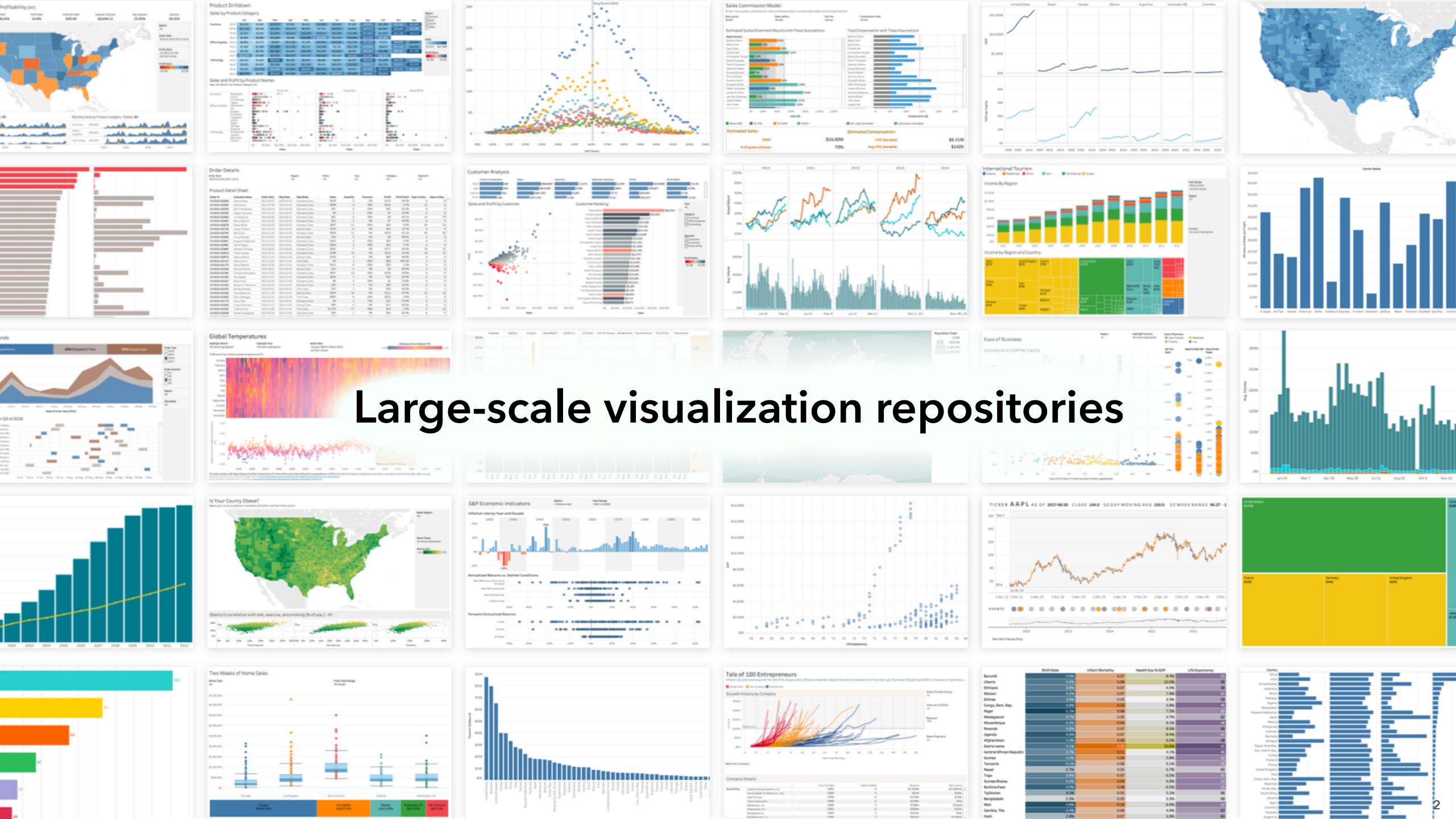
VizCommender

Computing Text-Based Similarity in Visualization Repositories for Content-Based Recommendations

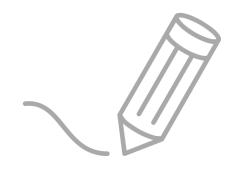
Michael Oppermann, Robert Kincaid, and Tamara Munzner

Conference Talk, IEEE VIS 2020

michaeloppermann.com/work/viz-commender

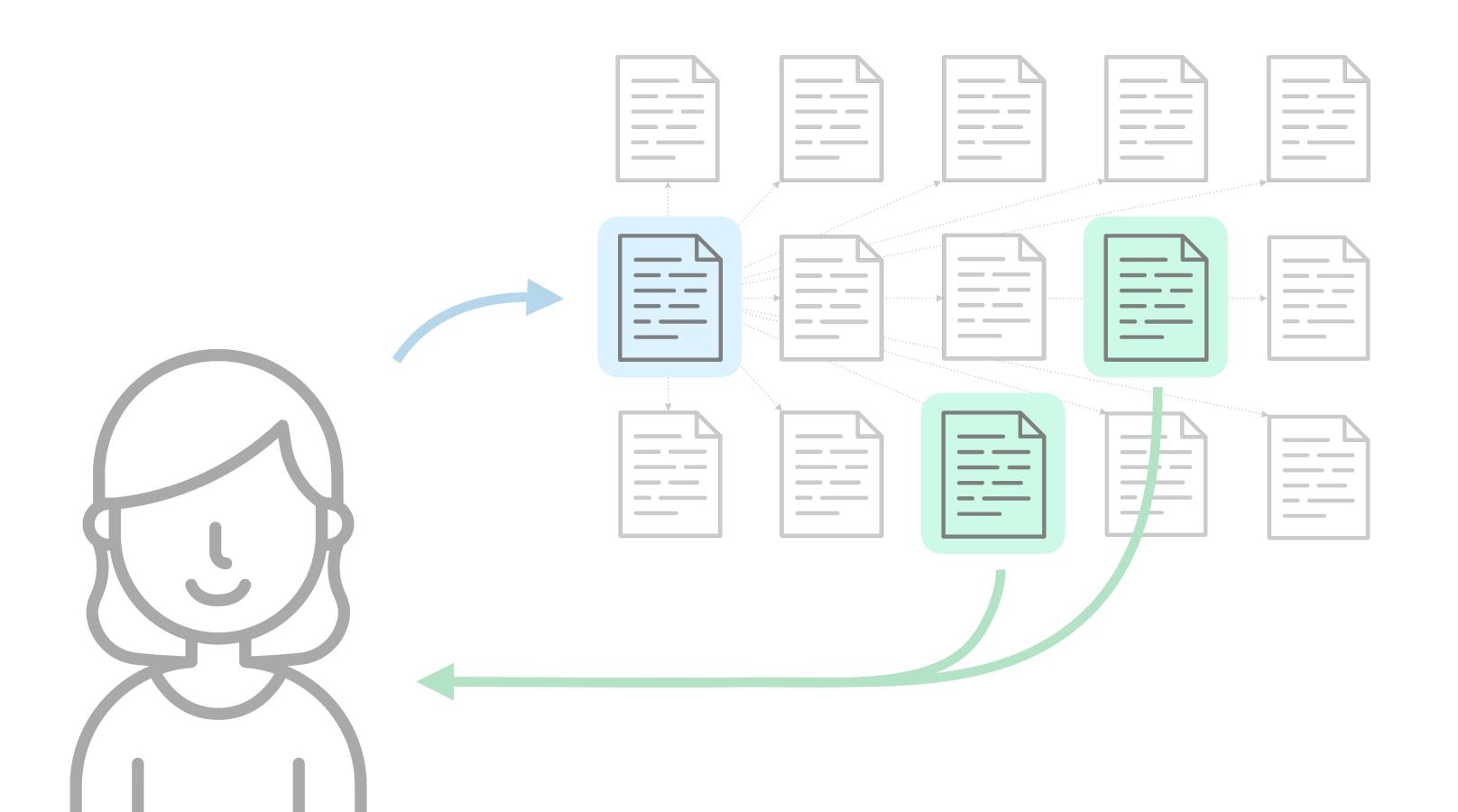


Users have difficulty discovering relevant content.



Users often start from scratch instead of reusing content.

Recommendation systems are increasingly used to assist users by surfacing relevant content.



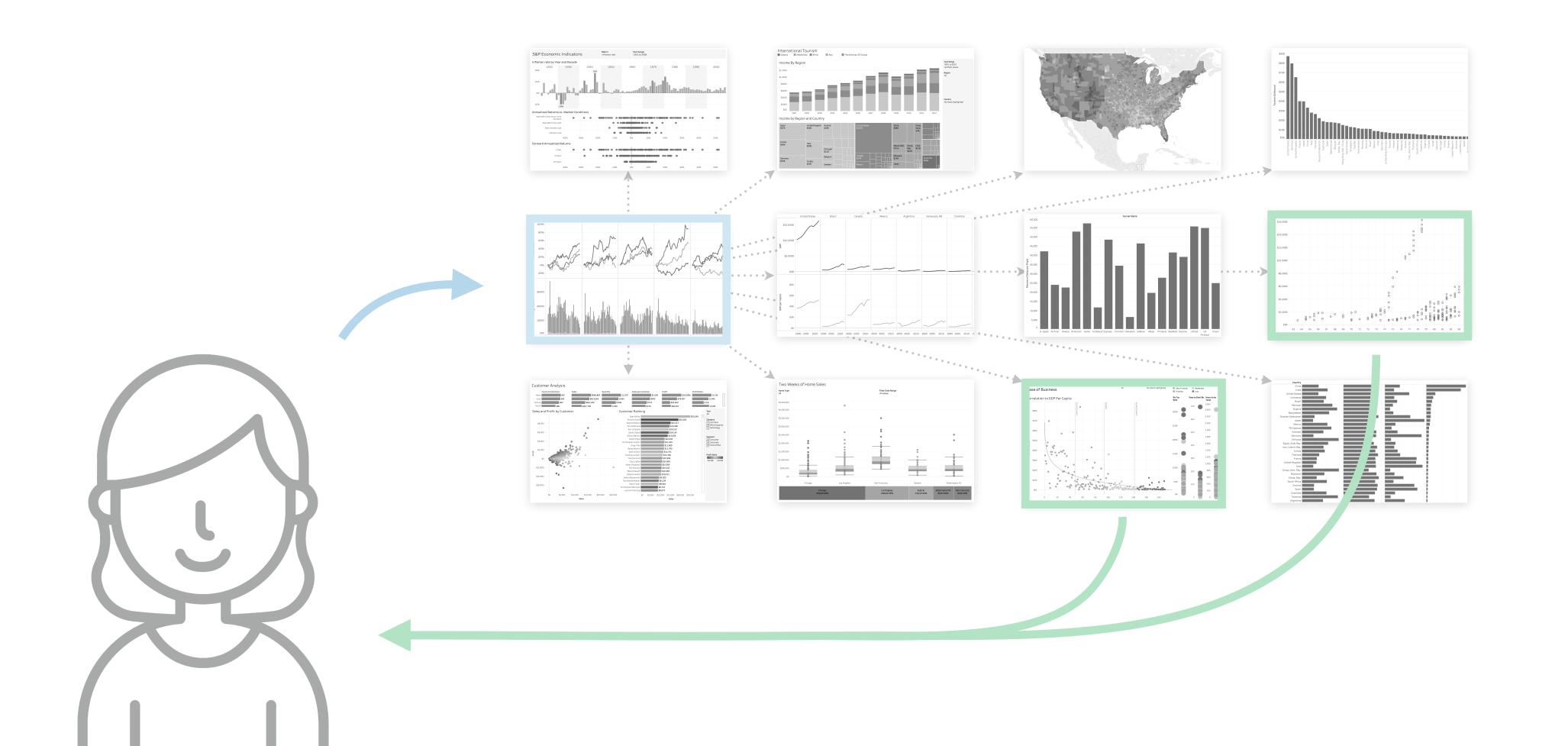
Visual encoding recommendation

Tableau ShowMe, Voyager, Draco, Data2Vis, ...

Visual encoding recommendation

Tableau ShowMe, Voyager, Draco, Data2Vis, ...

Visualization workbook recommendations based on content features



Content-based filtering

Collaborative filtering

Content-based filtering

- Focus of our work
- Finding relevant items based on their actual content
- Less diverse but more accurate recommendations
- Allows identification of near-duplicate items

Collaborative filtering

Content-based filtering

Collaborative filtering

- Recommendations based on user interactions
- Requires no domain knowledge, allows fast computation, serendipitous recommendations
- Cold start problem for new items or new users

Content-based filtering

Collaborative filtering

Hybrid system

Content-based filtering

Collaborative filtering

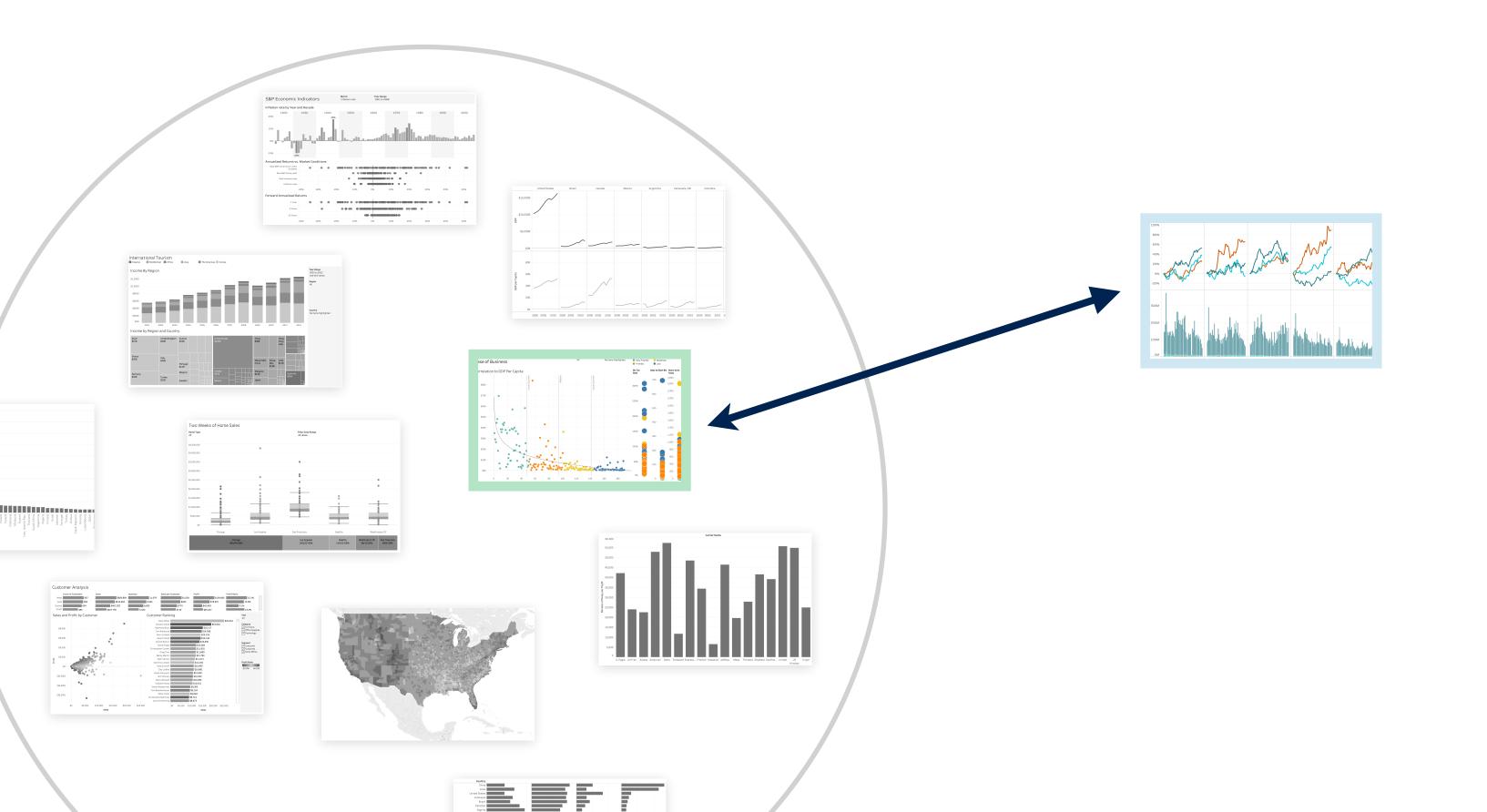
Hybrid system

Which content features are most informative for comparisons?

What techniques can we use for comparing and ranking viz specifications?

Text-based similarity measure

- Content-based recommendations
- Facilitate information seeking



Overview

Close collaboration with the Recommender Systems Group at Tableau

Overview

Close collaboration with the Recommender Systems Group at Tableau

VizCommender

- Extract content from viz specifications
- Analysis & feature engineering
- Proof-of-concept interface

Overview

Close collaboration with the Recommender Systems Group at Tableau

VizCommender

- Extract content from viz specifications
- Analysis & feature engineering
- Proof-of-concept interface

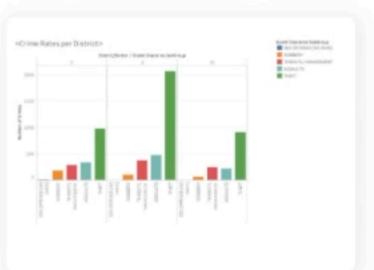
User study: Crowdsourced human text similarity judgements

Comparative model analysis

2017 Seattle Crime Occurances

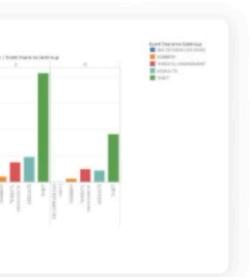
Seattle Crime

caitlin.streamer • 2018-04-09



HCDE 210

arwa.mohammed6769 • 2016-11-23



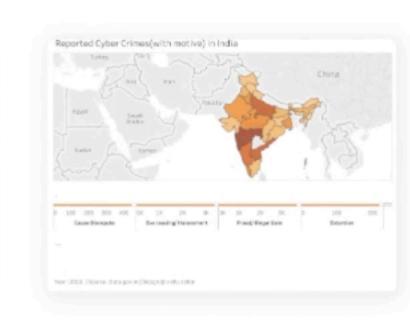
urbana_crimes

ashish.khanal • 2018-03-11

ATL Crime

Crime Analysis- 2017

megan2618 • 2018-06-07



Reported Cyber Crime

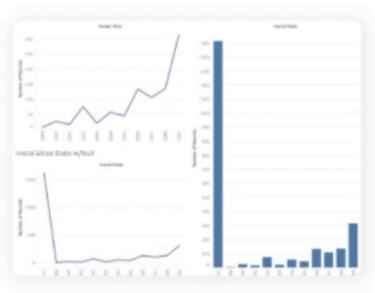
vishu.rahar • 2018-04-03



Sort by relevance ▼

Number of Crime Occurance

arwa.mohammed6769 • 2016-11-23



Seattle Bike Racks

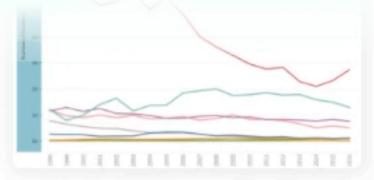
hekma • 2017-02-28

Metro

latauya • 2016-01-21

LVO Crime Area Comparison

andrew1738 • 2018-05-21

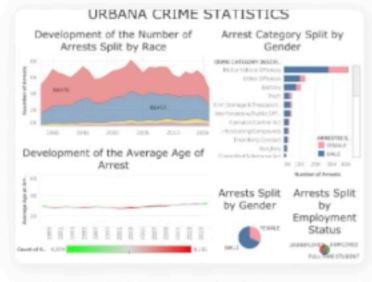


Incident-based Crimes in

heather.keary • 2017-12-01

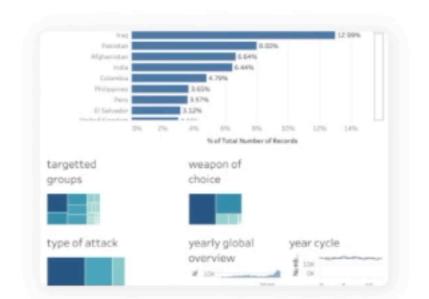
Crime Rates per District

arwa.mohammed6769 • 2016-11-23



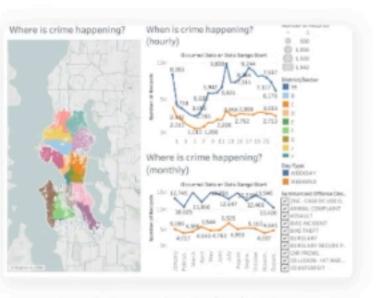
Urbana Crime Statistic

christoph.pressler • 2016-10-09



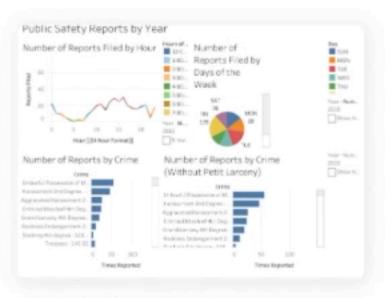
terrorism overview

olivier2575 • 2018-11-08



Bunch of Seattle Criminal

blair3220 • 2018-04-03

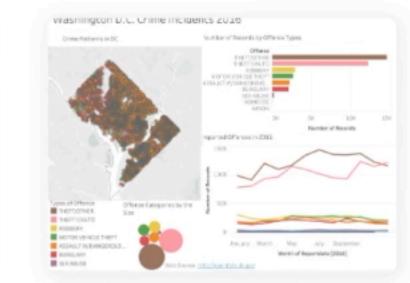


PSA Findings by Year

kevin4543 • 2017-12-15

#BLESSEDLIT

michael.valeri • 2018-04-03

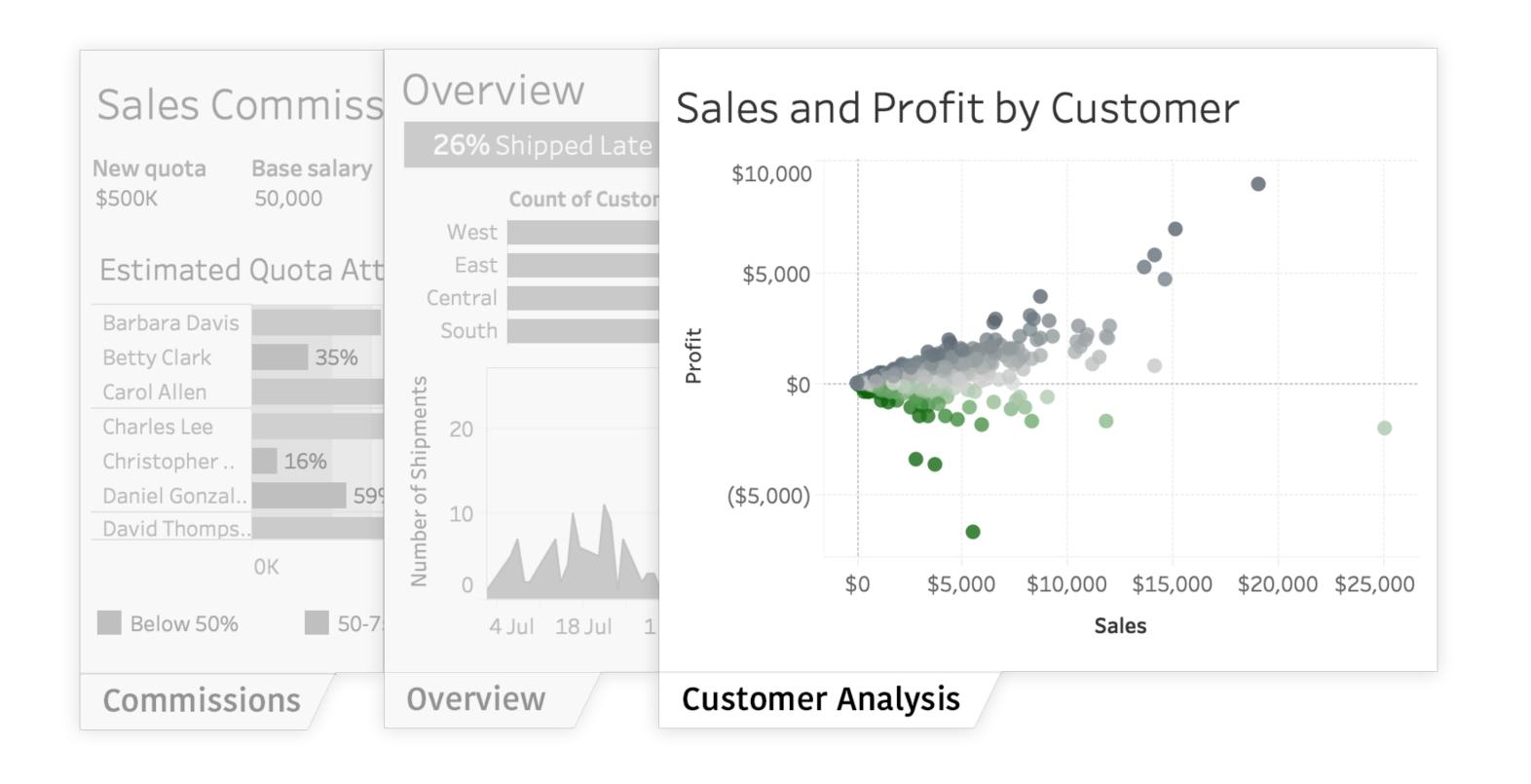


Data Visualization

danadaree • 2018-04-09

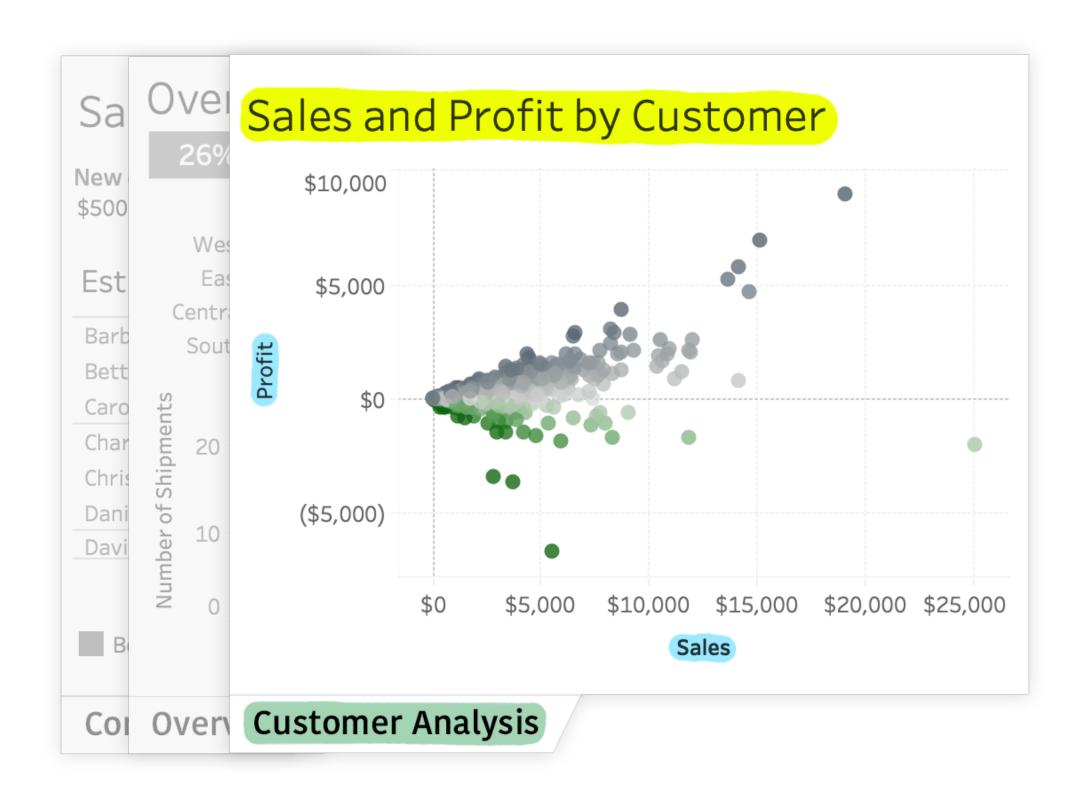
Number of Crimes in Each arwa.mohammed6769 • 2016-11-23

Tableau Visualization Workbook





City	Customer Name	Sales	Discount	• • •



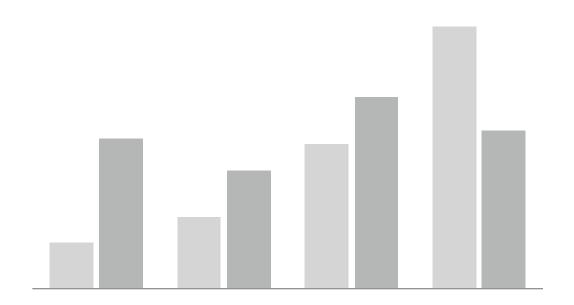
City	Customer Name	Sales	Discount	• • •

```
<worksheet name="Customer Analysis">
   <layout-options>
       <title>
           <formatted-text>
               <run>Sales and Profit by Customer
           </formatted-text>
       </title>
   </layout-options>
   <rows>...[sum:Profit:qk]</rows>
       <cols>...[sum:Sales:qk]</cols>
   </worksheet>
<datasource>
    <metadata-records>
       <metadata-record class="column">
           <remote-name>City</remote-name>
       </metadata-record>
       <metadata-record class="column">
           <remote-name>Customer Name</remote-name>
           <remote-name>Sales
```

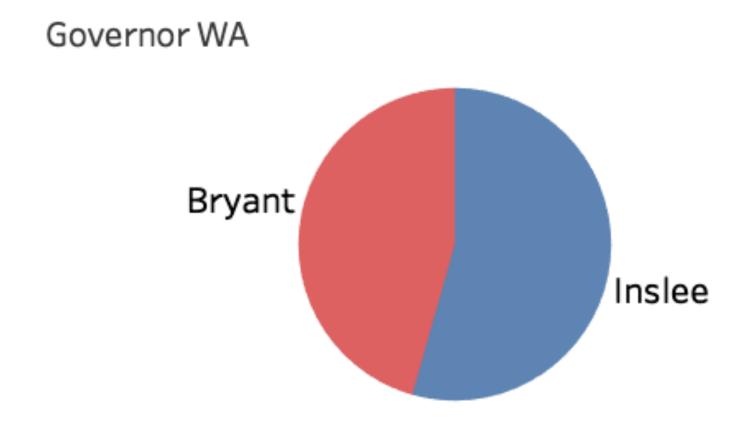
Initial Experiments

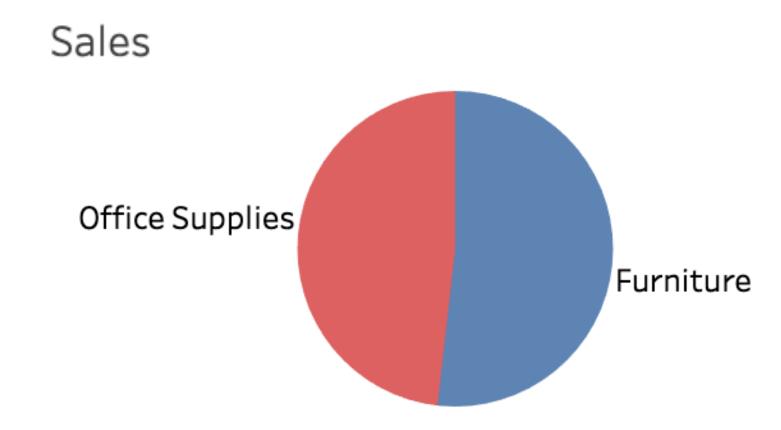
Extracted text

Visual encodings

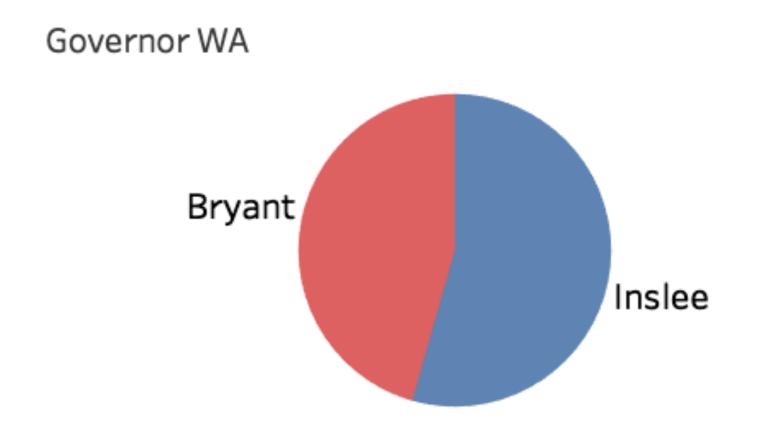


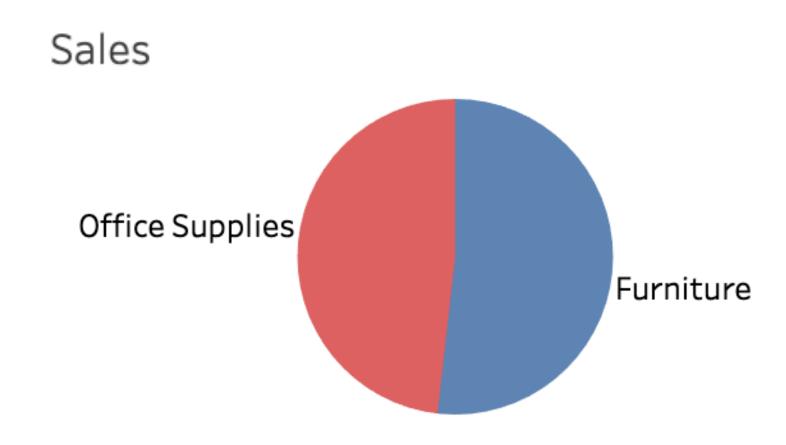
Different data, same encoding



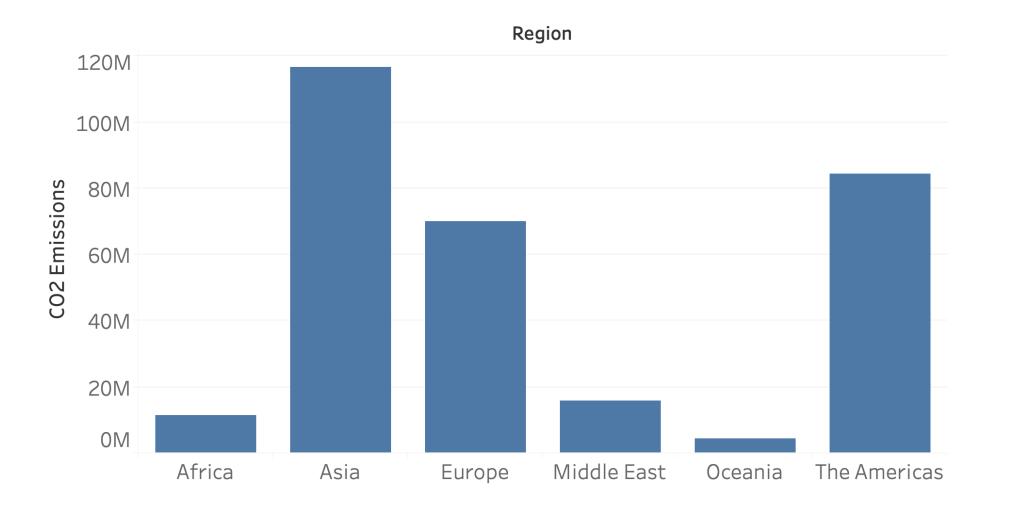


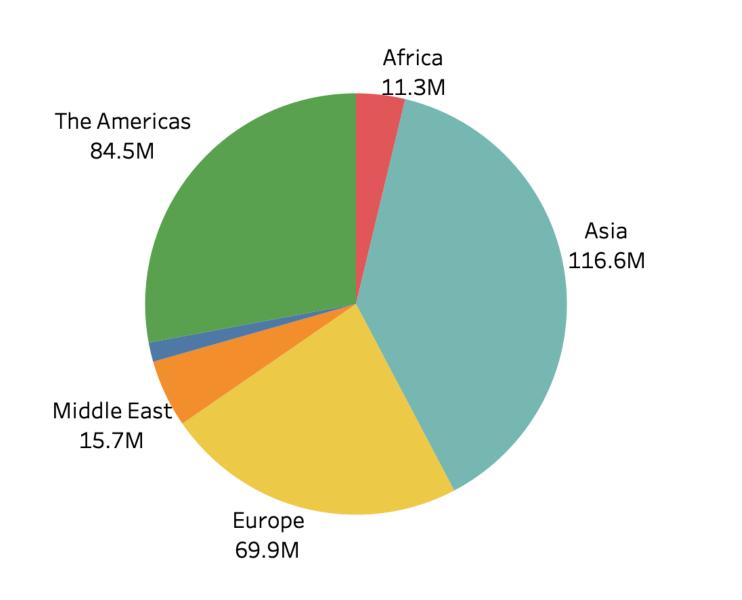
Different data, same encoding





Same data, different visual encodings





Features: Leaving Out Visual Encodings

Features: Leaving Out Visual Encodings

For design inspiration and learning

Need visual style

Features: Leaving Out Visual Encodings

For design inspiration and learning

Need visual style

Our primary task: Information seeking

- Core enterprise task
- Subject matter of a workbook
- Do not need visual style (marks, colors, layout properties, ...)

Very limited text

Very limited text

Additional challenges:

Multi-sheet workbooks and nested visualizations

Very limited text

Additional challenges:

- Multi-sheet workbooks and nested visualizations
- Incomplete workbooks

Very limited text

Additional challenges:

- Multi-sheet workbooks and nested visualizations
- Incomplete workbooks
- Multiple versions

Very limited text

Additional challenges:

- Multi-sheet workbooks and nested visualizations
- Incomplete workbooks
- Multiple versions
- Out-of-vocabulary words

Extracted text

customer analysis sales profit discount commission segment ratio ranking count ship performance target furniture office home supplies city drilldown late early product category forecast order quantity target ...

Extracted text

customer analysis sales profit discount commission segment ratio ranking count ship performance target furniture office home supplies city drilldown late early product category forecast order quantity target ...

Numeric document representation

0.37546	0.13540	0.01713	0.04225	0.01993	• • •

Extracted text

customer analysis sales profit discount commission segment ratio ranking count ship performance target furniture office home supplies city drilldown late early product category forecast order quantity target ...

Numeric document representation

0.37546 0.13540 0.01713 0.04225 0.01993 ...

Extracted text

customer analysis sales profit discount commission segment ratio ranking count ship performance target furniture office home supplies city drilldown late early product category forecast order quantity target ...

Numeric document representation

0.37546 0.13540 0.01713 0.04225 0.01993 ...

Comparisons?

NLP Models

- ▶ TF-IDF & cosine similarity
- Latent semantic indexing (LSI) & cosine similarity
- Latent dirichlet allocation (LDA) & Jensen-Shannon divergence
- Word embeddings (Doc2Vec, GloVe) & cosine similarity

Overview

VizCommender

- Extract content from viz specifications
- Analysis & feature engineering
- Proof-of-concept interface

User study: Crowdsourced human text similarity judgements

Comparative model analysis

Overview

VizCommender

- Extract content from viz specifications
- Analysis & feature engineering
- Proof-of-concept interface

User study: Crowdsourced human text similarity judgements

Comparative model analysis

Crowdsourced human similarity judgements

2-Alternative Forced Choice Experiment

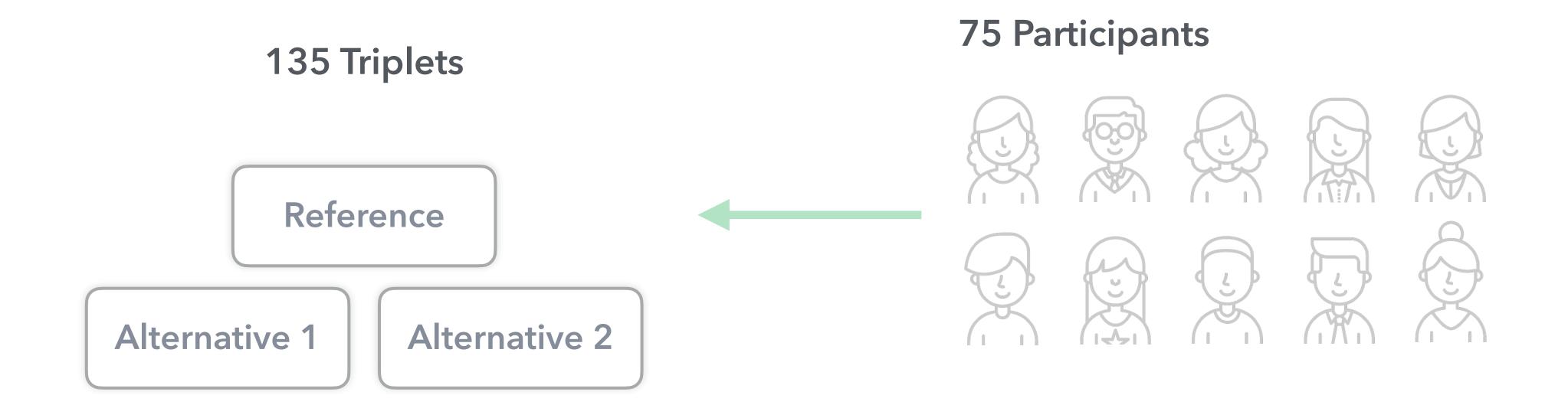
135 Triplets

Reference

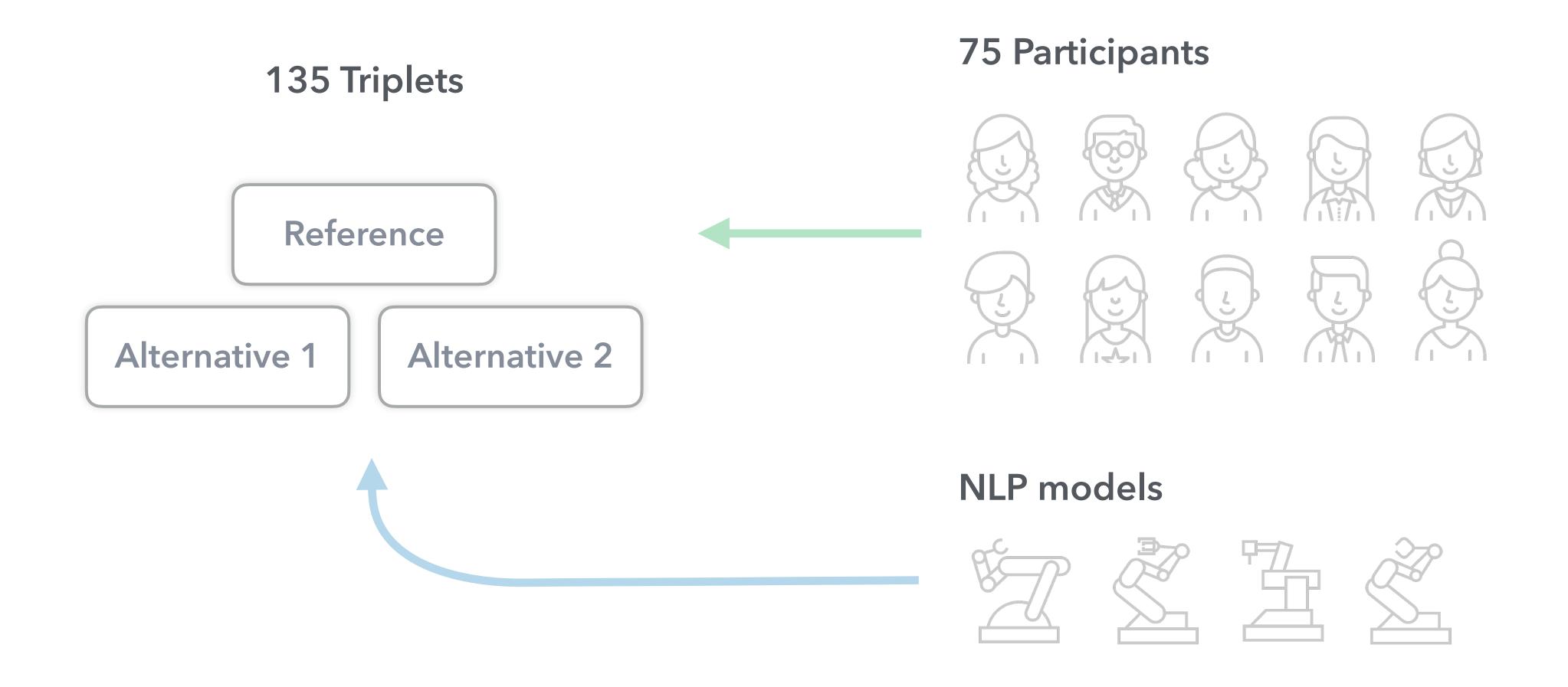
Alternative 1

Alternative 2

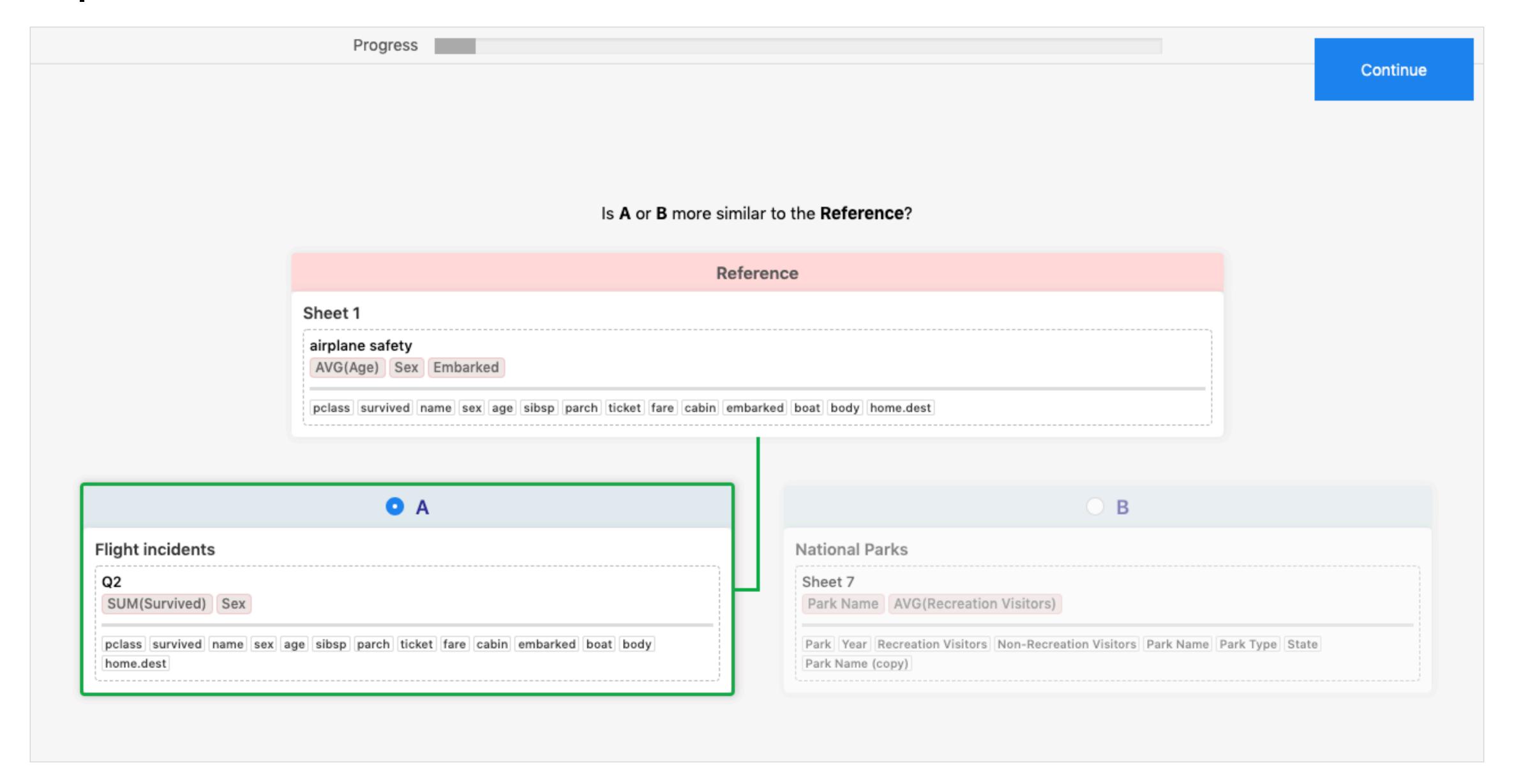
2-Alternative Forced Choice Experiment



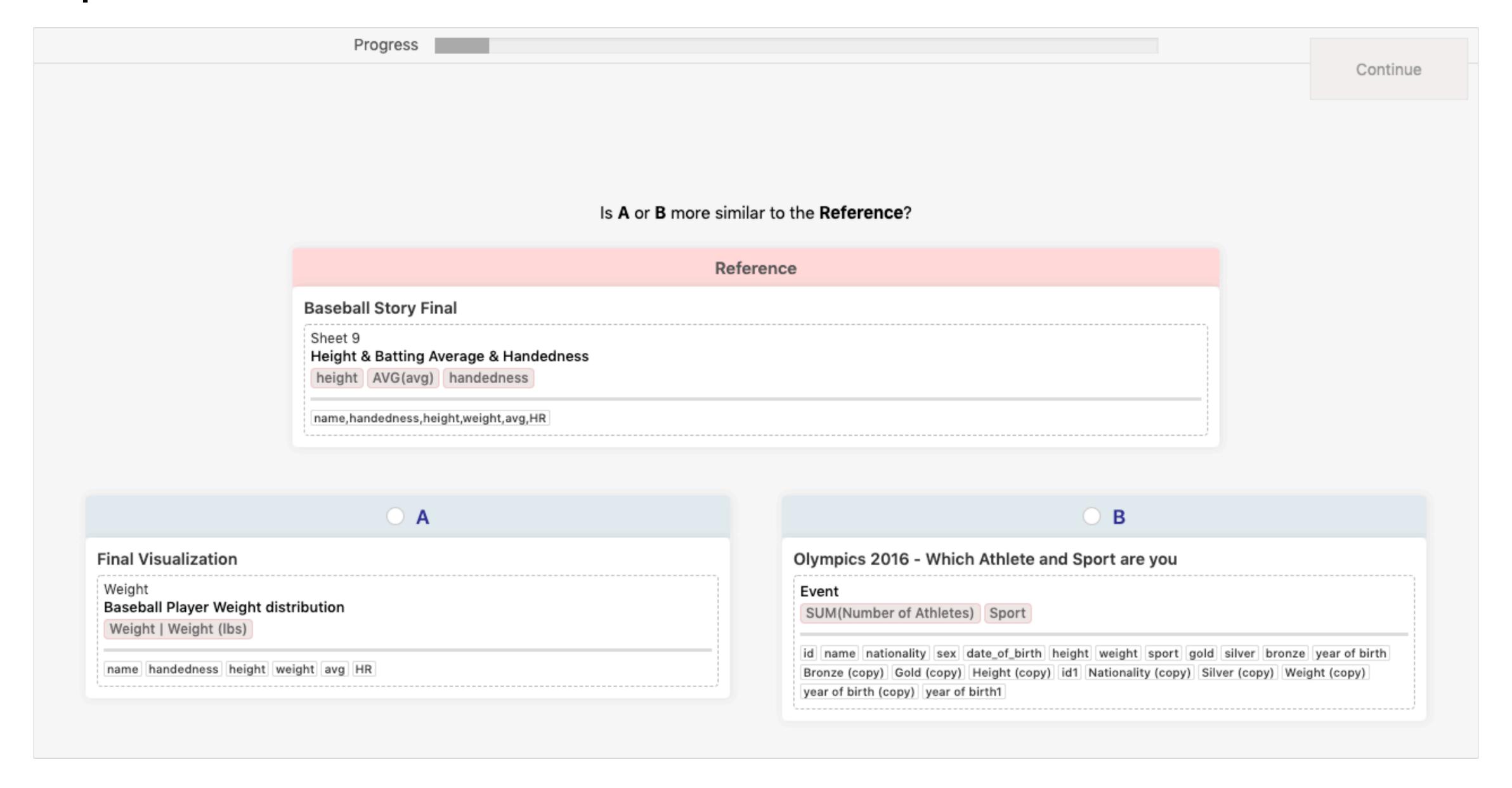
2-Alternative Forced Choice Experiment



Experimental Stimulus



Experimental Stimulus



Agreement Scores

	LDA	TF-IDF	GloVe	Doc2Vec	LSI
TF-IDF	.978				
GloVe	.978	1			
Doc2Vec	.912	.889	.889		
LSI	.935	.956	.956	.848	
		000	000	074	0.50
Human	.914	.892	.892	.871	.852

Agreement Scores

	LDA	TF-IDF	GloVe	Doc2Vec	LSI
TF-IDF	.978				
GloVe	.978	1			
Doc2Vec	.912	.889	.889		
LSI	.935	.956	.956	.848	
Human	.914	.892	.892	.871	.852

Agreement Scores

	LDA	TF-IDF	GloVe	Doc2Vec	LSI
TF-IDF	.978				
GloVe	.978	1			
Doc2Vec	.912	.889	.889		
LSI	.935	.956	.956	.848	
Human	.914	.892	.892	.871	.852

- Very good alignment between human similarity judgements and off-the-shelf model predictions
- LDA performed slightly better

News article

Gov. Gavin Newsom declared a state of emergency Tuesday in response to wildfires in California, as the state gave evacuation orders and battled the effects of a sweltering heat wave, rolling blackouts and the coronavirus pandemic.

By early Wednesday morning, the state fire authorities had ordered residents to evacuate in parts of Santa Cruz, San Mateo, Napa and Sonoma Counties, in Northern California, where thunderstorms brought lightning strikes this week.

The largest fire in the region, called the SCU Lightning Complex, had spread to 35,000 acres in several counties east of San Jose and was 4 percent contained. Another fire, called the LNU Lightning Complex fire, was quickly growing north of the Bay Area, with 32,000 acres burned by about 9:30 Tuesday night.

That fire forced evacuations in parts of Napa and Sonoma, with the authorities warning of an "immediate threat to life" in some places. Local news outlets showed structures consumed by flames in Vacaville, about 35 miles southwest of Sacramento, and fire overtaking a camera meant to help spot wildfires on Mount Vaca. Photos and videos on social media showed flames lapping at the road and, in the hours before dawn, some images showed a glowing red sky, as the fire lit up dense smoke.

To the south, residents in Oakland and San Francisco could smell smoke as they woke up on Wednesday morning. The authorities around Northern California warned of poor air quality in addition to the rising heat ...

News article

Gov. Gavin Newsom declared a state of emergency Tuesday in response to wildfires in California, as the state gave evacuation orders and battled the effects of a sweltering heat wave, rolling blackouts and the coronavirus pandemic.

By early Wednesday morning, the state fire authorities had ordered residents to evacuate in parts of Santa Cruz, San Mateo, Napa and Sonoma Counties, in Northern California, where thunderstorms brought lightning strikes this week.

The largest fire in the region, called the SCU Lightning Complex, had spread to 35,000 acres in several counties east of San Jose and was 4 percent contained. Another fire, called the LNU Lightning Complex fire, was quickly growing north of the Bay Area, with 32,000 acres burned by about 9:30 Tuesday night.

That fire forced evacuations in parts of Napa and Sonoma, with the authorities warning of an "immediate threat to life" in some places. Local news outlets showed structures consumed by flames in Vacaville, about 35 miles southwest of Sacramento, and fire overtaking a camera meant to help spot wildfires on Mount Vaca. Photos and videos on social media showed flames lapping at the road and, in the hours before dawn, some images showed a glowing red sky, as the fire lit up dense smoke.

To the south, residents in Oakland and San Francisco could smell smoke as they woke up on Wednesday morning. The authorities around Northern California warned of poor air quality in addition to the rising heat ...

Extracted text from viz workbook

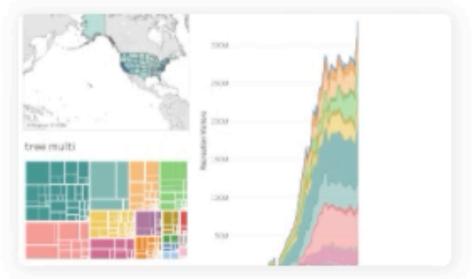
customer analysis sales profit discount commission segment ratio ranking count ship performance target furniture office home supplies city drilldown late early product category forecast order quantity ...

Proof-of-concept implementation

lydray itsech (yang a.

landuserv3

bing4493 • 2017-05-08



country

Makeover Monday Week 23 -

montime

mak.gill • 2017-06-05

bar chart | area chart | line chart | bubble chart

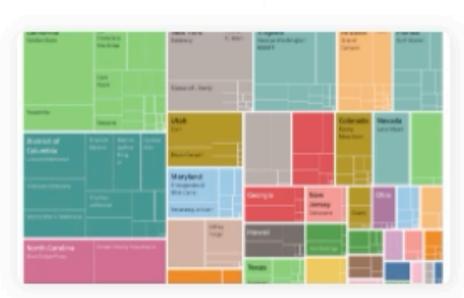
Makeover Monday Week 23

frans.rasmussen7740 • 2017-06-08



ASBURY Dashboard

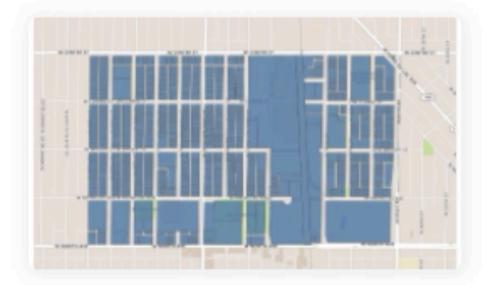
brian.jones3491 • 2018-02-09



Sort by relevance ▼

Makeover Monday Week 23

esben.michelsen • 2017-06-05



Metcalfe Park

safe.sound.mke • 2017-12-15

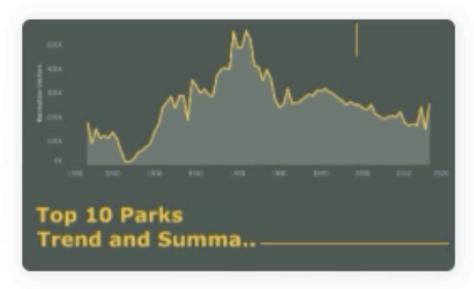
Grant's Nepalese Tourism

hollidaygg • 2015-03-08



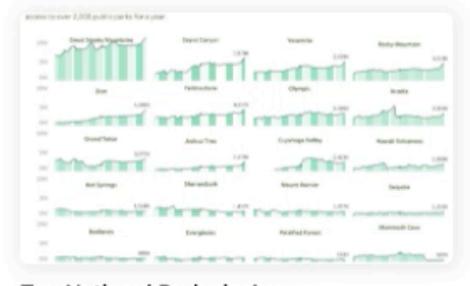
Makeover Monday week 23

priyesh.singh • 2017-06-05



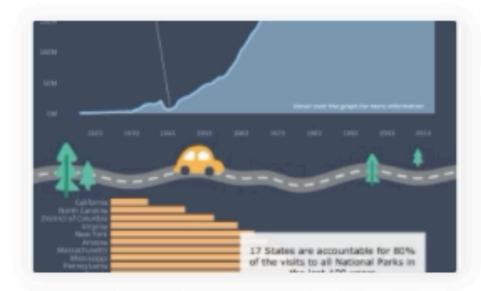
National Parks

poojagandhi • 2017-06-05



Top National Parks in Ame

sarah.bartlett • 2017-06-05



The National Parks Have N

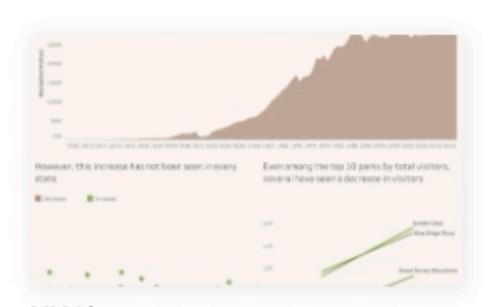
pablolgomez • 2017-06-05

MakeOver Monday TOTC 2017

nick.bignell • 2017-06-05

Grant's Nepalese Tourism3

hollidaygg • 2015-03-08

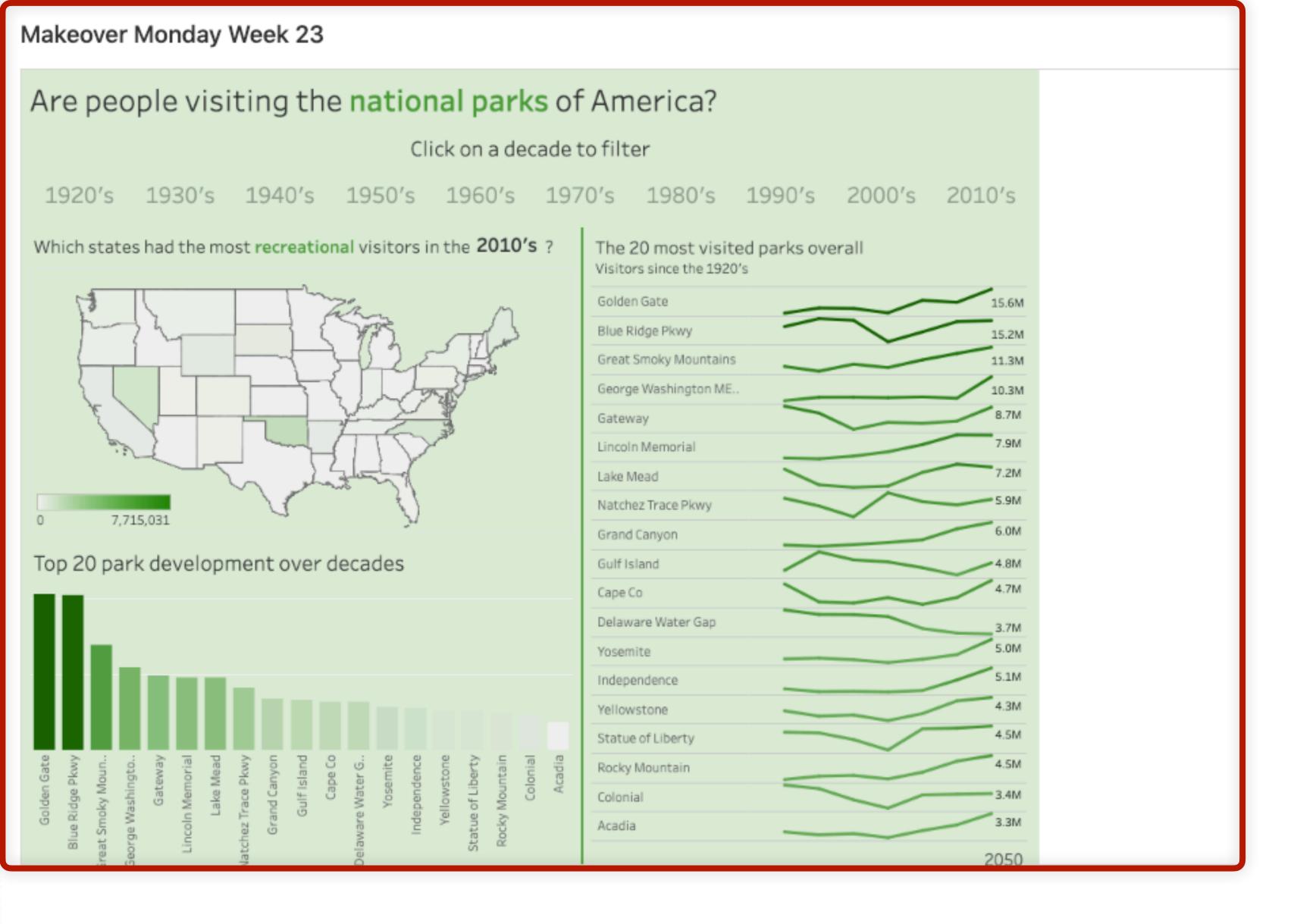


MM Live

nai.louza • 2017-06-05

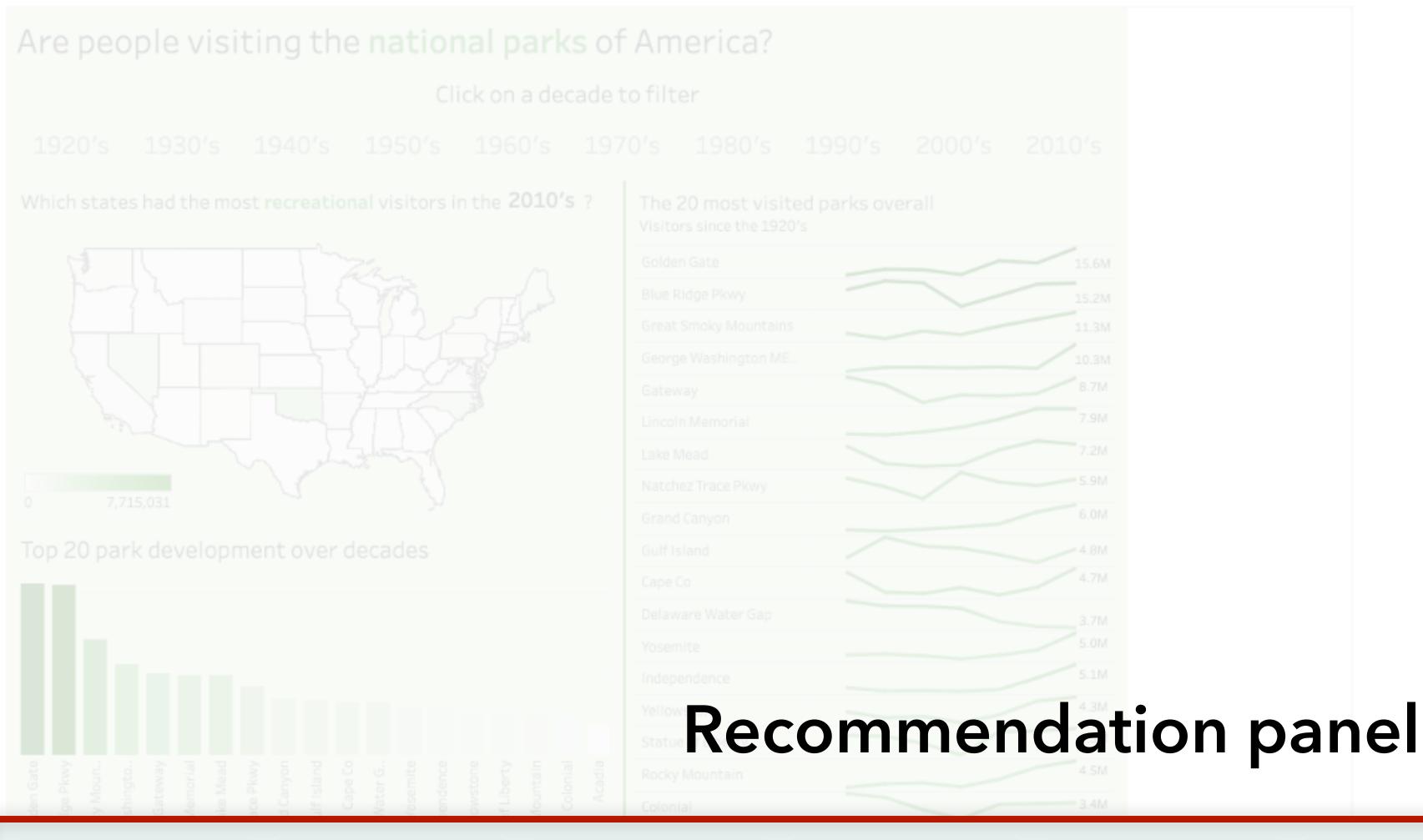
Windermere

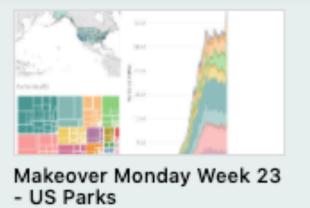
lester.nare • 2018-06-08



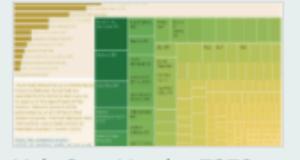
Interactive workbook

Related workbooks Similar data Similar versions 56









National Park Growth
Trends
poojagandhi
krupp

Makeover Monday Week 23

- The Popularity of US

National Parks

umar.hassan

Classification of Ozone Levels1 tihana

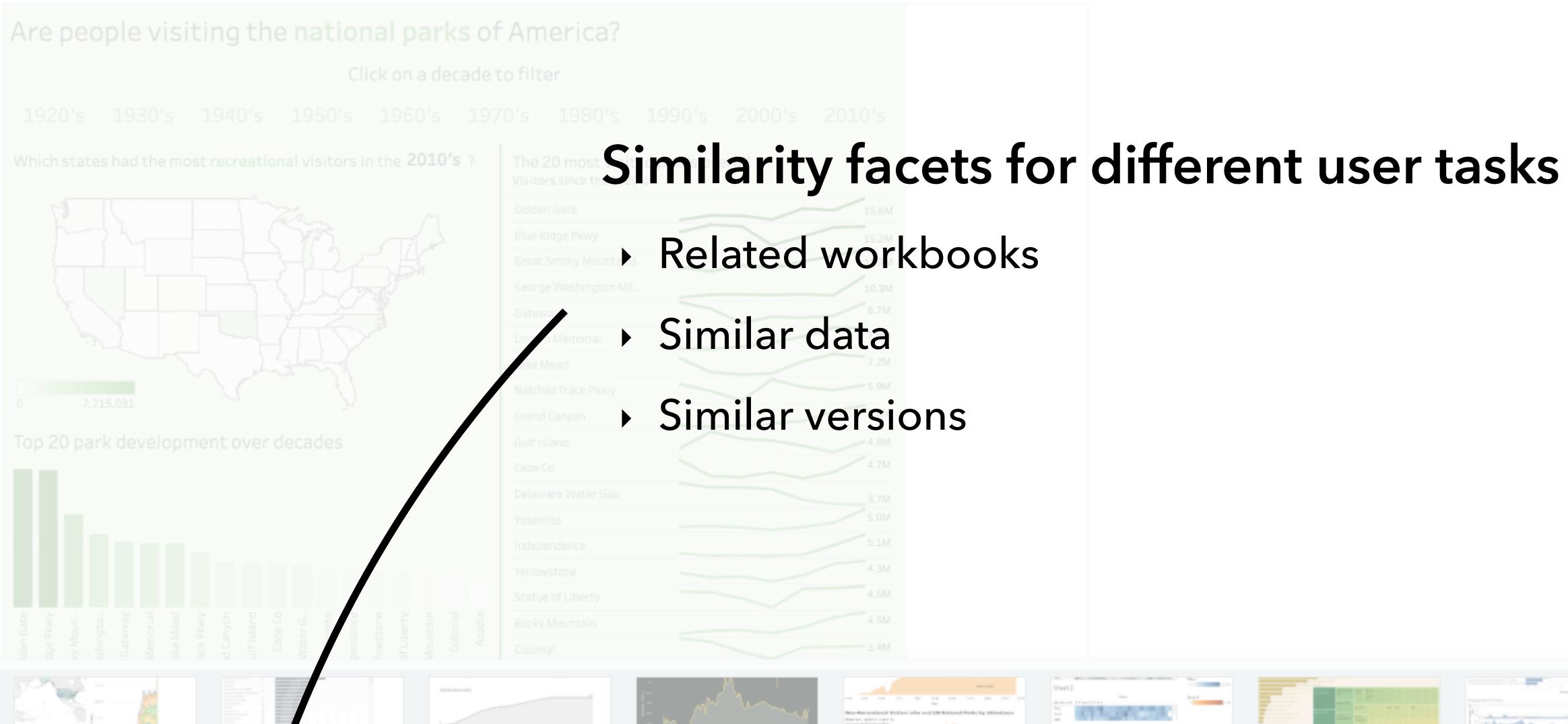
MakeOver Monday TOTC 2017 nick.bignell

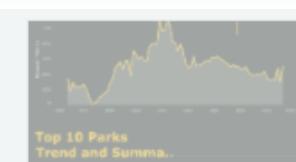
Nick Twitter Report nick.strohecker

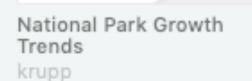
Related workbooks

mak.gill

Similar data





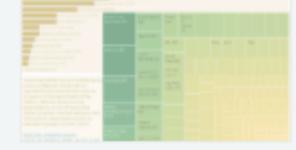


National Parks poojagandhi

Makeover Monday Week 23 - The Popularity of US National Parks umar.hassan

Levels1 tihana

Classification of Ozone



MakeOver Monday TOTC 2017 nick.bignell

Nick Twitter Report nick.strohecker

Related workbooks

US Parks

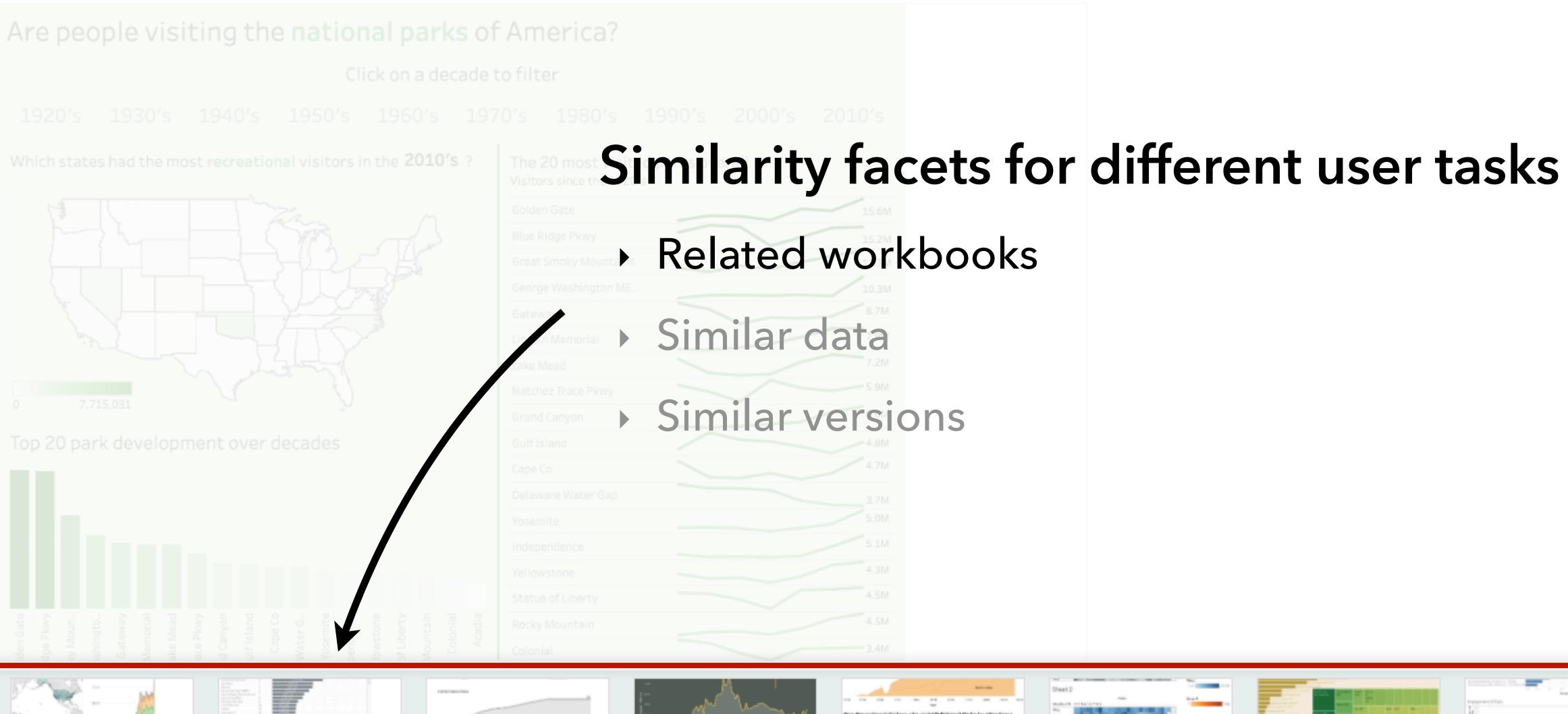
mak.gill

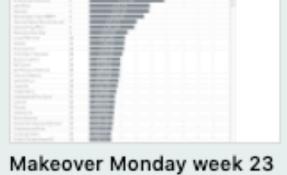
Makeover Monday Week 23

Similar data

priyes

Makeover Monday week 23





National Park Growth Trends

krupp

National Parks poojagandhi

Makeover Monday Week 23 - The Popularity of US National Parks

umar.hassan

Classification of Ozone Levels1 tihana

MakeOver Monday TOTC 2017 nick.bignell

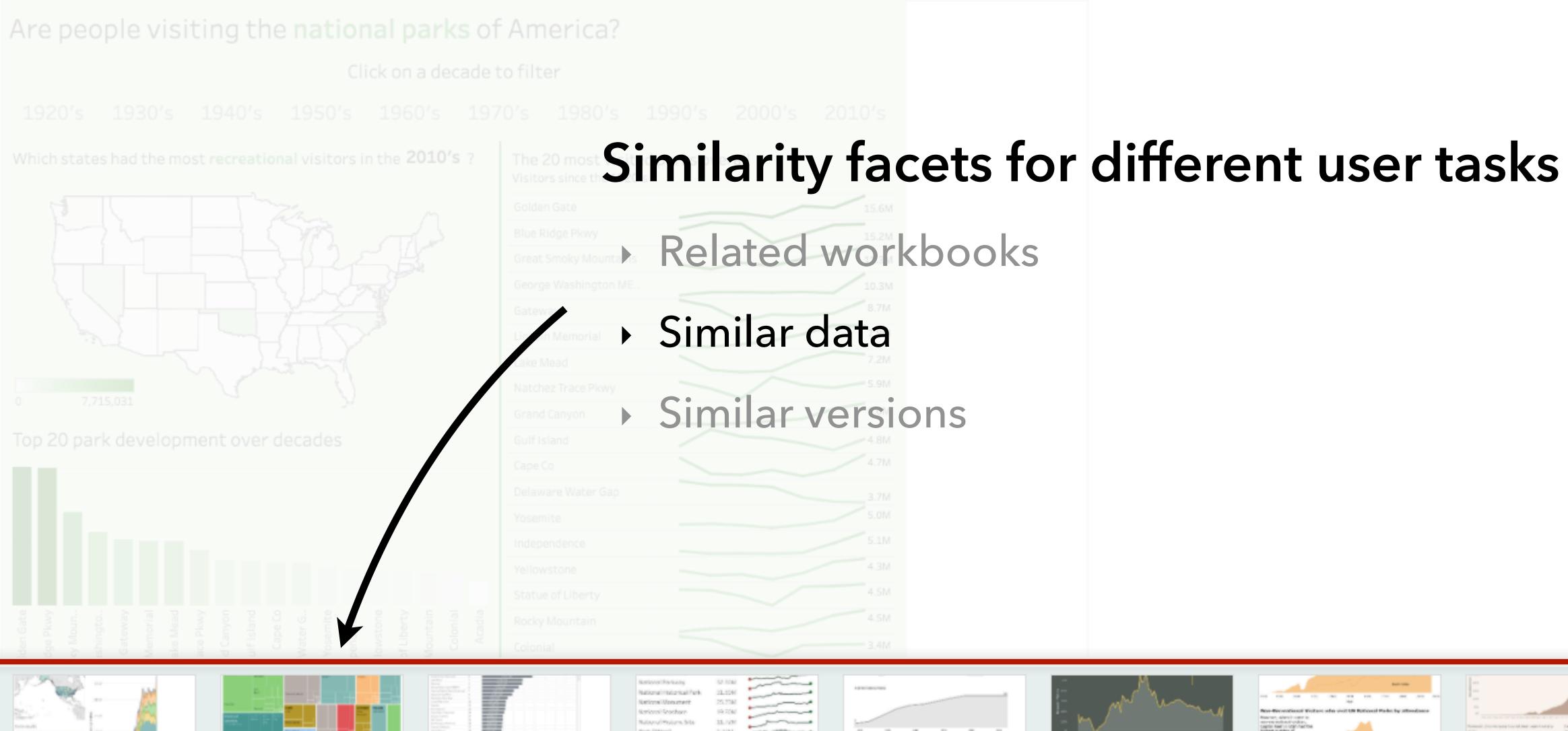
Nick Twitter Report nick.strohecker

Related workbooks

mak.gill

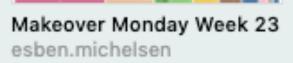
Similar data

priyesh.singh



MM Live nai.louza

Makeover Monday Week 23 US Parks





Makeover Monday week 23 priyesh.singh



MMConference charlie.hutcheson

National Park Growth Trends krupp

National Parks poojagandhi

Related workbooks

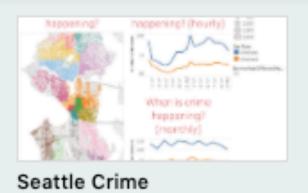
mak.gill

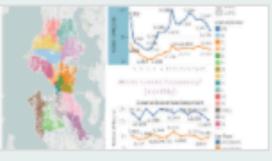
Similar data



Similarity facets for different user tasks

- Related workbooks
- Similar data
- Similar versions





Seattle Crime Dashboard kelsey.hofmann

Crime in Seattle danya.setiawan

caitlin.streamer

Generalizable to other viz specifications

Generalizable to other viz specifications

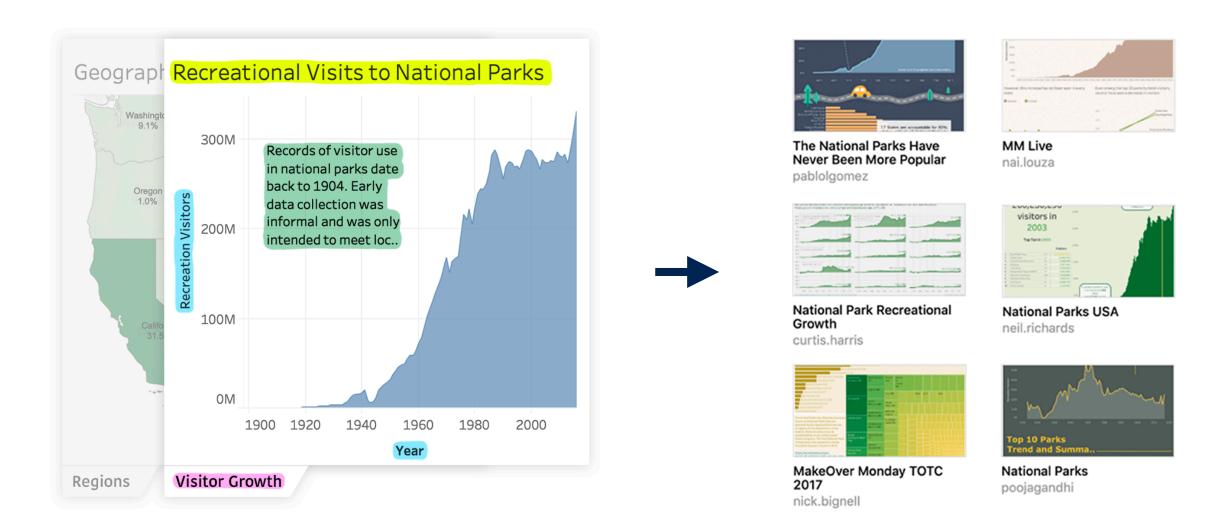
• • •

VizCommender

Computing Text-Based Similarity in Visualization Repositories for Content-Based Recommendations

Michael Oppermann, Robert Kincaid, and Tamara Munzner

michaeloppermann.com/work/viz-commender



Contributions

- Challenges for content-based visualization recommendations
- Design and implementation of a proof-of-concept pipeline
- Analysis of applicable NLP techniques and a user study assessing the alignment with human judgements of similarity

Interactive Visual Analysis Tool

Participants (75)

TOTAL AVG. MEDIAN MIN. MAX. INTRA-RATER INTER-RATER EXPERT BOTH NONE TIMING RT RT RT RT RT POS A POS B AGREEMENT AGREEMENT AGREEMENT DIFFICULTY RELEVANT RELEVANT DEMOGRAPHICS ID 17min 22s 16s 21 26 100% 96% 97.87% 3/5 2/5 2/5 54, female, Training 4s 2min (19)12min 91% 2/5 2/5 57, female, Training 16s 93.62% 2/5 13s 7s 37s 21 26 100% (15)10min 30, male, College, no 12s 25 50% 85% 82.98% 4/5 4/5 2/5 22 7s 2s 2min (10)degree 17min 34, female, Bachelor's 22s 27 91% 89.36% 3/5 4/5 2/5 18s 8s 60s 20 100% (21)degree 5min 40, male, Bachelor's 23 4/5 3/5 3s 100% 83% 85.11% 2/5 6s 5s 32s 24 (6)degree 7min 26, female, Bachelor's 98% 95.74% 3s 21 26 1/5 3/5 1/5 9s 7s 34s 100% (10)degree 7min 53, male, Bachelor's 87% 3/5 3/5 25 85.11% 5/5 9s 8s 24s 22 50% 4s (11) degree 6min 31, male, College, no 23 2/5 2/5 1/5 8s 7s 3s 25s 24 50% 91% 89.36% (8)degree 32, female, Bachelor's 98% 95.74% 2/5 3/5 2/5 175 7min (9) 10s 6s 3s 32s 26 21 100% degree 35, female, Bachelor's 10min 13s 10s 5s 37s 25 22 100% 96% 93.62% 1/5 2/5 1/5 (13)degree 11min 28, male, College, no 98% 95.74% 5/5 27 2/5 15s 55s 20 100% 1/5 173 12s 4s (13)degree 8min 30, male, College, no 30 87% 2/5 5/5 1/5 11s 8s 3s 1min 17 50% 85.11% (10)degree 23, female, Bachelor's 98% 2/5 2/5 171 6min (7) 7s 3s 29s 27 20 100% 95.74% 1/5 8s degree 9min 55, female, Bachelor's 23 89.36% 9s 3s 24 100% 91% 3/5 4/5 2/5 31s (11)degree 47, female, Bachelor's 25 91.49% 2/5 2/5 7min (9) 10s 20s 22 100% 94% 2/5 9s 4s degree 14min 39, male, Bachelor's 2/5 18s 74% 4/5 5/5 7s 3s 27 20 100% 3min 76.6% (16)degree 13min 40, female, Bachelor's 16s 25 87% 2/5 3/5 2/5 22 100% 89.36% 14s 4s 1min (17)degree 20min 40, male, Associate 26s 12s 24 100% 2/5 3/5 2/5 4s 23 81% 78.72% 3min (28)degree 14min 30, female, Bachelor's 25 2/5 2/5 2/5 18s 3s 22 91% 89.36% 7s 100% 4min (17)degree 36, male, Bachelor's 100% 89% 2/5 4min (7) 5s 22 1/5 2/5 5s 2s 10s 25 91.49% degree 36, male, College, no 14min 50% 91% 4/5 25 2/5 3/5 163 18s 15s 22 89.36% 4s 44s (15)degree 37, male, Bachelor's 7min (9) 9s 3/5 2/5 20s 28 50% 98% 97.87% 2/5 4s 19 161 8s degree 30min 69, female, College, no 38s 5/5 2/5 35s 13s 50% 91% 89.36% 5/5 160 1min 29 18 (32)degree 33, female, Bachelor's 8min 10s 2/5 2/5 1/5 0% 87% 3s 37s 23 85.11% 7s 24 (9)degree 7min (9) 9s 2/5 40, female, High school 23 85% 87.23% 2/5 1/5 8s 4s 27s 24 100% 18min 39, female, Bachelor's 23s 3/5 3/5 2/5 94% 17s 24 100% 95.74% 6s 2min 23 157 (20)degree 10min 41, male, College, no

Filter triplets

Disagree with majority

Temporal alignment

9s 42s 2324

✓ tfidf ✓ Ida_150 ✓ Isi_150 ✓ glove_pre ✓ glove_tf ✓d2v_new Filter triplets Settings