

Stephen Kasica

University of British Columbia Vancouver, Canada

Charles Berret Linköping University Norrköping, Sweden

Tamara Munzner University of British Columbia Vancouver, Canada @tamara@vis.social

@tamaramunzner

Dirty Data in the Newsroom

Comparing Data Preparation in Journalism and Data Science

ACM CHI Conference on Human Factors in Computing Systems April 23-28, 2023, Hamburg, Germany

Data Preparation

- Getting data ready for analysis or visualization
 - Includes: wrangling, cleaning, munging, gathering, integrating, etc.
- Time-consuming process in data science
 - Up to 80% of someone's time

How closely does research on data scientists apply to data journalists, with regards to data preparation?

Contributions

Augmented model of preparation activities Model-discrepancy taxonomy of dirty data Challenges in multi-table data integration

Augmented model of prep. activities

Crisan Model		Our analysis	Data science papers			Data journalist interviews								
									* * * *	*****	*****	****		
Prepare	Initiate	Establish goals												
		Make a plan												
		Test proof of concept												
	Gather	Locate existing datasets								Ш.,		Ш,		
		Collect new data												
		Integrate multiple datasets												
		Parse documents			_									
		Request datasets												
	Create	Impute												
		Synthesize												
	Profile	Assess quality												
		Understand semantics												
		Verify transformation												
	Wrangle	Aggregate data												
		Transform data schema												
		Label data												
		Normalize values												_
		Remove data												
		Standardize values												8
		Identify items												

Contributions

Augmented model of preparation activities Model-discrepancy taxonomy of dirty data Challenges in multi-table data integration

Model-discrepancy taxonomy of dirty data

- Consider data as a design artifact
 - Dirty data = discrepancy in mental models
- Extend issue analysis to incorporate database literature
 - Analyze 16 taxonomies on dirty data: cluster 330 issues \rightarrow 45 DB issues
- Combine into synthesis set of 60 issues
- Categorize into new model-discrepancy taxonomy
 - Data qualities axis
 - Existing qualities: completeness, accuracy
 - New qualities: form, granularity, relation, semantics
 - Data objects axis: table, attribute, item, value
- More details in the paper

Contributions

Model-discrepancy taxonomy of dirty data Challenges in multi-table data integration Four integration challenges

Norm: Integrate → clean

Findings: Clean → integrate

Fragmented

Disparate

Regional datasets

Tables with inconsistencies due to

independent, spatially dispersed data sources

Regional: Police shootings in the United States

Graphic by Vice 14

Diachronic datasets

Tables on the same phenomena that evolve

over time

Diachronic: Economic data from Bureau of Labor Statistics

Fragmented datasets

Tables on a similar topic that contain different

yet related items.

Fragmented: Unpaid mine safety violations

Disparate datasets

Tables that are topically dissimilar and

seemingly unrelated.

Disparate: Opioid overdoses

Delateralthcare workerslogenters

THE SPOKESMAN - REVIEW

the, washington Est. May 19

Washington Idaho

NEWS > SPOKANE

Washington nurses, health care workers are dying of opioid overdoses

Sun., Feb. 4, 2018

Icons by <u>Minh Do</u> and <u>Sascha Elnœ</u>rs, Noun Project

Dirty Data in the Newsroom

Comparing Data Preparation in Journalism and Data Science

ACM CHI Conference on Human Factors in Computing Systems April 23-28, 2023, Hamburg, Germany

Contributions:

- Augmented model of preparation activities
- New model-discrepancy taxonomy of dirty data
- Four challenges in multi-table data integration

Stephen Kasica

University of British Columbia Vancouver, Canada

Charles Berret Linköping University Norrköping, Sweden

Tamara Munzner University of British Columbia Vancouver, Canada @tamara@vis.social