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Data Preparation

o Getting data ready for analysis or
visualization

o Includes: wrangling, cleaning,
munging, gathering, integrating,
etc.

o Time-consuming process in data
science

o Up to 80% of someone’s time
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Illustration by Barry Blitt, Vanity Fair



https://media.vanityfair.com/photos/57a4aba25838302d64276348/master/w_120

Data Data

science journalism

How closely does research
on data scientists apply to data journalists,
with regards to data preparation?
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Augmented model
of preparation
activities
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Contributions

Model-discrepancy
taxonomy of
dirty data



Model-discrepancy taxonomy of dirty data

e Consider data as a design artifact
o Dirty data = discrepancy in mental models
e Extend issue analysis to incorporate database literature
o Analyze 16 taxonomies on dirty data: cluster 330 issues — 45 DB issues
e Combine into synthesis set of 60 issues
e Categorize into new model-discrepancy taxonomy
o Data qualities axis
m Existing qualities: completeness, accuracy
m New qualities: form, granularity, relation, semantics
o Data objects axis: table, attribute, item, value

e More details in the paper
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Contributions

Challenges in
multi-table
data integration
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Norm: Integrate - clean

Findings: Clean - integrate
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Regional datasets

Tables with inconsistencies due to

independent, spatially dispersed data sources
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Regional: Police shootings in the United States
e
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https://www.vice.com/en/article/xwvv3a/shot-by-cops
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Diachronic datasets

Tables on the same phenomena that evolve

over time
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Diachronic: Economic data from Bureau of Labor Statistics
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Fragmented datasets

Tables on a similar topic that contain different

yet related items.
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Fragmented: Unpaid mine safety violations

Safety
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Disparate datasets

Tables that are topically dissimilar and

seemingly unrelated.
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Disparate: Opioid overdoses
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