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Abstract

We introduce an alternative to reservoir sampling,
a classic and popular algorithm for drawing a
fixed-size subsample from streaming data in a
single pass. Rather than draw a random sam-
ple, our approach performs an online optimiza-
tion which aims to select the subset that provides
the best overall approximation to the full data set,
as judged using a kernel two-sample test. This
produces subsets which minimize the worst-case
relative error when computing expectations of
functions in a specified function class, using just
the samples from the subset. Kernel functions
are approximated using random Fourier features,
and the subset of samples itself is stored in a ran-
dom projection tree. The resulting algorithm runs
in a single pass through the whole data set, and
has a per-iteration computational complexity log-
arithmic in the size of the subset. These “super-
samples” subsampled from the full data provide
a concise summary, as demonstrated empirically
on mixture models and the MNIST dataset.

1 INTRODUCTION

We receive a stream of samples x1,x2, . . . ,xN , distributed
according to an unknown distribution p(x), whereN is large
and possibly not known ahead of time. Rather than store all
the samples for later processing, we would like an online
method for selecting a subsample of size M , typically with
M � N , in a single pass through the data N .

Reservoir sampling algorithms [Vitter, 1985] solve exactly
this problem: they produce a running subsample, such that
for any i from M, . . . , N , the reservoir contains a set of M
points which themselves are subsampled without replace-
ment from the full stream up through point i. As each new
xi arrives, the subsample is updated. This update involves
swapping the new xi with one of the existing M points

at random, with appropriate probability. After sweeping
through N points, we have a random sample of size M ,
produced in a single pass through the data, and requiring
only O(M) storage.

In this paper we ask whether instead of subsampling at
random, we can change this into a decision problem which
at each new xi inspects the actual values of our current
subset ofM points, and aims to ultimately construct a “best”
possible subset of a given fixed size.

We take the “best” subset YM = {yj}Mj=1, with YM ⊂
XN = {xi}Ni=1, to be the subset which minimizes the
worst-case error when using the small sample YM to es-
timate expectations, instead of the full sample XN , across
all functions f in some function class F . This loss func-
tion is known as the maximum mean discrepancy (MMD)
[Smola et al., 2007] and takes the form

LMMD := sup
f∈F

 1

N

N∑
i=1

f(xi)−
1

M

M∑
j=1

f(yj)

 . (1)

By minimizing the MMD, we construct a subset whose
empirical distribution mimics the full data distribution as
closely as possible and allows the most accurate estimation
of expectations of functions in F . We particularly focus
on the case when the function class is the unit ball in a
reproducing kernel Hilbert space (RKHS).

As motivation, we note that the empirical estimate of the
maximum mean discrepancy between two distributions is
used as a statistic for a kernel two-sample test [Gretton et al.,
2012], a state-of-the-art nonparametric approach for testing
the hypothesis that two sets of samples are drawn from the
same underlying distribution (with large values of MMD
being evidence against this hypothesis). We will construct
our YM to be a subset of the full data XN which minimizes
the value of this statistic.

Related work constructing point sets which minimize MMD
to a target data distribution includes kernel herding [Chen
et al., 2010], which provides a deterministic alternative for
sampling from a specified target density, and sequential



Algorithm 1 “Algorithm R” [Vitter, 1985]
Input: Stream of samples x1, . . . ,xN
Output: Subsample y1, . . . ,yM , of size M � N

Initialize y1 = x1, . . . ,yM = xM
for n = M + 1, . . . , N do

j ∼ Uniform{1, . . . , n}
if j ≤M then

yj = xn
end if

end for

Bayesian quadrature [Huszár and Duvenaud, 2012], which
selects weighted point sets to minimize the MMD. Both
of these methods differ from our approach in that they se-
quentially generate new points, providing an alternative to
drawing random samples from a target density function
p(x). Our algorithm provides instead an alternative to ran-
dom subsampling without replacement, and is designed to
be appropriate for processing streaming data online.

We name our approach “super-sampling with a reservoir”,
after the original paper of Vitter [1985], replacing the ran-
dom sampling with the “super-sampling” moniker given to
the output of the kernel herding Chen et al. [2010]. We
provide some background material in Section 2, and then
introduce our algorithm in Section 3. Theoretical results
are provided in Section 4, with experimental validation in
Section 5.

2 BACKGROUND

The simplest reservoir sampling algorithm for unweighted
data, introduced as “Algorithm R” by Vitter [1985], is re-
produced here in Algorithm 1. After initializing the reser-
voir set YM to the first M values in the stream, the al-
gorithm proceeds by inserting each subsequent xn, for
n = M+1, . . . , N , into the reservoir with probabilityM/n.
During the whole duration of the algorithm, the reservoir
always contains a random sample (without replacement)
from the n data points observed thus far.

An alternative approach is to imagine drawing a random
subsample of sizeM by assigning a random uniform priority
to each of the N items, and then selecting the M with the
lowest priorities. This is equivalent to shuffling the N items
by sorting them based on a random key, and selecting the
firstM values; it can be implemented as an online algorithm
by storing the M samples in a priority queue, in which all
the priorities are assigned at random.

Although such an algorithm has runtime O(logM) at each
new candidate point xn, it can be generalized to allow
performing reservoir sampling on streams of arbitrarily
weighted values [Efraimidis and Spirakis, 2006].

2.1 Kernel embeddings of distributions

Our algorithm will replace the random selection used in Al-
gorithm R with an active selection aiming to minimize Equa-
tion (1). This is possible thanks to the properties of repro-
ducing kernel Hilbert spaces and kernel mean embeddings
of distributions [Smola et al., 2007; Song, 2008], which we
review briefly here. A reproducing kernel Hilbert spaceH
is a function space equipped with an inner product 〈·, ·〉,
and has a symmetric positive-definite reproducing kernel
k(x,x′), where x,x′ ∈ X . Elements of H are functions
defined onX . The reproducing property of the kernel means
that we can write function evaluation as an inner product,
where for any function f ∈ H, we have

f(x) = 〈k(x, ·), f(·)〉. (2)

This kernel can equivalently be defined as an inner product
over an explicit “feature space” mapping φ : X → H, with

k(x,x′) = 〈φ(x), φ(x′)〉. (3)

The “canonical” feature map is defined as φ(x) = k(x, ·),
where we see 〈k(x, ·), k(x′, ·)〉 = k(x,x′); we will use the
notation φ(x) and k(x, ·) interchangeably.

Similarly to how the reproducing kernel acts as an evalua-
tion functional on f , computing f(x) as an inner product,
mean embeddings of distributions act as an expectation
functional, computing E[f ] as an inner product. For some
distribution with density p(x), the kernel mean embedding
of a distribution [Smola et al., 2007] is defined as

µ(·) =

∫
k(x, ·)p(x)dx. (4)

If k(·, ·) is measurable, and E[k(x,x)
1/2

] < ∞, then µ
exists and µ ∈ H [Gretton et al., 2012]; the mean embed-
ding can then be used to compute expectations of functions
f ∈ H as

E[f ] = 〈µ, f〉. (5)

There are two sources of intractability standing in between
us and the application of Equation (5): neither evaluating the
inner product 〈µ, f〉 nor computing the mean embedding µ
in Equation (4) are necessarily any simpler than the original
integration with respect to p(x). Two approximations will
be useful in practice.

First, using a finite set of sample points, we can define an
empirical estimate of the mean embedding in Equation (4)

µN =
1

N

N∑
i=1

φ(xi), xi ∼ p(x). (6)

Note that µN itself is still a function inH, and inner products
of this estimator correspond to computing empirical finite-
sample estimates of expectations, since via the reproducing



property,

〈µN , f〉 =
1

N

N∑
i=1

〈φ(xi), f〉 =
1

N

N∑
i=1

f(xi). (7)

The second problem is for many common and interesting
kernels, the feature map φ(x) is infinite dimensional (as in
e.g. squared exponential kernel and the Laplacian kernel).
By considering only the kernel function k(x,x′), one can
avoid needing to explicitly instantiate these features, a bene-
fit known as the “kernel trick”. However, for computational
purposes, and to make it possible to construct an online algo-
rithm, we will find it advantageous to explicitly instantiate
an approximate feature space representation φ̂(x) ∈ RD. In
particular, this can be accomplished with a finite vector of
D random Fourier projections [Rahimi and Recht, 2007],
where each feature has the form

φ̂(x) =

√
2

D

 cos(ω>1 x + b1)
...

cos(ω>Dx + bD)

 . (8)

Each ωd is drawn from the distribution p(ω) which arises
by taking the Fourier transform of the kernel, and each bd
is uniform on [0, 2π]; Bochner’s theorem [Bochner, 1959]
guarantees that for any shift invariant positive-definite ker-
nel k(x,x′), its Fourier transform is a finite and nonneg-
ative measure, so p(ω) can be assumed to be a probabil-
ity distribution. The random Fourier features φ̂(x) ∈ RD
approximate the true (possibly infinite-dimensional) fea-
ture map φ(x) ∈ H. An approximating kernel defined by
taking the inner product of the approximate feature maps,
i.e. k(x,x′) ≈ φ̂(x)>φ̂(x′), provides an unbiased estimate
of evaluations of the kernel function [Rahimi and Recht,
2007], with

Eω,b[φ̂(x)>φ̂(x′)] = k(x,x′). (9)

Taken together with Equation (6), we can thus approximate
the mean embedding using random Fourier features evalu-
ated at finite sample points as

µ̂N =
1

N

N∑
i=1

φ̂(xi), (10)

yielding an explicit representation of the distribution p(x)
as a vector in RD.

Now, consider how we can use this representation to ap-
proximate LMMD in Equation (1). Following Gretton et al.
[2012], we take our test function space to be the unit ball in
H, i.e. with

F = {f : f ∈ H, ||f ||H ≤ 1}, (11)

where the Hilbert space norm is defined as

||f ||H = 〈f, f〉1/2. (12)

Define a second empirical estimate of the mean embedding

νM =
1

M

M∑
j=1

φ(yj), yj ∈ YM ⊂ X, (13)

on the small subset of the full points in the set X =
{x1, . . . ,xN}. We then rewrite the maximum mean discrep-
ancy as an RKHS norm [Borgwardt et al., 2006; Gretton
et al., 2012, Lemma 4], with

LMMD = sup
f∈F

(
〈µN , f〉 − 〈νM , f〉

)
= sup
f∈F
〈µN − νM , f〉

= ||µN − νM ||H. (14)

Thus, to minimize the MMD we just need to select our
points in YM such that this RKHS norm is as small as pos-
sible. Using random Fourier features approximations for
µ̂N and ν̂M allows us to define a computationally efficient
estimator for LMMD which we can update online while
processing the sample points in X . If our set of subsampled
points YM has ν̂M ≈ µ̂N , then we can use those points to
evaluate expectations in a way that approximates expecta-
tions w.r.t. the full sample set.

3 STREAMING SUBSET SELECTION

We now introduce a sequential optimization algorithm for
minimizing the MMD between the streaming data and our
local subset. Analogous to reservoir sampling, at any stage
of the algorithm we have a reservoir YM which contains
points drawn without replacement from XN , representing
our current approximation to the distribution of the first n
data points. Globally, this procedure takes the form of a
greedy optimization algorithm in which a new candidate
point xi is inserted into our set YM , replacing an existing
element when the substitution reduces the MMD. Locally,
at each candidate point, we must solve an inner optimization
problem to decide whether to keep xi, and if so, which of
the yj it should replace.

Samples xi arrive sequentially; let Xn denote the subset
of X comprising the first n points, and let Y nM denote the
subset of M points selected after processing the points in
Xn, with YM ≡ Y NM the subset selected after all points in
X have been processed. As in a standard reservoir sampling
algorithm we initialize YMM to be x1, . . . ,xM , i.e. the first
M points. We will keep running estimates of the kernel
mean embeddings

µ̂n =
1

n

n∑
i=1

φ̂(xi), xi ∈ Xn (15)

ν̂nM =
1

M

M∑
j=1

φ̂(yj), yj ∈ Y nM . (16)



These are (respectively) the Monte Carlo estimate of the
true mean element µ from the first n samples x1, . . . ,xn,
and the estimate of µ recovered from the M values selected
from the first n, with random Fourier features φ̂ : X → RD
defining an explicit feature space.

From the expression in Equation (14), we define an estima-
tor of the MMD based on these random feature expansions
after seeing n data points as

L̂MMD = ||µ̂n − ν̂nM ||2. (17)

Suppose we have seen n−1 candidates thus far and are now
considering some xn. Note we can do a sequential update

µ̂n =
n− 1

n
µ̂n−1 +

1

n
φ̂(xn). (18)

A similarly simple incremental update is possible when the
sample stream X is comprised of weighted samples. If
we suppose every point xn has an associated nonnegative
weight wn, we must additionally track the running sum of
all weights w̄n =

∑n
i=1 wi, and perform updates

µ̂n =
w̄n−1

w̄n−1 + wn
µ̂n−1 +

wn
w̄n−1 + wn

φ̂(xn), (19)

with w̄n = w̄n−1 + wn. We recover the update in Equa-
tion (18) for unweighted sample sets if all weights are iden-
tically wi = 1.

We need to decide whether or not the new xn should replace
an existing yj ∈ Y n−1M , or if it should be ignored. This
means there are M +1 possible candidates for ν̂nM ; we want
to determine which substitution minimizes L̂MMD. A naïve
approach is to compute the ν̂nM for all M + 1 options, and
choose that which yields the smallest L̂MMD. This gives
an overall algorithm in which we perform an O(MD) com-
putation for each new candidate point, though this approach
can be made reasonably efficient through incremental com-
putation of the possible values of L̂MMD . We instead focus
on providing an approximate optimization here with runtime
logarithmic in M .

3.1 Formulation as nearest neighbor search

An alternate way of formulating the inner per-datapoint
problem of selecting whether and where to swap in a candi-
date point xn, instead of as an optimization problem where
we minimize L̂MMD, is as a nearest-neighbor search. As
each new candidate point xn arrives, we have an existing
subsample estimate ν̂n−1M , and compute an updated running
estimate µ̂n. Consider the “expanded” estimator for the
mean embedding defined as

ν̂nM+1 ,
M

M + 1
ν̂n−1M +

1

M + 1
φ̂(xn) (20)

which incorporates the new point xn alongside the existing
M point estimate, by averaging the feature maps of all

Algorithm 2 Streaming MMD Minimization
Input: Stream of samples x1, . . . ,xN ;

explicit feature map φ : X → RD
Output: Subset YM = {y1, . . . ,yM}

Initialize y1 = x1, . . . ,yM = xM
Compute initial mean estimates ν̂MM and µ̂M Eq. (6)
for n = M + 1, . . . , N do

Update µ̂n to include φ(xn) Eq. (18) or (19)
Compute target φ? Eq. (23)
if NEARESTNEIGHBORφ?({xn} ∪ YM ) in YM then

ν̂nM ← ν̂n−1M + 1
M

(
φ(xn)− φ(yj)

)
yj = xn

else
ν̂nM ← ν̂n−1M

end if
end for

points in Y n−1M+1 := {xn} ∪ Y n−1M . Equation (20) is also an
approximation to µ̂n, but using M + 1 total points. Any
next estimator ν̂nM for µ̂n using only M points can be found
by discarding a single one of the points in Y n−1M+1. For
whichever point ydrop we choose to discard, we can then
express L̂MMD using the expanded estimator ν̂nM+1, with

ν̂nM =
M + 1

M
ν̂nM+1 −

1

M
φ̂(ydrop). (21)

Selecting the best ν̂nM to minimize L̂MMD = ||µ̂n − ν̂nM ||2
then corresponds to solving an optimization problem

ydrop = argmin
y∈Y n−1

M+1

∣∣∣∣∣∣∣∣µ̂n − M + 1

M
ν̂nM+1 +

1

M
φ̂(y)

∣∣∣∣∣∣∣∣
2

(22)

in which we select the yj to remove, such that the estimate
L̂MMD from the resulting Y nM is minimized. If there were a
somehow “perfect” choice of yj to remove, then this would
bring the quantity on the right of Equation (22) to zero. By
setting Equation (22) to zero, solving for ideal feature vector
φ̂(y), and then using Equation (20) to expand out ν̂NM+1 we
find the optimal choice of feature vector to remove would
be

φ? = φ̂(xn) +M(ν̂n−1M − µ̂n). (23)

In general, none of our current φ(yj) = φ? exactly, but
we can still try to get as close as possible. Since we have
explicit feature vectors φ̂(yj) ∈ RD and φ? ∈ RD, we can
thus find the best choice ydrop by considering

ydrop = argmin
y∈Y n−1

M

∣∣∣∣∣∣φ̂(y)− φ?
∣∣∣∣∣∣2
2

= argmin
y∈Y n−1

M

D∑
d=1

(
φ̂(y)d − φ?d

)2
. (24)



This minimum can by found by performing aD-dimensional
nearest-neighbor search. The easiest option for this is still
to scan through all M + 1 candidates and compute each dis-
tance in Equation (24). However for large M we can use an
approximate nearest neighbor search to reduce the overall
runtime of each iteration. The overall streaming MMD min-
imization algorithm is given in Algorithm 2, where the func-
tion NEARESTNEIGHBORφ?(Y ) is an exact or approximate
procedure for selecting the nearest neighbor (in Euclidean
distance) to φ? in the set Y .

3.2 Approximate nearest neighbor search

Exact nearest neighbor search in more than a small number
of dimensions remains a challenging problem; we are likely
to use order a few hundred random features D. Classic ap-
proaches such as KD-trees [Bentley, 1975] which are based
on coordinate-aligned splits tend to break down in such
settings, requiring very deep trees in order to partition the
data. However, there is some hope for approximate nearest
neighbor search, where we are willing to not necessarily find
the best choice, but merely a “sufficiently close” neighbor,
based on theory of intrinsic dimensionality [Johnson and
Lindenstrauss, 1984].

Random projection trees are introduced in Freund et al.
[2007], based on the observation that for high dimensional
datasets, partitioning data into subsets based on a completely
random projection direction is nearly as good as the optimal
partition direction. With this in mind, to implement a fast
approximate nearest neighbor search, define hash functions

h(φ) = sign(r>φ− s) (25)

where r ∈ RD is a random unit vector and s is a random
split point. We place these hash functions at each nodes in a
binary search tree; values φ which hash to a positive value
are sent to the right subtree, those which hash to a negative
value are sent left. This tree resembles a KD-tree, except
with random projections splits instead of axis-aligned splits.

If we have L hash functions, arranged in a binary tree, we
need to evaluate log2 L when considering each new candi-
date point, and again when accepting a new point xn into
the set Y nM . For each point yj in our subset, we cache which
leaf node of the binary tree it falls in. In practice there may
be several points in each leaf node, but instead of evaluating
all M points in YM to check whether it is closest to φ?, we
only check however many are in the leaf.

Our particular random projection tree variant we implement
is as described in Dasgupta and Sinha [2015]. We construct
an initial tree from the first M points by sampling random
vectors r, and setting each split point s to be a uniform
random quantile in [0.25, 0.75] of the projected values at
that node. This tree will have points evenly distributed
among the leaves; however, as we swap out points it may
become less balanced. To deal with this we periodically re-

compute the split points, rebalancing the tree; this operation
is performed sufficiently rarely as to maintain amortized
logarithmic cost. A free parameter in the search tree is the
search tree depth (or equivalently, how many values φ to
keep in each leaf node). In all our later experiments this is
set to target approximately 2 log2M nodes per leaf.

Theoretical results in Dasgupta and Sinha [2015] charac-
terize the loss relative to an exact search; we compare the
exhaustive nearest neighbor search and approximate results
empirically in our particular setting in Section 5.

4 BOUNDS ON SUBSET ERROR

At any point in the algorithm, it is straightforward to use our
current distribution embedding approximations to compute
L̂MMD = ||µ̂n − ν̂nM ||2. It would be nice to characterize
how this estimate compares to the true maximum mean
discrepancy. In this section, we derive bounds for the esti-
mation error which occurs due to using our size M subset
to compute expectations, instead of using the full size N set.
Above and beyond the implicit Monte Carlo error in using
the points in X to approximate expectations with respect to
p(x), our procedure introduces additional error by restrict-
ing to only M of N total points, and using random Fourier
features to approximate the kernel.

The online algorithm we use to sample from a stream is
only possible when we have an explicit feature space repre-
sentation. Following Sutherland and Schneider [2015], we
can use bounds on the error introduced by approximating
the kernel function with random Fourier features to provide
bounds on the estimation error introduced by using only the
subset YM ⊂ XN . Being careful of the difference between
the empirical mean embeddings µN , νM ∈ H, and their
random Fourier feature approximations µ̂N , ν̂M ∈ RD, we
can compare two empirical estimates of the squared MMD,
one using the (intractable) features φ(x), the other using the
random Fourier features φ̂(x):

L2
MMD = ||µN − νM ||2H (26)

L̂2
MMD = ||µ̂N − ν̂M ||22 =

D∑
d=1

(
µ̂Nd − ν̂Md

)2
. (27)

The squared MMD L2
MMD can be decomposed as [Gretton

et al., 2012]

L2
MMD =

1

N2

∑
i,i′

k(xi,xi′) +
1

M2

∑
j,j′

k(yj ,yj′)−
2

NM

∑
i,j

k(xi,yj),

with a matching expansion for L̂2
MMD, and since the ran-

dom Fourier features [Rahimi and Recht, 2007] provide an
unbiased estimate of k(x,x′) as in Equation (9), we have

E
[
L̂2

MMD

]
= L2

MMD. (28)



Now, directly following Sutherland and Schneider [2015,
section 3.3], we view L̂2

MMD as a function of the random
variables {ωd, bd} and consider how changing any one of
these random variables modifies L̂2

MMD. The random
Fourier feature approximation to the kernel decomposes
into a sum across all D features as

k(x,x′) =

D∑
d=1

Eωd,bd [φ̂d(x)φ̂d(x
′)] (29)

=
2

D

D∑
d=1

Eωd,bd [cos(ω>d x + bd) cos(ω>d x
′ + bd)].

Since cos(·) is bounded by {−1, 1}, modifying either ωd
or bd changes a single term in the sum at the right of Equa-
tion (29) by at most 2, and thus changes the overall ran-
dom feature approximation to the kernel by at most 4/D.
This in turn bounds the change in L̂2

MMD by at most 16/D.
Then from the bounded differences inequality of McDiarmid
[1989] we have

Pr
(
L2
MMD − L̂2

MMD ≥ ε
)
≤ e−Dε

2

128 . (30)

An algebraic rearrangement of Equation (30) can be used
to provide an upper bound in probability for L2

MMD. We
have, with probability at least 1− δ,

L2
MMD − L̂2

MMD ≤
√

128 log(1/δ)

D

which combined with our estimator for L̂2
MMD yields

L2
MMD ≤

√
128 log(1/δ)

D
+

D∑
d=1

(
µ̂Nd − ν̂Md

)2
.

This directly translates into bounds on the error, due to
subsampling, in estimating the average 1

N

∑N
i=1 f(xi) of

any function f ∈ H over the full dataset, since we have∣∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
1

M

M∑
j=1

f(yj)

∣∣∣∣∣∣
2

=
∣∣〈µN − νM , f〉∣∣2

≤ ||f ||2H ||µN − νM ||2H
= ||f ||2H L2

MMD.

Thus the worst-case squared error introduced by using the
subsampled points for any f ∈ F can be bounded by the
empirical squared error in the estimated mean embedding
vectors, plus an error term due to the random Fourier feature
approximation. We summarize this result as the following
Theorem.

Theorem 1 Let µ̂N , ν̂M ∈ RD be estimates of the mean
embedding from D random Fourier features, defined on sets

of points XN and YM ⊂ XN . Then, with probability at
least 1− δ,

L2
MMD = sup

f∈F

∣∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
1

M

M∑
j=1

f(yj)

∣∣∣∣∣∣
2

≤
√

128 log(1/δ)

D
+

D∑
d=1

(
µ̂Nd − ν̂Md

)2
.

We note that this result can be combined with existing
bounds from e.g. Song [2008] on ||µN − µ||H to charac-
terize overall error in estimating of expectations from the
points in YM relative to true expected values E[f ] over the
population distribution of {xi}.

5 EXPERIMENTS

We run a variety of empirical tests to quantify the perfor-
mance and characteristics of this algorithm. In addition
to benchmarking against to random subsampling, we also
compare to a benchmark of using a random Fourier fea-
tures implementation of kernel herding [Chen et al., 2010].
The kernel herding algorithm is a method for sequentially
generating M points, which performs a greedy optimiza-
tion on the same approximation to the MMD targeted by
our online algorithm; however, it is not an algorithm for
processing streaming data as it requires the estimate µ̂N as
computed from the full sample set as input, and furthermore
it requires a potentially expensive optimization operation
for generating each new point.

We also confirm experimentally that the approximation error
due to the inexact nearest neighbor search does not signifi-
cantly impact overall performance.

5.1 Mixtures of Gaussians

Our initial test model is a multivariate mixture of Gaussians,
as considered in both Chen et al. [2010] and Huszár and
Duvenaud [2012]. We experiment with downsampling a
set of N = 100, 000 points drawn from a 2-dimensional
mixture of 10 Gaussians to a target set of size M = 100.
We use a squared exponential kernel

k(x,x′) = exp

{
−||x− x′||22

2γ2

}
(31)

where the lengthscale γ is set to the median pointwise dis-
tance between the first M points; this is known as the me-
dian heuristic [Gretton et al., 2012]. We approximate the
basis functions with D = 200 random Fourier features of
the form in Equation (8), where each ω element is drawn
from a normal distribution with zero mean and standard
deviation γ−1.

An example mixture of Gaussians target density and the
selected points are shown in Figure 1, alongside a plot of the
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Figure 1: (Left) The final 100 selected points in the 2d Gaussian mixture, using the approximate nearest neighbor search.
(Right) The empirical MMD estimate between µ̂n and µ̂N , as well as between ν̂nM and µ̂N , as n → N , when selecting
a subset of size M = 100. The red line uses the random projection search tree; the blue line uses a linear scan of all
options to perform an exact nearest-neighbor search. The subset estimates track the all-data MMD µ̂n very closely, despite
subsampling, and even despite the approximate search. Both methods are initialized from the same set of randomly sampled
points. The herding benchmark consists of M points to approximate µ̂N . All estimates are averaged over 10 different
synthetic datasets, drawn from mixtures of Gaussians with different parameters.

convergence of the maximum mean discrepancy estimates
||µ̂N−µ̂n||2 and ||µ̂N−ν̂nM ||2. As we view more data points,
the running estimate µ̂n gradually approaches the full-data
estimate µ̂N . We compare to two implementations of the
subsampling algorithm for selecting Y nM and computing
ν̂nM — one using the approximate nearest neighbor search,
and one using a linear scan for an exact nearest neighbor
search — and see that in both cases the running estimate
based on the subsample very closely tracks the full data
estimate. The overall difference in performance between
the two methods is negligible despite making far fewer
comparisons per iteration of the algorithm.

The herding benchmark consists of the firstM = 100 points
selected by the kernel herding [Chen et al., 2010], target-
ing µ̂N . Theoretical results for herding suggest that the
sample efficiency of the first 100 herded points should ap-
proximately match the first 10,000 random samples.

Figure 2 shows the empirical distribution over the number
of comparisons actually made while searching for ydrop at
each iteration when using the random projection tree for
nearest neighbor search.

In Figure 3 we compare the error in computing expectations
using our subsampled points, testing on the same set of
functions used as a benchmark in Chen et al. [2010]. We
find that the mean squared error on these test functions
closely tracks the error from the full set of points. This is
a remarkably promising result: expectations with respect
to the full data converge at the Monte Carlo rate, and the
subset of M = 100 points continues to perform comparably
even at N = 100, 000, for three of four test functions, and
reliably outperforms both the random sampling and herding
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Figure 2: The actual number of comparisons made by the
algorithm for processing each new data point is the same
as the number of items encountered in each leaf of the
random projection search tree; a full scan would require
M = 100 comparisons, while here the median was 14. In
the 2d Gaussian mixture example, we have a tree with depth
3, with an expected 12.5 items in each leaf. Compared to
running a full scan, the tree-search version made the best
overall decision 97.8% of the time.

benchmarks.

5.2 Data summarization

This procedure can also be used to efficiently summarize
high dimensional data, through a small handful of exemplars.
We demonstrate this on 10, 000 digits taken from the MNIST
dataset, reduced to be represented by a subset of size M =
30 in Figure 4. Each element in the MNIST image dataset is
a 28×28 image of a single hand-written numeric digit, with
xi ∈ [0, 1]768. Again, we simply use a squared exponential
kernel, with lengthscale set to the median of the first M
points, and D = 200 random features.



Figure 3: Error plots for expectations of four test functions: x, x2, x3, and sin(||x||2). Legend is shared across subplots. The
error is root mean squared error (RMSE) across dimensions of the test function, relative to a ground truth value computed
on a separate sample of 2× 107 points. The “random” benchmark is the median RMSE across 100 different random subsets
of size M = 100; the “herding” benchmark is the RMSE from the first 100 herded points, targeting µ̂N . We can also judge
the loss of accuracy in using the approximate nearest neighbor search: there is a qualitative difference only in the sin(||x||2)
example, where there is plateau in convergence for both methods. All estimates are averaged over 10 different synthetic
datasets, drawn from mixtures of Gaussians with different parameters.

Figure 4: We summarize the MNIST digits dataset with a
small number of exemplars. The subsampled set of points
provides good coverage for the different digits, and also
shows variation in style and form within each digit. The
subsampling algorithm was given only the unlabeled digits.

The result summarizes the MNIST digits far better than a
random sample would, and enormously better than other
simple techniques for visualizing high-dimensional data,
such as computing marginal means or quantiles across each
dimension. We see a small number of exemplars from each
of the 10 digits, with a good variety of handwriting styles
expressed.

5.3 Resampling output of an importance sampler

One advantage of this algorithm relative to standard reser-
voir sampling is that it is trivially modified to run on
weighted streaming data, requiring only changing the way
in which the running average µ̂n is computed from Equa-
tion (18) to Equation (19). A promising use of this algorithm
is to resample the output from sampling schemes such as
importance sampling and sequential Monte Carlo methods,
which return large numbers of weighted sets of samples.
We may wish to resample from these weighted samples to
obtain a new unweighted set of particles; such a resampling
step is also used within sequential Monte Carlo as a means
of reducing particle degeneracy [Douc et al., 2005].

As an illustrative example, we run this algorithm on the
output of an importance sampler targeting a simple one-
dimensional mixture distribution, proposing from a broad
Gaussian prior. The results are shown in Figure 5, showing
the incremental progress as the algorithm processes more
points (i.e., as n increases), for a variety of small values of
M . Due to the small number of pointsM being selected, we
can see that as n becomes large, the selected points roughly
approximate the quantiles of the bimodal mixture model.
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Figure 5: Downsampling points from an importance sampler. Selected points shown in red, with separate runs in each
column for M = 2, 3, 5, 8, showing the results after observing each of N = 10, 102, 103, 104, 105. The green dashed lines
split the probability density function of the blue target density into regions of equal probability. As N increases, the selected
points approximate an even weighting across the probability density.

That is, in this example we see empirically that the points
are selected such that they partition the target density p(x)
into regions of equal probability mass.

6 DISCUSSION

Reservoir sampling is a popular algorithm for drawing “man-
ageable” subsets from large data, for both reasons of com-
puter memory limitations, and for human visualization. For
either of these purposes, our reservoir super-sampling algo-
rithm can be used as a drop-in replacement which provides
improved performance when subsampling from any data for
which a kernel function can be defined.

When sampling from a weighted set of points, then the
computational complexity of this algorithm is of the same
order in M and N as the random sampling algorithm of
[Efraimidis and Spirakis, 2006], while providing perfor-
mance in computing expectations which far closer emulates
computing expectations from the full data stream. This
subsampling method, which explicitly use the values of the
different points, could perhaps be used as a replacement for
traditional resampling in sequential Monte Carlo methods,
which only consider the particle weights and not the actually
values at each point. Such an approach may be advantageous
in settings such as considered in Jun and Bouchard-Côté
[2014], where the memory usage for storing the particle set
is the primary bottleneck.

Although the algorithm aims only to minimize the maxi-
mum mean discrepancy, there is evidence from the MNIST
example and the point locations in the importance sampling
reweighting that the selected points also have a promising
use in general situations where one might want to summa-
rize data with a small number of representative points.

As future work, we also hope to investigate the relation-
ship between these selected locations and other methods for
constructing low-discrepancy point sets.
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