
CPSC 445 Algorithms in Bioinformatics Spring 2016

Introduction to String Matching

String and pattern matching problems are fundamental to any computer application in-
volving text processing. A very basic but important string matching problem, variants
of which arise in finding similar DNA or protein sequences, is as follows. Given a text
T [1, . . . , n] (n characters) and a pattern P [1, . . . ,m] (both of which are strings over the
same alphabet), find all occurrences of P in T . We say that P occurs in T with shift s if
P [1, . . . ,m] = T [s+ 1, . . . , s+m]. A simple algorithm simply considers all possible shifts:

algorithm Simple-Pattern-Finding(P [1, . . . ,m], T [1, . . . , n])
input: pattern P of length m and text T of length n
preconditions: 1 ≤ m ≤ n
output: list of all numbers s, such that P occurs with shift s in T

for s← 0 to n−m
{

if (P [1, . . . ,m] == T [s+ 1, . . . , s+m]) { output s }
}

The total number of comparisons done by this algorithm is (n −m + 1)m = Θ(nm).
Any algorithm for the string matching problem must examine every symbol in T and P,
and so requires Ω(n + m) time. We’d like to find an algorithm that can match this lower
bound.

Exercises: Suppose for both of these problems that, at each possible shift (iteration of
the for loop), characters are compared from left to right ONLY until a mismatch is found.

1. Will the algorithm still take Θ(mn) time?

2. If the pattern and text are chosen uniformly at random over an alphabet of size k,
what is the expected time for the algorithm to finish?

The Knuth-Morris-Pratt (KMP) algorithm

We next describe a more efficient algorithm, published by Donald E. Knuth, James H.
Morris and Vaughan R. Pratt, 1977 in: “Fast Pattern Matching in Strings.” In SIAM
Journal on Computing, 6(2): 323–350. To illustrate the ideas of the algorithm, we consider
the following example:

T = xyxxyxyxyyxyxyxyyxyxyxxy

1



and
P = xyxyyxyxyxx

At a high level, the KMP algorithm is similar to the naive algorithm: it considers shifts
in order from 1 to n−m, and determines if the pattern matches at that shift. The difference
is that the KMP algorithm uses information gleaned from partial matches of the pattern
and text to skip over shifts that are guaranteed not to result in a match.

Suppose that, starting with the pattern aligned underneath the text at the leftmost
end, we repeatedly “slide” the pattern to the right and attempt to match it with the text.
Let’s look at some examples of how sliding can be done. The text and pattern are included
in Figure 1, with numbering, to make it easier to follow.

1. Consider the situation when P [1, . . . , 3] is successfully matched with T [1, . . . , 3]. We
then find a mismatch: P [4] 6= T [4]. Based on our knowledge that P [1, . . . , 3] =
T [1, . . . , 3], and ignoring symbols of the pattern and text after position 3, what can
we deduce about where a potential match might be? In this case, the algorithm
slides the pattern 2 positions to the right so that P [1] is lined up with T [3]. The next
comparison is between P [2] and T [4].

2. Since P [2] 6= T [4], the pattern slides to the right again, so that the next comparison
is between P [1] and T [4].

3. At a later point, P [1, . . . , 10] is matched with T [6, . . . , 15]. Then a mismatch is
discovered: P[11] 6= T[16]. Based on the fact that we know T [6, . . . , 15] = P [1, . . . , 10]
(and ignoring symbols of the pattern after position 10 and symbols of the text after
position 15), we can tell that the first possible shift that might result in a match is
12. Therefore, we will slide the pattern right, and next ask whether P [1, . . . , 11] =
T [13, . . . , 23]. Thus, the next comparisons done are P [4] == T [16], P [5] == T [17],
P [6] == T [18] and so on, as long as matches are found.

Sliding rule

We need to make precise exactly how to implement the sliding rule. The following notation
is useful. Let S = s1s2 . . . sk be a string. Each string of the form s1 . . . si, 1 ≤ i ≤ k is
called a prefix of s. Also, we define the empty string (containing no symbols) to be a
prefix of s. A prefix s′ of s is a proper prefix if s′ 6= s. Similarly, each string of the form
si . . . sk, 1 ≤ i ≤ k is called a suffix of s. Also, the empty string (containing no symbols) is
a suffix of s. A suffix s′ of s is a proper suffix if s′ 6= s.

Suppose that P [1, . . . , q] is matched with the text T [i−q+1, . . . , i] and a mismatch then
occurs: P [q+1] 6= T [i+1]. Then, slide the pattern right so that the longest possible proper
prefix of P [1, . . . , q] that is also a suffix of P [1, . . . , q] is now aligned with the text, with the
last symbol of this prefix aligned at T [i]. If π(q) is the number such that P [1, . . . , π(q)] is

2



P : x y x y y x y x y x x
q: 1 2 3 4 5 6 7 8 9 10 11
π(q): 0 0 1 2 0 3

Table 1: Table of π values for pattern P .

the longest proper prefix that is also a suffix of P [1, . . . , q], then the pattern slides so that
P [1, . . . , π(q)] is aligned with T [i− π(q) + 1, . . . , i].

The KMP algorithm precomputes the values π(q) and stores them in a table π[1, . . . ,m].
We will explain later how this is done. Some of the values π(q) for our example are given
in Table 1. Can you figure out what are the remaining values?

In summary, a “step” of the KMP algorithm makes progress in one of two ways. Before
the step, suppose that P [1, . . . , q] is already matched with T [i− q + 1, . . . , i].

• If P [q+ 1] = T [i+ 1], the length of the match is extended, unless q+ 1 = m, in which
case we have found a complete match of the pattern in the text.

• If P [q + 1] 6= T [i+ 1], the pattern slides to the right.

In either case, progress is made. The algorithm repeats such steps of progress until the
end of the text is reached. Pseudocode for the KMP algorithm is given in Algorithm 1.

Running Time

Each time through the loop, either we increase i or we slide the pattern right. Both of
these events can occur at most n times, and so the repeat loop is executed at most 2n
times. The cost of each iteration of the repeat loop is O(1). Therefore, the running time
is O(n), assuming that the values π(q) are already computed.

Computing the values π(q)

We now describe how to compute the table π[1, . . . ,m]. Note that π(1) is always equal to
0. Suppose that we have computed π[1, . . . , i] and we want to compute π(i+ 1). Initially
we know P [1, . . . , π(i)] is the longest proper prefix of P [1, . . . , i] that is also a suffix of
P [1, . . . , i]. Let q = π(i). If P [i + 1] = P [q + 1] then it must be that π(i + 1) = q + 1.
Otherwise, we set q = π(q) and repeat the test again. We continue until q = 0, at which
point we just set π(i+ 1) = 0. Some pseudocode is given in Algorithm 2; you should fill in
the rest as an exercise. Algorithm 2 runs in linear time for much the same reason as does
the KMP algorithm. Therefore, the whole KMP algorithm runs in time O(n+m), which
is much better than the simple quadratic time algorithm.

Exercise:

3



algorithm KMP(P [1, . . . ,m], T [1, . . . , n])
input: pattern P of length m and text T of length n
preconditions: 1 ≤ m ≤ n
output: list of all numbers s, such that P occurs with shift s in T

q ← 0;
i← 0;
while (i < n) /* P [1, . . . , q] == T [i− q + 1, . . . , i]
{
if (P [q + 1] == T [i+ 1])
{
q ← q + 1;
i← i+ 1;
if (q == m)
{

output i− q;
q ← π(q); /*slide the pattern to the right
}
}
else /* a mismatch occurred
{
if (q == 0) { i← i+ 1 }
else { q ← π(q) }
}

}

Algorithm 1: KMP algorithm.

4



1. Construct a pattern of length 10, over the alphabet {x, y}, such that the number of
iterations of the while loop of Algorithm 2, when i = 10, is as large as possible.

2. Suppose that the pattern P and the text T are strings over an alphabet of size 2. In
this case, if you know that P [q+ 1] 6= T [i+ 1], it is possible to tell by looking only at
the pattern (specifically at P [q+ 1]), what is the symbol of the text at position i+ 1.
Such knowledge could be used (in some cases) to increase the amount by which the
pattern slides, thus speeding up the algorithm. How might you change the algorithm
to take advantage of this? How does this affect the amount of memory needed by
the algorithm?

algorithm Compute-π-values(P [1, . . . ,m])
input: pattern P of length m
preconditions: 1 ≤ m
output: table π[1, . . . ,m]

π(1)← 0;
for (i← 1 to m− 1)
/* π[1, . . . , i] is already calculated; calculate π[i+ 1]
{

}

Algorithm 2: Algorithm to compute the π values. Can you fill in the details?

5



Appendix: review of Big-Oh notation

Table 2 summarizes big-oh notation, which we use to describe the asymptotic running time
of algorithms.

We say that f(n) is: Mean that f(n) grows: Write: If:

little-oh of g(n) more slowly than g(n) f(n) = o(g(n)) limn→∞ f(n)/g(n) = 0

big-oh of g(n) no faster than g(n) f(n) = O(g(n)) there exist some c, n0 > 0:

for all n > n0, f(n) <= cg(n)

theta of g(n) about as fast as g(n) f(n) = Θ(g(n)) f(n) = O(g(n))

and g(n) = O(f(n))

approximately as fast as g(n) f(n) ≈ g(n) limn→∞ f(n)/g(n) = 1

equal to g(n)

omega of g(n) no slower than g(n) f(n) = Ω(g(n)) g(n) = O(f(n))

Table 2: Summary of big-oh notation.

6



T
:

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

1
9

20
2
1

22
2
3

2
4

x
y

x
x

y
x

y
x

y
y

x
y

x
y

x
y

y
x

y
x

y
x

x
y

P
:

1
2

3
4

5
6

7
8

9
10

11
x

y
x

y
y

x
y

x
y

x
x

F
ig

u
re

1
:

T
ex

t
an

d
p

at
te

rn
u

se
d

in
ou

r
ex

am
p

le
s,

w
it

h
ch

ar
a
ct

er
s

n
u
m

b
er

ed
.

7


