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Abstract

We introduce Bayesian distributed stochastic gradient descent (BDSGD), a high-
throughput algorithm for training deep neural networks on parallel computing
clusters. This algorithm uses amortized inference in a deep generative model to
perform joint posterior predictive inference of mini-batch gradient computation
times in a compute cluster specific manner. Specifically, our algorithm mitigates
the straggler effect in synchronous, gradient-based optimization by choosing an
optimal cutoff beyond which mini-batch gradient messages from slow workers are
ignored. The principle novel contribution and finding of this work goes beyond
this by demonstrating that using the predicted run-times from a generative model
of cluster worker performance improves over the static-cutoff prior art, leading
to higher gradient computation throughput on large compute clusters. In our ex-
periments we show that eagerly discarding the mini-batch gradient computations
of stragglers not only increases throughput but sometimes also increases the over-
all rate of convergence as a function of wall-clock time by virtue of eliminating
idleness.

1 Introduction

Deep learning success stories are predicated on large neural network models being trained using
ever larger amounts of data. While the computational speed and memory available on individual
computers and GPUs continually grows, there will always be some problems and settings in which
the amount of training data available will not fit entirely into the memory of one computer. What is
more, and even for a fixed amount of data, as the number of parameters in a neural network or the
complexity of the computation it performs increases, so too do the incurred economic and time costs
to train. Both large training datasets and complex networks inspire parallel training algorithms.

In this work we focus on parallel stochastic gradient descent (SGD). Like the substantial and growing
body of work on this topic (Recht et al. (2011); Dean et al. (2012); McMahan and Streeter (2014);
Zhang et al. (2015)) we too focus on gradient computations computed in parallel on “mini-batches”
drawn from the training data. However, unlike most of these methods which are asynchronous in
nature, we focus instead on improving the performance of synchronous distributed SGD, very much
like Chen et al. (2016), upon whose work we directly build.

A problem in fully synchronous distributed SGD is the straggler effect. This real-world effect is
caused by the small and constantly varying subset of worker nodes that, for factors outside our con-
trol, perform their mini-batch gradient computation slower than the rest of the concurrent workers,
causing long idle times in workers which already have finished. Chen et al. (2016) introduce a
method of mitigating the straggler effect on wall-clock convergence rate by picking a fixed cut-off
for the number of workers on which to wait before synchronously updating the parameter on a cen-
tralized parameter server. They found, as we demonstrate in this work as well, that the increased
gradient computation throughput that comes from reducing idle time more than offsets the loss of a
small fraction of mini-batch gradient contributions per gradient descent step.
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Our work exploits this same key idea but improves the way the likely number of stragglers is identi-
fied. In particular we instrument and generate training data once for a particular compute cluster and
neural network architecture, and then use this data to train a lagged generative latent-variable time-
series model that is used to predict the joint run-time behavior of all the workers in the cluster. For
highly contentious clusters with poor job schedulers, such a model might reasonably be expected to
learn to model latent states that produce correlated, grouped increases in observed run-times due to
resource contention. For well-engineered clusters, such a model might learn that worker run-times
are nearly perfectly independently and identically distributed.

Specifying such a flexible model by hand would be difficult. Also, we will need to perform real-
time posterior predictive inference in said model at runtime to dynamically predict straggler cut-
off. For both these reasons we use the variational autoencoder loss (Kingma and Welling, 2013)
to simultaneously learn not only the model parameters but also the parameters of an amortized
inference neural network (Ritchie et al., 2016; Le et al., 2017) that allows for real-time approximate
predictive inference of worker run-times.

The main contributions of this paper are:

• The idea of using amortized inference in a deep state space model to predict compute
cluster worker run-times, in particular for use in a distributed synchronous gradient descent
algorithm.

• The BDSGD algorithm itself, including the approximations made to enable real-time pos-
terior predictive inference.

• The empirical verification at scale of the increased gradient computation throughput that
our algorithm yields when training deep neural networks in parallel on large clusters.

The rest of the paper is organized as follows. In section 2, we give necessary background on why
and how synchronous distributed SGD can be improved. In section 3, we explain our choice of
generative model for cutoff determination. In section 4, we present our experimental results.

2 Background and Motivation

In stochastic gradient descent, we use unbiased estimates of gradients to update parameter settings.
Synchronous distributed SGD differs from single-threaded mini-batch SGD in that the mini-batch
of size m is distributed to N total workers that locally compute sub-mini-batch gradients before
communicating the result back to a centralized parameter server that updates the parameter vector
using an update rule:

θ(t+1) = θ(t) − α
1
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N∑
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N
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with

f(θ, a, b) =
1

b− a

b−a∑
k=0

∇θ(t)F (θ, z(k), y(k))

where θ are the network parameters, F is the loss function, and α is the learning rate. Although
not shown, asynchronous SGD is lock-free, and parameter updates are made whenever any worker
reports a sub-mini-batch gradient to the parameter server which results in out-of-date or stale gradi-
ent information (Recht et al., 2011). Unlike asynchronous distributed SGD, synchronous distributed
SGD is equivalent to single-threaded SGD with batchsize, m. This allows hyperparameters, α and
m, to be tuned in the distributed setting without having to consider the possibility of stale gradients
(Hoffer et al., 2017).

2.1 Effect of Stragglers

In synchronous SGD, we can attribute low throughput, in the sense of central parameter updates per
unit time, to the straggler effect that arises in real-world cluster computing scenarios with multiple
workers computing in parallel. Consider Equation 1, in which f(θ, ·, ·) is computed independently
on an memory-isolated logical processor. Let xj be the time it takes for f to be computed on the
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Figure 1: Oracle throughput curves (best achievable in hindsight) for synchronous SGD runs for
three different neural networks on the same 2175-worker cluster. From left: low variance (1-2%
stragglers), medium variance (2-4% stragglers), and high variance (8-12% stragglers) throughput
curves with mean±std worker gradient computation times being 5.34± 0.13 seconds, 2.83± 0.077
seconds, and 0.24± 0.018 seconds, respectively. The x-axes are the number of workers. The y-axes
show throughput achieved if all workers beyond the x-axis value are ignored. When runtimes for
gradient computations have low variance relative to total runtime, Chen et al. underestimates the
optimal cutoff point whereas when runtimes have proportionally higher variance, Chen et al. over-
estimates the optimal cutoff point. Our approach achieves more accurate estimates of the optimal
cutoff in both scenarios.

worker indexed by j for j ∈ 1...N . Distributed compute clusters are not perfect, otherwise xj

would be a constant, independent of j, and all workers would finish at the same time and only
be idle while the parameter server aggregates the gradients and sends back the new parameters.
Instead xj is actually random. Moreover, the joint distribution of all the xj’s is likely, again in real-
world settings, to be non-trivially correlated owing to cluster architecture and resource contention.
For instance, most modern clusters consist of computers or graphics processing units each in turn
having a small number of independent processors, so slow-downs in one logical processing unit are
likely to be exhibited by others sharing the same bus or network address. What is more, in modern
operating systems, time-correlated contention is quite common, particularly in clusters under queue
management systems, when, for instance, other processes are concurrently executed. All this yields
worker compute times that may be non-trivially correlated in both time and in “space”.

Our aim is to significantly reduce the effect of stragglers on throughput and to do so by modeling
cluster worker compute times in a way that intelligently and adaptively responds to the kinds of
correlated run-time variations actually observed in the real world. What we find is that doing so
improves overall performance of distributed mini-batch SGD.

3 Methodology

Our approach works by maximising the total throughput of parameter updates during a distributed
mini-batch SGD run. The basic idea, shared with Chen et al. (2016), is to predict a cutoff, ct < N ,
for each iteration of SGD which dictates the total number of workers on which to wait before taking a
gradient step in the parameter space. While Chen et al. (2016) use a fixed cutoff, ct = 0.943 ·N ; ∀t,
we would like for ct to be evolving dynamically with each iteration and in a manner specific to
each compute cluster, neural network architecture pair. We note that for overall rate of convergence,
throughput is not the exact quantity we wish to maximize; that being some quantity related to the
rate of expected gain in objective function value instead, but it is the proxy we use in this work.
Also, paradoxically, lower throughput, by virtue of smaller mini-batch sizes, may in some instances
increase the rate of convergence, an effect previously documented in the literature (Masters and
Luschi, 2018).

The central considerations are: what is the notion of throughput we should optimize? And how
do we predict the cutoff that achieves it? Simply optimizing overall run-time admits a trivial and
unhelpful solution of setting ct = 0. Each iteration and the overall algorithm would then take no
time but achieve nothing. Instead we seek to maximize the number of workers to finish in a given
amount of time, i.e. throughput Ω(c), which we define to be:

Ω(c) =
c

x̃(c)

where c indexes the ordered worker run-times x̃(c). Note that, for now, we avoid indexing run-times
by SGD loop iteration. Soon, we will address temporal correlation between worker runtimes.
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With this definition, we can plot throughput curves that show how throughput drops off as the strag-
gler effect increases (Figure 1). On the well-configured cluster used to produce Figure 1, a high
percentage of workers (between 80-95%) finish at roughly the same time, so in this regime, through-
put of the system increases linearly for each additional worker. However, continuing to wait for
more workers includes some stragglers which eventually decreases the overall throughput.

We define our objective to be to maximize the throughput of the system as defined above,
i.e. argmaxc Ω(c) at all times. This also implicitly handles the tradeoff between iteration speedup
and the learning signal reduction that comes from using a higher variance gradient estimate given
by discarding gradient information.

Setting the cutoff optimally and dynamically requires a model which is able to learn and predict
the joint ordered run-times of all cluster workers. With such a model, we can make informed and
accurate predictions about the next set of run-times per worker and consequently make a real-time,
near-optimal choice of c for the subsequent loop of mini-batch gradient calculations. How we model
compute cluster worker performance follows.

3.1 Modeling Compute Cluster Worker Performance

As before, let xj ∈ R+ be the time it takes for f to be computed on the worker indexed by j.
Assume that these are distributed according to some distribution p. Given a set of n, p(·)-distributed
random variables x1, x2, . . . , xn we wish to know the joint distribution of the n sorted random
variables x̃(1), x̃(2), . . . , x̃(n). Such quantities are known as “order statistics.” Each p(x̃(j)) describes
the distribution of the jth largest sorted run-time under independent draws from this underlying
distribution. Taking the mean of each order statistic allows us to derive a cutoff using our notion of
throughput, given as:

argmax
c

Ω(c) = argmax
c

E[
c

x̃(c)
] (2)

3.1.1 Elfving Cutoff

The first model of runtimes we consider assumes that they are are independent and identically dis-
tributed (iid) Gaussian. Under the assumption that xj = N(µx, σ

2
x) the distribution of each order

statistic p(x̃(1)), p(x̃(2)), ..., p(x̃(n)) is independent and E[x̃(1)] ≤ E[x̃(2)], ...,≤ E[x̃(n)].

Under the given iid normality assumption the distribution of the each order statistic has closed form:

p(x̃(j)) = Z(n, j)

∫ ∞

−∞
x[Φ(x)]j−1[1− Φ(x)]n−jp(x)dx

where Φ(x) is the cumulative distribution function (CDF) of N(µt, σ
2
t ) and Z(n, j) = n!

(j−1)!(n−j)!

Note that each order statistic’s distribution, including the maximum, increases as the variance of the
run-time distribution increases, while the average run-time does not.

As a baseline in subsequent sections we will use an approximation of the expected order statistics
under this iid normality assumption. This is known as the Elfving (1947) formula (Royston, 1982):

E[x̃(j)] ≈ µt +Φ−1

(
n− π

8

j − π
4 + 1

; 0, 1

)
σt (3)

Here, we note that the Elfving model requires full observability of runtimes to predict subsequent
runtimes in a production setting. In practice, the parameters µt, σt in Eqn. 3 are fit using maximum
likelihood on the first fixed lagged window and remain static during the remainder of the run.

While some clusters may approximate the strong assumptions required to use the Elfving formula for
cutoff prediction, most compute clusters will emit joint order statistics of non-Gaussian distributed
correlated random variables, for which no analytic expression exists. However, if we have a predic-
tive model of the joint distribution of the xj’s (or x̃(j)’s), we can use sorted samples from such a joint
distribution to obtain a Monte Carlo approximation of the order-statistics. In the next section, we
will detail how to construct the predictive model in order to learn correlations of worker runtimes.
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Figure 2: Predicted throughputs. Each runtime plot (5 surrounding the top figure) shows the in-
dividual runtimes of all workers (x-axis index) during an iteration of SGD on a 158 node cluster.
We highlight SGD iterations 1, 50, 100, 150, and 200 which highlight two significantly different
regimes of persistent time-and-machine-identity correlated worker runtimes. The bottom-right fig-
ure displays a comparison of throughputs achieved at each of the 200 SGD iterations by waiting
for all workers to finish (green) and using our approach, BDSGD (red), relative to the ground truth
maximum achievable (blue). BDSGD predicts cutoffs that achieve near optimal throughput, in a
setting where fixed-cutoffs are insufficient and Elfving assumptions do not hold.

3.1.2 Bayesian Cutoff

In this section, we formally introduce our proposed training method, which we call Bayesian dis-
tributed SGD (BDSGD). Before introducing the design of the generative model we use to predict
worker run-times, first consider the practical implications of using a generative model instead of
a purely autoregressive model. In short we can only consider worker run-time prediction models
that are extremely sample efficient to train. We also can only consider a kind of model that allows
real-time prediction because it will be in the inner loop of the parameter server and used to predict at
run-time how many straggling workers to ignore. Deep neural net auto-regressors satisfy the latter
but not the former. Generative models satisfy the former but historically not the latter; except now
deep neural net guided amortized inference in generative models does. This forms the core of our
technical approach.

We will model the time sequence of observed joint worker run-times xT−ℓ, . . . ,xT using a deep
state space model where zT−ℓ, . . . , zT is the time evolving unobserved latent state of the cluster.
In this framework, xT−ℓ:T may be replaced with directly modeling x̃T−ℓ:T , and we continue with
xT−ℓ:T for clarity. The dependency structure of our model factorizes as

pθ(xT−ℓ:T , zT−ℓ:T ) =

T∏
i=T−ℓ

pθ(zi|zi−1)

T∏
i=T−ℓ

pθ(xi|zi)

where, for reasons specific to amortizing inference, we will restrict our model to a fixed-lag ℓ window.
The principle model use is the accurate prediction of the next set of worker run-times from those
that have come before:

p(xT+1|xT−ℓ:T ) =

∫
pθ(xT+1|zT+1)pθ(zT+1|zT )p(zT−ℓ:T |xT−ℓ:T )dzT−ℓ:T+1 (4)

3.1.3 Model Learning and Amortized Inference

With the course-grained model dependency defined, it remains to specify the fine-grained parame-
terization of the generative model, to explain how to train the model, and to show how to perform
real-time approximate inference in the model.

We use the deep linear dynamical model introduced by Krishnan et al. (2017), that constructs the
LDS with MLP link functions between Gaussian distributed latent state and observation vectors.
Inference in the model is done with a non-Markovian proposal network. Namely, the transition and
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Figure 3: Cumulative results of 158-worker cluster on 3-layer MLP training. The left two figures
are plots of observed runtimes vs predicted runtime order statistics of two iterations of SGD of
the validation set in the BDSGD training step. The maximum throughput cutoff under the model
predictions is shown in red, indicating a large chunk of idle time is reduced as a result of stopping
early. Notably, when there are exceptionally slow workers present, the cutoff is set to proceed
without any of them as seen in left figure of subplot (a). Subplot (b) shows MNIST validation loss
for model-based methods, Elfving and BDSGD, compared to naive synchronous (waiting for all
workers) and asynchronous (Hogwild) approaches, where dashed vertical lines indicate the time at
which the final iteration completed (all training methods perform the same number of mini-batch
gradient updates). In the lower right corner of subplot (b), we observe that BDSGD achieves the
fastest time to complete the fixed number of gradient updates of the synchronous methods, while
also achieving the lowest validation loss.

emission functions in our model are parameterized by neural networks, the inference over which is
guided by an RNN. For a detailed exposition, see the supplementary materials.

The flexibility of such a model allows us to avoid making restrictive or inappropriate assumptions
that might be quite far from the true generative model while imposing rough structural assumptions
that seem appropriate like correlation over time and correlation between workers at a given time.

The remaining tasks are to, given a set of training data, i.e. fully observed SGD runtimes specific
to a cluster, learn θ and train an amortized inference network to perform realtime inference in said
model. For this we utilize the variational autoencoder-style loss used for amortized inference in deep
probabilistic programming with guide programs (Ritchie et al., 2016).

We use stochastic gradient descent to simultaneously optimize the variational evidence lower bound
(ELBO) with respect to both ϕ and θ:

ELBO = Eqϕ(zT−ℓ:t|xT−ℓ:T ) log

(
pθ(xT−ℓ:t, zT−ℓ:t)

qϕ(zT−ℓ:t|xT−ℓ:T )

)
where

qϕ(zT−ℓ:t|xT−ℓ:T ) =

T∏
t=T−ℓ

qϕ(zt|zT−ℓ:t−1,xT−ℓ:T ).

Doing this yields a useful by-product. Maximizing the ELBO also drives the KL divergence between
qϕ(zT−ℓ:t|xT−ℓ:T ) and pθ(zT−ℓ:t|xT−ℓ:t) to be small. We will exploit this fact in our experiments
to enable cutoff prediction. In particular we will directly approximate Equation 4 by:

p(xT+1|xT−ℓ:T ) ≈
∫

pθ(xT+1|zT+1)pθ(zT+1|zT )qϕ(zT−ℓ:T |xT−ℓ:T )dzT−ℓ:T+1

≈ 1

K

K∑
k=1

pθ(xT+1|zT+1)pθ(zT+1|z(k)
T ) (5)

with z
(k)
T being the last-time-step marginal of the kth of K samples from qϕ(zT−ℓ:T |xT−ℓ:T ).

The predictive runtimes given by this technique can now be used to determine the throughput-
maximizing cutoff in the objective given by Equation 2.
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3.1.4 Handling Censored Run-times

As described, we use the learned inference network to predict future cutoffs rather than the gen-
erative model. Because variational inference jointly learns the model parameters along with the
inference network, we could theoretically use an inference algorithm such as SMC (Doucet et al.,
2001) for more accurate estimates of the true posterior predictive distribution. However, our cutoff
prediction must be done in an amortized setting because we rely on it to be set for a gradient run
prior to the updates returning from the workers. In a setting requiring fast, repeated inference, using
an amortized method is often the only feasible approach, especially in large complex models.

However, when using amortized inference, there is a practical issue of dealing with partially ob-
served, censored data. Since at run-time we are only waiting for c gradients up to the cutoff, and
are in fact actually killing the straggling workers, we do not have the run-time information from
the straggling workers that would have finished past the cutoff. Inference in the generative model
could directly be made able to deal with censored data, however our inference network runs an RNN
which was trained on fully observed run-time vectors and therefore requires fully observed input
to function correctly. Because of this, we deploy an effective approximate technique for imputing
the missing worker runtime values, which samples a new uncensored data point for every worker
whose gradients are dropped. Because we push estimates of the approximate posterior through
the generative model, we have a predictive run-time distribution for the current iteration of SGD
before receiving actual updates from any worker. When eventually the cutoff is reached, and the
corresponding rate censor is observed, we are left with run-time distributions truncated at x̃(c):

p(x̃; x̃ > x̃c) =
p(x̃)∫∞

x̃(c)
p(x̃)dx̃

(6)

where we have left off the time index for clarity and x̃ is any one of the censored worker runtime
observations. When a censored value is required, we take its corresponding predicted run-time
distribution and sample from its right tailed truncation to get an approximate value for that missing
run-time. We find that this method works well to propagate the model forward, leading to still
accurate predictions.

4 Experiments

To test our model’s ability to accurately predict joint worker runtimes, we perform experiments by
training 4 different neural network architectures on one of two clusters of different architectures and
sizes. To train the BDSGD generative models used, we first train the neural network architecture
of interest using fully synchronous SGD and use the recorded worker runtimes during each SGD
iteration to learn a corresponding generative model of that particular neural network’s gradient com-
putation times on the cluster. As we will highlight, BDSGD model-based estimates of expected
runtimes are sufficient to derive a straggler cutoff from their order statistics that leads to increased
throughput and/or faster training times in real world situations.

4.1 Small Compute Cluster

On one cluster comprised of four nodes of 40 logical Intel Xeon processors, we benchmark Elfving
and BDSGD cutoff predictors against the fully synchronous and fully asynchronous SGD with a
158-worker model by using each method to train a 2-layer CNN on MNIST classification. At this
scale, and on a small neural network model, we are still able to deploy a Hogwild training scheme
that does not diverge.

This cluster uses a job scheduler that allows jobs to be run concurrently on each node. From one
of the fully synchronous SGD runs used to gather runtime data for BDSGD model learning, we
find that 40 of the workers localized to one machine node experience a temporary 2× slowdown
in gradient computation times, which we believe to have been caused by another job batched onto
the node. Figure 2 shows the transitional window of SGD worker runtimes, where the first 75 SGD
iterations experience this slowdown before returning to normal for the remaining 125 iterations. In
the case of 25% slow workers running 2× slower, naive synchronous SGD decreases throughput
by 50%. BDSGD, however, is able to correctly ignore all 40 slow workers (Fig. 3a), leading to
near-optimal throughput despite the 2× slowdown in SGD iteration time.
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Figure 4: Comparison of BDSGD against Chen et al. on synchronous test data for three neural
network training runs with no early worker termination. From left: histogram of cutoff set by
each method (Chen et al. always uses 2051 workers and naive always uses all 2175 workers), his-
togram of the absolute difference between chosen cutoff and the oracle cutoff which would achieve
highest throughput, quartile-boxplot of gradient computation throughput per iteration, and percent
wall clock time saved using each method over fully synchronous (naive) method. We observe that
BDSGD best predicts the oracle cutoff, which leads to highest throughput on all three cases, and
highest expected wall-clock savings when BDSGD’s average cutoff is lower than that fixed by Chen
et al. (ResNet-16 model).

Figure 3b shows that our method achieves the fastest convergence to the lowest loss among compar-
ison methods performing synchronous SGD. Hogwild outperforms our approach in wall-clock time,
but its convergence is to a higher validation loss, as seen in the tails of the loss curves. Although not
shown in subsequent experiments, Hogwild training diverges on larger clusters.

4.2 Large Scale Computing

On a large compute cluster, we use 32 68-core CPU nodes of a Cray XC40 supercomputer to com-
pare 2175-worker BDSGD runs against the Chen et al. cutoff and naive methods on training three
neural network architectures for CIFAR10 classification: a WideResNet model (Zagoruyko and Ko-
modakis, 2016) and 16 and 64 layer ResNets. Using increasingly larger networks and batchsizes
allows us to benchmark our speedup in situations called for by the large amount of recent work on
training with 10K+ mini-batch sizes and high learning rates, (e.g. : Codreanu et al. (2017); You
et al. (2017a,b); Smith et al. (2017)). For generative models of these neural network models on this
cluster, we empirically find that training the latent variable model to directly emit sorted runtime
order statistics is both faster to train and more accurate. Sampled draws from these distributions are
reordered as before to calculate the predicted maximum throughput.

Unlike the 158-worker cluster, jobs on the Cray XC40 are sequestered to dedicated nodes by the
scheduler. In Figure 4, we compare BDSGD and Chen et al.’s fixed cutoff method on validation
sets in order to isolate the effect of accurate cutoff prediction on expected iteration throughput and
speedup. BDSGD provides the best model of these runtimes, subsequently leading to near optimal
throughput.

Figure 5 shows the wall-clock training times and throughputs achieved under real workloads for
each training method on the same three neural networks. Comparing the production throughput in
rows 1 and 2 of Figure 5 to the expected throughput in rows 1 and 2 of Figure 4, all training methods
experience a small drop-off in throughput when run in production due to communication costs and
other additional overhead. For these two neural networks, BDSGD is still shown to produce the
highest throughput when used during training. For training the WideResNet, Chen et al.’s method
achieves a 1.2% speedup in wall-clock training time whereas BDSGD is able to calculate 5% more
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Figure 5: Production training runs comparing BDSGD, Chen et al., and fully synchronous (naive)
methods. The neural networks on each row are trained to convergence using the three training meth-
ods, five times each. Each row in this figure corresponds to the same row in Figure 4. The columns
show quartile-boxplots and mean±std (purple error bar). From left to right: iteration throughput
achieved during training, wall-clock time to fixed iteration (400, 600, and 1500 for WideResNet,
ResNet-64, and ResNet-16, respectively), and validation loss at a fixed wall-clock time (set to the
wall-clock time at 50% of the total training time taken by Chen et al.’s method). The two big neu-
ral network models, ResNet-64 and WideResNet-16:10, achieve the highest throughput when using
BDSGD, training to roughly equal or better validation loss at a fixed wall-clock time, while improv-
ing total training time by roughly the same as Chen et al. despite setting much higher cutoffs. The
ResNet-16 model demonstrates the ability to run a modified BDSGD on a small network, where the
amortized inference exceeds gradient computation time on average.

gradients to achieve a 1% speedup in wall-clock training time. Similarly, BDSGD achieves a 7.8%
speedup in wall-clock training time while using 3.2% more gradients than Chen et al.’s method,
which achieves a 9.3% speedup.

In the final row of Figure 5, we demonstrate the ability for BDSGD prediction to be robust to the
scenario in which performing amortized inference in the generative model exceeds the time it takes
for workers to finish their gradient computations. Here, we use a modified variant of DBSGD that
fixes the predicted cutoff for ten iterations at a time in order to avoid being bottlenecked at every
iteration by the parameter server cutoff prediction. In doing so, we show in the final row of Figure 5
that one may still achieve a 7.6% speedup with sparse predictions from the generative model.

All training methods for the three neural network models in Figure 5 train to a similar final held-out
validation accuracy.

5 Discussion

We have presented a principled approach to achieving higher throughput in synchronous distributed
gradient descent. Our primary contributions include describing how a model of worker runtimes
can be used to predict order statistics that allow for a near optimal choice of straggler cutoff that
maximizes gradient computation throughput.

While the focus throughout has been on on vanilla SGD, it should be clear that our method and
algorithm can be nearly trivially extended to most optimizers of choice so long as they are stochastic
in their operation on the training set. Most methods for learning deep neural network models today
fit this description, including for instance the Adam optimizer (Kingma and Ba, 2014).

We conclude with a note that our method implicitly assumes that every mini-batch is of the same
computational cost in expectation, which may not always be the case. Future work could be to extend
the inference network further (Rezende and Mohamed, 2015) or to investigate variable length input
in distributed training as in Ergen and Kozat (2017).
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