithms are attractive, not only because of the simplicity of the
underlying idea, but also because they are typically easy to implement: in
many cases, existing SLS implementations can be extended into ILS algo-
rithms by adding just a few lines of code. At the same time ILS algorithms
are currently among the best performing approximation methods for many
combinatorial problems, the most prominent application being the Travel-
ling Salesman Problem [72, 88].

Greedy Randomized Adaptive Search Procedures

A standard approach for finding high-quality solutions for a given combina-
torial optimisation problem in short time is to apply a greedy construction
search method (see also Section 1.4) that, starting from an empty candidate
solution, at each construction step adds the best ranked solution component
based on a heuristic selection function, and subsequently use a perturbative
local search algorithm to improve the candidate solution thus obtained. In
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procedure
����� � � ���  �

input problem instance
� ����  , objective function � ���2�

output solution �� �
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end
end
if �� �
	  then

return ��
else

return �
end

end
����� � �

Figure 2.8: Algorithmic outline of GRASP for optimisation
problems. (For details, see text.)

practice, this type of hybrid search method often obtains much better solu-
tion quality than simple SLS methods initialised at candidate solutions ob-
tained by Uniformed Random Picking (see Section 1.5). Additionally, when
starting from a greedily constructed candidate solution, the subsequent per-
turbative local search process typically takes much less improvement steps
to reach a local optimum. To further increase solution quality over a single
run, one possible solution is to repeatedley generate greedy solutions and
apply local search.

Unfortunately, greedy construction search methods can typically only
generate one or a very limited number of different candidate solutions. Greedy
Randomised Adaptive Search Procedures (GRASP) [33, 34] try to avoid this
disadvantage by randomising the construction method, such that it can gen-
erate a large number of different good starting points for a perturbative local
search method.
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Figure 2.8 shows an algorithm outline for GRASP. In each iteration of
the algorithm, first a candidate solution � is generated using a randomised
constructive search method 	 3+	  "!). 
 	+! . Then, a local search method � 3 	"/���� #"/ . 	 �
is applied to � , yielding an improved (typically, locally optimal) candidate
solution �� . This two phase process is iterated until a termination condition
is satisfied.

In contrast to standard greedy constructive search methods, the con-
structive search algorithm used in GRASP does not necessarily add a solu-
tion component with maximal heuristic value in each construction step, but
rather selects randomly from a set of highly ranked solution components.
This is done by defining in each construction step a restricted candidate
list (RCL) and then selecting one of the solution components in the RCL
randomly according to a uniform distribution. In GRASP, there are two
different mechanisms for defining the RCL: by cardinality restriction or by
value restriction. In the case of cardinality restriction, only the

�
best ranked

solution components are included in the RCL, while in the case of a value
restriction, the RCL contains only solution components which are within a
factor of � from the currently best heuristic value.

The constructive search process performed within GRASP is ‘adaptive’
in the sense that the heuristic value for each solution component can depend
on the components which are already present in the current partial candidate
solution. This takes more computation time than using static heuristic values
which do not change during the construction process, but this overhead is
typically amortised by the higher quality solutions obtained when using the
‘adaptive’ search method.

Note that it is entirely feasible to perform GRASP without a perturba-
tive local search phase; the respective restricted variants of GRASP are also
known as semi-greedy heuristics [?]. But in general, the candidate solutions
obtained from the randomised constructive search process are not guaran-
teed to be locally optimal with respect to some simple neighborhood; hence,
even the additional use of a simple iterative improvement algorithm typi-
cally yields higher quality solutions with rather small computational over-
head. Indeed, for a large number of combinatorial problems, empirical re-
sults indicate that the additional local search phase improves the perfor-
mance of the algorithm considerably.

Example 2.7: GRASP for SAT
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GRASP can be applied to SAT in a rather straightforward way [122]. The
constructive search procedure starts from an empty variable assignment and
adds an atomic assignment (i.e., an assignment of a truth value to an individ-
ual propositional variable of the given CNF formula) in each construction
step. The heuristic function used for guiding this construction process is
defined by the number of clauses which become satisfied as a consequence
of adding a particular atomic assignment to the current partial assignment.

Let
� � � � � � be the number of (previously unsatisfied) clauses which be-

come satisfied as a consquence of the atomic assignment � � � � � , where
� � ��� ��� � . In each construction step, an RCL is built by cardinality
restriction; this RCL contains the

�
variable assignments with the largest

heuristic value
� � � � � � .

In the simplest case, the current partial assignment randomly selects an
atomic variable assignment from the RCL according to a uniform distribu-
tion. In [122], a slightly more complex assignment strategy is followed:
whenever there are atomic assignments � � � � � for which (i) there is at least
one currently unsatisfied clause containing only one unassigned variable
and which (ii) do not leave any clauses unsatisfied whose only unassigned
variable is � � , one of those atomic assignments is selected; only if no such
atomic assignment exists, a random element of the RCL is selected instead.

After having generated a full assignment, the candidate solution is im-
proved by a best-improvement variant of the iterative improvement algo-
rithm for SAT from Example 1.5. The search process is terminated after a
fixed number of iterations.

This GRASP algorithm together with other variants of 	 3+	  "!). 
 	+! was
implemented and tested on a large number of satisfiable SAT instances from
the DIMACS benchmark suite [122]. While the results were reasonably
good at the time the algorithm was first presented, it is now outperformed
by more recent SLS variants for SAT.

GRASP has been applied to a large number of combinatorial problems,
including MAX-SAT, Quadratic Assignment, and various scheduling prob-
lems. There are also a number of recent improvements and extensions of
the basic GRASP algorithm; some of these include reactive GRASP vari-
ants in which, for example, the parameter � used in value restricted RCLs is
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dynamically adapted, or combinations with Tabu Search [?]. We refer to [?]
for a recent overview of research on GRASP.

Adaptive Iterated Construction Search

Considering algorithms based on repeated constructive search processes,
such as GRASP, the idea of exploiting experience gained from past itera-
tions for guiding further solution constructions is rather obvious and appeal-
ing. One way of implementing this idea is to use weights associated with the
possible decisions which are made during the construction process. These
weights are adapted over multiple iterations of the search process to reflect
the search experience mentioned before. This leads to a family of SLS al-
gorithms which we call Adaptive Iterated Construction Search (AICS).

An algorithm outline of AICS is shown in Figure 2.9. At the begin-
ning of the search process, the weights are initialised to some small uniform
value �

�
. Each iteration of AICS consists of three phases. First, a con-

structive search process is used to generate a candidate solution � . Next,
an additional perturbative local search phase is performed on � , yielding a
locally optimal solution �" . Finally, the weights are adapted based on the
solution components used in �  and the objective function value of �  . As
usual, a variety of termination conditions can be used to determine when the
search process is ended.

The constructive search process uses the weights as well as a heuristic
function

�
on the solution components to probabilistically select compo-

nents for extending the current partial candidate solution. Generally, for�
a standard heuristic functions, as used for greedy constructions or in the

context of tree searches, can be chosen; alternatively,
�

can be based on
lower bounds on the solution quality of � , similar to the ones used in Branch
& Bound algorithms. For AICS, it can be advantageous to implement the
solution component selection in such a way that at all points of the con-
struction process, with a small probability, any component solution can be
added to the current partial candidate solution, irrespectively of its weight
and heuristic value.

As in GRASP, the perturbative local search phase typically improves
the quality of the candidate solution generated by the construction process,
leading to an overall increase in performance. In the simplest case, iterative
improvement algorithms can be used in this context; however, it is perfectly
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procedure
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end
if �� �
	  then

return ��
else

return �
end

end
� � � �

Figure 2.9: Algorithm outline of Adaptive Iterated Construction
Search for optimisation problems. (For details, see text.)

possible and potentially beneficial to use more powerful SLS methods which
can escape from local optima of the evaluation function. Typically, there is a
tradeoff between the computation time used by the local search phase vs the
construction phase which can only be optimised empirically and depending
on the given problem domain.

The adjustment of the weights, as implemented in the procedure / 1 /�% !�� # ����� !  ,
is typically done by increasing the weights of the solution components con-
tained in �� . In this context, it is also possible to use aspects of the search
history; for example, by using the best candidate solution found in the search
process so far as the basis for the weight update, the sampling performed by
the construction and perturbative search phases can be focused more directly
on promising regions of the search space.
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Example 2.8: A simple AICS algorithm for the TSP

The AICS algorithm presented in this example is a simplified version of Ant
System for the TSP by Dorigo, Maniezzo, and Colorni [28, 29], enhanced
by an additional perturbative search phase, which in practice improves the
performance of the original algorithm. It uses the same search space and
solution set as used as in Example 2.2.

Weights � � � � IR are associated with each edge � � ��� � of the given graph
� , and heuristic values � � � � (+* � � � � ��� � � are used, where � � � � ��� � � is the
weight of edge � � ��� � . At the beginning of the search process, all edge
weights are initialised to a small value, �

�
. The function 	 3+	  "!). 
 	+! itera-

tively constructs vertex permutations (corresponding to Hamiltonian cycles
in � ). The construction process starts with a randomly chosen vertex and
then extends the partial permutation � by probabilistically selecting from
the vertices not contained in � according to the following distribution:

� � � �
4 � � � 6�� <:4 � � � 6��	
��
� �  � � � �

�
< � � � if � � �  � � � (2.2)

where �  � � � is the feasible neighborhood of vertex
�
, i.e., the set of all neigh-

bours of
�

wich are not contained in the current partial permutation � , and
� and � are parameters which together control the relative impact of the
weights vs the heuristic values.

Upon the completion of each construction process, an iterative improve-
ment search using the 2-exchange neighbourhood is performed until a ver-
tex permutation corresponding to a Hamiltonian cycle with minimal path
weight is reached.

The adaption of the weights � � � is done by first decreasing all � � � by
a constant factor and then increasing the weights of the edges used in �+
proportionally to the path weight � � �, � of the Hamiltonian cycle represented
by �  , i.e., for all edges � � ��� � , the following update is performed:

� � � � � �&( >�� � < � � � � � � � ��� � �  � (2.3)

where
- 0�� 	 ( is a parameter of the algorithm, and � � � ��� � �, � is defined

as (+* � � �� � , if edge � � ��� � is contained in the cycle represented by �, , and as
zero otherwise.

The decay mechanism controlled by the parameter � helps to avoid un-
limited increased of the weights � � � and lets the algorithm “forget” the past
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experience reflected in the weights. The specific definition of � � � ��� � �+ �
reflects the idea that edges that are contained in good candidate solutions
should be used with higher probability in subsequent constructions than
edges with high weight. The search process is terminated after a fixed num-
ber of iterations.

Different from most of the other SLS methods presented in this chap-
ter, AICS has not (yet) been widely used as a general SLS technique. It is
very useful, however, as a general framework which helps to understand a
number of recent variants of constructive search algorithms. In particular,
various incomplete tree search algorithms can be seen as instances of AICS,
including the stochastic tree search by Bresina [13], the Squeeky-Wheel Op-
timisation algorithm by Joslin and Clements [?], and the Adaptive Probing
algorithm by Ruml [126]. Furthermore, AICS can be viewed as a partic-
ular type of Ant Colony Optimization, a prominent SLS method based on
an adaptive iterated construction process involving populations of candidate
solutions.

Ant Colony Optimization

Ant colony optimization(ACO) is a population-based search metaphor for
solving combinatorial problems which is inspired by the pheromone trail
laying and following behaviour of particular ant species [24, 29, 25]. Ants
are social insects which live together in colonies. Compared to their rather
limited individual capabilities, ants show astonishingly complex coopera-
tive behaviour, including the ability of finding shortest paths from a food
source to their home colony [51]. This collective capability becomes possi-
ble by means of a communication mechanism based on pheromones (odor-
ous chemical substances) which the ants may lay down in varying quantity
to mark, for example, a path. While isolated ants essentially appear to be
moving at random, ants which detect previously laid pheromone, follow this
pheromone trail with a probability which increases with the intensity of the
pheromone. At the same time, when following a pheromone trail, ants may
lay down additional pheromone, which can result in a positive feedback
loop: the more ants have chosen the pheromone trail in the past, the more
ants will follow it in the future.
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ACO is a stochastic local search algorithm inspired by aspects of the
pheromone trail-following behaviour of real ants; it has been first introduced
by Dorigo, Maniezzo and Colorni [28] as a metaphor for solving hard com-
binatorial problems like the TSP. ACO can be seen as a population-based
extension of AICS based on a population of agents (ants) which communi-
cate via a distributed, dynamically changing information (pheromone trail
levels) that reflects the collective search experience and is exploited by the
ants in their attempts of solving a given problem instance. The pheromone
trail levels used in ACO correspond exactly to the weights in AICS.

�

An algorithmic outline of ACO for static optimisation problems
�

is shown
in Figure 2.10. One main difference to the SLS algorithms discussed so far
is that now, the search state comprises a population of candidate solutions
rather than just a single candidate solution; the size of the population is
usually fixed to a number

�
. Conceptually, the algorithm is usually tought

of as being executed by
�

ants, each of which creates and manipulates one
candidate solution.

The search process is started by initialising the pheromone trail levels;
typically, this is done by setting all pheromone trail levels to the same value,
�
�
. In each iteration of ACO, first a population � � of

�
candidate solutions

is generated by a constructive search algorithm 	 3+	  "!). 
 	+! . This construc-
tion process is performed by each candidate solution starting with an empty
candidate solution and iteratively extending the current partial candidate so-
lution with solution components which are selected probabilistically accord-
ing to the pheromone trail levels and a heuristic function,

�
.

Next, in an optional phase, a perturbative local search procedure � 3 	"/���� #"/ . 	 �
can be applied to each candidate solution in � � ; typically, an iterative im-
provement method is used in this context, resulting in a population � �� of
locally optimal candidate solutions. If the best of the candidate solutions in� �  , � #� "! ���  � � �  � , improves on the overall best solution obtained so far, this
candidate solution becomes the new incumbent candidate solution.

Finally, the pheromone trail levels are updated based on the candidate
solutions in � �  and their respective solution qualities. How this is done ex-

�

We use the term “trail level” instead of “weight” to be consistent with the literature on
Ant Colony Optimization.

�

Static problems are those for which all the necessary data defining an instance are fixed
and completely known before solving the problem and do not change during the solution
process.
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if �� �
	  then

return ��
else

return �
end

end
� ���

Figure 2.10: Algorithm outline of Ant Colony Optimization for
static optimisation problems; � #� "! ���  � � � � denotes the individ-
ual from population � � with the best objective function value.
(For details, see text.)

actly, differs among the various ACO algorithms. A typical procedure for
the pheromone update first uniformly decreases all pheromone trail levels
(corresponding to the physical process of pheromone evaporation) by a con-
stant factor, after which a subset of the pheromone trail levels is increased;
this subset and the amount of the increase is determined from the quality
of the candidate solution in � �  and �� , and from the solution components
contained in these. As usual, a number of different termination predicates
can be used to determine when to end the search process; here, these can
include conditions on the makeup of the current population, � �  , such as
the variation in solution quality across the elements of � �� or their average
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distance.
It should be noted that after the construction phase as well as the pertur-

bative local search phase are executed for each candidate solution indepen-
dently. Pheromone trail update, however, is based on the solution quality of
each element of the population, and hence requires synchronisation. When
applying ACO to dynamic optimisation problems, i.e., optimisation prob-
lems where aspects of the problem instances (such as the objective function)
change over time, the distinction between synchronous and asynchronous,
decentralised phases of the algorithm becomes very important. This is re-
flected in the ACO metaheuristic presented in [26, 25, ?], which can be
applied to both, static and dynamic combinatorial problems.

Example 2.9: A Simple ACO Algorithm for the TSP

In this example, we present a variant of Ant System for the TSP, a simple
ACO algorithm which played an important role since it was the first ap-
plication of the ant colony metaphor to solving combinatorial optimisation
problems [28, 24, 29].

This algorithm can be seen as a slight extension of the AICS algorithm
from Example 2.3. The initialisation of the pheromone trail levels is per-
formed exactly like the weight initialisation in the Adaptive Iterated Con-
struction Search example. The functions 	 3+	  "!). 
 	+! and � 3 	"/���� #"/ . 	 � are
straightforward extensions of the ones from Example 2.3, which perform
the respective construction and perturbative local search processes for each
individual candidate solution independently.

The pheromone trail update procedure, 
 % 1 /�!$# � .0/ � �
 , is also quite sim-
ilar to the / 1 /�% !�� # ����� !  procedure from the AICS example; in fact, it is
based on the same update as specified in 2.3, but instead of � � � ��� � �+ � , now a
value � � � ��� � � �  � is used, which is based on contributions from all candidate
solutions in the current population � �  according to the following definition:

� � � ��� � � �  �'� � � � � � ��� � �  � � �  � � �  � (2.4)

� � � ��� � �� � is defined as (+* � � �" � , if edge � � ��� � is contained in the Hamiltonian
cycle represented by candidate solution �, , and as zero otherwise. Accord-
ing to this definition, the pheromone trail levels associated with edges which
belong to the highest-quality candidate solutions (i.e., low weight Hamil-
tonian cycles) and which have been used by the most ants, are increased
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most. This reflects the idea that heuristically, these edges are most likely
to be contained in even better (and potentially optimal) candidate solutions,
and should therefore be selected with higher probability during future con-
struction phases. The search process is terminated after a fixed number of
iterations.

Note how, in terms of the biological metaphor, the phases of this algo-
rithm can be interpreted losely as the actions of ants, which walk the edges
of the given graph to construct tours (using a memory in order to ensure that
only Hamiltonian cycles are generated as candidate solution) and deposit
pheromones to reinforce the edges of their tours.

The algorithm from Example 2.3 differs from the original Ant System
(AS) only in that AS did not include a perturbative local search phase. For
many (static) combinatorial problems and a variety of ACO algorithms, it
has been shown, however, that the use of a perturbative local search phase
leads to significant performance improvements [27, 87, 138, 137].

ACO algorithms have been applied to a wide range of combinatorial
problems. The first ACO algorithm, Ant System, was applied to the TSP
and several other combinatorial problems. It was capable of solving some
non-trivial instances of these problems, but did not reach the performance
of state-of-the-art algorithms. Subsequently, many other Ant Colony Opti-
mization algorithms have been developped, including Ant Colony System
[27],

�����
–
�����

Ant System [137, 139], and the the ANTS algorithm
[86]. These algorithms differ in important aspects of the search control and
introduced advanced features such as pheromone trail level updates or the
use of look-ahead during the construction phase, or diversification mecha-
nisms like bounds on the range of possible pheromone trail levels. Some its
most prominent applications are to dynamic optimisation problems, such as
routing in telecommunications networks, in which traffic patterns are sub-
ject to significant changes over time [22]. We refer to the recent overview
by Dorigo and Stützle for a detailed account on the different ACO variants
and their applications [?].
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Evolutionary Algorithms

In Ant Colony Optimization we saw a first example for a population-based
SLS method; however, the only interaction between the individual elements
of a population of candidate solutions was of a very indirect nature. Perhaps
the most prominent example for a type of population-based SLS algorithms
based on a much more direct interaction within a population of candidate
solutions is the class of Evolutionary Algorithms (EA).

In a broad sense, Evolutionary Algorithms (EA) are a large and diverse
class of algorithms inspired by models of the natural evolution of species
[6, ?]. They transfer the principle of evolution through mutation, recombi-
nation, and selection of the fittest, which leads to the development of species
which are better adapted for survival in a given environment, to solving
computationally hard problems. Evolutionary algorithms are generally it-
erative, population-based approaches: starting with a set of candidate solu-
tions (the initial population), they repeatedly apply a series of three genetic
operators, selection, mutation, and recombination. Using these operators, in
each iteration of an Evolutionary Algorithm, the current population is (to-
tally or partially) replaced by a new set of individuals; in analogy with the
biological inspiration, the populations encountered in the individual itera-
tions of the algorithm are often called generations.

The selection operator implements a (generally probabilistic) choice of
individuals either for the next generation or for the subsequent application
of the mutation and recombination operators; it typically has the property
that fitter individuals have a higher probability of being selected. Mutation
is based on a unary operation on individuals which introduces small, of-
ten random modifications. Recombination is based on an operation which
generates a new individual (called the offspring) by combining informa-
tion from two or more individuals (called the parents). The most commonly
used types of recombination mechanism are called crossover; these are orig-
inally inspired by a fundamental mechanism in biological evolution of the
same name, and essentially assemble pieces from a linear representation of
the parents into a new individual. One major challenge in designing Evolu-
tionary algorithms is the design of recombination operators which combine
parents in a way that the resulting offspring is likely to share desirable prop-
erties of the parents while improving over their fitness.

Note how Evolutionary Algorithms fit into our general definition of SLS
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algorithms, when the notion of a “candidate solution” as used in an SLS
algorithm is applied to populations of candidate solutions of the given prob-
lem instance, as used in an EA. The concepts of search space, solution
set, and neighbourhood, as well as the generic functions �
	 � ! ,  "!$#&% , and
!$#0. ���
	 /�!$# , can be easily applied to this population-based concept of a can-
didate solution. Nevertheless, to keep this description conceptually simple,
in this section we continue to present Evolutionary algorithms in the tradi-
tional way, where the notion of candidate solution refers to an individual of
the population which comprises the search state.

For the purpose of this discussion, let us focus on one of the most promi-
nent types of Evolutionary algorithms Genetic Algorithms [62, 48] that –
different from other kinds of Evolutionary algorithms which we will briefly
address towards the end of this section – are mainly applied to combina-
torial problems. Intuitively, by using a population of candidate solutions
instead of a single candidate solution, a higher search diversification can
be achieved, particularly if the initial population is randomly selected. The
primary goal of Genetic Algorithms for combinatorial problems is to evolve
the population such that good coverage of promising regions of the search
space is achieved, resulting in high-quality solutions of a given optimisation
problem instance. However, pure Genetic Algorithms often seem to lack
the capability of sufficient search intensification, i.e., the ability to reach
high-quality candidate solutions efficiently when a good starting position is
given, e.g. as the result of a recombination or mutation. Hence, in many
cases, the peformance of Genetic Algorithms for combinatorial problems
can be significantly improved by adding a local search phase after applying
mutation and recombination [12, 140, 104, 142, 92, 93] or by incorporat-
ing a local search process into the recombination operator [105]. The class
of Evolutionary algorithms thus obtained is usually called Genetic Local
Search [142, 78, 92] or Memetic Algorithms [101, 103, 102].

In Figure 2.11 we show the outline of a generic Genetic Local Search
algorithm. At the beginning of the search process, an initial population is
generated using function �
	 � ! . In the simplest (and rather common) case,
this is done by randomly and independently picking a number of elements
of the underlying search space; however, it is equally possible to use, e.g.,
a randomised construction search method instead of random picking. In
each iteration of the algorithm, recombination, mutation, perturbative local
search, and selection are applied to obtain the next generation of candidate
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Figure 2.11: Algorithm outline of Genetic Local Search for op-
timisation problems; � #� "! ���  � � � � denotes the individual from a
population � � with the best objective function value. (For de-
tails, see text.)

solutions. As usual, a number of termination criteria can be used for deter-
mining when to end the search process.

The recombination function, . #�	 3+� � ��� � � � � , typically generates a num-
ber of offspring solutions by repeatedly selecting a set of parents and ap-
plying a recombination operator to obtain one or more offspring from these.
As mentioned before, this operation is generally based on a linear repre-
sentation of the candidate solutions, and pieces together the offspring from
fragments of the parents; this type of mechanism creates offspring that “in-
herits” certain subsets of solution components from its parents. One of
the most commonly used recombination mechanisms is the one-point bi-
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Figure 2.12: Schematic representation of the one-point crossover operator.

nary crossover operator, which works as follows. Given two parent can-
didate solutions represented by strings �



� � ����� � � and �



� � ����� � � , first, a

“cut point”
�

is randomly chosen according to a uniform distribution over
the index set � ( ��� ������� � � > (�� . Two offspring candidate solutions are then
defined as �



� � ����� � � � 
 � ��� ��� 
 ����� � � and �



� � ����� � � � 
 � � � ��� 
 ����� � � (see also

Figure 2.12).
In the first GA applications, individual candidate solutions were typi-

cally represented as bit strings of fixed length [62]. Using this approach, in-
teresting theoretical properties of certain Genetic Algorithms can be proven,
one of the most prominent of these being the so-called Schema Theorem
[62]. Yet, this type of representation proved to be disadvantageous in prac-
tice for solving certain types of combinatorial problems [94]; in particular,
this is the case for permutation problems such as the TSP, which are rep-
resented more naturally using different encodings. One challenge when
designing recombination mechanisms stems from the fact that often, sim-
ple crossover operators do not produce valid solution candidates. Consider,
for example, a formulation of the TSP, where the solution candidates are
represented by permutations of the vertex set which are written as vectors
��� 
 � � � ������� � � � . Usingq a simple one-point crossover operation, as defined
above, as the basis for recombination obviously leads to vectors which do
not correspond to Hamiltonian cycles of the given graph. In cases like this,
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either a repair mechanism has to be applied to transform the results of a
standard crossover into a valid candidate solution, or special crossover op-
erators have to be used, which are guaranteed to produce valid candidate
solutions only.

The role of function � 
 !+/�!$# ��� � � �  � is to introduce relatively small per-
turbations in the individuals in � �  . Typically, these perturbations are of
stochastic nature, and they are performed independently for each individual
in � �  , where the amount of perturbation applied is controlled by a param-
eter called the mutation rate. It should be noted that permutation need not
be applied to all individuals of � �  ; instead, a subsidiary selection function
can determine which candidate solutions are to be mutated. Until rather re-
cently, the role of mutation compared to recombination for the performance
of Genetic Algorithms has been widely underestimated [6].

As in ACO and AICS, the perturbative local search phase is often useful
and necessary for obtaining high quality candidate solutions. It typically
consists of selecting all or a subset of the individuals in � ��  and � �  , and
then applying an iterative improvement procedure to each element of this
set independently.

Finally, the selection function used for determining the individuals which
form the next generation � � of candidate solutions, typically considers both
elements of the original population, as well as the newly obtained candidate
solutions in � �    and selects from these based on their respective evaluation
function values, (which, in this context, are usually referred to as fitness val-
ues). Generally, the selection is done in such a way that candidate solutions
with better evaluation function values have a higher chance of “surviving”
the selection process. Many selection schemes involve probabilistic choices;
however, it is often beneficial to use elitist strategies, which ensure that the
best candidate solutions are always selected. Generally, the goal of selec-
tion is to obtain a population with good evaluation function values, but at
the same time, to ensure a certain diversity of the population.

Example 2.10: A Genetic Local Search Algorithm for SAT

As in the case of previous examples of SLS algorithms for SAT, given a
propositional CNF formula

�
with � variables, we define the search space

as the set of all variable assignments of
�

, the solution set as the set of all
models of

�
, and a basic neighbourhood relation under which two variable
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assignments are neighbours if they differ exactly in the truth value assigned
to one variable (1-flip neighbourhood). As an evaluation function, we use
the number of clauses in

�
unsatisfied under a given assignment.

Note that the variable assignments for a formula with � variables can
be easily represented as binary strings of length � by using an arbitrary
ordering of the variables and representing the truth values � and � by ( and-
, respectively. We keep the population size fixed at

�
assignments.

To obtain an initial population, we use
�

(independent) iterations of Ran-
dom Picking from the search space, resulting in an initial population of

�
randomly selected variable assignments. The recombination procedure per-
forms � * � one-point crossovers (as defined above) on pairs of randomly
selected assignments from � � , resulting in a set � �� of � offspring assign-
ments.� 
 !+/�!$# ���  � � �  � simply flips � randomly chosen bits of each assign-
ment in � �  , where � � � ( ������� ��� is a parameter of the algorithm; this
corresponds to performing � steps of Uninformed Random Walk indepen-
dently for all � � � �  (see also Section 1.5). For the perturbative local
search procedure, we use the same best improvement algorithm as in Ex-
ample 2.2, which is run until a locally minimal assignment is obtained.
Function � 3 	"/���� #"/ . 	 � ���  � �� � ��  � returns a set �"   of assignments obtained
by applying this procedure to each element in �,  (ignoring the elements in�� ).

Finally,  #�� #�	+! ���  � � � � � �    � applies a simple elitist selection scheme, in
which the

�
best assignments in � ��� � �    (duplicate solutions are removed

before the selection process) are selected to form the next generation (using
random tie-breaking, if necessary). Note that with this selection scheme we
also assure that the best solution found so far is always in the new popula-
tion.The search process is terminated when a model of

�
is found or a fixed

number of iterations have been performed without finding a model.
So far, we are not aware of any Genetic Local Search or Evolutionary

Algorithm for SAT which achieves a performance comparable to state-of-
the-art SAT algorithms. However, even when just following the general
approach illustrated in this example, there are many alternate choices for
the recombination, mutation, perturbative local search, and selection proce-
dures, few of which appear to have been implemented and studied so far.
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Besides Genetic Algorithms, there are two other major approaches based
on the same metaphor of Evolutionary Computation: Evolution Strategies [118,
131] and Evolutionary Programming [35]. All three approaches have been
developed independently and, although all of them originated in the 1960s
and 1970s, only in the beginning of the nineties researchers became fully
aware of the common underlying principles [6]. These three types of Evo-
lutionary Algorithms tend to be primarily applied to different types of prob-
lems: while Genetic Algorithms are rather used for solving discrete, com-
binatorial problems, Evolution Strategies and Evolutionary Programming
were originally intended to solve numerical parameter optimisation prob-
lems. For a detailed discussion of the similarities and differences between
these different types of Evolutionary algorithms and their applications, we
we refer to the book by Bäck [6].

2.4 Further Readings and Related Work

There exists a huge amount of literature on the various SLS methods dis-
cussed in this chapter. Since it would be impossible to give a reasonably
complete list of references, we refer the interested reader to some of the
most relevant and accessible literature and point out books as well as con-
ference and workshop proceedings which will provide additional material
and further references.

There are relatively few books which provide a general introduction to
and overview of different SLS techniques. One of these is the recent book by
Michalewicz and Fogel on “Modern Heuristics” [95], which mainly focuses
on Evolutionary Algorithms; another one is the book by Sait and Youssef
[128] which includes the discussion of two less known SLS techniques:
Simulated Evolution and Stochastic Evolution. For a tutorial-like introduc-
tion into some of the SLS techniques covered in this chapter, such as SA,
TS, or GA, we refer to the book edited by Reeves [119]. Slightly more
advanced material is provided in the book on local search edited by Aarts
and Lenstra [2], which contains expert introductions to individual SLS tech-
niques as well as overviews on the state-of-the-art of applying SLS methods
to various combinatorial problems.

There is a large number of books dedicated to individual SLS tech-
niques. This is particularly true for Evolutionary Algorithms, one of the old-
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est and most developped SLS methods. Currently, the classics in this field
are certainly the early books describing these techniques [62, 48, 131, 35].
A recent, very readable introduction into Genetic Algorithms is given by
the book by Mitchell [?]. Similarly, there exist a number of books dedi-
cated to Simulated Annealing, including [1] or [145]. For an overview of
the literature on SA as of 1988 we refer to [18]. A more recent, tutorial
style overview of SA is given in [31] and a summary of theoretical results
and statistical annealing schedules in given in [?]. For general overviews on
Tabu Search and detailed discussions of its features, we refer to the book
by Glover and Laguna [47]. This book also covers in detail various more
advanced strategies such as Strategic Oscillation or Path Relinking, as well
as some less known tabu search techniques.

For virtually all of the SLS techniques covered in this chapter, large
numbers of research articles have been published in a broad range of jour-
nals and conference proceedings. Research on some of the most prominent
SLS methods is presented on dedicated conferences or workshop series.
Again, Evolutionary Algorithms is particularly well represented, with con-
ference series like GECCO (Genetic and Evolutionary Computation Con-
ference), CEC (Congress on Evolutionary Computation) or PPSN (Parallel
Problem Solving from Nature) as well as some smaller conferences and
workshops dedicated to specific subjects and issues in the general context
of Evolutionary Algorithms. Similarly, the more recent ANTS (From Ant
Colonies to Artificial Ants: A Series of International Workshops on Ant
Algorithms) series of workshops provides a specialised forum for research
on Ant Colony Optimization algorithms and their applications. Many of
the most recent developments and results in these areas can be found in the
respective proceedings.

The Metaheuristics International Conference (MIC) series, initiated in
1995, has a broader scope including many of the SLS techniques described
in Sections 2.2 and 2.3 of this chapter. The corresponding post-conference
collections of articles [109, 146, 57] are a good reference for recent devel-
opments in this general area. Additionally, an extensive, commented bibli-
ography on various SLS algorithms is found in [110].

In the Operations Research community, now frequently papers on SLS
algorithms appear in journals like the INFORMS Journal on Computing,
Operations Research, European Journal of Operational Research. There
even exists one Journal, the Journal of Heuristics, which is dedicated to
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research on SLS algorithms.
Since the early 1990s, SLS algorithms have also been very prominent in

the Artificial Intelligence community, particularly applications to SAT, Con-
straint Satisfaction, Planning, and Scheduling Problems. The proceedings
of major AI conferences such as IJCAI (International Joint Conference on
Artificial Intelligence), AAAI (AAAI National Conference on Artificial In-
telligence), ECAI (European Conference on Artificial Intelligence), as well
as the proceedings of the CP (Principles and Practice of Constraint Pro-
gramming) conferences, and leading journals in AI, including “Artificial In-
telligence”, contain a large number of articles on SLS algorithms and their
application to AI problems (we will provide many of these references in Part
II of this book).

There are a number of SLS methods that we did not present in this chap-
ter, but some of which are closely related to the approaches we discussed.
These include, for example, Swarm Intelligence techniques [10] the most
successful example of which is, in fact, Ant Colony Optimization, Thresh-
old Accepting [?], Extremal Optimisation [?], Scatter Search [42, ?], Ejec-
tion Chains [47], and many others. Several of these and additional SLS
techniques are described in the book New Ideas in Optimisation, edited by
Corne, Dorigo, and Glover [20].
[ hh: add brief comments on Markov-Chain Monte-Carlo methods, and
Expectation-Minimisation (EM) – TODO(hh) ]
[ hh: possibly add brief comments on and mention some references to
local search methods for numeric optimisation – DISCUSS ]

2.5 Summary

At the beginning of this chapter we revisited the Iterative Improvement al-
gorithm introduced in Chapter 1 and discussed important details and refine-
ments. Large neighbourhoods can be used to improve the performance of It-
erative Improvement, but they are typically very costly to search; in this situ-
ation, as well as in general, neighbourhood pruning techniques and pivoting
rules such as first-improvement neighbour selection can help to speed up
the search process. Advanced strategies, such as Variable Neighbourhood
Descent, Variable Depth Search, and Dynasearch use dynamically changing
or complex neighbourhoods to achieve improved performance over simple
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iterative improvement algorithms. Although these strategies yield signifi-
cantly better performance for a variety of cominatorial problems, they are
also typically more difficult to implement than simple iterative improve-
ment algorithms and often require advanced data structures to realise their
full benefit.

Generally, the main problem with simple iterative improvement algo-
rithms is the fact that they get easily stuck in local optima of the underlying
evaluation function. By using large or complex neighbourhoods, some poor
quality local optima can be eliminated; but at the same time, these extended
neighbourhoods are typically more costly or more difficult to search. There-
fore, in this chapter we introduced and discussed various other approaches
for dealing with the problem of local optima as encountered by simple iter-
ative improvement algorithms: allowing worsening search steps, i.e., search
steps which achieve no improvement in the given evaluation or objective
function, such as in Simulated Annealing (SA), Tabu Search, and many It-
erated Local Search and Evolutionary Algorithms; dynamically modifying
the evaluation function, as exemplified in Guided Local Search; and using
adaptive constructive search methods for providing better initial candidate
solutions for perturbative search methods, as seen in GRASP and, Adaptive
Iterated Construction Search, and Ant Colony Optimization.

Each of these approaches has certain drawbacks. Allowing worsening
search steps introduces the need to balance the ability to quickly reach good
candidate solutions (as realised by a greedy search strategy) vs. the ability
to effectively escape from local optima and plateaus. Dynamic modifica-
tions of the evaluation function can eliminate local optima, but at the same
time typically introduce new local optima; in addition, as we will see in
Chapter 6, it can be difficult to amortise the overhead cost introduced by
the dynamically changing evaluation function by a reduction in the num-
ber of search steps required for finding (high quality) solutions. The use of
adaptive constructive search methods for obtaining good initial solutions for
subsequent perturbative SLS methods raises a very similar issue; here, the
added cost of the construction method needs to be amortised.

Beyond the underlying approach for avoiding the problem of search
stagnation due to local optima, the SLS algorithms presented in this chapter
share or differ in a number of other fundamental features, such as the com-
bination of simple search strategies into hybrid methods, the use of popula-
tions of candidate solutions, and the use of memory for guiding the search
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process. These features form a good basis not only for a classification of
SLS methods, but also for understanding their characteristics as well as the
role of the underlying approaches (see also [143]).

Our presentation made a prominent distinction between ‘simple’ and hy-
brid SLS methods, where hybrid methods can be seen as combinations of
various ‘simple’ SLS techniques. In some cases, such as ILS and EA, the
components of the hybrid method are various perturbative SLS processes.
In other cases, such as GRASP, AICS, and ACO, constructive and pertur-
bative search mechanisms are combined. All these hybrid methods can use
different types of ‘simple’ SLS algorithms as their components, including
simple iterative improvement techniques as well as more complex methods,
such as SA, TS, or DLS, and a variety of constructive search methods. In
this sense, the hybrid SLS methods presented here are higher-order algo-
rithms, which require complex procedural or functional parameters, such as
a subsidiary SLS procedure, to be specified in order to be applied to a given
problem.

It is interesting to note that some of the hybrid algorithms discussed
here, including ACO and EA, originally did not include the use of pertur-
bative local search for improving individual candidate solutions. However,
adding such perturbative local search mechanisms has been found to signif-
icantly improve the performance of the algorithm in many applications to
combinatorial problems.

Two of the SLS methods discussed here, ACO and EA, can be charac-
terised as population-based search techniques; these maintain a population
of candidate solutions which is manipulated and evaluated during the search
process. Most state-of-the-art population-based SLS approaches integrate
features from the individual elements of the population in order to guide the
search process. In ACO, this integration is realised by the pheromone trails
which provide the basis for the probabilistic construction process, while in
EA, it is mainly achieved through recombination. In contrast, all the ‘sim-
ple’ SLS algorithms discussed in Section 2.2 as well as ILS, GRASP, and
AICS, manipulate only a single candidate solution in each search step. In
many of these cases, such as ILS, various population-based extensions are
easily conceivable [63, 136].

Integrating features of populations of candidate solutions can be seen as
one (rather indirect) mechanism that uses memory for guiding the search
process towards promising regions of the search space. The weights used
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in AICS serve exactly the same purpose. A similarly indirect form of mem-
ory is represented by the penalties used by DLS; only here, the purpose of
the memory is at least as much to guide the search away from the current,
locally optimal search position, then to guide it towards better candidate so-
lutions. The prototypical example of an SLS method that strongly exploits
an explicit form of memory for directing the search process search is TS.

Many SLS algorithms actually were inspired by some phenomena oc-
curing in nature. Examples of such SLS algorithms are SA, ACO, EA, and
several others that we did not introduce explicitely. Because of this inspi-
ration by nature, it is often the case that the terminology used in such al-
gorithms uses a heavy jargon from the corresponding natural phenomenon.
Yet, actual implementations of such algorithms and especially those imple-
mentations showing state-of-the-art performance are typically very far from
their inspiring source. The main contribution of such methods is the intro-
duction of new, abstract concepts for guiding the search.

Finally, it should be pointed out that in virtually all of the local search
methods discussed in this chapter, the use of random or probabilistic deci-
sions results in significantly improved performance and robustness of these
algorithms when solving combinatorial problems in practice. One of the
reasons for this lies in the diversification achieved by stochastic methods,
which is often crucial for effectively avoiding stagnation of the search pro-
cess. In principle, knowing the right strategy for guiding the search towards
(high quality) solutions would achieve the same goal more efficiently; but
given the inherent hardness of the problems to which SLS methods are typi-
cally applied, it is hardly surprising that in practice, devising such strategies
for guiding the search process reliably and efficiently is typically not possi-
ble.

2.6 Exercises

Exercise 2.1 (Medium) Which role do 2-exchange steps play in the Lin-
Kernighan procedure?

Exercise 2.2 (Easy) Show that Iterative Improvement and Randomised It-
erative Improvement can be seen special cases of Probabilistic Iterative Im-
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provement.

Exercise 2.3 (Medium) What tabu attributes would you choose when ap-
plying Tabu Search to the TSP? Are there different possibilities for deciding
when a move is tabu? Characterise the memory requirements for efficiently
checking the tabu status of solution components.

Exercise 2.4 (Medium) Why is it preferable in Dynamic Local Search
to associate penalties with solution components rather than with candidate
solutions?

Exercise 2.5 (Medium) Design a population-based extension of Iterated
Local Search and describe its application to the TSP.

Exercise 2.6 (Easy) Discuss similarities and differences between Ant Colony
Optimisation and Genetic Local Search.
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