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Abstract

Inference amortization methods share information across multiple posterior-
inference problems, allowing each to be carried out more efficiently. Generally, they
require the inversion of the dependency structure in the generative model, as the
modeller must learn a mapping from observations to distributions approximating
the posterior. Previous approaches have involved inverting the dependency struc-
ture in a heuristic way that fails to capture these dependencies correctly, thereby
limiting the achievable accuracy of the resulting approximations. We introduce an
algorithm for faithfully, and minimally, inverting the graphical model structure of
any generative model. Such inverses have two crucial properties: a) they do not
encode any independence assertions that are absent from the model and b) they are
local maxima for the number of true independencies encoded. We prove the cor-
rectness of our approach and empirically show that the resulting minimally faithful
inverses lead to better inference amortization than existing heuristic approaches.

1 Introduction
Evidence from human cognition suggests that the brain reuses the results of past inferences to speed
up subsequent related queries (Gershman & Goodman, 2014). In the context of Bayesian statistics,
it is reasonable to expect that, given a generative model, p(x, z), over data x and latent variables z,
inference on p(z | x1) is informative about inference on p(z | x2) for two related inputs, x1 and
x2. Several algorithms (Kingma & Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013;
Paige & Wood, 2016; Le et al., 2017, 2018; Maddison et al., 2017a; Naesseth et al., 2018) have
been developed with this insight to perform amortized inference by learning an inference artefact
q(z | x), which takes as input the values of the observed variables, and—typically with the use
of neural network architectures—return a distribution over the latent variables approximating the
posterior. These inference artefacts are known variously as inference networks, recognition models,
probabilistic encoders, and guide programs; we will adopt the term inference networks throughout.
Along with conventional fixed-model settings (Stuhlmüller et al., 2013; Le et al., 2017; Ritchie et al.,
2016; Paige & Wood, 2016), a common application of inference amortization is in the training of
variational auto-encoders (VAEs) (Kingma & Welling, 2014), for which the inference network is
simultaneously learned alongside a generative model. It is well documented that deficiencies in the
expressiveness or training of the inference network can also have a knock-on effect on the learned
generative model in such contexts (Burda et al., 2016; Cremer et al., 2017, 2018; Rainforth et al.,
2018), meaning that poorly chosen coarse-grained structures can be particularly damaging.
Implicit in the factorization of the generative model and inference network in both fixed and learned
model settings are probabilistic graphical models, commonly Bayesian networks (BNs), encoding
dependency structures. We refer to these as the coarse-grain structure, in opposition to the fine-grain
structure of the neural networks that form each inference (and generative) network factor. In this
sense, amortized inference can be framed as the problem of graphical model inversion—how to invert
the graphical model of the generative model to give a graphical model approximating the posterior.
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Many models from the deep generative modeling literature can be represented as BNs (Krishnan
et al., 2017; Gan et al., 2015; Neal, 1990; Kingma & Welling, 2014; Germain et al., 2015; van den
Oord et al., 2016b,a), and fall within this framework.
In this paper, we borrow ideas from the probabilistic graphical models literature, to address the previ-
ously open problem of how best to automate the design of the coarse-grain structure of the inference
network (Ritchie et al., 2016). Typically, the inverse graphical model is formed heuristically. At the
simplest level, some methods just invert the edges in the BN for the generative model, removing edges
between observed variables (Kingma & Welling, 2014; Gan et al., 2015; Ranganath et al., 2015). In a
more principled, but still heuristic, approach, Stuhlmüller et al. (2013); Paige & Wood (2016) con-
struct the inference network by inverting the edges and additionally connecting the parents of children
in the original graph (both of which are a subset of a variable’s Markov blanket; see Appendix C).
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Figure 1: (a) Generative model BN;
(b) Inverse BN by Stuhlmüller’s Al-
gorithm; (c) Faithful inverse BN by
our algorithm.

In general, these heuristic methods introduce conditional inde-
pendencies into the inference network that are not present in the
original distribution. Consequently, they cannot represent the
true posterior even in the limit of infinite neural network capaci-
ties. Take the simple generative model with branching structure
of Figure 1a. The inference network formed by Stuhlmüller’s
method inverts the edges of the model as in Figure 1b. However,
an inference network that is able to represent the true posterior
requires extra edges between the branches, as in Figure 1c.
Another approach, taken by Le et al. (2017), is to use a fully
connected BN for the inverse graphical model, such that every
random choice made by the inference network depends on every previous one. Though such a model
is expressive enough to correctly represent the data given infinite capacity and training time, it ignores
substantial available information from the forward model, inevitably leading to reduced performance
for finite training budgets and/or network capacities.
In this paper, we develop a tractable framework to remedy these deficiencies: the Natural Minimal
I-map generator (NaMI). Given an arbitrary BN structure, NaMI can be used to construct an inverse
BN structure that is provably both faithful and minimal. It is faithful in that it contains sufficient edges
to avoid encoding conditional independencies absent from the model. It is minimal in that it does not
contain any unnecessary edges; i.e., removing any edge would result in an unfaithful structure.
NaMI chiefly draws upon variable elimination (Koller & Friedman, 2009, Ch 9,10), a well-known
algorithm from the graphical model literature for performing exact inference on discrete factor
graphs. The key idea in the operation of NaMI is to simulate variable elimination steps as a tool
for successively determining a minimal, faithful, and natural inverse structure, which can then be
used to parametrize an inference network. NaMI further draws on ideas such as the min-fill heuristic
(Fishelson & Geiger, 2004), to choose the ordering in which variable elimination is simulated, which
in turn influences the structure of the generated inverse.
To summarize, our key contributions are:

i) framing generative model learning through amortized variational inference as a graphical model
inversion problem, and

ii) using the simulation of exact inference algorithms to construct an algorithm for generating
provably minimally faithful inverses.

Our work thus highlights the importance of constructing both minimal and faithful inverses, while
providing the first approach to produce inverses satisfying these properties.

2 Method
Our algorithm builds upon the tools of probabilistic graphical models— a summary for unfamiliar
readers is given in Appendix A.

2.1 General idea
Amortized inference algorithms make use of inference networks that approximate the posterior. To be
able to represent the posterior accurately, the distribution of the inference network should not encode
independence assertions that are absent from the generative model. An inference network that did
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encode additional independencies could not represent the true posterior, even in the non-parametric
limit, with neural network factors whose capacity approaches infinity.
Let us define a stochastic inverse for a generative model p(x|z)p(z) that factors according to a BN
structure G to be a factorization of q(z|x)q(x) over H (Stuhlmüller et al., 2013; Paige & Wood,
2016). The q(z|x) part of the stochastic inverse will define the factorization, or rather, coarse-grain
structure, of the inference network. Recall from §1 that this involved two characteristics. We first
requireH to be an I-map for G:
Definition 1. Let G and H be two BN structures. Denote the set of all conditional independence
assertions made by a graph, K, as I(K). We sayH is an I-map for G if I(H) ⊆ I(G).

To be an I-map for G,H may not encode all the independencies that G does, but it must not mislead
us by encoding independencies not present in G. We term such inverses as being faithful. While
the aforementioned heuristic methods do not in general produce faithful inverses, using either a
fully-connected inverse, or our method, does.
Second, since a fully-connected graph encodes no conditional independencies and is therefore
suboptimal, we require in addition thatH be a minimal I-map for G:
Definition 2. A graph K is a minimal I-map for a set of independencies I if it is an I-map for I and
if removal of even a single edge from K renders it not an I-map.

We call such inverses minimally faithful, which roughly means that the inverse is a local optimum in
the number of true independence assertions it encodes.
There will be many minimally faithful inverses for G, each with a varying number of edges. Our
algorithm produces a natural inverse in the sense that it either inverts the order of the random choices
from that of the generative model (when it is run in the topological mode), or it preserves the ordering
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Figure 2: Illustrating def-
inition of naturalness.

of the random choices (when it is run in reverse topological mode):
Definition 3. A stochastic inverseH for G over variables X is a natural
inverse if either, for all X ∈ X there are no edges in H from X to its
descendants in G, or, for all X ∈ X there are no edges in H from X to
its ancestors in G.

Essentially, a natural inverse is one for which if we were to perform
ancestral sampling, the variables would be sampled in either a topological
or reverse-topological ordering, relative to the original model. Consider
the inverse networks of G shown in Figure 2. H1 is not a natural inverse
of G, since there is both an edge A → C from a parent to a child, and
an edge C → B from a child to a parent, relative to G. However,H2 and
H3 are natural, as they correspond respectively to the reverse-topological
and topological orderings C,B,A and B,A,C.
Most heuristic methods, including those of (Stuhlmüller et al., 2013;
Paige & Wood, 2016), produce (unfaithful) natural inverses that invert
the order of the random choices, giving a reverse-topological ordering.

2.2 Obtaining a natural minimally faithful inverse
We now present NaMI’s graph inversion procedure that given an arbitrary BN structure, G, produces
a natural minimal I-map,H. We illustrate the procedure step-by-step on the example given in Figure
3. Here H and J are observed, as indicated by the shaded nodes. Thus, our latent variables are
Z = {D, I,G, S, L}, our data is X = {H,J}, and a factorization for p(z | x) is desired.
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Figure 3: Example BN

The NaMI graph-inversion algorithm is traced in Table 1. Each step in-
crementally constructs two graphs: an induced graph J and a stochastic
inverseH. The induced graph is an undirected graph whose maximally
connected subgraphs, or cliques, correspond to the scopes of the in-
termediate factors produced by simulating variable elimination. The
stochastic inverse represents our eventual target which encodes the in-
verse dependency structure. It is constructed using information from the
partially-constructed induced graph. Specifically, NaMI goes through
the following steps for this example.
STEP 0: The partial induced graph and stochastic inverse are initialized. The initial induced graph
is formed by taking the directed graph for the forward model, G, removing the directionality of the
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Table 1: Tracing the NaMI algorithm on example from Figure 3. S is the set of “frontier” variables
that are considered for elimination, v ∈ S the variable eliminated at each step chosen by the
greedy min-fill heuristic, J the partially constructed induced graph after each step with black nodes
indicating a eliminated variables, andH the partially constructed stochastic inverse.
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edges, and adding additional edges between variables that share a child in G—in this example, edges
D − I , S − L and G− J . This process is known as moralization. The stochastic inverse begins as
disconnected variables, and edges are added to it at each step.
STEP 1: The frontier set of variables to consider for elimination, S, is initialized to the latent
variables having no latent parents in G, that is, D, I . To choose which variable to eliminate first,
we apply the greedy min-fill heuristic, which is to choose the (possibly non-unique) variable that
adds the fewest edges to the induced graph J in order to produce as compact an inverse as possible
under the topological ordering. Specifically, noting that the cliques of J correspond to the scopes of
intermediate factors during variable elimination, we want to avoid producing intermediate factors
which would require us to add additional edges to J , as doing so will in turn induce additional edges
inH at future steps. For this example, if we were to eliminate D, that would produce an intermediate
factor, ψD(D, I,G), while if we were to eliminate I , that would produce an intermediate factor,
ψI(I,D,G, S). Choosing to eliminate would I thus requires adding an edge G–S to the induced
graph, as there is no clique I,D,G, S in the current state of J . Conversely, eliminating D does not
require adding extra edges to J and so we choose to eliminate D.
The elimination of D is simulated by marking its node in J . The parents of D in the inverseH are
set to be its nonmarked neighbours in J , that is, I and G. D is then removed from the frontier, and
any non-observed children in G of D whose parents have all been marked added to it—in this case,
there are none as the only child of D, G, still has an unmarked parent I .
STEP 2: Variable I is the sole member of the frontier and is chosen for elimination. The elimination
of I is simulated by marking its node in J and adding the additional edge G–S. This is required
because elimination of I requires the addition of a factor, ψI(I,G, S), that is not currently present in
J . The parents of I in the inverseH are set to be its nonmarked neighbours in J , G and S. I is then
removed from the frontier. Now, G and S are children of I , and both their parents D and I have been
marked. Therefore, they are added to the frontier.
STEP 3-5: The process is continued until the end of the fifth step when all the latent variables,
D, I, S,G, L, have been eliminated and the frontier is empty. At this point, H represents a factor-
ization p(z | x), and we stop here as only a factorization for the posterior is required for amortized
inference. Note, however, that it is possible to continue simulating steps of variable elimination on
the observed variables to complete the factorization as p(z | x)p(x).
An important point to note is that NaMI’s graph inversion can be run in one of two modes. The
“topological mode,” which we previously implicitly considered, simulates variable elimination in
a topological ordering, producing an inverse that reverses the order of the random choices from
the generative model. Conversely, NaMI’s graph inversion can also be run in “reverse topological
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Algorithm 1 NaMI Graph Inversion
1: Input: BN structure G, latent variables Z , TOPMODE?
2: J ← MORALIZE(G)
3: Set all vertices of J to be unmarked
4: H ← {VARIABLES(G), ∅}, i.e. unconnected graph
5: UPSTREAM ← “parent” if TOPMODE? else “child”
6: DOWNSTREAM ← “child” if TOPMODE? else “parent”
7: S ← all latent variables without UPSTREAM latents in G
8: while S 6= ∅ do
9: Select v ∈ S according to min-fill criterion

10: Add edges in J between unmarked neighbours of v
11: Make unmarked neighbours of v ∈ J , v’s parents inH
12: Mark v and remove from S
13: for unmarked latents DOWNSTREAM u of v in G do
14: Add u to S if all its UPSTREAM latents in G are marked
15: end for
16: end while
17: returnH

mode,” which simulates variable elimi-
nation in a reverse topological ordering,
producing an inverse that preserves the
order of random choices in the genera-
tive model. We will refer to these ap-
proaches as forward-NaMI and reverse-
NaMI respectively in the rest of the pa-
per. The rationale for these two modes is
that, though they both produce minimally
faithful inverses, one may be substantially
more compact than the other, remember-
ing that minimality only ensures a local
optimum. For an arbitrary graph, it can-
not be said in advance which ordering
will produce the more compact inverse.
However, as the cost of running the in-
version algorithm is low, it is generally
feasible to try and pick the one producing
a better solution.
The general NaMI graph-reversal procedure is given in Algorithm 1. It is further backed up by the
following formal demonstration of correctness, the proof for which is given in Appendix F.
Theorem 1. The Natural Minimal I-Map Generator of Algorithm 1 produces inverse factorizations
that are natural and minimally faithful.
We further note that NaMI’s graph reversal has a running time of order O(nc) where n is the number
of latent variables in the graph and c << n is the size of the largest clique in the induced graph.
We consequently see that it can be run cheaply for practical problems: the computational cost of
generating the inverse is generally dominated by that of training the resulting inference network itself.
See Appendix F for more details.

2.3 Using the faithful inverse
Once we have obtained the faithful inverse structureH, the next step is to use it to learn an inference
network, qψ(z | x). For this, we use the factorization given by H. Let τ denote the reverse of the
order in which variables were selected for elimination by Line 9 in Algorithm 1, such that τ is a
permutation of 1, . . . , n and τ(n) is the first variable eliminated. H encodes the factorization

qψ(z | x) =
∏n

i=1
qi(zτ(i) | PaH(zτ(i))) (1)

where PaH(zτ(i)) ⊆
{
x, zτ(1), . . . , zτ(i−1)

}
indicates the parents of zτ(i) in H. For each factor qi,

we must decide both the class of distributions for zτ(i) | PaH(zτ(i)), and how the parameters for
that class are calculated. Once learned, we can both sample from, and evaluate the density of, the
inference network for a given dataset by considering each factor in turn.
The most natural choice for the class of distributions for each factor is to use the same distribution fam-
ily as the corresponding variable in the generative model, such that the supports of these distributions
match. For instance, continuing the example from Figure 3, if D ∼ N(0, 1) in the generative model,
then a normal distribution would also be used for D | I,G in the inference network. To establish the
mapping from data to the parameters to this distribution, we train neural networks using stochastic
gradient ascent methods. For instance, we could set D | {I = i, G = g} ∼ N(µϕ(i, g), σϕ(i, g)),
where µϕ and σϕ are two densely connected feedforward networks, with learnable parameters ϕ. In
general, it will be important to choose architectures which well match the problem at hand. For exam-
ple, when perceptual inputs such as images and language are present in the conditioning variables,
it is advantageous to first embed them to a lower-dimensional representation using, for example,
convolutional neural networks.
Matching the distribution families in the inference network and generative model, whilst a simple
and often adequate approximation, can be suboptimal. For example, suppose that for a normally
distributed variable in the generative model, the true conditional distribution in the posterior for that
variable is multimodal. In this case, using a (single mode) normal factor in the inference network
would not suffice. One could straightforwardly instead use, for example, either a mixture of Gaussians,
or, normalizing flows (Rezende & Mohamed, 2015; Kingma et al., 2016), to parametrize each
inference network factor in order to improve expressivity, at the cost of additional implementational
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Figure 4: Results for the relaxed Bernoulli VAE with 30 latent units, compared after 1000 epochs
of learning the: (a) negative ELBO, and (b) negative AIS estimates, varying inference network
factorizations and capacities (total number of parameters); (c) An estimate of the variational gap, that
is, the difference between marginal log-likelihood and the ELBO.

complexity. In particular, if one were to use a provably universal density estimator to parameterize
each inference network factor, such as that introduced in Huang et al. (2018), the resulting NaMI
inverse would constitute a universal density estimator of the true posterior.
After the inference network has been parametrized, it can be trained in number of different ways,
depending on the final use case of the network. For example, in the context of amortized stochastic
variational inference (SVI) methods such as VAEs (Kingma & Welling, 2014; Rezende et al., 2014),
the model pθ(x, z) is learned along with the inference network qψ(z | x) by optimizing a lower
bound on the marginal loglikelihood of the data, LELBO = Eqψ(z|x) [ln pθ(x, z)− ln qψ(z | x)].
Stochastic gradient ascent can then be used to optimize LELBO in the same way a standard VAE,
simulating from qψ(z|x) by considering each factor in turn and using reparameterization (Kingma &
Welling, 2014) when the individual factors permit doing so.
A distinct training approach is provided when the model p(x, z) is fixed (Papamakarios & Murray,
2015). Here a proposal is learnt for either importance sampling (Le et al., 2017) or sequential
Monte Carlo (Paige & Wood, 2016) by using stochastic gradient ascent to minimize the reverse
KL-divergence between the inference network qψ(z | x) and the true posterior p(z | x). Up to a
constant, the objective is given by LIC = Ep(x,z) [− ln qψ(z | x)] .

Using a minimally faithful inverse structure typically improves the best inference network attainable
and the finite time training performance for both these settings, compared with previous naive
approaches. In the VAE setting, this can further have a knock-on effect on the quality of the learned
model pθ(x, z), both because a better inference network will give lower variance updates of the
generative network (Rainforth et al., 2018) and because restrictions in the expressiveness of the
inference network lead to similar restrictions in the generative network (Cremer et al., 2017, 2018).
In deep generative models, the BNs may be much larger than the examples shown here. However,
typically at the macro-level, where we collapse each vector to a single node, they are quite simple.
When we invert this type of collapsed graph, we must do so with the understanding that the distribution
over a vector-valued node in the inverse must express dependencies between all its elements in order
for the inference network to be faithful.

3 Experiments
We now consider the empirical impact of using NaMI compared with previous approaches. In §3.1,
we highlight the importance of using a faithful inverse in the VAE context, demonstrating that doing
so results in a tighter variational bound and a higher log-likelihood. In §3.2, we use NaMI in the
fixed-model setting. Here our results demonstrate the importance of using both a faithful and minimal
inverse on the efficiency of the learned inference network. Low-level details on the experimental
setups can be found in Appendix D and an implementation at https://git.io/fxVQu.

3.1 Relaxed Bernoulli VAEs
Prior work has shown that more expressive inference networks give an improvement in amortized
SVI on sigmoid belief networks and standard VAEs, relative to using the mean-field approximation
(Uria et al., 2016; Maaløe et al., 2016; Rezende & Mohamed, 2015; Kingma et al., 2016). Krishnan
et al. (2017) report similar results when using more expressive inverses in deep linear-chain state-
space models. It is straightforward to see that any minimally faithful inverse for the standard VAE
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Figure 5: (a) BN structure for a binary tree with d = 3; (b) Stuhlmüller’s heuristic inverse; (c) Natural
minimally faithful inverse produced by NaMI in topological mode; (d) Most compact inverse when
d > 3, given by running NaMI in reverse topological mode; (e) Fully connected inverse.
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Figure 6: Results for binary tree Gaussian BNs with depth d = 5, comparing inference network
factorizations in the compiled inference setting. The KL divergence from the analytical posterior
estimated to the inference network on the training and test sets are shown in (a) and (b) respectively.
(c) shows the average negative log-likelihood of inference network samples under the analytical
posterior, conditioning on five held-out data sets. The results are averaged over 10 runs and 0.75
standard deviations indicated. The drop at 100 epochs is due to decimating the learning rate.

framework (Kingma & Welling, 2014) has a fully connected clique over the latent variables so that
the inference network can take account of the explaining-away effects between the latent variables in
the generative model. As such, both forward-NaMI and backward-NaMI produce the same inverse.
The relaxed Bernoulli VAE (Maddison et al., 2017b; Jang et al., 2017) is a VAE variation that replaces
both the prior on the latents and the distribution over the latents given the observations with the
relaxed Bernoulli distribution (also known as the Concrete distribution). It can also be understood as
a “deep” continuous relaxation of sigmoid belief networks.
We learn a relaxed Bernoulli VAE with 30 latent variables on MNIST, comparing a faithful inference
network (parametrized with MADE (Germain et al., 2015)) to the mean-field approximation, after
1000 epochs of learning for ten different sizes of inference network, keeping the size of the generative
network fixed. We note that the mean-field inference network has the same structure as the heuristic
one that reverses the edges from the generative model. A tight bound on the marginal likelihood is
estimated with annealed importance sampling (AIS) (Neal, 1998; Wu et al., 2017).
The results shown in Figure 4 indicate that using a faithful inverse on this model produces a significant
improvement in learning over the mean-field inverse. Note that the x-axis indicates the number of
parameters in the inference network. We observe that for every capacity level, the faithful inference
network has a lower negative ELBO and AIS estimate than that of the mean-field inference network.
In Figure 4c, the variational gap is observed to decrease (or rather, the variational bound tightens) for
the faithful inverse as its capacity is increased, whereas it increases for the mean-field inverse. This
example illustrates the inadequacy of the mean-field approximation in certain classes of models, in
that it can result in significantly underutilizing the capacity of the model.

3.2 Binary-tree Gaussian BNs
Gaussian BNs are a class of models in which the conditional distribution of each variable is normally
distributed, with a fixed variance and a mean that is a fixed linear combination of its parents plus an
offset. We consider here Gaussian BNs with a binary-tree structured graph and observed leaves (see
Figure 5a for the case of depth, d = 3). In this class of models, the exact posterior can be calculated
analytically (Koller & Friedman, 2009, §7.2) and so it forms a convenient test-bed for performance.
The heuristic inverses simply invert the edges of the graph (Figure 5b), whereas a natural minimally
faithful inverse requires extra edges between subtrees (e.g. Figure 5c) to account for the influence one
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Figure 7: Convergence of reverse KL divergence (used as the training objective) for Bayesian GMM
for K = 3 clusters and N = 200 data points, comparing inference networks with a fixed generative
model. The shaded regions indicate 1 standard error in the estimation.

node can have on others through its parent. For this problem, it turns out that running reverse-NaMI
(Figure 5d) produces a more compact inverse than forward-NaMI. This, in fact, turns out to be
the most compact possible I-map for any d > 3. Nonetheless, all three inversion methods have
significantly fewer edges than the fully connected inverse (Figure 5e).
The model is fixed and the inference network is learnt from samples from the generative model,
minimizing the “reverse” KL-divergence, namely that from the posterior to the inference network
KL(pθ(z|x)||qψ(z|x)), as per (Paige & Wood, 2016). We compared learning across the inverses pro-
duced by using Stuhlmüller’s heuristic, forward-NaMI, reverse-NaMI, and taking the fully connected
inverse. The fully connected inference network was parametrized using MADE (Germain et al.,
2015), and the forward-NaMI one with a novel MADE variant that modifies the masking matrix to
exactly capture the tree-structured dependencies (see Appendix E.2). As the same MADE approaches
cannot be used for heuristic and reverse-NaMI inference networks, these were instead parametrized
with a separate neural network for each variable’s density function. The inference network sizes were
kept constant across approaches.
Results are given in Figure 6 for depth d = 5 averaging over 10 runs. Figures 6a and 6b show an
estimate of KL(pθ(z|x)||qψ(z|x)) using the train and test sets respectively. From this, we observe
that it is necessary to model at least the edges in an I-map for the inference network to be able to
recover the posterior, and convergence is faster with fewer edges in the inference network. Despite
the more compact reverse-NaMI inverse converging faster than the forward-NaMI one, the latter
seems to converges to a better final solution. This may be because the MADE approach could not be
used for the reverse-NaMI inverse, but this is a subject for future investigation nonetheless.
Figure 6c shows the average negative log-likelihood of 200 samples from the inference networks
evaluated on the analytical posterior, conditioning on five fixed datasets sampled from the generative
model not seen during learning. It is thus a measure of how successful inference amortiziation has
been. All three faithful inference networks have significantly lower variance over runs compared to
the unfaithful inference network produced by Stuhlmüller’s algorithm.
We also observed during other experimentation that if one were to decrease the capacity of all
methods, learning remains stable in the natural minimally faithful inverse at a threshold where it
becomes unstable in the fully connected case and in Stuhlmüller’s inverse.

3.3 Gaussian Mixture Models
Gaussian mixture models (GMMs) are a clustering model where the data x = {x1, x2, . . . , xN} is
assumed to have been generated from one of K clusters, each of which has a Gaussian distribution
with parameters {µj ,Σj}, j = 1, 2, . . . ,K. Each datum, xi is associated with a corresponding
index, zi ∈ {1, . . . ,K} that gives the identity of that datum’s cluster. The indices, z′ = {zi}
are drawn i.i.d. from a categorical distribution with parameter φ. Prior distributions are placed
on θ = {µ1,Σ1, . . . , µK ,ΣK} and φ, so that the latent variables are z = {z′, θ, φ}. The goal of
inference is then to determine the posterior p(z | x), or some statistic of it.
As per the previous experiment, this falls into the fixed-model setting. We factor the fully-
connected inverse as, q(θ|x)q(φ|θ,x)q(z′|φ, θ,x). It turns out that applying reverse-NaMI de-
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couples the dependence between the indices, z′, and produces a much more compact factorization,
q(θ|x, φ)

∏N
i q(zi|xi, φ, θ)q(φ|x), than either the fully-connected or forward-NaMI inverses for this

model. The inverse structure produced by Stuhlmüller’s heuristic algorithm is very similar to the
reverse-NaMI structure for this problem and is omitted.
We train our amortization artifact over datasets with N = 200 samples and K = 3 clusters. The
inference network terms with distributions over vectors were parametrized by MADE, and we
compare the results for the fully-connected and reverse-NaMI inverses. We hold the neural network
capacities constant across methods and average over 10 runs, the results for which are shown in
Figure 7. We see that learning is faster for the minimally faithful reverse-NaMI method, relative to the
fully-connected inverse, and converges to a better solution, in agreement with the other experiments.

3.4 Minimal and Non-minimal Faithful Inverses
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(b) 16 skips edges

Figure 8: Additional edges over forward-NaMI.

To further examine the hypothesis that a non-
minimal faithful inverse has slower learning
and converges to a worse solution relative to
a minimal one, we performed the setup of Ex-
periment 3.2 with depth d = 4, comparing the
forward-NaMI network to two additional net-
works that added 12 and 16 connections to
forward-NaMI (holding the total capacity fixed).
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Figure 9: Average NLL of inference net-
work samples under analytical posterior.

The additional edges are shown in Figure 8. Note the
regular forward-NaMI edges are omitted for visual clarity.
Figure 9 shows the average negative log likelihood (NLL)
under the true posterior for samples generated by the infer-
ence network, based on 5 datasets not seen during training.
It appears that the more edges are added beyond minimal-
ity, the slower is the initial learning and convergence is to
a worse solution.
To further explain why minimality is crucial, we note that
adding additional edges beyond minimality means that
there will be factors that condition on variables whose
probabilistic influence is blocked by the other variables.
This effectively adds an input of random noise into these
factors, which is why we then see slower learning and
convergence to a worse solution.

4 Discussion
We have presented NaMI, a tractable framework that, given the BN structure for a generative model,
produces a natural factorization for its inverse that is a minimal I-map for the model. We have argued
that this should be used to guide the design of the coarse-grain structure of the inference network in
amortized inference. Having empirically analyzed the implications of using NaMI, we find that it
learns better inference networks than previous heuristic approaches. We further found that, in the
context of VAEs, improved inference networks have a knock-on effect on the generative network,
improving the generative networks as well.
Our framework opens new possibilities for learning structured deep generative models that combine
traditional Bayesian modeling by probabilistic graphical models with deep neural networks. This
allows us to leverage our typically strong knowledge of which variables effect which others, while
not overly relying on our weak knowledge of the exact functional form these relationships take.
To see this, note that if we forgo the niceties of making mean-field assumptions, we can impose
arbitrary structure on a generative model simply by controlling its parameterization. The only
requirement on the generative network to evaluate the ELBO is that we can evaluate the network
density at a given input. Recent advances in normalizing flows (Huang et al., 2018; Chen et al., 2018)
mean it is possible to construct flexible and general purpose distributions that satisfy this requirement
and are amenable to application of dependency constraints from our graphical model. This obviates
the need to make assumptions such as conjugacy as done by, for example, Johnson et al. (2016).
NaMI provides a critical component to constructing such a framework, as it allows one to ensure
that the inference network respects the structural assumptions imposed on the generative network,
without which a tight variational bound cannot be achieved.
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