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Abstract

We develop a stochastic whole-brain and body simulator of the nematode round-
worm Caenorhabditis elegans (C. elegans) and show that it is sufficiently regu-
larizing to allow imputation of latent membrane potentials from partial calcium
fluorescence imaging observations. This is the first attempt we know of to “com-
plete the circle,” where an anatomically grounded whole-connectome simulator is
used to impute a time-varying “brain” state at single-cell fidelity from covariates
that are measurable in practice. The sequential Monte Carlo (SMC) method we em-
ploy not only enables imputation of said latent states but also presents a strategy for
learning simulator parameters via variational optimization of the noisy model evi-
dence approximation provided by SMC. Our imputation and parameter estimation
experiments were conducted on distributed systems using novel implementations
of the aforementioned techniques applied to synthetic data of dimension and type
representative of that which are measured in laboratories currently.

1 Introduction

One of the goals of artificial intelligence, neuroscience and connectomics [1] is to understand how
sentience emerges from the interactions of the atomic units of the brain [2, 3], to be able to probe
these mechanisms on the deepest level in living organisms, and to be able to simulate this interaction
ad infinitum [4]. Models imbued with anatomically correct structure exploring the nature of these
interactions have been developed for the widely studied nematode roundworm Caenorhabditis
elegans (C. elegans). These models span from whole-body locomotion [5, 6] to whole-connectome
neuron membrane potential and ion dynamics [7, 8]. However, anatomically grounded C. elegans
connectome models have never been conditioned on data for brain-wide latent state imputation and
parameter estimation. We create a novel simulator of the whole C. elegans connectome and body
by combining existing models [6, 9, 10] and present methods for performing inference in the latent
space of this simulator, conditioned on the type of data that non-invasive measurement techniques are
currently capable of capturing [11, 12].

Techniques for investigating neural function at the cellular level traditionally require direct, invasive
measurement and manipulation of physiological variables such as membrane potentials in a very
small number of neurons, using tools including multi-electrode arrays [14] and patch clamps [15].
Brain-wide in vivo application of such measurement techniques, at the fidelity of individual neurons,
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Figure 1: (a): The C. elegans roundworm, reproduced with permission from anon. (b): Typical in vivo
fluorescence data on which we propose to condition (from Kato et al. [11]). (c): Graphical model of
our C. elegans simulator; variables defined in Section 2. The dashed box denotes the 994 dimensional
latent state of the worm at each time step. (d): Diagram adapted from Sarma et al. [4] reflecting the
community planned development pipeline for C. elegans simulation. Greyed out components are
not considered in this paper. The status of components are as categorized by OpenWorm [4, 13]. (e)
and (f): Results of the virtual patch clamp experiment introduced in Section 3.2. (e): Expectation
of the filtering distribution over body shape shown in blue with true body shape in black. (f): The
true voltages for 15 neurons as generated by our simulator are shown as black dashed lines, with
the SMC filtering distribution shown in blue. The rows correspond, top to bottom, to unobserved
neurons, observed neurons, unobserved motor neurons, and observed motor neurons.
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is logistically infeasible. However covariates of a subset of an organism’s neurons can be measured
non-invasively in vivo using calcium fluorescence imaging [11, 12, 16, 17]. Such techniques allow
the calcium ion concentration, a time-smoothed covariate of the actual neural potential [10], to be
non-invasively estimated in vivo for a spatially co-located subset of a specimen’s neurons, with
minimal effect on behaviour. The use of such measurements to infer unobserved states and test
hypotheses about the mechanisms governing brain-wide state evolution requires the use of a model.
Connecting such a model to observational data so that hypotheses can be tested and tuned forms
the bulk of our contribution in this paper. We refer to using an anatomically correct model to infer
latent states and parameters, conditioned on partial data, as a “virtual patch clamp” (VPC). The VPC
also facilitates in silico experimentation on “digital” C. elegans specimens, by programmatically
modifying the simulator and observing the resulting simulations; enabling rapid, wide-reaching, fully
observable and perfectly repeatable exploration and screening of experimental hypothesis.

2 Simulating C. elegans

Due to the simplicity and regularity of its anatomy, and its predictable yet sophisticated behavioural
repertoire [18], C. elegans, shown in Figure 1(a), is used as a “model organism” in biology and
neuroscience research [19, 20, 21]. Notably, its connectome is regular across wild-type specimens [21]
and has been mapped at synapse and gap-junction fidelity using electron microscopy [21, 22]. Because
of this fixed architecture, neural circuit simulators, imbued with anatomically correct structure, have
been developed to produce feasible whole C. elegans connectome simulators [7, 9, 23] by leveraging
highly accurate neural dynamics models [8, 19, 24, 25, 26]. Likewise, its simple anatomy has allowed
body and locomotion simulators to be developed [6, 27].

The first contribution of this paper is a new C. elegans simulator that integrates existing simulators
and models [6, 9, 10] developed by the C. elegans community. The selection of models to integrate
was influenced by the desire to produce a simulator capable of modelling C. elegans at single-neuron
fidelity that is computationally tractable at desktop-scale for rapid exploration of the model; while
also scaling to high performance compute clusters for parameter estimation and hypothesis testing.
While higher fidelity models exist [7, 24, 27], they are significantly more computationally expensive.

At a high level, our simulator is comprised of three components: a simulator for the time-evolution
of the membrane potential [9] and intracellular calcium ion concentration [10] in all 302 C. elegans
neurons, a simulator for the physical form of the worm and the associated neural stimuli and pro-
prioceptive feedback [6], and a model relating the intracellular calcium to the observed florescence
data [10, 11]. Part of our contribution is how we specifically integrate the different simulators. In par-
ticular, our simulator introduces a physiologically motivated pathway [28] for passing proprioceptive
feedback from the body simulation to the correctly anatomically structured neural model.

In the following we denote the number of neurons N = 302, with n ∈ {1, . . . , N} indexing an
individual neuron. The number of observed calcium traces is M < N (for example M = 49 in Kato
et al. [11]), and t ∈ {0, . . . , T} indexes discrete time steps, where the time discretization used is
δt = 0.01. The graphical model for our simulator is shown in Figure 1(c).

Neural Simulation The first component of our model is a simulator of connectome-scale, single-
neuron fidelity neural dynamics. We selected and modified the simulator presented by Marblestone
[9], which builds on developments presented by Kunert et al. [8] and Wicks et al. [19], called
‘simple C. elegans’ (SCE). SCE is designed to be an easily interpretable simulator of C. elegans
neural membrane potential dynamics, individually denoted as vt,n, via single-compartment neuron
models [8] connected by chemical synapses and electrical gap junctions. SCE, unmodified, uses an
ordinary differential equation (ODE) solver to iterate the differential equation governing membrane
potential evolution. By using a fine time discretization (δt = 0.01) we found that we could achieve
a substantial computational speedup with negligible integration error by modifying SCE to use
forward differencing to project neural voltages forward. We also add a small amount of independent,
neuron-specific Gaussian noise to the membrane potential at each time step.

We also added to SCE an ODE model relating intracellular calcium ion concentration in each neuron,
denoted ct,n, to the membrane potential, as described by Rahmati et al. [10].

These simulators implicitly define the time-evolution of the neural state of the worm, denoted
p(vt, ct|vt−1, ct−1, rt), where, rt represents the yet to be discussed, proprioceptive feedback condi-
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tioned on the body shape, bt. Exemplar voltage traces generated by our simulator are shown as black
dashed lines in Figure 1(f).

Body Simulation The next component we incorporate is a simulator for the body shape of the
worm. For this we use WormSim [6], which complements the experimental findings presented by
Wen et al. [28]. WormSim models the body shape and locomotion in two dimensions as a series of
rigid rods, contractile units and springs driven by impulses generated by a simplified neural network.
These elements are defined by 49 control points, comprised of the x, y position and angle of each
of the rods, and the first derivative of these terms. A further 96 values represent the instantaneous
“voltage” in each of the 48 dorsal and ventral contractile units. The total body state is denoted
bt ∈ B = R49×3×2 × R48×2. The model of evolution of body state, denoted p(bt|bt−1,vt−1), is
dependent on both the previous state of the body bt−1 and the neural state at the previous timestep,
vt−1, acting as driving neural input. The body simulator then returns proprioceptive feedback,
denoted rt, back to the neural simulator. Our contribution here is specifically the interface for driving
WormSim using the anatomically correct SCE model in place of the simplified network used in the
original work, in addition to the specific formulation of how proprioceptive feedback flows back
to SCE as current injected into neurons that are known to receive proprioceptive feedback [28]. A
typical evolution of body state is shown in Figure 1(e).

Observation Model The fluorescence signals observed in calcium imaging, examples of which are
shown in Figure 1(b), denoted yt ∈ RM+ , are a stochastic quantity dependent on the intracellular
calcium concentration. This dependence is described by a saturating Hill-type function [10, 29, 30,
31], where details are presented in the supplementary materials. Exemplar fluorescence traces, as
recorded by Kato et al. [11], are shown in Figure 1(b). Annotated are the neuron identities for which
the source neuron could be determined by domain experts[11].

To summarize our model, the neuron states vt and ct, body state bt, proprioceptive feedback rt, and
any sensory input qt (not explicitly considered here as it can realistically be assumed to be constant
over our simulation durations), define the latent “brain” and “body” state of the worm, collectively
denoted at time t as xt ∈ R994, indicated by the dashed box in Figure 1(c). The observed data, y, is
the calcium imaging signal, which, contrary to what is shown in the graphical model, is not actually
observed at every timestep, a notational complication we intentionally avoid but correctly implement.

Note that our simulator defines a hidden Markov model, albeit one with complex, high-dimensional
non-linear latent state transition dynamics, p(xt|xt−1), as well as a complex non-linear high-
dimensional observation model p(yt|xt). Our second contribution is showing how the tools of
Bayesian inference can be employed to condition on partial observations, make predictions condition-
ally or unconditionally, and perform marginal maximum a posteriori parameter estimation.

3 The Virtual Patch Clamp

The second contribution of this paper is the adoption and scaling of a method to impute the entire
latent state, xt, conditioned on calcium imaging florescences emitted from neurons that have been
successfully identified in existing calcium imaging literature [11]. To be more specific, armed
with our simulator and inference methods, we estimate the distribution at each timestep of the 994
interpretable neural and physical simulator latent states, conditioned on 49 florescence traces. We
condition on the same 49 neurons that Kato et al. [11] were able to identify in their experimental
results, listed in the supplementary materials. We describe this as a “virtual patch clamp,” as it permits
the imputation of quantities such as membrane potential and ion currents, measured as part of the
patch clamping procedure. These variables are directly addressable in the simulator, and so their
value can subsequently be programmatically “clamped.” The simulator is then initialized from the
inferred latent distribution and iterated to simulate the effect of the clamping in silico, as posterior
predictive inference.

In the previous section we outlined our simulation model of C. elegans, implicitly defining the
joint distribution over worm state and observed data, denoted p(x0:T ,y1:T ). We wish to quantify
the distribution over the latent states conditioned on the observed data, referred to as the posterior
distribution p(x0:T |y1:T ). Direct sampling is intractable as the model is specified as a non-linear, non-
differentiable, and non-invertible simulator. Therefore, approximation methods must be employed.
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Under the constraints imposed by our model, the available data, and our objective, we use sequential
Monte Carlo (SMC) for estimating p(x0:T |y1:T ).

3.1 Sequential Monte Carlo

Sequential Monte Carlo (SMC), similar to particle filtering in state-space models, produces a weighted
discrete measure approximating the distribution p(x0:T |y1:T ). The variant of SMC we use samples
from the prior and weights by the likelihood (see the tutorial by Doucet and Johansen [32] for
details). This approach iterates the particles, individually notated as x

(n)
t , n ∈ 1 : Np, through

the simulator, and then weights these particles by their probability under the observation density,
w

(n)
t = p(yt|x(n)

t ). Those particles that “explain” the observation well receive a high weight and are
retained and continued, while those with low weight are not. SMC also provides, for no additional
computation, an estimate of model evidence, calculated as p(y1:T ) ≈

∏
t∈1:T

1
Np

Σn∈1:Npw
(n)
t [32].

To relate this process to our outlined objectives, the particles themselves represent the inferred
distribution over all latent neural and physiological states, xt, providing the imputation element
of the VPC. Forward simulation of the particles provides posterior predictive inference over state
evolution, providing the in silico experimental facility. Finally the evidence approximation allows us
to objectively compare models and hypotheses, which will be used later for parameter estimation.

Initialization of Particles For the experiments we present, we assume the initial body pose, b0,
of the worm is known. Calcium imaging recordings are nearly always augmented with video
recordings from which the pose can be determined, however this channel of Kato et al. [11]’s data
was not available and so we confine ourselves here to operating on synthetic data. We initialize
the muscular voltage to zero, noting it develops quickly from neural activity and body pose. The
calcium concentration is initialized from a prior, where we perform a single importance sampling
step for each observed neuron to further refine the initialization. We found that directly sampling 302
membrane potentials from the prior distribution led to gross particle degeneracy, due to finite particle
sets and the high dimensional latent space, and hence poor particle filter sweeps. We therefore refine
the distribution from which membrane potentials are initialized using the model, where details are
presented in the supplementary materials. This refinement was observed to yield “better” initial
particles, lower degeneracy, and better performance.

3.2 Experiments

In our first experiment we first generate a synthetic state trajectory by sampling from the model,
then demonstrate that we can use SMC to condition our model on the simulated calcium data, by
comparing the resulting reconstruction of x to the known ground truth. Specifically we condition
on the same 49 neurons identified in the calcium imaging data released by Kato et al. [11], where
fluorescence signals are simulated every 5 timesteps. Results for this are shown in Figure 1(e) and
1(f). The particle distribution of a subset of vt is shown in Figure 1(f). The true state is shown in
black, while the SMC filtering distribution is shown in blue. The number of particles, Np, used in the
SMC sweep was 1000, with 5000 particles used in the initialization procedure. The wall-clock time
was 800 seconds to complete a single SMC sweep when run on a single node equipped with 48 Intel
Xeon Platinum 2.10GHz 8160F CPUs.

The blue reconstructions are congruent with the black trace, indicating that the latent behaviour of
the complete system is being well-reconstructed despite partial observability. Critically, neurons not
directly connected to observed neurons (for instance VD10) are correctly reconstructed, indicating that
the regularizing capacity of the model is sufficient to constrain these variables. Further confirmation
of the power of this method can be seen in Figure 1(e), showing the predicted body shape closely
matches the true state.

We observe a small drift in the position and orientation of the worm at early timesteps due to
the particle approximation of the distribution over membrane potentials when the SMC sweep is
initialized. This initial drift cannot be corrected as the absolute position and rotation of the worm
does not influence the neural activity. Therefore, for ease of visual comparison of the body shape
reconstructions, we rigidly transform them to center them on the true body. We perform the same
centering post-processing in Figure 3(c). The raw reconstructions are included in the supplementary
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materials. Explicitly conditioning on body shape from video data, as suggested in the discussion
section, would alleviate this issue.

This experiment shows that the VPC is tractable and is capable of yielding high-fidelity reconstructions
of pertinent latent states given partial calcium imaging observations via the application of Bayesian
inference to time series models of C. elegans.

4 Parameter Estimation

The posterior inference and evidence approximation presented in the previous section is useful
for imputing values and performing in silico experimentation. Thus far we have not discussed
the parameters of our simulator-based model, as it was not necessary in order to demonstrate the
effectiveness of SMC for posterior inference. These parameters, collectively denoted θ, include
the non-directly observable electrical and chemical characteristics of individual synapses in the C.
elegans connectome, as well as parameters of the body model, the calcium fluorescence model, etc.
We conclude this paper by taking concrete steps towards performing such parameter estimation, as
defined by the simulator-structured hypothesis class defined by the chosen model.

Our goal is to estimate the best simulator parameters θ∗ given observed data, i.e. θ∗ =
argmaxθ p(θ|y) = argmaxθ p(y|θ)p(θ). The method we employ for performing parameter estima-
tion is a novel combination of variational optimization (VO) [33] and SMC evidence approximation.
This results in a stochastic gradient for parameter estimation that does not require a differentiable
simulator and can deal with a large number of latent variables.

Variational optimization starts with the following inequality [33]

min
θ
f(θ) ≤ Eθ∼q(θ|φ) [f(θ)] = U(φ).

Intuitively, U(φ) upper bounds the value of min f(θ), and so minimizing U(φ) with respect to φ
minimizes the bound on f(θ); in turn exactly minimizing f(θ) if the variance of q(θ|φ) is allowed
to go to zero. The gradient of U(φ) with respect to φ can then be computed as

∇φU(φ) = ∇φEθ∼q(θ|φ) [f(θ)] , (1)

≈ 1

Nr
Σn∈{1,...,Nr}f(θ(n))∇φ log q(θ(n);φ) θ(n) ∼ q(θ|φ), (2)

where we have expanded the expectation and used the derivative of a logarithm to go from (1) to (36),
similar to the REINFORCE method [34]. Evaluation of this expectation is not analytically tractable
so, also in going from (1) to (36), we apply Monte Carlo integration, drawing Nr samples from the
proposal distribution q(θ|φ). We then use ADAM [35] to minimize U(φ) using this approximate
gradient. We investigated reducing the variance of the gradient operator using the optimal reward
baseline [36] as a control variate, but found it did not improve overall performance.

Here, the objective function is the joint density f(θ) = p(y,θ) = p(y|θ)p(θ), where the likelihood
term is approximated via SMC as defined in Section 3.1. To our knowledge, this is the first time that
pseudo-marginal methods have been paired with variational optimization methods. We refer to this
procedure as particle marginal variational optimization (PMVO).

4.1 Autoregressive Model

To investigate the applicability of PMVO, we conducted experiments learning parameters in a simpli-
fied model family. We investigate parameter estimation alternatives using a first order autoregressive
generative model (AR) in-place of the neural simulator and data; where we use a sparse transition
kernel, and prior distributions and observation model based on the C. elegans scenario.

Instead of a point-estimate, one might wish to have the full posterior distribution over model
parameters. For this reason, we consider our PMVO method alongside particle marginal Metropolis
Hastings (PMMH) and parallel tempering (PT), where “optimal” parameters are approximated by
MAP sample values. Specific implementation details are provided in the supplementary materials.

We demonstrate our method on a 30-dimensional AR process, where the transition kernel consists
of 44 parameters, θ ∈ R44

≥0. Figure 2(a) shows, in black, the latent state of the AR process. The

6



(a) (b) (c)
Figure 2: Comparison of PMVO, PMMH and PT methods for parameter estimation in the autore-
gressive example introduced in Section 4.1. 8 experimental repeats are shown. (a): the true latent
state sequence is shown as a black dashed line, and the filtering distribution from SMC using the true
parameters (blue), initial parameters (red) and optimized parameters (green), for 5 of the 30 states.
(b) shows convergence of 5 of the 44 parameters to the true value, shown in black. (c) shows the
difference in the log-joint density between the true parameters and the learned parameters for three
alternative optimization methods. We normalize all methods by computational budget.

SMC filtering distribution conditioned on the true parameters, randomly initialized parameters, and
the learned parameters are shown in blue, red and green respectively. Well-optimized parameters
lead to better reconstructions. Figure 2(b) shows the convergence of the parameter values for each of
PMMT, PT, and PMVO, across 8 random restarts. We see that PMVO recovers the true parameter
values more quickly and reliably than PMMH and PT and in-turn produces better reconstructions.
This improved performance is reflected in Figure 2(c) by the error between the joint density of the
true parameters and the MAP parameters reducing more quickly when using PMVO.

4.2 C. elegans Simulator

Our final experiment establishes the utility of our PMVO technique by demonstrating we can
recover simulator parameters. To show this we generate synthetic data using known parameters and
demonstrate than we can recover suitable parameter values and feasible reconstructions. For this
work, we optimize the two parameters we introduced by integrating SCE and WormSim, namely the
strength of motor stimulation, wm, and proprioceptive feedback, ws. The values of these parameters
cannot be measured and so must be learned from data. The results of this experiment are shown in
Figure 3. Figures 3(a) and 3(c) show the imputed voltage traces and body poses when using the true
parameters (blue), initial parameters (red) and optimized parameters (green). As before, recovery of
“good” parameter values facilitates good imputation and reconstruction of latent states. Figure 3(b)
shows the distribution of convergence paths of two parameters being addressed for 20 initializations.
This experiment shows that parameter inference in C. elegans models using PMVO is viable.

For this optimization we take 500 gradient steps, where 8 parameters are sampled from the proposal
at each approximate gradient calculation (Nr = 8). The SMC sweep uses 500 particles in the initial
step, sub-sampling to 90 particles after the first observation. The traces used were 500 timesteps
in length, corresponding to 5 seconds of real time, with an observation every 5 time steps. Each
individual SMC sweep takes approximately 90 seconds to complete. We implement and distribute a
framework for embarrassingly parallel evaluation of multiple SMC sweeps on large, distributed high
performance compute clusters, where each SMC sweep is executed on a single node, eliminating
network overheads. The wall-clock time was no more than 17 hours for a single experimental repeat,
when distributed across 10 nodes equipped with 48 Intel Xeon Platinum 2.10GHz 8160F CPUs.

5 Discussion

In this work we have explored performing Bayesian inference in whole-connectome neural and
whole-body C. elegans simulations. We describe the model-based Bayesian inference aspect of this
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(a)
(b)

(c)
Figure 3: Estimating C. elegans simulator parameters as described in Section 4.2. (a) and (c) show
the filtering distributions of SMC reconstructions of the membrane potentials of 15 cells given the
true generative parameter (blue), optimization algorithm initial parameters (red), and optimized
parameters (green). (b) shows the parameter optimization using PMVO, plotted as the median, upper
and lower quartile across 20 random restarts.

as a “virtual patch clamp,” whereby unobserved latent membrane potentials can be inferred from
partial observations gathered non-invasively. Our choice of inference method facilitates estimation of
the model evidence, a measure of how well the model explains the observed data. We presented a
method for maximizing this evidence without requiring differentiable simulation components.

Previous work has investigated performing imputation of neural spikes, membrane potentials, calcium
dynamics, model parameters and connectivities [37, 38, 39, 40, 41, 42]. However these studies do
not operate under a biologically accurate model of the dynamics of a whole connectome, instead
investigating individual or small networks of fully observed synthetic neurons. We propose imputation
of the state of neurons only distantly connected to observed neurons and performing parameter
inference, regularized by connectome-scale dynamics. Not only is this the first instance of whole-
connectome neural simulators being conditioned on data, we also believe this to be one of the largest
non-differentiable, non-linear state-space models in which inference has been performed.

Our open-source implementation of simulator and PMVO technique is richly extensible. Better
models for elements of C. elegans behaviours, such as body simulators [27], neural simulators [7],
multi-compartment ion dynamics [43] and sensory stimuli [44] exist; although these models incur
significantly more computational cost. Developments even to these models are still required to explain
specific behaviours, for instance, the kinds of habituation that C. elegans exhibits [20], and newly
discovered action potential generating C. elegans neurons [45] (contrary to long-held belief [46]).
When additional models of these dynamics are developed, by design, they can be straightforwardly
integrated into our software toolchain.

Additional data is also becoming available. As in vivo calcium imaging techniques improve, more
neurons can be simultaneously observed, allowing the SMC sweep to be conditioned on more data.
An experiment presented in the supplementary material where florescence of all neurons is observed
demonstrates improved reconstructions and recovery of parameter values than when conditioned on
just 49 neurons. We also suggest that the simulator can be conditioned on easily recorded worm body
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pose data. The simulator includes a body pose, and so a promising research direction is to develop
the likelihoods terms that allow for conditioning on an observed pose, in addition to fluorescence.

To conclude we note that in the past year several articles discussing open research issues pertaining
to C. elegans simulation have been produced by the C. elegans community [4, 42, 47, 48]. Figure
1(d) outlines the community planned development pipeline for C. elegans simulation. Our work
addresses the implementation of the box simply labelled “optimization.” We propose performing this
optimization by combining state-space inference techniques and variational optimization, and show
on representative synthetic data that our method is capable of performing the desired optimization.
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[10] V. Rahmati, K. Kirmse, D. Marković, K. Holthoff, and S. J. Kiebel. Inferring neuronal dynamics from
calcium imaging data using biophysical models and bayesian inference. PLoS computational biology, 12
(2):e1004736, 2016.

[11] S. Kato, H. S. Kaplan, T. Schrödel, S. Skora, T. H. Lindsay, E. Yemini, S. Lockery, and M. Zimmer. Global
brain dynamics embed the motor command sequence of caenorhabditis elegans. Cell, 163(3):656–669,
2015.

[12] J. P. Nguyen, F. B. Shipley, A. N. Linder, G. S. Plummer, M. Liu, S. U. Setru, J. W. Shaevitz, and A. M.
Leifer. Whole-brain calcium imaging with cellular resolution in freely behaving caenorhabditis elegans.
Proceedings of the National Academy of Sciences, 113(8):E1074–E1081, 2016.

[13] B. Szigeti, P. Gleeson, M. Vella, S. Khayrulin, A. Palyanov, J. Hokanson, M. Currie, M. Cantarelli, G. Idili,
and S. Larson. OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Frontiers in
Computational Neuroscience, 8(November):1–7, 2014. ISSN 1662-5188. doi: 10.3389/fncom.2014.00137.

9

https://https://github.com/adammarblestone/simple-C-elegans
https://https://github.com/adammarblestone/simple-C-elegans


[14] M. E. Spira and A. Hai. Multi-electrode array technologies for neuroscience and cardiology. Nature
nanotechnology, 8(2):83, 2013.

[15] T. W. Margrie, M. Brecht, and B. Sakmann. In vivo, low-resistance, whole-cell recordings from neurons in
the anaesthetized and awake mammalian brain. Pflügers Archiv, 444(4):491–498, 2002.

[16] C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth. In vivo two-photon calcium imaging of neuronal
networks. Proceedings of the National Academy of Sciences, 100(12):7319–7324, 2003.

[17] S. H. Chung, L. Sun, and C. V. Gabel. In vivo neuronal calcium imaging in C. elegans. J Vis Exp, (74),
Apr 2013.

[18] E. L. Ardiel and C. H. Rankin. Behavioral plasticity in the c. elegans mechanosensory circuit. Journal of
neurogenetics, 22(3):239–255, 2008.

[19] S. R. Wicks, C. J. Roehrig, and C. H. Rankin. A dynamic network simulation of the nematode tap with-
drawal circuit: predictions concerning synaptic function using behavioral criteria. Journal of Neuroscience,
16(12):4017–4031, 1996.

[20] E. L. Ardiel and C. H. Rankin. An elegant mind: learning and memory in caenorhabditis elegans. Learning
& memory, 17(4):191–201, 2010.

[21] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii. Structural properties of
the caenorhabditis elegans neuronal network. PLOS Computational Biology, 7(2):1–21, 02 2011. doi:
10.1371/journal.pcbi.1001066.

[22] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the nervous system of the
nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 314(1165):1–340, Nov 1986.

[23] R. M. Hasani, V. Beneder, M. Fuchs, D. Lung, and R. Grosu. Sim-ce: An advanced simulink platform for
studying the brain of caenorhabditis elegans. arXiv preprint arXiv:1703.06270, 2017.

[24] M. Hines and N. Carnevale. The neuron simulation environment. NEURON, 9(6), 2006.

[25] M.-O. Gewaltig and M. Diesmann. Nest (neural simulation tool). Scholarpedia, 2(4):1430, 2007.

[26] M. Kuramochi and Y. Iwasaki. Quantitative modeling of neuronal dynamics in c. elegans. In International
Conference on Neural Information Processing, pages 17–24. Springer, 2010.

[27] A. Y. Palyanov and S. S. Khayrulin. Sibernetic: A software complex based on the pci sph algorithm aimed
at simulation problems in biomechanics. Russian Journal of Genetics: Applied Research, 5(6):635–641,
Nov 2015. doi: 10.1134/S2079059715060052.

[28] Q. Wen, M. D. Po, E. Hulme, S. Chen, X. Liu, S. W. Kwok, M. Gershow, A. M. Leifer, V. Butler, C.
Fang-Yen, et al. Proprioceptive coupling within motor neurons drives c. elegans forward locomotion.
Neuron, 76(4):750–761, 2012.

[29] A. V. Hill. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B, 126(843):
136–195, 1938.

[30] C. Grienberger and A. Konnerth. Imaging calcium in neurons. Neuron, 73(5):862–885, 2012.

[31] R. Yasuda, E. A. Nimchinsky, V. Scheuss, T. A. Pologruto, T. G. Oertner, B. L. Sabatini, and K. Svoboda.
Imaging calcium concentration dynamics in small neuronal compartments. Sci. STKE, 2004(219):pl5–pl5,
2004.

[32] A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: fifteen years later, 2010.

[33] J. Staines and D. Barber. Variational optimization. arXiv preprint arXiv:1212.4507, 2012.

[34] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

[35] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[36] L. Weaver and N. Tao. The optimal reward baseline for gradient-based reinforcement learning. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages 538–545. Morgan
Kaufmann Publishers Inc., 2001.

10



[37] J. T. Vogelstein, B. O. Watson, A. M. Packer, R. Yuste, B. Jedynak, and L. Paninski. Spike inference from
calcium imaging using sequential monte carlo methods. Biophysical journal, 97(2):636–655, 2009.

[38] J. T. Vogelstein, A. M. Packer, T. A. Machado, T. Sippy, B. Babadi, R. Yuste, and L. Paninski. Fast nonneg-
ative deconvolution for spike train inference from population calcium imaging. Journal of neurophysiology,
104(6):3691–3704, 2010.

[39] J. Friedrich, P. Zhou, and L. Paninski. Fast online deconvolution of calcium imaging data. PLOS
Computational Biology, 13(3):1–26, 03 2017. doi: 10.1371/journal.pcbi.1005423.

[40] L. Aitchison, L. Russell, A. M. Packer, J. Yan, P. Castonguay, M. Hausser, and S. C. Turaga. Model-based
bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit. In
Advances in Neural Information Processing Systems, pages 3486–3495, 2017.

[41] A. Speiser, J. Yan, E. W. Archer, L. Buesing, S. C. Turaga, and J. H. Macke. Fast amortized inference
of neural activity from calcium imaging data with variational autoencoders. In Advances in Neural
Information Processing Systems, pages 4024–4034, 2017.

[42] R. C. Gerkin, R. J. Jarvis, and S. M. Crook. Towards systematic, data-driven validation of a collaborative,
multi-scale model of caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological
Sciences, 373(1758):20170381, 2018.

[43] M. Kuramochi and M. Doi. A computational model based on multi-regional calcium imaging represents
the spatio-temporal dynamics in a caenorhabditis elegans sensory neuron. PLOS ONE, 12(1):1–19, 01
2017. doi: 10.1371/journal.pone.0168415.

[44] E. J. Izquierdo and R. D. Beer. Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical
Models of C. elegans Klinotaxis. PLoS Computational Biology, 9(2), 2013. ISSN 1553734X. doi:
10.1371/journal.pcbi.1002890.

[45] Q. Liu, P. B. Kidd, M. Dobosiewicz, and C. I. Bargmann. C. elegans awa olfactory neurons fire calcium-
mediated all-or-none action potentials. Cell, 175(1):57 – 70.e17, 2018. ISSN 0092-8674. doi: https:
//doi.org/10.1016/j.cell.2018.08.018.

[46] M. B. Goodman, D. H. Hall, L. Avery, and S. R. Lockery. Active currents regulate sensitivity and dynamic
range in c. elegans neurons. Neuron, 20(4):763–772, 1998.

[47] K. M. Stiefel and D. S. Brooks. Why is there no successful whole brain simulation (yet)? Biological
Theory, Mar 2019. ISSN 1555-5550. doi: 10.1007/s13752-019-00319-5.

[48] S. D. Larson, P. Gleeson, and A. E. Brown. Connectome to behaviour: modelling caenorhabditis elegans at
cellular resolution, 2018.

[49] J. M. Kunert, J. L. Proctor, S. L. Brunton, and J. N. Kutz. Spatiotemporal feedback and network structure
drive and encode caenorhabditis elegans locomotion. PLoS computational biology, 13(1):e1005303, 2017.

[50] N. Cohen and T. Sanders. Nematode locomotion: dissecting the neuronal–environmental loop. Current
opinion in neurobiology, 25:99–106, 2014.

[51] E. Yemini, T. Jucikas, L. Grundy, A. Brown, and W. Schafer. A database of c. elegans behavioral
phenotypes. Nature Methods, 10(9):877–879, 2013. doi: 10.1038/nmeth.2560.A.
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A Supplementary Materials

In this supplement, we offer additional proofs, experimental details and configurations, and intuitions
about the methods presented in the main text.

We first present additional information relating to the simulation platform and software implemen-
tations we distribute. We then present extended experimental details and configurations for the
experiments presented, along with additional related results not included in the main text. The then
present the mathematical machinery required to define and understand the sequential Monte Carlo
method used throughout, and the particle marginal variational optimization algorithm we present. We
conclude by including, for completeness as opposed to being a “tutorial,” explanation of Metropolis
Hastings, particle marginal Metropolis Hastings and parallel tempering methods compared to in Sec-
tion 4 of the main text, as well as some qualitative evaluation of the merits of optimization compared
to inference. No additional experimental details or methodological innovations are presented in this
final section, and so this section is included for reference only.

Source code for the simulator, inference and optimization algorithms, and for reproducing results
figures are available on request.

B Simulating Caenorhabditis elegans

We now give more detail on the simulator we assemble and perform inference in. The graphical
model of the simulator is shown in Figure 1(d) of the main text. The guiding principal for this
simulator is computational tractability and modularity. The most accurate simulators of C. elegans
neural dynamics [7] and body [5, 27] are prohibitively computationally expensive to run the number
of particles and iterations required for inference or optimization, and for rapid experimentation and
exploration. Therefore, we design a simulator prioritising throughput, making the inference task is at
least computationally tractable. Our ambition is that the simulator will have the fidelity and run-time
cost that rapid in silico experimentation can be performed by practitioners on standard desktop
machinery. This in silico virtual patch clamp experiment can be as simple as pinning the value of a
voltage or current (a variable in the model) to a particular value (or series of values) and inspecting
the resulting simulations. The computational cost of our model means that tens of seconds of data can
be simulated in a matter of minutes on widely available hardware, whereas more complex simulators
would require hours of simulation time and/or super-computing power not readily available. The
modularity of our design allows better models, once developed, to be used, with suitable hardware, as
all of the inference modules we describe are agnostic to the particulars of the models used and vice
versa.

B.1 Simulator Components

The key component of any C. elegans simulator is a model of neural activity in all 302 neurons,
including the interactions at synapses and gap junctions. We also include a body simulator [6], driven
by the neural activity, which is capable of providing a proprioceptive feedback signal to the network.
Evidence suggests that this proprioception is an important element in capturing the neural dynamics
of the worm [8, 49], providing the closed-loop feedback required to generate the oscillations which
induce locomotion [6, 28, 50]. There also exist large repositories of body pose data [51] which
we wish to condition on in future iterations of the project – further motivating the inclusion of the
body simulator in the pipeline, although leveraging this data is deferred to the future work. We
have identified in vivo calcium imaging as a source of data on which to condition our learning, and
therefore include a model of the data generation process. Finally, we also suggest that quantification
of external stimuli is important for faithful simulation, as is studied in [52], and so we provision for
this ‘1direct stimulation,” but defer detailed study to future work. We now describe the specifics of
each of our implementations of these elements in more details.

Neural Simulation The behaviour of neurons is well characterised by sets of ordinary differential
equations (ODEs) [53, 54, 55, 56, 57] which can be numerically integrated over time to simulate
networks of neurons [24, 25]. We use the simulator presented by Marblestone [9], which builds on
developments presented in Kunert et al. [8] and Wicks et al. [19], called “simple C. elegans” (SCE).
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SCE represents each of the 302 neurons,1 which we denote N , as single compartments, and models
voltage-dependent currents due to leakage, connections between neurons. Current through synapses
is approximated as a single current due to all ion mechanisms in order to reduce the complexity and
make the simulation faster. The complexity is further reduced by combining, with an additive effect,
multiple connections of the same type between a pair of neurons, into a single connection. We refer
the reader to Kunert et al. [8] for a detailed description of the underlying model used in SCE. To
this we added simulation of intracellular calcium, leveraging the relationships defined in Rahmati
et al. [10]. This defines the calcium ion concentration as a low-pass filtered function of the membrane
potential.

Together, these expressions describe the time-evolution of the neural circuit, denoted as
p(vt, ct|vt−1, ct,θ), where vt ∈ V = RN×2, represents the voltage and calcium concentration
for each of the N neurons at time t. Here θ corresponds to the electrophysiological constants that
govern the properties of neurons, as well as the relative strengths of the connections between neurons.
For the purposes of this work, we assume these physiological parameters are fixed and known,
although defining a formal mechanism for refining these parameters is a driving ambition for this
work.

We re-implemented much of the original SCE implementation to use vectorized NumPy calculations,
resulting in orders of magnitude speedup. We do not consider this a “contribution” however as
the original implementation was designed to make the code highly interpretable, as opposed to
computationally streamlined. We also implemented a parallel processing system, allowing individual
particles to be iterated embarrassingly parallelly, within a node. We experimented with distributing
across nodes, but found that communication overheads led to sub-linear scaling in the performance,
and so exploit multi-node architectures in other ways, addressed later in this text.

A further efficiency saving we identified is no longer using an ODE solver, instead using finite
difference. We conducted experiments into the reduction in accuracy and the time saving. The results
of this experiment are shown below in Figure 4. Plotted are the voltage trajectories for the most active
of the neurons. The difference between red (ODE) and blue (finite difference) curves is minimal.
Importantly we found that the average time for iterating using the ODE solver was 16.69 milliseconds,
was reduced to just 0.7 milliseconds by using forward difference – more than a 20× speed-up. For
all simulations presented, we use an integration timestep of δt = 0.01.

While no longer using an ODE solver does introduce integration errors, as we justify in the next
section, we add noise to the state at each timestep to improve the performance of SMC, where the
magnitude of the noise we add is far larger than the inaccuracy introduced by the discretization. The
speedup is significant, and hence we can run more particles for the same computational cost, which
will likely lead to a more accurate SMC sweep overall, compared to using the more accurate, but
slower ODE integrator. We note that we still use an ODE solver in WormSim, as this integrator “fails”
when the worms’ body position is not physioloigcally plausible, allowing us to remove that particle
from the sweep.

We investigated using the more physiologically accurate simulation platform “c302” presented
by Gleeson et al. [7] building on the NEURON simulation environment [24]. This simulator provides
a “wrapper” for constructing a NEURON simulation environment with the structure of the C. elegans
connectome. This environment is more accurate, simulating the neurons as multi-compartment
differential equations, simulating multiple ion mechanisms, and using more sophisticated models of
synaptic conductance. However, we elected not to use c302 for several reasons. The main reason was
c302 is considerably more computationally expensive than SCE, as much as two orders of magnitude.
This computational burden would severely limit the number of samples that can be taken to the
detriment of the inference result, and therefore we select the more computationally tractable SCE
package. Although modelling assumptions in SCE fundamentally limit its absolute fidelity, we believe
that it is sufficiently accurate to make progress on the inference challenge, where “upgrading” the
simulator to c302, or including bespoke NEURON components, at a later date is possible. Secondly,
SCE is less parametrized than the c302 environment and has a lower dimensional state representation,
making the connectome-scale operation easier to interpret and form and test hypothesis around.

1The original release of SCE only simulated 299 neurons, but adding the 3 omitted neurons was trivial under
the modelling assumptions.
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Figure 4: Experiment showing the accumulated error when using and ODE solver (odeint provided
by SciPy) and simply using finite difference.

Body Simulation The body simulator, WormSim, was developed by Boyle et al. [6] to demonstrate
the need for proprioceptive feedback to drive locomotion in C. elegans [28, 50, 58, 59]. This model
represents the body of the worm in two dimensions as a series of rigid rods, tensile units and springs.
The springs define the elastic nature of the worm’s body, while the rods serve to maintain the worm
bodies overall form, achieved by cell tension and internal pressure in the real worm.

We incorporated this model into SCE by defining an interface for driving WormSim using the
anatomically correct network instead of the simplified network used in the original work. We mesh
the WormSim simulator onto SCE by using neural activity from SCE to drive the body simulation,
and integrate the proprioceptive feedback estimated by WormSim to SCE. The nature and precise
implementation of this meshing was determined by the structure of WormSim. Since this model is a
departure from the true physioloigy of the worm, modelling only the major contributors to locomotion,
our meshing works within the framework defined by WormSim accordingly.

WormSim translates the body shape into proprioceptive feedback by calculating a current that is
injected back into the controlling neural network. WormSim uses 12 identical neural units inplace
of the biologically correct network. Therefore, we linearly interpolate the signal received by each
biological neuron based on its location as specified in WormAtlas [60] and the relative location of each
neural unit in the WormSim model. The neurons we allow proprioceptive feedback to flow into are
DB{1, 2, 3, 4, 5, 6, 7} on the dorsal side and V B{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} on the ventral side.
While other neurons may receive feedback, these are the only neurons provisioned by WormSim, as
suggested by Wen et al. [28]. We then introduce a “strength” parameter, notated as ws, for multiplying
the WormSim calculated stretch receptive current into to the current injected into the aforementioned
biological neurons. If the representations simulators’ were already compatible, this parameter would
take unity value. However, we find that tuning this parameter is highly important to get locomotion
in the body.

We use a similar approach for converting the neural stimuli from the biological representation used
by SCE to the 12 units used by WormSim. We use the DB and DD for dorsal muscle excitation,
and V B and V D for ventral excitation, again, inspired by Wen et al. [28] and the implementa-
tion of WormSim. Specifically, the neurons used are DB{1, 2, 3, 4, 5, 6, 7}, DD{1, 2, 3, 4, 5, 6},
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V B{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and V D{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} To convert between
these neurons and the 12 repeating units we linearly interpolate again, based on the location of the
neurons as defined in WormAtlas [60] and the position of the target repeating unit in WormSim.
Again, this conversion introduces an associated conversion factor, denoted wm. WormSim then passes
each of our “interpolated” neurons through a low-pass filter to smooth the excitation in the muscle,
somewhat reminiscent of muscle excitation with spiking neurons. Like ws, we found the simulations
were very sensitive to this parameter, both in terms of the stability of WormSim and the quality of the
simulation.

If either of these parameters are too low, the worm does not exhibit movement and the neural circuit
quickly returns to its quiescent point. If either of these parameters are too high, the integrator used
in WormSim (SundialsODE) fails to integrate the function, often typified by membrane potentials
growing exponentially just before this “crash.” We leverage this crash to assert that that particle has
zero probability, effectively removing it from the SMC sweeps used. This implies, as well, that the
parameter settings being used are not physioloigcally plausible, and hence define the likelihood of
the parameter values to be zero if all particles used in the inference sweep cannot be integrated at a
particular timestep.

An example simulation, using coarsely hand-tuned parameters, is shown in Figure 1(c) of the main
text. The body state at time t, is denoted bt ∈ B. This body state is defined by the x-y coordinate
of each of the 49 control points, as well as the angle of the associated rods centered on the control
points, and the first derivative of these quantities, resulting in 49 × 3 × 2 states. Also included
is the “muscle voltage” in each of the contractile units. There are 48 contractile units on both
dorsal and ventral sides, resulting in an additional 96 states. These muscle voltages are dependent
on the motor stimulation described above. Accordingly, the entire body state has dimensionality
B = R49×3×4 × R48×2 = R390. The body simulator, p(bt|bt−1,vt−1,θ), is dependent on both the
previous state of the body bt−1 and the neural state at the previous timestep, vt−1, acting as the
driving neural input. The proprioceptive feedback, denoted rt, conditioned on the body shape, is
returned to the neural simulator as current inputs for the next time step, through the interpolation
procedure described above. Accordingly, we modify the definition of the neural simulator to also
be conditioned on the proprioceptive feedback: p(vt|vt−1, rt,θ). The parameters we consider here
are the two parameters we introduce as part of the “meshing,” and hence θ = {wm, wsr} ∈ R2

≥0.
Here we have given more details on the specific implementation details we used in meshing SCE and
WormSim. We refer the reader to the original text by Boyle et al. [6], and Wen et al. [28] for more
information on the underlying model.

The WormSim code is implemented in C++, and so we use the interprocess communication package
ZeroMQ (ZMQ) to communicate between the Python implementation of SCE and our inference
packages. We modified the WormSim implementation to run in a separate process. It accepts, via
ZMQ communication, an entire body state, and performs the forward iteration for one timestep. The
iterated body state is then returned back to the calling process via ZMQ. As such, a single WormSim
process can be used to iterate multiple particles sequentially, or, in process many particles in parallel
by running multiple instantiations. We couple this with a parallelized implementation of SCE, such
that a single process is passed an entire worm state and alternates between iterating the neural and the
body state for the desired number of iterations, returning the iterated state, and the intermediate states
as a side effect for later retrieval for super-resolution (in time) reconstruction of traces.

As with the neural dynamics simulators, we also investigated the use of the more accurate body
simulation platform “Sibernetic,” presented by Palyanov and Khayrulin [27]. Sibernetic is a highly
accurate particle physics and solid body simulator representing the physiology of C. elegans on a very
fine-grained scale. However, much like c302, this marked increase in fidelity incurs an enormous
computational burden, and hence we do not use Sibernetic, instead using the much computationally
cheaper WormSim.

Observation Model The fluorescence signal provided by calcium imaging [11, 12], denoted
y ∈ RM+ ,M ≤ N , is a stochastic quantity dependent on the intracellular calcium concentration,
thus determined by p(yt|vt,θ), where M of the N neurons are observed. Here, we formally define
“observed” to mean those neurons for which a fluorescence trace could be confidently attributed to a
particular neuron by expert annotators. In the dataset released to us by Kato et al. [11], the number
of neurons identified varies between datasets, and so we take the dataset with the most observed
neurons as our benchmark for observability, such that M = 49. This corresponds to observing the
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florescence for a fixed and a priori known subset of neurons. To use the remaining, unlabelled neurons
introduces a challenging permutation problem. This problem is further investigated by Linderman
et al. [61], Mena et al. [62]. We investigated the permutation inference challenge, but instead chose
to focus here on performing inference in the state-space model and performing parameter estimation,
and defer inferences over the use of unlabelled fluorescence traces to future work.

We utilize a saturating Hill-type function [29], a parametrized non-linear function, for this dependence
as suggested by Rahmati et al. [10], Grienberger and Konnerth [30], Yasuda et al. [31] distorted with
zero mean Gaussian noise per observed neuron:

yt,m ∼ p(yt,m|ct,m) = F × ct,m
ct,m +Kd

+D +N (0, σ2
m), (3)

where F , Kd D and σ2
m are constants that can be independently calibrated or estimated on-line from

data [10, 11], and ct,m is the calcium concentration of the mth observed neuron. When we generate
synthetic data, we generate noise-free data by setting σ2

m = 0. This model, importantly, provides
us with the reweighting distribution that is required to score different realizations of state, as part of
sequential Monte Carlo, and allow for objective comparison of the similarity between the observed
data and different simulations.

Central Pattern Generation and Artificial Stimulation Finally, we include the ability to directly
stimulate the network through sensory inputs [44, 63], denoted q ∈ Q, although we do not use this
here and defer inclusion of external stimuli to the future work. Importantly, once mechanisms of
sensory stimuli are better understood and quantified [64, 65, 66], they can, at least in principal, simply
be added as additional random variables in the HMM underpinning the simulation, shown in Figure
1(d) of the main text, like the proprioception and body simulation “loop” we use.

There is discussion in the C. elegans community as to the existence of a “central pattern generator”
(CPG) in the C. elegans connectome [6, 50, 67, 68, 69], particularly for facilitating locomotion.
In other organisms, a CPG is hypothesised to act as a central “clock pulse” for coordinating and
activating the rest of the connectome. No CPG has been found in the connectome of the C. elegans,
and so to produce sustained oscillatory activity, computational C. elegans simulators [7, 9] are
often driven by physiologically unrealistic and arbitrary stimuli [8, 49]. However, Boyle et al. [6]
demonstrates in the WormSim simulator that the oscillating signals required to drive locomotion in
C. elegans can be generated by a proprioceptive feedback circuit. In this model, a stretch-receptive
current, which is calculated according to the mechanical action of the muscle cells, is fed back into
B-type motor neurons. This model is supported by experimental evidence from Wen et al. [28],
in which movement restriction studies demonstrate proprioception in C. elegans, and subsequent
laser ablation studies identify the B-type motor neurons as the sole candidates for receiving such
feedback. The effect of this proprioceptive feedback mechanism are seen in Figure 5, which compares
our simulator (a combination of SCE and WormSim, incorporating proprioception) to the “vanilla”
SCE package (without proprioception). We find that vanilla SCE does not produce oscillatory
behaviour without central pattern generation, while our simulation provides sustained simulation for
approximately 10 seconds. Note that, even with proprioception, the oscillations eventually decay due
to leakage currents in each neuron and muscle cell. The rate of this decay is highly dependent on
model parameters, thus the activity can be prolonged by tuning certain parameter values. Dynamics
would also be perpetuated if the model were expanded to encompass sensory stimuli, which could
provide the “boost” in activity required to continue driving the oscillations.

To get sufficient excitement of the body and stretch-receptive feedback, we found that the membrane
potentials of the most-excited neurons (some of the motor neurons) exist in unphysioloigcal ranges.
We believe that this is a deficiency in both the original simulators (SCE and WormSim) and our
“meshing” of the simulators through employment of poor parameter values. This motivates the use
of the parameter estimation as described in Section 4 of the main text, coupled with refinement
of parameter values after further consultation with neuroscientists. Although undesirable, we do
not believe this flaw fundamentally limits the functionality of our simulator, and rather provides an
opportunity for further refinement and demonstration of the proposed methodology on real data.

B.2 Summary

Before we proceed, we pause to take stock of the components introduced above, and concretely
reinforce the relationship between these components and the notation, aims and objectives introduced
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Figure 5: Experiment showing the success of stimulating the whole connectome with motor feedback
provided by WormSim, compared to SCE alone. Both without the use of a central pattern generator
or artificial stimuli.

in the introduction. Collectively, the neural simulator, body simulator and any additional stimulation
define the state of the worm. This state is represented as a 994 dimensional vector, 604 of which is
attributed to the voltage and calcium concentrations of the 302 neurons, and 243 originating from
the x, y and α orientation of the 49 rods, as well as the first derivative of these quantities, and the 96
contractile units used as the representation of the body in WormSim. SCE, the calcium dynamics and
WormSim define the conditional probabilities that define the evolution of this state, p(xt|xt−1,θ). To
condition our model in real data we include a parameterized observation model, denoted p(yt|xt,θ).
Together, these probabilities define time evolution of the simulator as their product:

p(xt,yt|xt−1,θ) = p(yt|xt,θ)p(xt|xt−1,θ). (4)

B.3 Software Implementation

We now present details on the extensive software implementations we develop to execute the required
inferences, making use of parallel architectures. We distribute all our simulation code and data.

B.3.1 State Space Estimation

We have already described how we modified the SCE implementation to make use of vectorized
NumPy calculations and opted to use forward difference in place of an ODE integrator. These choices
led to orders of magnitude speedups. We also describe how we implement WormSim in a separate
process, with interprocess communication provided by ZMQ. We further develop the software to
allow multiple particles to be iterated in parallel. To do this, a pool of Python processes is opened,
each one running a single WormSim executable. Each of these processes is then linked with a unique
ZMQ socket. A second pool of processes is opened, each running a single SCE instance. Each SCE
processes is paired with a single WormSim process, such that the state is iterated back and forth
between them until the required number of iterations has been reached. This design also means that
SCE and WormSim, in a single SCE-WormSim process pair are never concurrently executing – while
SCE is iterating, WormSim is waiting for data, and vice versa. This means it is easy to select the
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number of processes in each pool as the number of processors available on the machine. By doing
this, we find that, for moderate sized particle pools, we get a utilization of over 90%.

B.3.2 Parameter Estimation

We further developed our implementation for embarrassingly parallel evaluation of likelihoods as
part of the parameter estimation task. We achieve this in our software in two different ways, primarily
separated by the computationally cheaper autoregressive experiments that can be run on desktop
machines, or the more expensive C. elegans optimizations, which are more likely to be run on
distributed, high performance compute (HPC) clusters.

For autoregressive models we simply leverage Pythons inbuilt multiprocessing library to parallelize
function evaluations if NumPy is configured to only use part of the computational resources.

More interestingly however is the implementation for distributing C. elegans, where we interleave
calls to the message passing interface MPI, for inter-node communication, and calls to Pythons
multiprocessing library for intra-node communication. The workflow is as follows: There exists a
“controller” MPI process, and one “worker” MPI process per node available (for the experiments
we present in the main text, there is one controller, and nine workers, equally distributed one per
each of the ten nodes). The controller communicates strictly with the worker MPI processes, while
each worker communicates both with the controller and also opening a pool of node-internal worker
processes using Pythons multiprocessing library. The controller will then transmit the Nr parameter
values for which the corresponding likelihood needs calculating to each of the worker process, where
one worker may receive multiple parameters as required. The likelihood is then calculated within
the node, where individual particles are iterated in parallel on multiple processes and synchronised
when a resample statement is hit. The worker thread then returns the likelihood via MPI back to the
controller. Once the controller has collected all required likelihoods, the gradient/MH step is taken
and the new parameters are distributed to the workers. No particles pass over MPI keeping overheads
low. Individual workers may also be instructed to write their particles to disk for later retrieval. This
writing process can be done to storage local to the node for speed, as these intermediate results will
be moved to more permanent memory as and when determined by the controller.

We have tested our code on two HPC clusters, Cori, administered by NERSC, and Cedar, administered
by ComputeCanada, and have run the code on over 30 nodes with minimal communication overhead.
A minor drawback is in nodes sitting idle as part of synchronization between workers. In reality, we
find this is minimal once “good” parameter values have been found, although we are investigating
“cut-off” techniques [70, 71] for minimizing this inefficiency. We also distribute “dummy” code
to demonstrate the functionality of our approach for parallelization, for debugging on new HPC
clusters and, ultimately, for other developers to use as they see fit, allows for nearly embarrassingly
parallelization of our code, allowing for large HPC clusters to be used.

C Experimental Details

We now present some more details on our software implementations of our inference methods, and
then the experimental configurations used.

C.1 Virtual Patch Clamp Experiments

We now give more fine-grained details on the configuration for the virtual patch clamp experiment
introduced in the main text. Before we proceed, we note that calcium imaging experiments are often
paired with visual light recording devices from which the configuration of the worm can also be
recovered. The shape of the worm can be well-approximated by a cubic spline, through which the
position and velocity components of the WormSim representation can fitted to ascertain the shape of
the worm. The velocity can then be estimated by calculating the Euler difference these representations
between time steps. Therefore, we assume that we can initialize the shape and velocity of the worm
by fitting of the control points used in the WormSim representation, to the spline fit of the true shape
and velocity. The net result of this approximation is that the initial distribution over body shapes is a
Dirac-δ function centred on, or very close to, the true body. We clarify that do not subsequently use
the body shape in inference, due to the intractability of the likelihood terms, and only use the true
body shape data for initialization.
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For this experiment, we simulate the neural and body dynamics for a total of 500 time steps,
corresponding to a real simulation time of 5 seconds, as we take δt = 0.01. We also generate calcium
imaging florescence observations for the 49 neurons identified in one of the datasets provided to
us by the authors of Kato et al. [11]. The identities of the 49 neurons, in alphabetical order, are as
follows: AIBL, AIBR, ALA, AS1, ASKL, ASKR, AVAL, AVAR, AVBL, AVBR, AVEL, AVER,
AVFL, AVFR, DA1, DB1, OLQDL, OLQDR, OLQVL, RIBL, RIBR, RID, RIFR, RIML, RIMR,
RIS, RIVL, RIVR, RMED, RMEL, RMER, RMEV, SABD, SABVL, SABVR, SIBVL, SMBDL,
SMBDR, SMDVL, SMDVR, URADL, URADR, URYDL, URYDR, URYVL, URYVR, VA1, VB1,
VB2. We also simulate observations every 0.05 seconds, as opposed to every 0.343 seconds as in the
Kato dataset [11]. The synthetic data we generate is noise-free. At inference time, we use additive
noise kernels in the plant model, where the variance of the term is scaled according to expected
variance of that state. The standard deviation of the noise is 5mV for the neuron with the largest
voltage range, while the smallest noise term used is 0.0005mV. These variances are determined at
the start of inference by simulating a corpus of datasets 48 noise-free datasets from the model and
calculating the per-neuron variance of the voltage. From this corpus, we also estimate the “learned”
prior distribution, by evaluating the per-neuron mean and variance, and using these values as the
mean and variance of the learned prior. The “initial prior” used for generating this corpus of data was
N (−20mV, 0.033mV2). Similarly, we scale the variance of the reweighting distribution (likelihood)
according to the expected variance of the observations generated in the aforementioned corpus. For
this, we add a “stabilizer,” with value 0.1, to ensure that those neurons that do not vary do not get
“overfitted” to. Therefore, we scale the noise kernel according to:

σ2
m = 0.02×

√
1.1× σ̂2

m

maxi∈1:M σ̂2
i + 0.1

, (5)

where σ̂2
n is the variance of the mth observation in the synthetic corpus. We found these scalings

improved the SMC inference result, preventing those neurons whose dynamic range far outweighs
those whose range is smaller from dominating the resampling, while simultaneously crushing the
activity in the finer-grained neurons. The number of particles, Np, used in the SMC sweep was
1000, with 5000 particles used in the initialization calculation. In total, the wall-clock time was 800
seconds, when run on a single node equipped with 48 Intel Xeon Platinum 2.10GHz 8160F CPUs.
We used the “default” parameters of our simulator, which are far too numerous to list even here,
although, for consistency with the Parameter Estimation sections, we use wm = 9.0 and ws = 10.3,
two parameters we identified as highly important. We place a Rayleigh prior over these parameters,
with parameter equal to the true parameter value, although we note that the the likelihood term
dominates the prior probability.

We also note in the main text that we observe a small offset in the position and orientation of the
worm at the start of the trace. This is because the initialization of the particles is not perfect, and
therefore there is a small amount of “integration error” as this imperfection is corrected. This results
in a small error in the initial development of position and orientation of the worm. This error cannot
be corrected under the model since the absolute position of the worm is not conditioned on. Therefore,
we post-hoc centre the reconstruction on the true body shape by applying a rigid body transform
using the iterative closest point algorithm.

We show below in Figure 6 the unaligned reconstructions for completeness.

C.2 Autoregressive Parameter Estimation Experiments

We now give more details on the models and experiments configured for demonstrating the parameter
estimation capabilities.

C.2.1 Generative Model

To investigate problem domain, we first conduct experiments in a simplified model on synthetic
data. In lieu of the neural simulator, we use a simple autoregressive model (AR), where the model is
defined as:

xt ∼ p(xt|xt−1,θ) = θW × xt−1 +N (0, σ2
p × IN ), (6)

yt ∼ p(yt|xt,θ) = θF
xt

θK + xt
+ θd +N (0, σ2

m × IN ), (7)
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Figure 6: Unaligned WormSim reconstructions. The shape of the reconstructed worm is correct at
later timesteps is correct, but is offset from the true position due to integration error at the start of the
trace, and after four seconds of simulation, the reconstruction has “locked-on” to the true body shape,
offset by this small integration error.

where xt ∈ RN is the state vector at time t, yt ∈ RM is the vector of observations at time t,
θW ∈ RN×N≥0 is a sparse matrix dictating the evolution of the latent state, σ2

p ∈ R+ is a represents the
variance of the noise in the plant model, σ2

m ∈ R+ is the variance of the observations and M traces
are observed. We assume that all species are observed in the AR model. The form of the observation
function, p(yt|xt,θ), is chosen to mirror C. elegans data as tightly as possible, as proposed by
Rahmati et al. [10]. We assume that the parameters of the additive noise distributions, σ2

p and σ2
m, are

known. The observation function uses parameters of {F, K, d} = {1.0, 1.0, 10.0}. The process
noise and observation noise kernels are then taken to be independent Gaussian per dimension with
diagonal covariance elements of σ2

p = σ2
m = 0.012. The initial distribution over state is defined as

p(x0|θ) = N (0, 1.02 × IN ). This is also used at inference time. For each method, we perform a
single importance sampling step at t = 0 to limit the degeneracy in the first step of the particle filter.
The AR process is then iterated for 200 timesteps.

We place a prior over each of the parameters, θ, denoted p(θ). For the prior distribution over
parameter values we use a Rayleigh distribution, due to its strictly positive, continuous support,
again, mimicking the C. elegans scenario. The Rayleigh distribution has support x ∈ [0,∞), is
parametrized by a single scale parameter, denoted σ2, a density function of x

σ2 e
−x2/(2σ2), and has

a form reminiscent of a “continuous Poisson” distribution. We denote draws from the distribution
as x ∼ Ray(σ2) and the value of the density as Ray(x;σ2). We generate a sparse, anti-symmetric
random transition weight matrix, W , by uniformly sampling off-diagonal elements from the strictly
upper triangular region and populating these elements samples values from a Rayleigh distribution
with known mean, θWi

∼ Ray(µW ), i ∈ {1, . . . , floor(α×N × (N − 1)/2)}, where α is the
target sparsity. The lower triangular is then set to the negation of the upper triangular portion to
enforce the resulting matrix to be anti-symmetric. We denote the full transition matrix as θW , were,
fractionally, α, entries are fixed at zero for all possible parameter values. The resulting transform
from this matrix to the parameters we have freedom over is simply picking off those values that are
not pinned at zero, denote those values we pick off as θWi . Since the mechanics of the model and the
structure of the transition matrix are fixed, we simply refer to the parameters of the transition matrix
as the non-zero entries and assume population of the θW matrix is implicit.

Our full generative model is therefore:

p(x0:T ,y1:T ,θ) ∼ p(θ)p(x0|θ)p(y0|x0,θ)Πt=1:T p(xt|xt−1,θ)p(yt|xt,θ). (8)

We wish to solve for to posterior over the parameter values, θ, conditioned on the data y1:T ,
marginalizing over the unobserved states:

p(θ|y1:T ) =
p(θ)

∫
x0:T∈XT+1 p(x0|θ)Πt=1:T p(xt|xt−1,θ)p(yt|xt,θ)dx0:T

p(y1:T )
. (9)

Alternatively, optimization entails pointwise maximization of this distribution:

θ∗ = argmax
θ

p(θ|y1:T ). (10)
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A further detail we add is that observations are not available at every timestep. For instance, the
simulator we build iterates with a timestep of δt = 0.01 seconds, while the capture interval used
in Kato et al. [11] is ∆t = 0.343 seconds. We do not express this in our notation to keep the
notation readable, but the effect is that the length y1:T is actually reduced by a factor of ∆t/δt, where
intermediate, or “unobserved” steps, do not have an associated y. For the AR examples contained
herein, we set δt = 1.0 and ∆t = 10.0, i.e. an observation is received on every tenth step.

C.2.2 Method Comparison

Before applying our methods to C. elegans, we compare the methods presented on a small AR process.
For this, we compare “vanilla” PMMH, PT and VO on a 30-dimensional AR process, where the
weight matrix has a sparsity of 0.9, i.e. N = 30 and α = 0.1. This results in performing parameter
inference in a 44 dimensional parameter space, i.e. W ∈ W = R44

≥0 = θ. The elements of W
are drawn from a Rayleigh distribution with mean parameter 0.0185, where this distribution also
serves as the prior over parameter values, p(W ) = p(θ) = Ray(0.0185)44. For this experiment, we
assume the observation parameters are known and fixed, since these parameters can be estimated from
data and additional experiments [10, 11, 31]. We also present an experiment in the supplementary
materials where these parameters are also learned, whereas here we focus on learning the model and
comparing methods.

For all methods in this section we use Np = 200. We now present the details of each of the methods
used.

PMMH As PMMH operates at only a single location, such that Nr = 1, we can afford to average
over more SMC sweeps and so use Ns = 5. We then take NT = 8000 steps. This yields a budget
B = 8 × 106. The Rayleigh distribution over parameters has a mean parameter of 0.0185. The
proposal distribution we use is a multivariate normal distribution centred on the current parameter
value, with covariance 0.001852IN .

PT We then enhance this approach through the use of parallel chains and likelihood tempering.
For this experiment we use Nr = 5 and T1:Nr

= [4.0, 2.0, 1.33, 1.14, 1.0]. Due to the increase in
evaluations at each steps, we reduce Ns to 2, and reduce the number of steps NT to 4, 000, resulting
in an expenditure B = 8× 106. This inverse of this temperature corresponds to the weighting we
apply to the likelihood in the evaluation of the tempered joint density. We also utilize a tempered (or
temperature-dependent) proposal distribution, where higher temperature chain have a wider proposal.
The hottest chain, T1 proposes from the prior each time to induce the most mixing. The standard
deviation of the proposal is then as follows: T2:Nr = [0.00180, 0.00156, 0.00147, 0.00138]. Swaps
are proposed between adjacent chains at every step, where the adjacent pair is drawn from a uniform
distribution. For clarity however, the log-joint density plots shown in Figure 2(c) of the main text are
evaluated under the true density, i.e., the lowest temperature, for fair comparison.

PMVO We finally compare to our PMVO method. We use Nr = 20 and Ns = 2, and, to match
the budget, limit ourselves to use NT = 1, 000, such that our expenditure is B = 8× 106. We use
an isotropic Gaussian proposal variational distribution to draw the samples that are used to estimate
the gradient, centred on the current parameter values and with a covariance of 0.0009232 × IN . The
width of this proposal is reduced by a factor of 5 during the optimization. We utilize the ADAM
optimizer [35] with an initial learning rate of 10−3, which is logarithmically annealed to 10−4 during
the optimization. Similarly, we begin estimating the gradient on a tempered joint density, with initial
temperature, 1/β = 100, which is logarithmically annealed to the true density, 1/β = 1, during the
optimization. We also temper the SMC sweep by relaxing the observation kernels used in the SMC
sweep by expanding them by a factor of 2.5 initially, again, logarithmically annealing this towards
the “true” kernels specified under the model. For clarity however, the log-joint density plots shown in
Figure 2(c) of the main text are evaluated under the true density for fair comparison. We found that
these relaxations make the gradient-based method more stable.

Comparison The results of this experiment are shown in Figure 2 of the main text. The true state,
x0:T is shown as a black dashed line in Figure 2(a), where we only image 5 of the 30 species for clarity.
The first thing to note is that we are able to generate roughly stable traces, where different traces
exhibit notably different behaviours. The blue lines correspond to the filtering distribution returned
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by the SMC sweep when using the true model and true parameters. This reconstruction corresponds
to the best we can feasibly hope to reconstruct the true state. We also show the reconstruction, in red,
using parameters drawn from the prior. As one would expect, the reconstruction using parameters
drawn from the prior, remembering that the prior corresponds to our prior belief about the parameter
values before seeing any data. It the congruence of the blue reconstruction and the black true trace, in
contrast to the red reconstruction, suggest that “finding” the true parameters strongly permits better
reconstructions, and that our approach is sensible.

In Figure 2(b) we show the evolution of the MAP parameter values during the execution. The reason
for the performance gap between the methods is visible here. The PMMH algorithm is taking steps
in a 44 dimensional state using an isotropic normal proposal. This means that very few steps are
going to be accepted. One could design a more sophisticated transition kernel, but at the expense
of greatly increased design effort, and difficulty in designing kernels for more complex systems.
The use of tempering partly alleviates this. Higher temperature chains can much more easily take
larger steps due to the attenuation of the data dependency. These chains then “pass down” their
larger steps to cooler chains that then refine the steps more readily. This behaviour is observed in the
propensity of the system to swap parameters between replicates, and the higher acceptance rate within
replicates, particularly at intermediate temperatures. As is seen in Figure 2(c) parallel tempering
reaches higher probability regions of parameter space, but does not approach the true joint density.
Relaxing inference to optimization and using our approximate gradient approach leads to much better
performance. The parameter values also converge much more strongly to the true parameters.

Figure 2(c) shows the evolution of the MAP joint density estimated at that point during the optimiza-
tion or inference. On the x axis we plot against function evaluations, i.e. Ns × Nr × Nt, where
Nt ≤ NT , represent the computational effort expended. We normalize the y axis by plotting the
discrepancy between the joint density of the MAP parameters and the joint density of the true param-
eters. Intuitively, this means that, under the model, any parameters that achieve a value of zero are
indistinguishable from, or equally apt as, the true parameters. To put it even more straightforwardly,
we wish to find parameter values which have a joint density at least as high as the joint obtained
by the true parameter values, corresponding to a value of zero on the y axis. One can see straight
away that the variational optimization approach outperforms the parallel chains method, which in
turn outperforms the vanilla PMMH approach.

Importantly as well, designing the PMVO method was more straightforward, not having to design
the temperature ladder and designing proposals for each temperature. Therefore, we conclude that
performing optimization is a sensible objective and herein we discuss only the PMVO method.
However, the one end-goal is still to obtain the posterior density over the parameter values, as this
density is of considerable interest to practitioners as it convey more information than a point estimate
of the optimal parameter values, and so we are still actively developing these inference methods.

C.3 Synthetic Caenorhabditis elegans Parameter Estimation

We now investigate the use of the full simulation pipeline in conjunction with learning parameters.
We can do this synthetically, much like we did in the AR example, by generating data with known
parameters and then attempting to re-learn those parameters, simply replacing (6) and (7) with
the simulation and observation models defined in Section B.1. To be more concrete, this task
involves performing SMC in a model with latent dimensionality of N = 994, where, as described
earlier, this corresponds to voltage and calcium concentration of the 302 neurons, and the body state
representation used by WormSim. For this, we use predominantly the same configuration as for the
VPC experiment introduced in Section 3 of the main text. However, for computational speed, we use
fewer particles, only using 500 particles in the initialization, and 90 particles in the main sweep. We
note that running more particles improves both the quality of the reconstructions, and the parameter
learning. We use the ADAM optimizer [35] with a learning rate of 0.01.

We chose to optimize here the two parameters that we introduce as part of meshing SCE and WormSim.
We also chose these parameters predicated on the observation that they are highly influential on the
resulting traces. However, our method, and implementation, scales for optimizing other parameters
as well. For this experiment we place a Rayleigh prior over each parameter, with mean parameter
equal to the true parameters, wm = 9.0 and ws = 10.3. We note, however, that the likelihood term
dominates the prior term, and so the prior, in essence, only guides the initialization.
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To initialize the gradient optimization we sample as many parameter values from the prior as we have
worker nodes, in this case 9, and evaluate the joint density at each of these points. We then select the
best scoring parameter values as the initial value of the gradient optimization. We observe that many
of the initially sampled parameter values, as described above, immediately “crash” the simulator due
to the integrator failing. These parameter values are immediately rejected as having a probability of
zero. Often, sampled parameter values are too low, leading to insufficient activation and the worm
“dying” almost immediately.

Figure 7: Experiment showing the results of the initialization. Failed initializations are shown as red
crosses, initial values that “passed” but were not selected are shown as blue dots, and the selected
initializations are shown as green dots. The true parameter value is shown as a black cross.

We show a visualization of this procedure in Figure 7. Shown as red crosses are parameter values that
led to the simulator crashing immediately. In blue are parameter values that did not crash, but were
not optimal among the initial set and so were not executed. In green are the parameter values that were
selected by each of the 20 experimental repeats. We see that this initial screening, or random search,
dramatically restricts the parameter space to be explored. In high dimensions, this random search
becomes more difficult, but arguably more important as spending a comparatively small amount of
effort at the start of the optimization may save considerable computational effort by simply starting
from a better place. To be more concrete, we perform our random initialization procedure, more often
than not, in the same time as a single gradient step, representing one five-hundredth of the overall
computational cost.

C.4 Fully Observed Virtual Patch Clamp Experiment

For interest, we also include a virtual patch clamp experiment where we observe all of the neuron’s
florescence signal. Of course, this scenario is infeasible, however, observing and identifying more
than 49 neurons is not infeasible as calcium imaging techniques develop. One of the difficulties
in using calcium imaging data is being unable to associate “flashes” with the originating neuron,
precluding the use of many of the flashes that are tightly spatially arrange in the head of the worm.
However, neurons, particularly motor and sensory neurons, are spread throughout the length of the
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Figure 3: Estimating C. elegans simulator parameters when observing all 302 neurons. (a) and (c)
show the filtering distributions of SMC reconstructions of the membrane potentials of 15 cells given
the true generative parameter (blue), two different optimization algorithm initial parameters (red),
and optimized parameters (green). (b) shows the distribution of parameter convergence paths over
the course of PMVO optimization, plotted as the mean and variance for 6 random restarts.

worm with a lower spatial density. Therefore, if the field of view of the calcium imaging could be
expanded these neurons could also be unambiguously identified, it would be feasible to condition the
simulation on many more neurons. To confirm the benefit of this supposition, we perform SMC and
parameter optimization conditioning on all 302 neurons. The results of this are shown in Figure 3.

We see, unsurprisingly maybe, that the SMC sweep performs very well, practically perfectly re-
constructing the latent states and the body pose when all neurons are observed. Furthermore, the
parameters converge quickly and tightly to the true values, suggesting that our PMVO approach is
working well, and that the spread over optimized parameter values when only observing 49 neurons
is due to intrinsic uncertainty given the short data traces and the number of unobserved states. The
experimental settings for this are the same as the experiment presented in the main text, apart from
that we only use 400 particles to calculate the initialization and 48 particles in the SMC sweep itself,
as well as reducing the size of the noise kernels used used at inference time in the SMC sweep
by a factor of 20. We also re-evaluated the expected model noise and and observation noise by
simulating data conditioned on the current model, although we do not believe this greatly impacted
the experimental results. We further modified the prior to have mean parameters 10.8 and 12.36 for
wm and wsr respectively.

D Sequential Monte Carlo

In Section 2 of the main text, we defined the simulation platform that defines the density over possible
simulations as p(x0:T ,y1:T |θ). Here we explicitly include the model parameters for notational
consistency, denoted as θ. We now give extended details on the sequential Monte Carlo (SMC)
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technique that underpins our methodological approach. SMC fulfils both requirements of latent state
inference in time series models and approximation of the model evidence, two facets we explore now.
Absolutely exhaustive exposition of the intricacies of SMC, also referred to as sequential importance
resampling, is outside the scope even of this supplement and so we refer the reader to Doucet and
Johansen [32] for more information.

D.1 Latent State Estimation

We now give a more detailed introduction into state space estimation using sequential Monte Carlo
(SMC) in graphical models, particularly hidden Markov models (HMMs). SMC provides an incredibly
general framework for sampling from any distribution, often denoted π(x|y,θ), where x ∈ X are all
the latent states we wish to estimate and y ∈ Y is the data we are conditioning on. We also include
θ ∈ Θ defining global parameters which any of the intermediate densities may also be conditioned
on. Of course we may not be conditioning on data and may not have global parameters, in which
case the y and θ dependencies may be dropped.

On a high level, SMC operates by defining a series of intermediate target distributions, often
denoted as πt(xt|x0:t−1,y,θ), t ∈ [0, . . . T ] , T ∈ T = Z≥0, x0:t−1 ∈ X0:t−1 ⊂ X , where
each intermediate distribution is defined over subsets of the latent state and observed data. These
intermediate distributions are defined such that they are a factorization of the target distribution:

π(x|y,θ) = Πt∈[0,...,T ]π(xt|x0:t−1y,θ). (11)

Many different possible factorizations of this expression exist for any given problem, and therefore one
of the the design challenges in the deployment of SMC is establishing the most beneficial factorization,
in terms of the fidelity of the result traded off against the effort required to determine the form of the
required distributions. In our scenario, we wish to estimate the distribution p(x0:T |y1:T ,θ), where
xt ∈ R994 represents the total state of the worm at each time step.

One of the most common deployments of SMC is in state-space estimation in time series models.
Time series models implicitly assume that the value of the state at the current time, xt are not
conditioned on future states, xt′>t Another common simplification to make is that the state at the
current time step is only conditioned on the state at the previous time step, i.e. the state has no
“memory” of previous states, that is not directly encoded in the state at the current time. Similarly,
the observation at each time step is only conditioned on the latent state at that time step. This
configuration is referred to as a hidden Markov model (HMM), and is a commonly studied as it
describes many physical processes. To be precise, inclusion of global parameters, θ, actually defines
a parametric HMM, however this distinction does not affect the methods we go onto describe as we
will always explicitly condition on a single parameter value, and so we refer to our problem as a
standard HMM.

A HMM is described by an initial state distribution, p(x0|θ), a transition kernel a transition kernel,
p(xt|xt−1,θ), t ∈ [1, . . . , T ] and an observation model, p(yt|xt,θ), t ∈ [1, . . . , T ], where again,
each of these distributions can be conditioned on some global parameters θ. The initial state
distribution describes our prior belief about the state before observing any data. The transition kernel
describes our belief about the evolution of the state with time. The observation function describes
our belief about how the observations are dependent on the latent state. We assume, as is common,
that these kernels are constant and hence we are operating in a homogeneous, parameteric, finite
time horizon, discrete time hidden Markov model. We note that the transition kernel and observation
function can be functions of time, leading to an “inhomogeneous (hidden) Markov model,” although
this is less common and we do not discuss here.

To relate the definitions of the HMM to SMC is straightforward, through the use of the joint density
and Bayes’ rule:

π(x|y,θ) ∝ p(x,y,θ), (12)
= p(y|x,θ)p(x,θ), (13)
= p(x0|θ)Πt∈[1,...,T ]p(xt|x0:t−1,θ)p(yt|x0:t,θ), (14)

= p(x0|θ)Πt∈[1,...,T ]p(xt|xt−1,θ)p(yt|xt,θ), , (15)
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where we have exploited the aforementioned structure in the HMM, via conditional independences,
to go from (14) to (15). The intermediate distributions can then be explicitly represented as:

π0(xt|y,θ) = p(x0|θ), (16)
πt(xt|x0:t−1,y,θ) = p(xt|xt−1,θ)p(yt|xt,θ) ∀ t ∈ [1, . . . , T ] . (17)

Each of these terms we have already described as the initial state distribution, state transition
kernel and observation model. The HMM defines the intermediate distributions to use as the
distribution over the latent state at each time conditioned on the observed data up to that time,
i.e. πt(.|.) = p(x0|θ)Πt′∈[1,...,t]p(xt′ |xt′−1,θ)p(yt′ |xt′ ,θ). Accordingly we can perform SMC in
HMMs through the use of these equations by sequentially estimating each of these distributions, such
that their product is the distribution of interest. This process can be seen as at each intermediate
distribution, πt(.|.), propagating that distribution into the next time point and adjusting in light of
the new data to available at that time point to yield the next intermediate distribution, πt+1(.|.). This
process is referred to as reweighting.

However, in all but the most straightforward of models, analytic calculation of these densities is
intractable. Therefore, we often resort to numerical approximations of these densities. This is referred
to as a particle filter. Particle filters, on a high level, operate by propagating samples from each
intermediate distribution through the state transition kernel, retaining those particles that correlate
well with the new data, and removing those particles that do not. Much of the field of state-space
estimation and particle filtering is devising more sophisticated and reliable methods for performing
this approximation.

To be more concrete, we maintain a set of Np particles, denoted X =
{

x
(n)
t

}
n∈[1,...,Np]

∈

XNp , Np ∈ Z≥1, where we index individual particles by a bracketed superscript at each time

step. The initial particles, X0 =
{

x
(n)
0

}
n∈[1,...,Np]

, are drawn from the prior p(x0|θ), such that,

as Np → ∞, the set of particles perfectly approximates p(x0|θ). Each of these particles are then
propagated through the state transition kernel, often referred to as a plant model, to yield samples
from the distribution X̂(n)

1 ∼ p(x1|θ), denoted as X̂1

{
x̂
(n)
1

}
n∈[1,...,Np]

. Each of these particles

can then be “scored” under the observation model by calculating the density w(n)
1 = p(y1; x

(n)
1 ,θ).

These weights, referred to as importance weights, are then “self normalized” as:

W
(n)
t =

w
(n)
t

Σi=1:Npw
(i)
t

, (18)

to yield a multinomial distribution reflecting the relative probability of each particle. The reweighting
is then performed via “resampling”, where a “new” set of particles is created by drawing particles
from

{
x̂
(n)
1

}
n∈[1,...,Np]

proportional to their score under the density induced by the observation.

This resampling may “kill” some particles by not resampling them, instead multiply resampling
those particles with higher weight. This process transforms the particles from being distributed
according to p(x1|θ) to being distributed according to p(x1|y1,θ). The particle filter then proceeds
by exploting the recursive nature of this approach, propagating these resampled particles through
the plant model, weighting and resampling until the end of the series of distributions. These steps
yield a series of distributions (represented via particles) referred to as the “filtering distributions”,
{p(xt|y1:t,θ)}t∈[1,...,T ], i.e. the distribution over the latent state conditioned on all the data that has
been seen.

However, this is not yet equal to the target distribution, π(x0:T |y1:T ,θ), A backwards pass must per-
formed, by where the distributions at previous time steps are only reweighted in light of subsequently
seen observations. This process is implemented in a particle filter by constructing the ancestry of each
particle, i.e. for each particle at the current time step, which particle at some time point previously is
it descended from. Those particles without descendants at the final time step are then pruned from the
set of particles representing the current distribution. This can be seen as removing the state estimates
that do not explain future observations. Once this backwards pass has been performed, the resulting
particle sets at each time step,

{
x̄
(n)
t

}
n∈[1,...,Np]

, is distributed according to the marginal distribution
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p(xt|y1:T ,θ). Therefore, the product of all of these particle sets corresponds to the product of these
marginals which is equal to the target distribution, π(x0:T |y1:T ,θ).

D.2 Evidence Approximation

Through the mechanics of SMC described above we have developed the necessary terms to approxi-
mate the posterior distribution over latent states conditioned on the observed data and a particular set
of global parameter values. The second requirement we identified is the need to estimate the evidence,
or the likelihood of the model, p(y|M), with the latent states marginalized out. Here, the model
represents our belief about the mechanics of the world. While this framework permits comparing
entirely different models, where each model has an associated probability p(M), it is more common,
and is what we do here, to fix the model, and optimize the parameters of the model, where we define
a prior density over these parameters p(θ). Calculation of p(y|θ), multiplied by the prior probability
of the parameter values, yields the joint density of parameter values and observed data under the
selected model class. This joint density is proportional to the posterior density over parameter values.
This observation directly motivates the evidence term, or the likelihood of the parameter values, as
a metric of how well our model describes the observed data, where maximization of this metric
maximizes the model’s capacity to represent the observed data, regularized by our prior beliefs about
the parameters themselves.

Somewhat incredibly, particle filters provide us with an estimate of this quantity with little extra
effort. To begin, we note that the evidence can be factorized as:

p(y|θ) = p(y1|θ)Πt∈[2,...,T ]p(yt|y1:t−1,θ), (19)

and as such we can calculate this term at each time step and multiply to get the overall evidence.
Application of the sum and product rule to each term inside the product yields:

p(yt|y1:t−1,θ) =

∫
xt∈X

p(yt|y1:t−1,xt,θ)p(xt|y1:t−1,θ)dxt. (20)

The choice of marginalizing over xt may seem arbitrary, but (20) is true by construction, and our
motivation will soon become apparent. We now exploit the conditional independences induced by the
structure of a HMM:

p(yt|y1:t−1,θ) =

∫
xt∈X

p(yt|xt,θ)p(xt|y1:t−1,θ)dxt. (21)

While this expression may look unhelpful, observe that we have particle approximations for the
required distributions produced by the particle filter, or can calculate the required density. The term
p(xt|y1:t−1,θ) represents the distribution over latent state conditioned on all data seen until that
point. This is exactly the filtering distribution maintained by the forward pass of the particle filter.
Therefore, we have a Monte Carlo approximation of the integral in (21):

p̂(yt|y1:t−1,θ) =
1

N
Σn∈[1,...,N ]p(yt|x

(n)
t ,θ), (22)

where we denote the fact that this is now an approximation by using p̂, although we drop this
subsequently for clarity. The term inside this summation, p(yt|x(n)

t ,θ), is the probability of the
observation induced by each particle under the model. This is exactly the quantity we use to perform
resampling in the particle filters’ forward sweep. Therefore, we can calculate the evidence at each
time step by taking the expectation of the unnormalized importance weights, w(n)

t , calculated at each
resampling step. By back substitution of (22) into (19), we can then estimate the evidence for the
whole dataset by multiplying each of these individual evidence calculations.

D.3 Summary

Before we proceed, we just pause to take stock of what the mechanics of SMC, and particularly
particle filtering, allow us to perform. SMC allows us to solve for a numerical approximation of the
exact posterior distribution over all of the latent states conditioned on all of the data. We placed
no constraints on the form of the initial state distribution, transition kernel and observation model,
and so these could be defined as programs, simulators or complex distributions. However, these
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non-trivial distributions make analytic calculation of these intermediate densities almost impossible.
Therefore the use of a particle filter can provide a numerical approximation to the action of SMC,
which only requires that we can sample from the initial state distribution and transition kernel, and
can evaluate the density under the observation model for any state-observation pair. These are, often,
easily achievable requirements as we have agency in how we design these elements, and we are
then guaranteed, under mild conditions, to get a correct estimation of the target density. We also
showed how SMC also produces an estimation of the model evidence, or, the likelihood of the model
parameters, marginalizing out the latent states, allowing for objective comparison of models. Finally,
although SMC is easily applied to HMMs which represents a large class of problems and we have
explained SMC in terms of HMMs here, we stress that SMC is a very general algorithm that can be
manipulated to solve a much wider class of problems than just HMMs.

D.4 Initialization of Particles

We observed that the “quality” of the initialization of particles dramatically impacts the quality of
the reconstruction and evidence approximation. Due to the computational cost of the simulator and
high latent dimensionality simply taking the “brute-force” approach of using more particles is not
feasible. We therefore employed a number of assumptions and methods to improve the quality of the
initialization, while limiting any deviating from the formal mechanics of SMC.

We mainly focus here on the details of how we “refine” the distribution from which membrane
potentials are initialized from. Importance sampling to improve the initialization of particles is not
feasible, as the voltage-calcium dynamics under the model specify that time-derivative calcium is a
function of potential, and therefore one cannot simply importance sample to refine values of potential.

We therefore improve the distribution from which membrane potential is initialized. By sampling
state trajectories from the model we estimate a time-invariant, per-neuron distribution over potentials.
We then sample a large number of particles from this distribution, iterate these particles through
the model once and perform resampling. The distribution over initial state, conditioned on the first
observation, is then estimated by performing a backward pass. The particles used in the SMC sweep
are then initialized from this distribution, with a small perturbation added to increase particle diversity.

We observe that this improved the quality of the initialization by limiting particle degeneracy. While
this is a deviation from the formal mechanics of SMC, it mainly aims to mitigate deficiencies
introduced by using finite particle sets, removing those particles that are immediately discontinued by
the SMC sweep, and replicating and diversifying those that have reasonable probability under the
model and would be retained. Importantly, this method incurs little computational cost.

E Parameter Learning

Inference generally aims to solve for a representation, either exact or approximate, of the full form
of the target density, i.e. in our scenario quantify the value of π(θ|y) for all θ values. In contrast,
optimization solves the much less onerous task of finding the inputs to a function that maximize the
functions output, and additional obtain this value. We now explore both of these approaches, and
describe a methods for both.

E.1 Posterior Density Calculation

First we concretely define our metric of faithfulness. For this, the posterior density given the observed
data, p(θ|y), is the natural choice in the Bayesian framework. The posterior density objectively
represents the probability that any value of θ was capable of generating the observations one is
conditioning on. Using Bayes’ rule we can decompose this into the ratio of the joint probability,
p(θ,y), and the evidence, p(y), which acts as a normalizing constant:

p(θ|y) =
p(θ,y)

p(y)
. (23)

The joint density can then be separated using the product rule:

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (24)
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One can read the joint density as the product of a prior term, p(θ), and a likelihood term, p(y|θ),
where the prior term reflects our beliefs about the parameter values before conditioning on any data,
and the likelihood term then re-weighting this prior belief according to how well it explains the
observed data.

Analytic calculation of the evidence term p(y) is intractable. However, we note that this is a
normalizing constant that does not depend on θ and so the surface defined by p(θ|y) over θ values is
identical to the surface of the joint density p(θ,y) up to a multiplicative constant. Therefore, we can
discuss maximizing (or performing inference in) the posterior space by actually working in the joint
space, despite not being able to calculate the normalizing constant:

p(θ|y) ∝ p(y|θ)p(θ). (25)

The prior distribution is determined by prior knowledge, informed by the beliefs of neuroscientists.
The likelihood term expresses how well the parameter values describe the observed data. Evaluation of
this likelihood term is less straightforward, since it requires a ‘fusion’ of the model and the observed
data in a time series. However, we have already described how SMC can provide a numerical
approximation of this likelihood, and as such, we can approximate the required joint density.

E.2 Inference versus Optimization

As described above, inference aims to quantify a target distribution over its entire support. This
result, in the particular case of parameter inference under a model, is particularly desirable as it
also conveys the strength of the dependence jointly under the model and observed data. As a brief
example, suppose the model of interest takes as input two parameters, denoted θa and θb, but one of
the parameters, θa is not used, while θb is used. The posterior distribution over the two parameters
given the observed data is flat in the θa dimension, but is sharply peaked in the θb dimension. This
topology suggests that θa does not affect the random variables, but the value of θb strongly influences
the values, and, if sharply peaked, only one value for θb is suitable. In this scenario, quantification
of the posterior density for all input values has informed us not only of the optimal parameters (the
peaked value in θb, and any θa value), but also that the value of θb is far more ‘important’ than that
of θa, a notion quantitatively expressed through the entropy of the distribution. This result may be
as important to practitioners, as it indicates which aspects of their model add little discriminative
or descriptive power. The result of optimization would merely return the values of θa and θb that
maximize this function, and indicate nothing about the relative importance of each parameter.

Furthermore, the posterior distribution is also conditioned on the observed data itself. A parameter
may be observed to have no affect on one dataset, especially if some behaviour or motif is not
observed and identified by a flat posterior distribution; and yet be much more highly peaked when
conditioned on another dataset, where such behaviours or motifs are observed. In the same vein,
(exact) inference will not be “over confident” in asserting the parameter values for the simulator,
returning a flat distribution over parameters that are not dependent on the data.

Finally, a “good” inference result will quantify any multi-modality in the system. It may be that there
are two (or more) distinct modes that (almost, if not exactly) equally explain the data. If this is the
case, this is almost certainly more interesting than the values themselves because it suggests that the
model has two distinct operating regimes which may be indicative of the underlying system. In this
case, returning one of the modes as the “optimum” has missed an entire mode and potential operating
regime. The model may appear to not have the capacity to represent the data that led to the second
mode being present, but instead, there may be a higher system that switches the behaviour of the
system – and intuition that is not garnered by vanilla optimization.

Optimization on the other hand is a fundamentally easier objective, merely solving for θ∗ =
argmaxθ∈Θ p(y,θ). Optimizations can often be accelerated through the use of gradients, and
are generally more flexible due to the removal of the constraints that make the result of inference
valid.

Therefore, we set out initially to show we can at least optimize the parameters of the simulator
conditioned on data, although remaining open to calculating the scientifically more interesting result
of the full posterior distribution over parameter values.
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E.3 Variational Optimization

A major benefit of optimization methods is the ability to use gradient information to direct the opti-
mization algorithm to higher utility regions of parameter space. However, it is not trivial, and may not
even be possible, to differentiate through an arbitrary simulator, and therefore approximate gradient
methods can be used. An approximate method for obtaining gradients is to use the REINFORCE
gradient [34]. The REINFORCE gradient is inspired from the log-derivative trick:

∇θf(θ) = f(θ)∇θ log f(θ). (26)

This system requires only the gradient of the logarithm of the objective function, which may be more
easily calculated than the gradient of the original objective function. The REINFORCE gradient has
found great utility in reinforcement learning where it permits approximate derivatives to be calculated
through non-differentiable elements. An extension to the REINFORCE gradient is explored in Staines
and Barber [33], and is referred to as variational optimization (VO). This method is inspired by the
REINFORCE gradients, but uses a variational proposal distribution to ease the problem further by
removing the need to differentiate the even the log-objective function.

We first start by defining a variational proposal distribution q(θ|φ). This distribution, parametrized
by φ, generates sample values for θ. The algorithm is predicated on the observation that:

min
θ
f(θ) ≤ Eθ∼q(θ|φ) [f(θ)] = U(φ), (27)

where U(φ) is the expectation of the objective function under the proposal distribution.

We now try to build some intuition as to why this assertion is correct, and also because this intuition
will help in understanding the VO algorithm more widely. We first offer a proof of this by logical
arguments, before offering a more intuitive set of arguments as to its correctness. Suppose, for
simplicity and without loss of generality, that θ and φ exist in the same space, and we have a proposal
distribution, q∗(θ|φ), that is a δ-function. Let us denote the minimum value of the function as y∗,
occurring at the minimizing input value, θ∗. The optimal proposal, with respect to minimizing
the expectation of the function under that proposal, is clearly δ(φ − θ∗), yielding U(φ) = y∗.
Accordingly, the optimal φ value is θ∗. Suppose now that we move φ away from θ∗, the value of the
expectation in (27) must increase, implying that in this δ-proposal schema, the optimal value of φ
must exist at the global minima of the function. Let us now extend this by letting our proposal be two
equally weighted δ functions, such that φ is now a two-vector denoting the centre of each δ. The
value of U(φ) under this proposal is therefore:

U(φ1,φ2) =
1

2
(f(φ1) + f(φ2)), (28)

which by induction from above must be greater than y∗ unless φ1 = φ2, or the function f(x)
has multiple global minima, of which two are located at φ1 and φ2. Since any arbitrary proposal
distribution can be built up through such (weighted) summation of δ functions, this proves equation
(27) is generally correct for any proposal distribution.

An alternative, and slightly more intuitive argument is to consider q(θ|φ) as simply generating a
set of values, {θ1,θ2, . . . ,θN}, distributed according to the proposal distribution. These values are
in the space of the inputs to the function f , resulting in function evaluations of {y1, y2, . . . , yN}.
Monte Carlo integration lets N →∞ such that we can evaluate integrals exactly using samples. A
(hopefully) trivially simple inequality is that the smallest value in the set must be smaller than or
equal to the average value of the set:

min({y1, y2, . . . , yN}) ≤
1

N
ΣNn=1yn, (29)

where the two sides are only equal when all the values are equal. We now note, that by definition:

y∗ ≤ min({y1, y2, . . . , yN}), (30)

since we defined y∗ to be the smallest value of the function f ; again noting that the equality only
holds when one of yn is equal to y∗. It therefore follows that:

y∗ ≤ 1

N
ΣNn=1yn. (31)
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Recasting this inequality back to the original nomenclature, and “undoing” the Monte Carlo integra-
tion step yields:

min
x
f(θ) ≤ ΣNn=1f(θn),θn ∼ q(θ|φ) (32)

= Eθ∼q(θ|φ) [f(θ)] . (33)

The equality condition (naively, see footnote) only holds when all sampled values are equal, and
equal to the global function minimizer θ∗,2 corresponding to the first δ proposal suggested above.

Using the inequality shown in (27) one can re-cast the optimization as instead taking gradient steps
in the parameters of the proposal distribution, φ, such that the optimized proposal samples “good”
parameter values. Gradient steps are taken to maximize the function U(φ):

∇φU(φ) = ∇φEθ∼q(θ|φ) [f(θ)] . (34)

Expansion of the expectation and application of the log-derivative trick once more yields:

∇φU(φ) = Eθ∼q(θ|φ) [f(θ)∇φ log q(θ|φ)] . (35)

Inspection of this equation shows its benefit. We need only define a parametrized proposal distribution
q(θ|φ) which is differentiable with respect to its parameters φ and we can draw samples from. We
then only have to be able to evaluate the target function at these sampled values.

Evaluation of this expectation is not analytically tractable and therefore we resort to Monte Carlo
approximation:

∇̂φU(φ) ≈ Σi∈{1,...,Nr}f(θ(i))∇φ log q(θ(i);φ), (36)

θ(i) ∼ q(θ|φ), i ∈ {1, . . . ,Nr} , (37)

where we use Nr samples in the Monte Carlo estimation, and we differentiate that this is an approxi-
mate gradient with a hat on the derivative, ˆnabla.

The choice of q(θ|φ) is a degree of freedom we are free to design. We choose q(θ|φ) = N (φ|Σ),
where Σ is a diagonal covariance matrix. Implcitly, through this choice, we are setting Θ = Φ and
θ = φ at each time step. To elucidate this a little further, we are centring an independent Gaussian
proposal over each optimization parameter at the current value of that parameter. The width of each
proposal can then be tuned appropriately, potentially per-parameter if need be. We set the width of
this proposal to in accordance with the expected scale of the parameter value and reduce the width of
the proposal during optimization.

Using VO, we are able to calculate an approximate gradient for the parameters of the proposal distri-
bution, without having to differentiate through our simulator. This is advantageous as it means any
simulation platform can be used without requiring differentiability. Although the gradient estimator
is a Monte Carlo approximation, and hence requires additional computational effort, the calculation
in (35) is embarrassingly parallelizable and hence we can leverage distributed supercomputer clusters
with little overhead.

E.3.1 Particle Marginal Variational Optimization

We enhance the variational optimization algorithm by taking inspiration from particle marginal
Metropolis Hastings, utilizing a pseudo-marginal estimation of the objective function as the target
density. In this case, we replace the analytic joint density of the parameters, p(y,θ), with the
pseudo-marginal joint density estimated by SMC, p̂(y|θ)p(θ). Since this approximation is unbiased,
it is a sensible objective to optimize, and corresponds to performing model selection. We believe
this is the first time variational optimization has been combined with a pseudo marginal method to
maximize model evidence by optimizing the parameter values of a black-box simulator. We describe
this as particle marginal variational optimization (PMVO) and suggest that this approach is apt for
our problem domain as it is agnostic to the particulars of the simulator, leverages gradient information
which should make it scale to higher dimenional problems compared to, say, Bayesian optimization
or simulated annealing, and also facilitates likelihood tempering.

2Of course, if the function has multiple global minima, this condition does not preclude q placing non-zero
mass on each of these minima, yielding a family of q distributions that are all optimal.
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Our particular PMVO algorithm then proceeds as follows: We first initialize the parameter values, φ0.
We chose to implement this by randomly sampling Nr parameters from the prior and selecting the
parameter with the joint density, i.e. θ0 = θ

(i∗)
0 , i∗ = argmaxi∈{1,...,Nr} p(y,θ

(i)
0 ), θ(i)0 ∼ p(θ).

The parameters of the proposal distribution are then set to this value, φ1 ← θ0, since Φ = Θ.
VO then proceeds by sampling from the proposal distribution, θ(i)

1 ∼ q(θ|φ1), i ∈ {1, . . . ,Nr},
evaluating the joint distributions at each of these points, f(θ

(i)
0 ) = p(y,θ

(i)
0 ), and calculating an

approximating derivative of the proposal with respect to the parameters of the proposal, ∇̂φU(φ),
as specified in (36). This estimate of the derivative is then used with the stochastic gradient ascent
algorithm ADAM [35] to update the value of φt, denoted as φt+1 ← ADAM(φt, ∇̂φt

(φt), α), with a
learning rate of α. This process iterates, sampling from the proposal, calculating the joint density,
estimating the gradient and then taking a gradient step, until some computational budget has been
used or a stopping condition is met. Further augments such as introducing tempering of the joint
density, annealing the learning rate and reducing the width of the proposal distribution can all be
applied in-between gradient steps to improve performance.

A slight wrinkle in the chosen implementation is for bounded parameters (i.e. strictly positive
parameters) the Gaussian proposal places non-zero probability mass on outside of these bounds.
Therefore, we perform rejection sampling on each bounded parameter value to ensure proposed
values are valid. This is somewhat of a corner case however, as the proposal distribution is normally
narrow compared to the bounds of the variable and hence this rejection sampling only comes into
effect near the boundaries, which are, under any sensibly specified prior, likely to be low-probability
regions, and so the optimization will actively seek to move away from these regions. In practice,
we find that very few samples are rejected. Similarly, the gradient calculation may take the current
parameter value outside these bounds. If this is the case, we set the parameter to the value of the
bound. Again, we find that if the gradient method hits this constraint, it soon moves away from the
constraint into higher probability regions.

E.3.2 Tempering Gradient-Based Methods

As described above, tempering of methods can improve their performance, especially when operating
in high dimensional and sharply peaked distributions. Therefore, it also makes sense to temper the
objective function when performing gradient-based optimization, in turn, tempering the gradients one
receives. Tempering in the gradient based setting is actually more straightforward, as we are only
search for a point estimate of the optimal parameter set, and therefore we can take gradients in the
tempered distribution while annealing towards the true objective function, but also evaluate the true
objective function at each iteration (since it is just raising the likelihood to a different power) and
select the best-performing parameters on the true objective function, regardless of the temperature of
the system.

F Parameter Inference Methods

We now present additional information on the inference methods compared to in Section 4 of the
main text. We include these for completeness only, and do not present any experimental details in
these sections.

F.1 Metropolis Hastings

The canonical asymptotically correct parameter inference algorithm, for distributions that cannot be
directly sampled from, is the Markov chain Monte Carlo (MCMC) algorithm Metropolis Hastings
(MH) [72, 73]. MH is a method for drawing samples from a distribution that cannot be directly
sampled from, but, can be evaluated for any given input value. MH is an asymptotically correct
algorithm that constructs a series of samples which, in the limit of infinite samples, is equal in
distribution to the true distribution. While full elucidation of the ergodic theory that underpins MH is
outside the scope here, we provide a high level overview of the algorithm and its implementation,
sufficient for the remainder of this paper to be understood.

On a high level, MH generates a series of samples by making “moves”, or transitions, in the local
vicinity of the “current” state. This means that, fundamentally, two successive samples are highly
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correlated. However, when many steps are taken, sufficiently distant samples become “decorrelated,”
i.e. they become independent samples from the target distribution. By construction MH ensures
that some of the more straightforward requirements, such as detailed balance, yielded from the
theoretical analysis to ensure samples in the limit of infinite samples approximate samples from the
target distribution, are met, reducing the burden on the designer.

More formally, MH constructs a Markov chain over state values, which, under mild conditions,
returns samples distributed according to the target distribution, here denoted as f(θ). One first
defines a distribution over the initial state of the chain, often taken to be the prior distribution over
state, p(θ). Then, a transition kernel, or update rule, is defined to describe how the Markov chain
evolves. The distribution q(θt+1|θt), referred to as a proposal distribution, defines a “mutation”
to the current parameters to create the proposed parameters, denoted using a dash, θ′t ∼ p(θ′t|θt).
The proposed parameters are then accepted with probability A, calculated as the ratio of the target
densities multiplied by the relevant proposal distribution for the current and proposed parameters:

A = min
(

1,
q(θt|θ′t)f(θ′t)

q(θ′t|θt)f(θt)

)
, (38)

If the proposed parameters are accepted, the current parameters are updated to be the proposed
parameters. If the proposed parameters are rejected, the current parameters are duplicated. In our
case f(.) is taken to the be joint density p(θ,y), evaluated at the data we observe.

We now have the required components to build a MH sampler. First, at t = 0, a sample is drawn
from the initial distribution, θ0 ∼ p(θ). The Markov chain is set to this value. This sample is added
to the set of samples, {θt′}t′∈{0}. A new state is proposed conditioned on the value of the current
state of the Markov chain by proposing from θ′1 ∼ q(θ1|θ0). The acceptance ratio is then calculated
as in (38), taking into account the target densities’ value at current and proposed state values, and
also the forward and backwards transition densities, where the max term ensures the resulting value
of A is a valid probability. The proposed state value, θ′1, is then “accepted” with probability A.
This means that, with probability A, the current state of the Markov chain is set to θ1 ← θ′1. If
the sample is rejected, the state of the Markov chain is set to the value at the previous step, with
value θ1 ← θ0. The current state of the Markov chain, whether the step was accepted or rejected, is
appended to the set of samples, {θt′}t′∈{0,1}. This process iterated proposing, accepting or rejecting
and appending until the desired number of samples, NT have been drawn, i.e. one possesses the set
{θt′}t′∈{0,...,NT }.

While formal proof is outside the scope of this paper, it can be shown, that under mild conditions
on the target density and proposal distribution, that {θt′}t′∈{0,...,NT } exactly represents the target
density, i.e. limNT→∞Σt={0,...,NT }δ(θt) = f(θ). A common choice of proposal distribution that,
in most cases, meets these requirements is to set q(θ′|θ) = N (θ′;θ, σ2), where σ2 is some apriori
designed covariance. While the definition of the Metropolis-Hastings algorithm, and the use of a
Gaussian kernel means that the theoretical requirements are likely to be met, it does not describe the
convergence of the samples to the true distribution. Designing good proposal distributions is at the
heart of MCMC.

F.2 Particle Marginal Metropolis Hastings

While MH allows us to draw samples from a target distribution, in our scenario, we also wish to
perform inference over the latent state in a time series. Using the approximation of the likelihood, as
estimated by the SMC sweep, constitutes a pseudo-marginal method, i.e. we have (approximately)
marginalized over the latent state using a numerical approximation. A more elegant view of this is to
consider particle marginal Metropolis Hastings (PMMH) [74, 75] as an extension of the theoretical
framework used in MH.

What we wish to do is construct a Markov chain sampling in the joint space {x0:T ,θ}, targeting the
posterior distribution p(x0:T ,θ|y). We wish to create a MH acceptance term:

A = min
(

1,
q(x′0:T ,θ

′|x0:T ,θ)p(x′0:T ,θ
′|y)

q(x0:T ,θ|x′0:T ,θ
′)p(x0:T ,θ|y)

)
. (39)

We are free to choose the form of our proposal distribution, but a reasonable choice to use is:
q(x′0:T ,θ

′|x0:T ,θ) = q(θ′|θ)q(x′0:T |y,θ
′) = q(θ′|θ)p(x′0:T |y,θ

′). (40)
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This proposal can be viewed of as first proposing a new parameter value, conditioned only on the
current parameter value, through the proposal term, q(θ′|θ). The second term then proposes the value
of the latent variables x0:T conditioned on both the observed data and the newly sampled parameter
values. Note that this is not conditioned on the value of x0:T currently held by the Markov chain.
If we were to try and condition on this value, it would introduce a number of intractable likelihood
terms, therefore independently proposing new x0:T values each time is more generally tractable. To
emphasize, this proposal proposes values for both θ and x0:T .

Substitution of this proposal into the acceptance ratio yields:

A = min
(

1,
q(θ|θ′)p(x0:T |y,θ)p(x′0:T ,θ

′|y)

q(θ′|θ)p(x′0:T |y,θ
′)p(x0:T ,θ|y)

)
. (41)

Expansion of the third term then yields:

A = min
(

1,
q(θ|θ′)p(x0:T |y,θ)p(x′0:T |y,θ

′)p(θ′|y)

q(θ′|θ)p(x′0:T |y,θ
′)p(x0:T |y,θ)p(θ|y)

)
. (42)

The second and third terms in numerator and denominator then cancel to yield:

A = min
(

1,
q(θ|θ′)p(θ′|y)

q(θ′|θ)p(θ|y)

)
. (43)

This rearrangement justifies the somewhat arbitrary choice we made above to propose values for
x0:T independently from the current value. The SMC sweep returns two things, an estimate of
the likelihood of the parameters, p(y|θ), and also the posterior distribution over the latent state,
p(x0:T |y,θ), where this latter term is nothing more than the particles retained after the backwards
pass. Therefore, the SMC sweep provides us with all the required samples and values to perform this
update, there the evidence approximation is used in (43), and the particles (after the backwards pass)
are the samples of p(x0:T |y,θ). PMMH then proceeds as an MH sampler, proposing, accepting or
rejecting and appending samples until the required number of samples have been reached.

Most importantly, using PMMH is practically identical to independently using “standard” MH and
SMC. One only has to define the required kernels for the SMC sweep, in state-space, and the proposal
distributions for the parameter updates in MH. The conjunction of these two is the PMMH algorithm,
with no heed needing to be paid to the interaction of the two, greatly reducing the burden on the
designer.

F.3 Coordinate-wise Ascent

One drawback of MH-based algorithms is the dependence on the proposal distribution. Often one
can only define an “independent” proposal distribution, by where individual states are perturbed
with no knowledge of how other parameters are mutated. However, in high dimensions one must
jointly propose perturbations to avoid low acceptance rates, and poor performance. Jointly proposing
“good” perturbations is often as difficult as the original inference problem, requiring quantification of
the local surface. Therefore, a commonly used modification is to perform block-MH, or coordinate
wise ascent [76]. In these schemes MH steps are taken on subsets of the parameters or individual
parameters respectively. This is observed to increase acceptance rates in high dimensions over naive,
independent proposals. However, if there is strong correlation between the states, i.e. there is a sharp
“ridge” in the objective function, coordinate-wise or block method may also have low acceptance
rates if these states are not perturbed together. Furthermore, if the dimensionality of the parameters
to be estimated is large, permuting individual coordinates, or even small groups of parameters, can
dramatically increase the runtime cost of inference. We find that coordinate-wise kernels often yield
a better final result, albeit at greatly increased computational cost.

F.4 Tempering

An augment to the above methods is the use of tempering [77, 78, 79]. Tempering is the process
of modifying the objective function such that it has more favourable properties, and then annealing
the function during execution to restore it to the original function of interest. A common form of
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tempering in posterior inference is raising the likelihood term to an “inverse temperature,” β:

pβ(θ|y) ∝ p(y|θ)βp(θ), (44)

β =
1

T
, (45)

T ∈T = R+, (46)

where T is referred to as a temperature. For high temperature systems (low β values) the contribution
of the likelihood is attenuated relative to the contribution of the prior. For infinite temperature systems,
one can see that the tempered objective function becomes the prior, while unity temperature systems
reflect the original objective function. This tempering effect is observed to “flatten” the ridges in the
likelihood function, often making inference and optimization methods perform better [80]. Of course,
one must fully cool the system before using any of the results as the intermediate tempered functions
have limited use.

F.5 Parallel Tempering

For inference however the tempering scheme described above is of limited use, since samples
from the true objective function are only generated once the system is fully cooled, once again
exposing the issue related to correlated samples. An additional augmentation to mitigate this
is the use of parallel tempered (PT) chains [81, 82]. In this system, a number of independent
MCMC chains, Nr, referred to as replicates, are run in parallel, each operating at a different
temperature, Tn ∈ T , n ∈ {1, . . . ,Nr}. It is customary to organize these chains in descending
order of temperature, such that Tn−1 ≤ Tn ≤ Tn+1, although this ordering is arbitrary and is for
simplicities sake. With this ordering in mind, and supposing T1 = inf and TNr

= 1, these chains
then define a series of target functions that slowly morph from the prior distribution into the joint
distribution.

Mixing between the chains is then permitted by “swapping” the state of the Markov chain between
replicates, according to an MH acceptance ratio. The scheme for defining these swaps needs only to
obey the same conditions as conventional MH, although it is most common to only propose swaps
between adjacent chains with some fixed probability. Therefore, the swap between two temperatures,
Ti and Tj , is accepted according to the MH probability:

A = min
(

1,
pTi(θj |y)pTj (θi|y)

pTi(θi|y)pTj (θj |y)

)
. (47)

This expression does not feature a proposal term as we are used to, as once a swap is proposed, the
replicates being swapped have both been selected, and so the proposal is symmetric. The numerator
is then the posterior density of the two replicates’ (at their own temperatures) if the swap were to
be accepted, while the denominator is the posterior density if the swap is rejected. This means if a
swap yields a higher probability configuration it is accepted with certainty, while if it yields a lower
probability configuration it is accepted with probability determined by the ratio between these two
probabilities.

The intuitition behind this method is that the high temperature chains can easily roam around the
very smooth, high temperature surface. “Good” parameter values are then swapped into successively
lower temperature chains where they are perturbed over smaller length scales (to yield a reasonable
acceptance rate). At the end of inference, the higher-temperature chains are discarded and the
unit temperature chain is retained as the true samples. This method can be seen as defining a
Nr − 1 auxiliary variables, in the form of the higher temperature chains, to aid inference, and
then marginalizing over these auxiliary variables at the end of inference, where marginalization is
tantamount to discarding.

Why this is valid algorithm, from the perspective of MCMC, relies on the observation that we
can add additional auxiliary variables to our state, so long as we marginalize them at the end of
inference. Therefore, PT constructs a Markov chain on the extended space ΘNr , where Θ is the
space of the state we are performing inference over (in our case, parameters), and Nr is the number
of replicates (interacting chains, most likely at different temperatures). There are then two distinct
MCMC moves made as part of a “single” update to the extended space. The first treats chains as
independent, performing a normal MCMC step on the state of each chain. The second move then
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involves proposing one or more pairs of replicates to swap and accepting or rejecting those swaps.
Therefore, the overall transition kernel for the state of the extended space is the composition of these
two steps.

Well tuned parallel tempering algorithms are observed to improve inference performance, facili-
tating improved exploitation and exploration characteristics when compared with just running Nr
independent chains. Of course, using PT requires more computational effort compared to running a
single chain, and the higher temperature chains must be evaluated and are then discarded (although
often the improvement in performance outweighs this cost). Finally tuning PT algorithms is difficult,
exacerbated in high dimensions and with many temperatures, leading to poor performance and wasted
computational effort. Research into adaptive tempering aim to alleviate this [83, 84].

F.6 Computation Allocation

The evidence approximation (in our case, the likelihood of the parameters, p(y|θ)) produced by
the SMC sweep is, in essence a Monte Carlo approximation of the true evidence. Therefore one
must chose how to allocate computation: running more particles to get more accurate individual
samples, or, run more cheap SMC sweeps (with fewer particles) and average over the more noisy
evidence approximations, but from which we can have a higher throughput. Separate SMC sweeps are
computationally independent from one another and therefore their calculation can be embarrassingly
parallelized across distributed compute systems. We opt to run one SMC sweep per node available,
running as many particles on that node as is tractable to in a reasonable time frame.

We denote the number of particles we use in each SMC sweep as Np, and the number of sweeps as
Ns. We also denote the number of samples, or replicates, used within our VO gradient calculation,
as well as the number of temperatures used in the temperature ladder for parallel tempering, as Nr,
where the temperatures used are then denoted as T1:Nr . We denote the number of steps taken either in
inference (MH steps) or optimization (gradient steps) as NT . The total computational expenditure of
the learning process is thereforeNp×Ns×Nr ×NT = B, where B denotes our total computational
budget. We normalize experiments by this quantity to allow for meaningful comparison of methods,
and, most importantly, to ensure that our proposed methodologies remain computationally tractable.
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