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Abstract

We apply recent advances in deep generative

modeling to the task of imitation learning from

biological agents. Specifically, we apply vari-

ations of the variational recurrent neural net-

work model to a multi-agent setting where

we learn policies of individual uncoordinated

agents acting based on their perceptual inputs

and their hidden belief state. We learn stochas-

tic policies for these agents directly from ob-

servational data, without constructing a reward

function. An inference network learned jointly

with the policy allows for efficient inference

over the agent’s belief state given a sequence

of its current perceptual inputs and the prior

actions it performed, which lets us extrapolate

observed sequences of behavior into the future

while maintaining uncertainty estimates over

future trajectories. We test our approach on

a dataset of flies interacting in a 2D environ-

ment, where we demonstrate better predictive

performance than existing approaches which

learn deterministic policies with recurrent neu-

ral networks. We further show that the un-

certainty estimates over future trajectories we

obtain are well calibrated, which makes them

useful for a variety of downstream processing

tasks.

1 Introduction

1 Imitation learning is the task of learning to simulate the

behavior of agents whose actions we observe in a given

environment (Schaal, 1999). The settings can be very di-

verse, such as tracking animal movement patterns, hold-

ing a dialogue with another agent, or emulating human

players in video games. We focus on situations where
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we have a good model of the environment and the task

is to learn a policy governing the agent’s actions, which

can be alternatively seen as a generative model of the ob-

served actions. Learning good generative models for the

behavior of real world agents is of direct interest, such

as for constructing realistic simulators (Abbeel and Ng,

2004), as well as a useful auxiliary for solving other

problems, for example as a means of incorporating ex-

pert demonstration into reinforcement learning systems

(Osa et al., 2018).

The classic approach to imitation learning is to learn a

predictive model for the agent’s actions in a supervised

fashion. A simple example of this approach would be

to train a recurrent neural network (RNN) to predict the

agent’s actions or distributions over actions (Wen et al.,

2015). While this can work well in certain cases, learn-

ing deterministic policies is not ideal, since it is generally

recognized that biological agents behave stochastically,

so using a deterministic model places substantial limits

on how faithfully the agents’ behavior can be recovered

(Bayley and Cremer, 2001; Kaelbling, 1993). While it

is possible to modify the predictive model to produce

a probability distribution over actions, this approach re-

quires picking a parameterization over actions, which is

inconvenient, especially when the actions come from a

continuous set. In the context of RNNs, the evolution of

the latent state is constrained to be deterministic condi-

tionally on inputs, which is arguably also an unrealistic

assumption.

In recent years there has been an explosion of in-

terest in deep generative models, which use neural

networks transforming random inputs to learn com-

plex probability distributions. In particular variational

auto-encoders (VAEs) (Kingma and Welling, 2013), and

structured variants thereof, can be used to simultaneously

learn a generative model and an associated inference net-

work. A particular variant of this technique, called vari-

ational recurrent neural network (VRNN) (Chung et al.,

2015) is suitable for modeling sequential data. In this
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work we use VRNNs to perform imitation learning, ob-

taining stochastic policies parameterized by neural net-

works. This model choice naturally produces stochas-

tic policies and it allows the latent state to evolve in a

stochastic fashion.

The application of deep generative models to imitation

learning is itself not novel. However, unlike previous

work that focused on modeling agents from an external

perspective (Johnson et al., 2016; Zhan et al., 2019), we

learn a model where an agent acts based on their per-

ceptual input only, which is arguably a more realistic as-

sumption. The contribution of this work is to show that

deep generative models are suitable tools for imitation

learning of biological agents in this egocentric setup and

to demonstrate that they outperform approaches based

on RNNs (Eyjolfsdottir et al., 2016). We not only learn

stochastic policies that generate more realistic agent be-

havior, but also demonstrate that following these policies

produce a calibrated uncertainty estimate for the future

states of the agent over time. These uncertainty estimates

can be useful for a variety of downstream tasks, such as

calculating confidence regions over future joint positions

of moving agents.

Our work targets pure imitation learning, treating it as

a goal in and of itself. Thus performance is judged in

terms of how well the learned model resembled the be-

havior of real agents, using a variety of concrete metrics.

This is in contrast to reinforcement learning, where the

goal is to find a policy that solves a particular task well

(Sutton and Barto, 2018). A closely related approach is

that of inverse reinforcement learning (Sermanet et al.,

2016), where the goal is to learn a reward function from

the agent’s actions, assuming that the actions are near op-

timal. Such a learned reward function can then be used

to find a policy that achieves the same goals through dif-

ferent means. Since in this work we are not interested

in learning policies other than the one actually executed

by the agents, we do not pursue this direction and do

not attempt to learn or utilize any reward functions. In-

stead, we directly learn the policy from the agent’s ac-

tions.

We work in a multi-agent environment, but assume

no explicit communication or coordination between the

agents. Each agent executes their own policy and only

learns about other agents’ behavior through its percep-

tual inputs. In the experiments we assume that all the

agents execute the same policy for simplicity, but our

approach is straightforward to extend to settings with

multiple agents with different policies or different ac-

tion spaces since we can learn all the policies indepen-

dently. This is in contrast to work such as (Zhan et al.,

2019), which uses explicit coordination variables shared

between different agents.

As a concrete application we learn to imitate the behav-

ior of fruit flies (Drosophila melanogaster) in a 2D envi-

ronment. This setup is adapted from Eyjolfsdottir et al.

(2016), who perform the same imitation learning task us-

ing RNNs. We compare with their results, demonstrat-

ing more realistic behavior and showing that we obtain

better-calibrated uncertainty estimates for future fly lo-

cations.

In the rest of the paper, Section 2 reviews the relevant

background information, Section 3 describes our model,

including its particular realization for the fly model-

ing task, and Section 4 presents the experimental re-

sults.

2 Background and related work

2.1 Variational and importance-weighted

autoencoders

Variational autoencoders (VAEs) (Kingma and Welling,

2013) is an approach to deep generative modeling where

we simultaneously learn a generative model and an amor-

tized inference network. The latter is crucial for perform-

ing inference efficiently, which is normally very difficult

in deep generative models. Once trained, the inference

network, given a dataset, produces parameters of a varia-

tional approximation for the posterior conditional on this

dataset without any further optimization. The generative

model is parameterized by θ and consists of a latent vari-

able z and data x, denoted as pθ(z, x) = pθ(z)pθ(x|z).
The inference network only targets the conditional distri-

bution written as qφ(z|x) and is parameterized by φ. The

model parameters θ and inference network parameters φ

are typically neural network weights which need to be

learned.

In order to train these networks, Kingma and Welling

(2013) propose maximizing the evidence lower bound

(ELBO), which is a sum over ELBOs for individual data

points, defined as:

ELBO(θ, φ, x) (1)

:= log pθ(x)− KL(qφ(z|x) ‖ pθ(z|x)) (2)

= Eqφ(z|x)

[

log
pθ(z, x)

qφ(z|x)

]

. (3)

The ELBO is maximized jointly over θ and φ. Equa-

tion 2 justifies using the ELBO as an optimization target

for θ, since it lower bounds the marginal likelihood and

therefore can be seen as an approximation to Bayesian

model selection, and for φ, since it is proportional to the



0.3

0.4

0.5

0 10 20 30 40 50 60 70

0.0

0.5

Figure 1: Diagram of the red fly’s field of view encoding

in a petri dish environment containing two other flies.

The middle line in the plots denotes the fly’s direct line

of sight. Each pair of plots indicates the agent’s field of

view with respect to walls and other flies, respectively.

The fly closer to the red agent contributes more mass to

the encoding vector.

Kullback-Leibler divergence measuring the distance be-

tween the variational approximation and the true poste-

rior.

Equation 3 gives a formula for calculating the ELBO.

Taking gradients of this expression with respect to θ and

φ and approximating the expectation by a single sample

from q, we obtain formulae for stochastic gradients used

in the optimization process. The stochastic gradient with

respect to θ usually does not pose a serious problem, but

the one with respect to φ involves a score function term,

resulting from taking a gradient with respect to the pa-

rameters of the distribution over which the expectation

is taken, which can have too high variance. For certain

classes of continuous distributions this problem can be

ameliorated by using the reparameterization trick, but for

discrete variables that is not possible.

Burda et al. (2015) propose an extension to the VAE

where, for a given number of particles K , the single-data

ELBO is instead defined as:

ELBOKIWAE(θ, φ, x) (4)

= Ez1,··· ,zK∼qφ(z|x)

[

log

(

1

K

K
∑

k=1

pθ(zk, x)

qφ(zk|x)

)]

. (5)

For K = 1 this is equivalent to the standard ELBO.

Increasing K leads to a tighter lower bound on pθ(x),
which translates into improvement in the learned model.

Howerver, increasing K , perhaps surprisingly, may

result in a worse inference network (Rainforth et al.,

2018).

In this paper we use the approach advocated by Le et al.

(2018), who adapt the reweighted wake-sleep algorithm

(Bornschein and Bengio, 2014) to the context of learning

deep generative models. The approach is to use distinct

objectives for learning θ and φ. For θ we use the IWAE

objective from Equation 5. For φ, however, we derive

another objective targeting the KL in the opposite direc-

tion. This is justified by regarding qφ as a proposal distri-

bution for importance sampling rather than a variational

distribution. The target is as follows.

Ep(x) [−KL(pθ(z|x)||qφ(z|x))] (6)

= Ep(x)
[

Epθ(x) [log(qφ(z|x))− log(pθ(z|x))]
]

(7)

Since this formula does not involve any expectations

with respect to qφ, taking the gradient with respect to

φ does not produce any score function terms and there-

fore has reasonably low variance, even in the pres-

ence of discrete variables. This is crucial for us, since

our model includes discrete variables. We note, how-

ever, that there exist variance reductions methods that

can be used with standard VAE and IWAE objectives

in the presence of discrete variables, based on con-

tinuous relaxation (Maddison et al., 2016; Jang et al.,

2016) or control-variate methods (Mnih and Rezende,

2016; Mnih and Gregor, 2014; Tucker et al., 2017;

Grathwohl et al., 2017).

2.2 Variational Recurrent Neural Network

The variational RNN (Chung et al., 2015) is a deep latent

generative model that is an extension in the VAE family.

It can be viewed as an instantiation of a VAE at each

timestep, with the model factorised in time overall. We

show a particular variant of VRNN we use in this work

as a graphical model in Figure 2. Similar models have

been applied to imitation learning of mouse behavior

Johnson et al. (2016) and the tactics of basketball play-

ers Zhan et al. (2019). Those authors used a god’s eye

view of the entire environment as inputs, where we in-

stead use perceptual inputs available to individual agents,

thus learning in an ego-centric setting.



2.3 Fly behavior dataset

The Fly-vs-Fly dataset we use (Eyjolfsdottir et al., 2014)

contains annotated tracks of fruit flies interacting with

each other. In order to expose this to our general model,

we are interested in the most basic representation or en-

coding of perceptual input and behavioral actions. At

each timestep, the fly has a field of view available to

it, which can contain solid surfaces (walls of the petri

dish) and any number of other flies. In keeping with

Eyjolfsdottir et al. (2016), the agent’s visual field is di-

vided into 72 individual slices, and the first index en-

codes the inverse distance to an object starting at the slice

directly behind the fly’s orientation, (i.e. 180 degrees).

This procedure is repeated for each slice going clock-

wise, until slice 72 is again at 180 degrees. This provides

two generic visual field encodings for the fly, one denot-

ing walls and the other denoting flies (see Figure ??).

Finally, this encoding scheme takes care of realistic con-

ditions such as occlusion, multiple other flies, and new

environments as well.

Next, the action space is treated as follows: for each fly,

its permissible actions are forward and backward mo-

tion, changing its wing angle, changing its wing length,

extending and contracting its body (thereby producing

a change in the visual field of other agents around it),

and finally yawing or turning in place. At each timestep,

these actions are encoded by a delta to the previous po-

sition. That is, the fly knows where it currently is and

chooses for each of the 9 discrete actions, some delta

away from its position in the corresponding unit of mea-

surement. If a fly wishes to walk towards an object at

its 3 o’clock, it will produce a 90 degree turn, followed

by a movement forward some number of units. Another

example is during a mating ceremony, male flies often

encircle the female and vigorously flap its wings, which

is represented by a series of sharp and quick wing deltas

and changing of angles.

Within the dataset, tracking data for these features are

available as absolute position taken at a resolution of 30

frames per second. Using the absolute positional data,

deltas are calculated with respect to the aforementioned

action space.

Eyjolfsdottir et al. (2016) learn a generative model for

fly behavior, but use only the deterministic ladder RNN

that at each step generates parameters for a distribution

from which an action is sampled. Moreover, they are

concerned with unsupervised detection of behavior. We

instead use a VRNN model, which is arguably more

biologically plausible in allowing stochastic transitions

within the agent’s latent state. Our approach generates

more realistic behaviors and provides better calibrated

uncertainty estimates.

3 Model

In this section we describe our generative model and the

associated inference networks. We simultaneously de-

scribe the general architecture and its particular realiza-

tion for the fly tracking model. While the model itself

is very general, having this concrete example helps to

provide more intuition about the roles of different com-

ponents.

For notational purposes, we denote the discrete timestep

as t, and the individual agent in question as f . Our model

is factorized in agents, that is every agent executes the

same policy and the agents only interact with each other

through perceptual observations. The model builds off of

the VRNN, where transitions and memory are embedded

into the recurrence of a deterministic RNN.

3.1 Notation

We first establish notation for the model. During this,

we explain the decisions for this encoding scheme in the

context of biological plausibility.

Discrete Mental State Let at,f denote a discrete la-

tent variable, which we intuit as a discrete high-level

state of cognition being activated during the agent’s plan-

ning.

Continuous Mental State Let ct,f denote the contin-

uous cognitive state, which allows the model to have

more capacity to represent the internal state of the

agent.

The random variables, at,f and ct,f , together comprise

the latent random variable used by the agent f at time t.

We write zt,f = {at,f , ct,f} to denote this.

Spatial Localization We write yt,f to denote the ac-
tion taken by agent f at time t. In the fly model, the
action is a 9-dimension vector, whose elements are the
respective deltas of a permitted action from the perspec-
tive of the fly. Let:

yt,f = {ot,f ,m
fwd

t,f ,m
lat
t,f , w

ll
t,f , w

la
t,f , w

rl
t,f , w

la
t,f , b

maj

t,f , b
min
t,f }

For simplicity, all of the following are understood as the

deltas, or the change in the specified variable at a given

timestep:

• Let ot,f denote the orientation of the fly.

• Let m
fwd
t,f and mlat

t,f denote the motion parallel to

and orthogonal to the fly’s orientation, respectively

(i.e. forward and lateral movement)
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Figure 2: Graphical models comparing our proposed VRNN-PI (a) with the baseline RNN (b). The VRNN-PI can be

thought of as a VAE at a time, t, parameterized by the current set of attribution and positional data, xt,f and the hidden

units of the GRU cells. Dotted lines indicate inference, and solid lines the generative model. The RNN has no latent

random variables and as a consequence no inference network.

• Let {wllt,f , w
la
t,f , w

rl
t,f , w

la
t,f} denote the left wing

length, left wing angle, right wing length, and right

wing angle, respectively. Wing angles are measured

with respect to the axis given by the fly’s current ori-

entation.

• Let b
maj
t,f and bmint,f denote the fly body major and

minor axis length. While the flies do not actually

change their body size, they might reorient them-

selves in the third dimension, for example by climb-

ing the walls of the dish, which in 2D view results

in changing their body size.

For clarity, at each timestep, the observed motions m
fwd
t,f

and mlat
t,f are measured with respect to the fly’s new ori-

entation, after it makes a rotation in place according to

ot,f . For these actions, each can be thought of as a veloc-

ity of sorts, with the basis vector being the fly’s own body

axis. Cueva and Wei (2018) found that modeling move-

ment using velocities leads to the emergence of neuro-

logical grid cells resemblance in the RNN parametriza-

tion, which provides a rationale for this encoding.

Sensory Encoding Let xt,f denote the sensory input of

agent f at time t. In the graphical model terminology we

consider xt,f to be a single node of a constraint network,

i.e. a random variable whose value is known given the

values of all other nodes.

In the fly model this consists of the fly’s visual input and

the relative positions of its body parts

• Let swallt.f denote 72-dimensional visual input of sur-

rounding walls. Each slice contains the inverse Eu-

clidean distance to an object in the field of view,

with 0 denoting no object present.

• Let s
fly
t,f denote the 72-dimensional visual input of

other agents/flies present, with the same formula as

above.

• Let {ôt,f , ŵ
ll
t,f , ŵ

la
t,f , ŵ

rl
t,f , ŵ

la
t,f , b̂

maj
t,f , b̂mint,f } en-

code the flies current physical state, which are body

and wing configurations. Note that unlike the ac-

tions, these are specified as absolute values and not

deltas. We include knowledge of the fly’s global

orientation, since flies are known to have internal

compasses (Clandinin and Giocomo, 2015).

Together these values constitute the fly’s perceptual in-

put. Note that the fly does not have direct perception of

its position in space, but can infer that information from

the distances to walls in different directions.

xt,f = {swall
t.f , s

fly

t,f , ôt,f , ŵ
ll
t,f , ŵ

la
t,f , ŵ

rl
t,f , ŵ

la
t,f , b̂

maj

t,f , b̂
min
t,f }

3.2 Generation and Inference

Let cf denote the initial state of the agent f and p(cf ) be

the prior for it. In the fly model, cf is the initial coordi-

nates and body position of the fly f and the prior is a uni-

form distribution over the permitted values of cf .

At each time step the sensory inputs xt,f are calculated

as a deterministic function ζ of the initial conditions and

the actions of all the agents up to this point. In practice

this is implemented by maintaining a representation of

the complete state of the world, unavailable to any agent,
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Figure 3: Comparison of each model’s continuation tracks for four distinct seed sequences. Each row shows a model’s

continuation sampled from the generative models compared against the bottom row ground truth continuation. Each

column shows one of four seed sequences used to seed the generative models. Within the petri dish, both flies’

locomotion tracks are shown. For the first fly, the red arrow indicates the starting position of the seed sequence,

the black markers and line indicate the seed tracks, the purple markers and line indicate the sampled continuation

tracks, and the red ’x’ indicates the final position of the fly after 200 timesteps. For the second fly, these indicators

are blue arrow, gray markers, orange markers, and blue ’x’, respectively. Qualitatively, the VRNN-PI variants using

fully discrete or a mixed latent space are more realistic and exhibit identifiable behavior, such as slowly exploring and

zipping around. The continuous VRNN-PI variant is highly erratic with large step sizes at almost every timestep and

the stochastic RNN baseline exhibits mostly unrealistic constant step size and highly regular circular locomotion.

updating it using agents’ actions at each step, and gen-

erating perceptual inputs for individual agents from this

representation.

We then use xt,f to update the latent state ht,f , sample

latent variables zt,f , and sample the action yt,f .

• For 0 < t < T , for f in {1, . . . , F}:

xt,f = ζ(c1:F , y1:t−1,1:F )

h〈t,f〉 = γψ
(

h〈t−1,f〉, zt−1,f , xt,f , yt−1,f

)

zt,f ∼ pθ1(·|h
〈t,f〉)

yt,f ∼ pθ2(·|h
〈t,f〉, zt,f)

The joint probability of the above model factorizes

as:

p(z1:T,1:F ) =
F∏

f=1

T∏

t=1

pθ1(zt,f |h
〈t,f〉)pθ2(yt,f |h

〈t,f〉
, zt,f )

(8)

The proposal distribution is as follows:

qφ(z1:T,1:F ) =

F
∏

f=1

T
∏

t=1

qφ1
(zt,f |h

〈t,f〉, xt,f ) (9)

The novel aspect of this model is that it feeds perceptual

inputs for the agent into the VRNN. Thus we refer to this

model as VRNN with perceptual inputs (VRNN-PI). It is

depicted graphically in Figure 2a.
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Figure 4: Comparison of the empirical distribution of {ŵllt,f , ŵ
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t,f , ŵ

rl
t,f , ŵ
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t,f , b̂

maj
t,f , b̂mint,f }. Each feature (by column) is

averaged over time, fly, and eight distinctly seeded, 200 timestep sample continuations for each model (by row), while

the ground truth is averaged over the training dataset. Each generative model histogram contains 3200 measurements

while the ground truth contains 1,316,800 measurements. The means of the distributions for each VRNN-PI variant

match closely with the ground truth but with greater noise, while the stochastic RNN feature distributions are highly

noisy and farther from the ground truth mean than the VRNN-PI models.

4 Experiments

Here we report experimental results for our models.

We use the male-to-male interactions of the Fly-vs-Fly

dataset to get annotated tracks of 2 males interacting in

a petri dish of diameter 130. The data is first cleaned

into sequences of 160-dimensional vectors representing,

{yt,f , xt,f}
T=200
t=1 for each fly. During training, we al-

ways balance the number of training examples from fly-1

and fly-2 in a minibatch, but this is unnecessary given our

model (which is factorized in flies). The assumption here

is that behavior modes are invariant to an individual fly

being selected, if all the attributes are encoded similarly

at a high level.

As a baseline, we implement the hierarchal RNN detailed

in Eyjolfsdottir et al. (2016). Please refer to their paper

for more details. At a high level, they use two parallel

RNNs with diagonal connections between the first RNN

outputs and the second. The first RNN takes xt,f and

yt,f as input and the second RNN decodes its hidden

state into the predicted actions. We note here one advan-

tage of the deterministic RNN is its speed to train com-

pared to our model. In order to obtain a stochastic pol-

icy, Eyjolfsdottir et al. (2016) discretize the actions and

use the RNN to produce a probability vector over thus

obtained discrete space, which is subsequently used to

sample an action. With VRNN-PI we do not need any

discretization.

Apart from comparing with the RNN baseline, we inves-

tigate the use of discrete and continuous latent variables

in the VRNN-PI model. Specifically, in all experiments

we use three variants of the model: one with only dis-

crete latents (Discrete VRNN-PI), one with only continu-

ous latents (Continuous VRNN-PI), and one with a mix-

ture of discrete and continuous latents (Mixture VRNN-
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time and 100 continuations are sampled for 50 timesteps into the future. For columns 2-5, we show the kernel density

estimate of all fly positions at the indicated timestep across the 100 continuations. Each model’s estimate is split by

fly for clarity (two rows per model indicated by separators), where the red ’x’ indicates the true position of the fly at

that timestep. The future trajectories across all models show greater uncertainty about the fly’s position as the model

evolves in time. The mixture VRNN-PI model is the least noisy as it evolves, and still captures the actual position

within a high probability region, excluding fly 1 at time 50.

PI). We use a 120-dimensional Gaussian for the contin-

uous variant, 60 one-hot encoded binary variables in the

discrete variant, and a 60-dimensional Gaussian with 30

one-hot encoded binary variables for the respective la-

tent codes in order to maintain a consistent neural archi-

tecture across variants. In all experiments we find that

the mixture variant performs significantly better than the

other two. See Section 5 for the discussion of these re-

sults.

Our first experiment is to condition the model on an ini-

tial sequence of actions, then sample a continuation and

visually inspect how it compares with the true continu-

ation that was not shown to the model. The results are

shown in Figure 3. We find that under the RNN model

the flies tend to move in circular patterns with relatively

constant velocity. In contrast, real flies tend to alter-

nate between fast and slow moves, changing their di-

rections much more abruptly. All three variants of our

VRNN-PI model recover this behavior, however Con-

tinuous VRNN-PI tends to behave too erratically. We

were not able to identify any other clear visual artifacts

in the generated trajectories that disagrees with the real

data.

In the next experiment we compare various statistics of

the flies’ state over the course of time between the dataset

and the simulations from different models. Figure 4

shows histograms of flies’ positions. We see that in the

real dataset those characteristics are very peaked, while

in the models they are much more spread out, which we

attribute to the quality of predictions deteriorating over

time. We also note that the ground truth distributions are

averaged over the entire training dataset, which contains



model major axis minor axis l-wing angle r-wing angle l-wing length r-wing length

Mixed 1.42779 1.60993 1.56187 1.60134 1.52634 1.58506

Discrete 1.76864 1.87270 1.79445 1.86377 1.64156 1.84672

Gauss 1.66578 1.69824 1.79259 1.82584 1.68953 1.78645

RNN 1.86795 1.92653 1.93097 1.95274 1.82537 1.84103

Table 1: Comparison of histogram results between models and their respective feature distributions. Equal bin sizes

of 1 were used across all features and models and distance is computed using L1-norm between the model results and

the ground truth. The closest distances are highlighted in bold and correspond to the Mixture VRNN-PI. Additionally,

all VRNN-PI variants outperform the RNN baseline in each feature distance with the exception of discrete VRNN-PI

on right wing length.

mostly idle behavior, which further concentrates the fea-

ture distributions onto the mode. Despite that, we find

that all variants of VRNN-PI agree with the real data bet-

ter than the RNN, with Mixture VRNN-PI being clearly

the best. Table ?? provides a quantitative summary of

these results.

Our third and final experiment investigates the quality of

uncertainty estimates produced by various models. For

this purpose we again seed the model with an initial se-

quence of actions, then see how the probability mass over

the flies’ future positions spreads over time and compare

it with the actual positions in the dataset. Figure 5 visu-

alizes the results. Again we find that Mixture VRNN-PI

performs best, followed by the other VRNN-PI variants

and then by the RNN.

5 Discussion

We have shown that deep generative models can be suc-

cessfully used to perform imitation learning in biologi-

cal systems in an ego-centric setting. These results are

useful both as a practical imitation learning tool and as

an approach for building theoretical models of how ani-

mals make decisions. We have demonstrated better per-

formance than the state-of-the-art RNN, both in terms of

generating more realistic behavior and in terms of pro-

viding better calibrated uncertainty estimates. The lat-

ter is particularly useful in tasks that use such learned

model for decision making, for example by constructing

confidence regions of where the tracked agent will be lo-

cated at a certain time in future. We can envision diverse

uses for this information, for example in systems track-

ing wild animals that warn people when their settlements

are being approached and in autonomous vehicles that

need to be sure that pedestrians will not jump in front of

it.

A particularly interesting result we obtained is that in-

cluding discrete latent variables appears to significantly

improve performance when adding more continuous la-

tent variables does not. If this result is confirmed in anal-

ysis of different datasets, it would have important impli-

cations for the construction of optimization algorithms

for deep generative models. In particular it would make a

strong case for devising variance reduction methods that

work when the reparameterization trick is not applica-

ble.

As we are directly modeling biological agents, we might

also speculate about what our results indicate about how

real animal brains work. In particular the better perfor-

mance of VRNN compared with RNN might suggest that

stochastic aspects of animal behavior are better explained

by the state of the brain itself evolving stochastically,

rather than purely by stochasticity in the translation of

brain state to actions. That the inclusion of discrete latent

variables increases performance may lead us to speculate

that the brain actually encodes some of the information

inside it stochastically. Of course, making such claims

would require enormous amounts of evidence that we are

not even beginning to supply. All the same, we find the

idea captivating.

We believe that our observation of obtaining better per-

formance using a mixture of discrete and continuous la-

tent variables warrants further investigations. Alterna-

tive avenues for future work may include using joint

modeling of x and y (Vedantam et al., 2017), adding

more powerful inference networks, such as normaliz-

ing flows (Rezende and Mohamed, 2015), and also im-

proving on the model towards representation learning

of interpretable latents (Alemi et al., 2018). Finally, the

temporal memory mechanism used an RNN, which is

known to capture long-range dependencies up to 200-300

timesteps. This may also be replaced with more power-

ful memory-augmented recurrent neural network models

in our framework, e.g. differentiable neural computers

(DNC) or neural Turing machines (NTM) (Gemici et al.,

2017).
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