
Amortized Monte Carlo Integration

Adam Goliński * 1 2 Frank Wood 3 Tom Rainforth * 1

Abstract
Current approaches to amortizing Bayesian in-
ference focus solely on approximating the pos-
terior distribution. Typically, this approxima-
tion is, in turn, used to calculate expectations for
one or more target functions—a computational
pipeline which is inefficient when the target func-
tion(s) are known upfront. In this paper, we ad-
dress this inefficiency by introducing AMCI, a
method for amortizing Monte Carlo integration
directly. AMCI operates similarly to amortized
inference but produces three distinct amortized
proposals, each tailored to a different component
of the overall expectation calculation. At run-
time, samples are produced separately from each
amortized proposal, before being combined to an
overall estimate of the expectation. We show that
while existing approaches are fundamentally lim-
ited in the level of accuracy they can achieve,
AMCI can theoretically produce arbitrarily small
errors for any integrable target function using
only a single sample from each proposal at run-
time. We further show that it is able to empir-
ically outperform the theoretically optimal self-
normalized importance sampler on a number of
example problems. Furthermore, AMCI allows
not only for amortizing over datasets but also
amortizing over target functions.

1. Introduction
At its core, Bayesian modeling is rooted in the calcula-
tion of expectations: the eventual aim of modeling is typ-
ically to make a decision or to construct predictions for
unseen data, both of which take the form of an expec-
tation under the posterior (Robert, 2007). This aim can

*Equal contribution 1Department of Statistics, University of
Oxford, United Kingdom 2Department of Engineering Science,
University of Oxford, United Kingdom 3Department of Computer
Science, University of British Columbia, Vancouver, Canada.
Correspondence to: Adam Goliński <adamg@robots.ox.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

thus be summarized in the form of one or more expecta-
tions Ep(x|y)

[
f(x)

]
, where f(x) is a target function and

p(x|y) is the posterior distribution on x for some data y,
which we typically only know up to a normalizing constant
p(y). More generally, expectations with respect to distribu-
tions with unknown normalization constant are ubiquitous
throughout the sciences (Robert & Casella, 2013).

Sometimes f(x) is not known up front. Here it is typically
convenient to first approximate p(x|y), e.g. in the form of
Monte Carlo (MC) samples, and then later use this approx-
imation to calculate estimates, rather than addressing the
target expectations directly.

However, it is often the case in practice that a particular
target function, or class of target functions, is known a pri-
ori. For example, in decision-based settings f(x) takes the
form of a loss function, while any posterior predictive dis-
tribution constitutes a set of expectations with respect to
the posterior, parameterized by the new input. Though of-
ten overlooked, it is well established that in such target-
aware settings the aforementioned pipeline of first approx-
imating p(x|y) and then using this as a basis for calculat-
ing Ep(x|y)

[
f(x)

]
is suboptimal as it ignores relevant in-

formation in f(x) (Hesterberg, 1988; Wolpert, 1991; Oh &
Berger, 1992; Evans & Swartz, 1995; Meng & Wong, 1996;
Chen & Shao, 1997; Gelman & Meng, 1998; Lacoste-
Julien et al., 2011; Owen, 2013; Rainforth et al., 2018b).
As we will later show, the potential gains in such scenarios
can be arbitrarily large.

In this paper, we extend these ideas to amortized infer-
ence settings (Stuhlmüller et al., 2013; Kingma & Welling,
2014; Ritchie et al., 2016; Paige & Wood, 2016; Le et al.,
2017; 2018a; Webb et al., 2018), wherein one looks to
amortize the cost of inference across different possible
datasets by learning an artifact that assists the inference
process at runtime for a given dataset. Existing approaches
do not operate in a target-aware fashion, such that even if
the inference network learns proposals that perfectly match
the true posterior for every possible dataset, the resulting
estimator is still sub-optimal.

To address this, we introduce AMCI, a framework for
performing Amortized Monte Carlo Integration. Though
still based on learning amortized proposals distributions,
AMCI varies from standard amortized inference ap-

ar
X

iv
:1

90
7.

08
08

2v
1

 [
st

at
.M

L
]

 1
8

Ju
l 2

01
9

Amortized Monte Carlo Integration

proaches in three respects. First, it operates in a target-
aware fashion, incorporating information about f(x) into
the amortization artifacts. Second, rather than using
self-normalization, AMCI employs three distinct propos-
als for separately estimating Ep(x)

[
p(y|x) max(f(x), 0)

]
,

Ep(x)
[
−p(y|x) min(f(x), 0)

]
, and Ep(x)

[
p(y|x)

]
, before

combining these into an overall estimate. This breakdown
allows for arbitrary performance improvements compared
to self-normalized importance sampling (SNIS). Finally, to
account for cases in which multiple possible target func-
tions may be of interest, AMCI also allows for amortization
over parametrized functions f(x; θ).

Remarkably, AMCI is able to achieve an arbitrarily low
error at run-time using only a single sample from each
proposal given sufficiently powerful amortization artifacts,
contrary to the fundamental limitations on the accuracy of
conventional amortization approaches. This ability is based
around its novel breakdown of the target expectation into
separate components, the subsequent utility of which ex-
tends beyond the amortized setting we consider here.

2. Background
2.1. Importance Sampling

Importance Sampling (IS), in its most basic form, is a
method for approximating an expectation Eπ(x)

[
f(x)

]
when it is either not possible to sample from π(x) directly,
or when the simple MC estimate, 1

N

∑N
n=1 f(xn) where

xn ∼ π(x), has problematically high variance (Hesterberg,
1988; Wolpert, 1991). Given a proposal q(x) from which
we can sample and for which we can evaluate the data, it
forms the following estimate

µ := Eπ(x)
[
f(x)

]
=

∫
f(x)

π(x)

q(x)
q(x)dx (1)

≈ µ̂ :=
1

N

∑N

n=1
f(xn)wn (2)

where xn ∼ q(x) and wn := π(xn)/q(xn) is known as the
importance weight of sample xn.

In practice, one often does not have access to the normal-
ized form of π(x). For example, in Bayesian inference set-
tings, we typically have π(x) = p(x|y) ∝ p(x, y). Here
we can use our samples to both approximate the normal-
ization constant and the unnormalized integral. Thus if
π(x) ∝ γ(x), we have

Eπ(x)[f(x)]=

∫ f(x)γ(x)
q(x) q(x)dx∫ γ(x)
q(x) q(x)dx

≈
∑N
n=1f(xn)wn∑N

n=1 wn
(3)

where xn ∼ q(x), and wn := γ(xn)/q(xn). This ap-
proach is known as self-normalized importance sampling
(SNIS). Conveniently, we can also construct the SNIS esti-
mate lazily by calculating the empirical measure, i.e. stor-

ing weighted samples,

π(x) ≈
∑N

n=1
wnδxn

(x)
/∑N

n=1
wn (4)

and then using this to construct the estimate in (3) when
f(x) becomes available. As such, we can also think of
SNIS as a method for Bayesian inference as, informally
speaking, the empirical measure produced can be thought
of as an approximation of the posterior.

For a general unknown target, the optimal proposal, i.e. the
proposal which results in estimator having lowest possi-
ble variance, is the target distribution q(x) = π(x) (see
e.g. (Rainforth, 2017, 5.3.2.2)). However, this no longer
holds if we have some information about f(x). In this
target-aware scenario, the optimal behavior turns out to de-
pend on whether we are self-normalizing or not.

For the non-self-normalized case, the optimal proposal can
be shown to be q∗(x)∝π(x)|f(x)| (Owen, 2013). Interest-
ingly, in the case where f(x) ≥ 0 ∀x, this leads to an exact
estimator, i.e. µ̂ = µ (with µ̂ as per (2)). To see this, notice
that the normalizing constant for q∗(x) is

∫
π(x)f(x) dx=

µ and hence q∗(x) = π(x)f(x)/µ. Therefore, even when
N=1, any possible value of the resulting sample x1 yields
an µ̂ satisfying µ̂=f(x1)π(x1)/q∗(x1)=µ.

In the self-normalized case, the optimal proposal instead
transpires to be q∗(x)∝π(x)|f(x)−µ| (Hesterberg, 1988).
In this case, one can no longer achieve a zero variance es-
timator for finite N and nonconstant f(x). Instead, the
achievable error is lower bounded by (Owen, 2013)

E[(µ̂− µ)2] ≥ 1

N

(
Eπ(x)[|f(x)− µ|]

)2
, (5)

creating a fundamental limit on the performance of SNIS,
even when information about f(x) is incorporated.

Given that these optimal proposals make use of the true ex-
pectation µ, we will clearly not have access to them in prac-
tice. However, they provide a guide for the desirable prop-
erties of a proposal and can be used as targets for adaptive
IS methods (see (Bugallo et al., 2017) for a recent review).

2.2. Inference Amortization

Inference amortization involves learning an amortization
artifact that takes in datasets and produces proposals tai-
lored to the corresponding inference problems. This amor-
tization artifact typically takes the form of a parametrized
proposal, q(x;ϕ(y; η)), which takes in data y and produces
proposal parameters using an inference network ϕ(y; η),
which itself has parameters η. When clear from the con-
text, we will use the shorthand q(x; y, η) for this proposal.

Though the exact process varies with context, the inference
network is usually trained either by drawing latent-data
sample pairs from the joint p(x, y) (Paige & Wood, 2016;

Amortized Monte Carlo Integration

Le et al., 2017; 2018b), or by drawing mini-batches from
a large dataset using stochastic variational inference ap-
proaches (Hoffman et al., 2013; Kingma & Welling, 2014;
Rezende et al., 2014; Ritchie et al., 2016). Once trained,
it provides an efficient means of approximately sampling
from the posterior of a particular dataset, e.g. using SNIS.

Out of several variants, we focus on the method intro-
duced by Paige & Wood (2016), as this is the one AMCI
builds upon. In their approach, η is trained to minimize the
expectation of DKL

[
p(x|y) || q(x; y, η)

]
across possible

datasets y, giving the objective

J (η) = Ep(y)
[
DKL

[
p(x|y) || q(x; y, η)

]]
= Ep(x,y)

[
− log q(x; y, η)

]
+ const wrt η (6)

We note that the distribution p(y) over which we are taking
the expectation is actually chosen somewhat arbitrarily: it
simply dictates how much the network prioritizes a good
amortization for one dataset over another; different choices
are equally valid and imply different loss functions.

This objective requires us to be able to sample from the
joint distribution p(x, y) and it can be optimized using gra-
dient methods since the gradient can be easily evaluated:

∇ηJ (η) = Ep(x,y)
[
−∇η log q(x; y, η)

]
. (7)

3. AMCI
Amortized Monte Carlo integration (AMCI) is a frame-
work for amortizing the cost of calculating expectations
µ(y, θ) := Eπ(x;y)[f(x; θ)]. Here y represents change-
able aspects of the reference distribution π(x; y) (e.g. the
dataset) and θ represents changeable parameters of the tar-
get function f(x; θ). The reference distribution is typically
known only up to a normalization constant, i.e. π(x; y) =
γ(x; y)/Z where γ(x; y) can be evaluated pointwise, but
Z is unknown. AMCI can still be useful in settings where
Z is known, but here we can simply use its known value
rather than constructing a separate estimator.

Amortization can be performed across y and/or θ. When
amortizing over y, the function does not need to be explic-
itly parameterized; we just need to be able to evaluate it
pointwise. Similarly, when amortizing over θ, the refer-
ence distribution can be fixed. In fact, AMCI can be used
for a parameterized set of conventional integration prob-
lems

∫
x∈X f(x; θ)dx by exploiting the fact that∫

x∈X
f(x; θ)dx = Eπ(x)[f(x; θ)/π(x)] (8)

for any π(x) where π(x) 6= 0∀x ∈ X for which f(x) 6= 0.

For consistency of notation with the amortized inference
literature, we will presume a Bayesian setting in the rest of
this section, i.e. π(x; y)=p(x|y) and γ(x; y)=p(x, y).

3.1. Estimator

Existing amortized inference methods implicitly evaluate
expectations using SNIS (or some other form of self-
normalized estimator (Paige & Wood, 2016; Le et al.,
2018a)), targeting the posterior as the optimal proposal
q∗(x; y) ≈ p(x|y). Not only is this proposal suboptimal
when information about the target function is available,
there is a lower bound on the accuracy the SNIS approach
itself can achieve as shown in (5).

AMCI overcomes these limitations by breaking down the
overall expectation into separate components and con-
structing separate estimates for each. We can first break
down the target expectation into the ratio of the “unnor-
malized expectation” and the normalization constant:

µ(y, θ) := Ep(x|y)
[
f(x; θ)

]
=

Ep(x|y)
[
f(x; θ) p(y)

]
Ep(x)

[
p(y|x)

]
=

Eq1(x;y,θ)
[
f(x;θ)p(x,y)
q1(x;y,θ)

]
Eq2(x;y)

[
p(x,y)
q2(x;y)

] =:
E1

E2
(9)

where q1(x; y, θ) and q2(x; y) are two separate proposals,
used respectively for each of the two expectations E1 and
E2. We note that the proposal q1(x; y, θ) may depend not
only on the observed dataset y, but also on the parameters
of the target function θ.

We can now generate separate MC estimates for E1 and
E2, and take their ratio to estimate the overall expectation:

µ(y, θ) ≈ µ̂(y, θ) := Ê1/Ê2 where

Ê1 :=
1

N

N∑
n=1

f(x′n; θ)p(x′n, y)

q1(x′n; y, θ)
x′n ∼ q1(x; y, θ)

Ê2 :=
1

M

M∑
m=1

p(xm, y)

q2(xm; y)
xm ∼ q2(x; y).

(10)

The key idea behind AMCI is that we can now separately
train each of these proposals to be good estimators for
their respective expectation, rather than rely on a single
proposal to estimate both, as is implicitly the case for SNIS.

Consider, for example, the case where f(x; θ) ≥ 0. If
q1(x; y, θ) ∝ f(x; θ)p(x|y) and q2(x; y) ∝ p(x|y) then
both Ê1 and Ê2 will form exact estimators (as per Sec-
tion 2.1), even if N=M=1. Consequently, we achieve an
exact estimator for µ(y, θ), allowing for arbitrarily large
improvements over any SNIS estimator, because SNIS
forces q1(x; y, θ) and q2(x; y) to be the same distribution.

More generally, the optimal proposal for E1 and E2 are
q1(x; y, θ)∝ |f(x; θ)|p(x|y) and q2(x; y)∝ p(x|y) respec-
tively, with the latter always resulting in an exact estimator
for E2. Thus the more |f(x; θ)|p(x|y) varies from p(x|y),
the worse the conventional approach of only amortizing

Amortized Monte Carlo Integration

the posterior will perform, while the harder it becomes to
construct a reasonable SNIS estimator even when infor-
mation about f(x; θ) is incorporated. Separately learning
q1(x; y, θ) and q2(x; y) means that each will become a bet-
ter individual proposal and the overall estimator improves.

It turns out that we do not actually require the previous as-
sumption of f(x; θ) ≥ 0 ∀x, θ to achieve a zero variance
estimator. Specifically, if we let1

f+(x; θ) = max(f(x; θ), 0) and (11)

f−(x; θ) = −min(f(x; θ), 0) (12)

denote truncations of the target function into its positive
and negative components (as per the concept of posiviti-
sation (Owen, 2013, 9.13)), then we can break down the
overall expectation as follows

µ(y, θ)

=

Eq+1 (x;y,θ)

[
f+(x;θ)p(x,y)

q+1 (x;y,θ)

]
− Eq−1 (x;y,θ)

[
f−(x;θ)p(x,y)

q−1 (x;y,θ)

]
Eq2(x;y)

[
p(x,y)
q2(x;y)

]
=:

E+
1 − E−1
E2

(13)

where we now have three expectations and three proposals.
Analogously to (10), we can construct estimates for each
expectation separately and then combine them:

µ(y, θ) ≈ µ̂(y, θ) := (Ê+
1 − Ê−1)/Ê2 where

Ê+
1 :=

1

N

N∑
n=1

f+(x+n ; θ)p(x+n , y)

q+1 (x+n ; y, θ)
x+n ∼ q+1 (x; y, θ)

Ê−1 :=
1

K

K∑
k=1

f−(x−k ; θ)p(x−k , y)

q−1 (x−k ; y, θ)
x−k ∼ q−1 (x; y, θ)

Ê2 :=
1

M

M∑
m=1

p(xm, y)

q2(xm; y)
xm ∼ q2(x; y), (14)

which forms the AMCI estimator. The theoretical capabil-
ity of this estimator is summarized in the following result,
the proof for which is given in Appendix B.

Theorem 1. If the following hold for a given θ and y,

Ep(x)
[
f+(x; θ)p(y|x)

]
<∞ (15)

Ep(x)
[
f−(x; θ)p(y|x)

]
<∞ (16)

Ep(x)
[
p(y|x)

]
<∞ (17)

and we use the corresponding set of optimal pro-
posals q+1 (x; y, θ) ∝ f+(x; θ)p(x, y), q−1 (x; y, θ) ∝
f−(x; θ)p(x, y), and q2(x; y) ∝ p(x, y), then the AMCI

1Practically, it may sometimes be beneficial to truncate the
proposal about another point, c, by instead using f+(x; θ) =
max(f(x; θ)−c, 0) and f−(x; θ) = −min(f(x; θ)−c, 0), then
adding c onto our final estimate.

estimator defined in (14) satisfies

E
[
µ̂(y, θ)

]
= µ(y, θ), Var

[
µ̂(y, θ)

]
= 0 (18)

for any N ≥ 1, K ≥ 1, and M ≥ 1, such that it forms an
exact estimator for that θ, y pair.

Though our primary motivation for developing the AMCI
estimator is its attractive properties in an amortization set-
ting, we note that it may still be of use in static expectation
calculation settings. Namely, the fact that it can achieve an
arbitrarily low mean squared error for a given number of
samples means it forms an attractive alternative to SNIS
more generally, particularly when we are well-placed to
hand-craft highly effective proposals and in adaptive im-
portance sampling settings.

We note that individual elements of this estimator have pre-
viously appeared in the literature. For example, the general
concept of using multiple proposals has been established
in the context of multiple importance sampling (Veach
& Guibas, 1995). The use of two separate proposals
for the unnormalized target and the normalizing constant
(i.e. (10)), on the other hand, was recently independently
suggested by Lamberti et al. (2018) in a non-amortized set-
ting. However, we believe that the complete form of the
AMCI estimator in (14) has not previously been suggested,
nor its theoretical benefits or amortization considered.

3.2. Amortization

To evaluate (14), we need to learn three amortized propos-
als q+1 (x; y, θ), q−1 (x; y, θ), and q2(x; y).

Learning q2(x; y) is equivalent to the standard inference
amortization problem and so we will just use the objective
given by (6), as described in section 2.2.

The approaches for learning q+1 (x; y, θ) and q−1 (x; y, θ) are
equivalent, other than the function that is used in the esti-
mators. Therefore, for simplicity, we introduce our amorti-
zation procedure in the case where f(x; θ) ≥ 0 ∀x, θ, such
that we can need only learn a single proposal, q1(x; y, θ),
for the numerator as per (10). This trivially extends to the
full AMCI setup by separately repeating the same training
procedure for q+1 (x; y, θ) and q−1 (x; y, θ).

3.2.1. FIXED FUNCTION f(x)

We first consider the scenario where f(x) is fixed (i.e. we
are not amortizing over function parameters θ) and hence
in this section we drop the dependence of q1 on θ.

To learn the parameters η for the first amortized proposal
q1(x; y, η), we need to adjust the target in (6) to incor-
porate the effect of the target function. Let E1(y) :=

Ep(x)
[
f(x)p(y|x)

]
and g(x|y) := f(x) p(x,y)

E1(y)
, i.e. the nor-

malized optimal proposal for q1. Naively adjusting (6)

Amortized Monte Carlo Integration

leads to a double intractable objective

J ′1(η) = Ep(y)[DKL

(
g(x|y)||q1(x; y, η)

)
]

=Ep(y)
[
−
∫
X

f(x) p(x, y)

E1(y)
log q1(x; y, η) dx

]
+ const wrt η.

(19)

Here the double intractability comes from the fact we do
not knowE1(y) and, at least at the beginning of the training
process, we cannot estimate it efficiently either.

To address this, we use our previous observation that the
expectation over p(y) in the above objective is chosen
somewhat arbitrarily. Namely, it dictates the relative pri-
ority of different datasets y during training and not the op-
timal proposal for each individual datapoint; disregarding
the finite capacity of the network, the global optimum is
still always DKL

[
g(x|y) || q1(x; y, η)

]
= 0, ∀y. We thus

maintain a well-defined objective if we choose a different
reference distribution over datasets. In particular, if we take
the expectation with respect to h(y)∝p(y)E1(y), we get

J1(η) = Eh(y)
[
DKL

(
g(x|y) || q1(x; y, η)

)]
= c−1 Ep(x,y)

[
−f(x) log q1(x; y, η)

]
+ const wrt η

(20)

where c = Ep(y)
[
E1(y)

]
> 0 is a positive constant that

does not affect the optimization—it is the normalization
constant for the distribution h(y)—and can thus be ignored.
Each term in this expectation can now be evaluated directly,
meaning we can again run stochastic gradient descent algo-
rithms to optimize it. Note that this does not require evalua-
tion of the density p(x, y), only the ability to draw samples.

Interestingly, this choice of h(y) can be interpreted as giv-
ing larger importance to the values of y which yield larger
E1(y). Informally, we could think about this choice as at-
tempting to minimizing the L1 errors of our estimates, that
is Ep(y)[|E1(y) − Ê1(y)|], presuming that the error in our
estimation scales as the magnitude of the true value E1(y).

More generally, if we choose h(y) ∝ p(y)E1(y)λ(y) for
some positive evaluable function λ : Y → R+, we get a
tractable objective of the form

J1(η;λ) = Ep(x,y)
[
−f(x)

λ(y)
log q1(x; y, η)

]
up to a constant scaling factor and offset. We can thus use
this trick to adjust the relative preference given to different
datasets, while ensuring the objective is tractable.

3.2.2. PARAMETERIZED FUNCTION f(x; θ)

As previously mentioned, AMCI also allows for amortiza-
tion over parametrized functions, to account for cases in
which multiple possible target functions may be of inter-
est. We can incorporate this by using pseudo prior p(θ) to

generate example parameters during our training.

Analogously to h(y), the choice of p(θ) determines how
much importance we assign to different possible functions
that we would like to amortize over. Since, in practice,
perfect performance is unattainable over the entire space
of θ, the choice of p(θ) is important and it will have an
important effect on the performance of the system.

Incorporating p(θ) is straightforward: we take the ex-
pectation of the fixed target function training objective
over θ. In this setting, our inference network ϕ needs
to take θ as input when determining the parameters of
q1 and hence we let q1(x; y, θ, η) := q1(x;ϕ(y, θ; η)).
If E1(y, θ) := Ep(x)

[
f(x; θ)p(y|x)

]
, g(x|y; θ) :=

f(x; θ) p(x, y)/E1(y, θ), and h(y, θ) ∝ p(y)p(θ)E1(y, θ),
we get an objective which is analogous to (20):

J1(η) = Eh(y,θ)
[
DKL

(
g(x|y; θ) || q1(x; y, θ, η)

)]
=c−1 · Ep(x,y)p(θ)

[
−f(x; θ) log q1(x; y, θ, η)

]
+ const wrt η

(21)

where c=Ep(y)p(θ)
[
E1(y, θ)

]
> 0 is again a positive con-

stant that does not affect the optimization.

3.3. Efficient Training

If f(x; θ) and p(x)p(θ) are mismatched, i.e. f(x; θ) is large
in regions where p(x)p(θ) is low, training by naı̈vely sam-
pling from p(x)p(θ) can be inefficient. Instead, it is prefer-
able to try and sample from g(θ, x) ∝ p(x)p(θ)f(x; θ).
Though this is itself an intractable distribution, it represents
a standard, rather than an amortized, inference problem and
so it is much more manageable than the overall training.
Namely, as the samples do not depend on the proposal we
are learning or the datasets, we can carry out this inference
process as a pre-training step that is substantially less costly
than the problem of training the inference networks itself.

One approach is to construct an MCMC sampler targeting
g(θ, x) to generate the samples, which can be done upfront
before training. Another is to use an importance sampler

J1(η) = const wrt η (22)

+ c−1Eq′(θ,x)p(y|x)
[
−p(θ)p(x)f(x; θ)

q′(θ, x)
log q1(x; y, θ, η)

]
where q′(θ, x) is a proposal as close to g(θ, x) as possible.

In the case of non-parameterized functions f(x), there is
no need to take an expectation over p(θ), and we instead
desire to sample from g(x) ∝ p(x)f(x).

4. Experiments
Even though AMCI is theoretically able to achieve exact
estimators with a finite number of samples, this will rarely
be the case for practical problems, for which learning per-

Amortized Monte Carlo Integration

101 102 103 104

Number of samples N

10−4

10−1

102

105

R
eM

S
E

AMCI

SNIS q2

SNIS qm

SNIS bound

(a) One-dimensional tail integral

101 102 103 104

Number of samples N

10−3

10−1

101

R
eM

S
E

(b) Five-dimensional tail integral

Figure 1: Relative mean squared errors (as per (25)) for [left] the one-dimensional and [right] the five-dimensional tail
integral example. The solid lines for each estimator indicate the median of δ(y, θ) estimated using a common set of 100
samples from y, θ ∼ p(y)p(θ), with the corresponding δ(y, θ) then each separately estimated using 100 samples of the
respective δ̂(y, θ). The shading instead shows the estimates from replacing δ(y, θ) with the 25% and 75% quantiles of
δ̂(y, θ) for a given y and θ. The median of δ(y, θ) is at times outside of this shaded region as δ(y, θ) is often dominated
by a few large outliers. The dashed line shows the median of δ(y, θ) with the δ(y, θ) corresponding to the ReMSE optimal
SNIS estimator, namely (Ep(x|y)[|f(x; θ) − µ(y, θ)|])2/N as per (5), which is itself estimated (with only nominal error)
using 106 samples. We note that the error for SNIS with q2 proposal is to a large extent flat because there is not a single
sample in the estimator for which f(x; θ) > 0, such that they return µ̂(y, θ) = 0 and hence give δ(y, θ) = 1. In Figure
(b) the SNIS qm line reaches the ReMSE value of 1018 at N=2 and the y-axis limits have been readjusted to allow clear
comparison at higher N . This effect is caused by the bias of SNIS: these extremely high errors for SNIS qm arise when all
N samples happen to be drawn from distribution q1, for further explanation and the full picture see Figure 5 in Appendix A.

fect proposals is not typically realistic, particularly in amor-
tized contexts (Cremer et al., 2018). It is therefore neces-
sary to test its empirical performance to assert that gains are
possible with inexact proposals. To this end, we investigate
AMCI’s performance on two illustrative examples.

Our primary baseline is the SNIS approach implicitly used
by most existing inference amortization methods, namely
the SNIS estimator with proposal q2(x; y). Though this
effectively represents the previous state-of-the-art in amor-
tized expectation calculation, it turns out to be a very weak
baseline. We, therefore, introduce another simple approach
one could hypothetically consider using: training separate
proposals as per AMCI, but then using this to form a mix-
ture distribution proposal for an SNIS estimator. For exam-
ple, in the scenario where f(x; θ) ≥ 0 ∀x, θ (such that we
only need to learn two proposals), we can use

qm(x; y, θ) =
1

2
q1(x; y, θ) +

1

2
q2(x; y) (23)

as an SNIS proposal that takes into account the needs of
both E1 and E2. We refer to this method as the mixture
SNIS estimator and emphasize that it represents a novel
amortization approach in its own right.

We also compare AMCI to the theoretically optimal SNIS
estimator, i.e. the error bound given by (5). As we will
show, AMCI is often able to empirically outperform this
bound, thereby giving better performance than any ap-
proach based on SNIS, whether that approach is amortized

or not. This is an important result and, it particular, it high-
lights that the potential significance of the AMCI estimator
extends beyond the amortized setting we consider here.

We further consider using SNIS with proposal q1(x; y, θ).
However, this transpires to perform extremely poorly
throughout (far worse than q2(x; y)) and so we omit its re-
sults from the main paper, giving them in Appendix A.

In all experiments, we use the same number of sample from
each proposal to form the estimate (i.e. N = M = K).

An implementation for AMCI and our experiments is avail-
able at http://github.com/talesa/amci.

4.1. Tail Integral Calculation

We start with the conceptually simple problem of calculat-
ing tail integrals for Gaussian distributions, namely

p(x) = N (x; 0,Σ1) p(y|x) = N (y;x,Σ2) (24)

f(x; θ) =
∏D

i=1
1xi>θi p(θ) = UNIFORM(θ; [0, uD]D)

where D is the dimensionality, we set Σ2 = I , and Σ1 is a
fixed covariance matrix (for details see Appendix C).

This problem was chosen because it permits easy calcu-
lation of the ground truth expectations by exploiting an-
alytic simplifications, while remaining numerically chal-
lenging for values of θ far away from the mean when we
do not use these simplifications. We performed one and

http://github.com/talesa/amci

Amortized Monte Carlo Integration

five-dimensional variants of the experiment.

We use normalizing flows (Rezende & Mohamed, 2015) to
construct our proposals, providing a flexible and powerful
means of representing the target distributions. Details are
given in Appendix C. Training was done by using impor-
tance sampling to generate the values of θ and x as per (22)
with q′(θ, x) = p(θ) · HALFNORMAL(x; θ, diag(Σ2)).

To evaluate AMCI and our baselines we use the relative
mean squared error (ReMSE) δ(y, θ) = E

[
δ̂(y, θ)

]
, where

δ̂(y, θ) =

(
µ(y, θ)− µ̂(y, θ)

)2
µ(y, θ)2

(25)

and µ̂(y, θ) is our estimate for µ(y, θ). We then consider
summary statistics across different {y, θ}, such as its me-
dian when y, θ∼p(y)p(θ).2 In calculating this, δ(y, θ) was
separately estimated for each value of y and θ using 100
samples of δ̂(y, θ) (i.e. 100 realizations of the estimator).

As shown in Figure 1, AMCI outperformed SNIS in
both the one- and five-dimensional cases. For the one-
dimensional example, AMCI significantly outperformed all
of SNIS q2, SNIS qm, and the theoretically optimal SNIS
estimator. SNIS q2, the approach implicitly taken by ex-
isting inference amortization methods, typically failed to
place even a single sample in the tail of the distribution,
even for large N . Interestingly, SNIS qm closely matched
the theoretical SNIS bound, suggesting that this amortized
proposal is very close to the theoretically optimal one.
However, this still constituted significantly worse perfor-
mance than AMCI—taking about 103 more samples to
achieve the same relative error—demonstrating the ability
of AMCI to outperform the best possible SNIS estimator.

For the five-dimensional example, AMCI again signifi-
cantly outperformed our main baseline SNIS q2. Though
it still also outperformed SNIS qm, its advantage was less
than in one-dimensional case, and it did not outperform the
SNIS theoretical bound. SNIS qm itself did not match the
bound as closely as in the one-dimensional example either,
suggesting that the proposals learned were worse than in
the one-dimensional case. Further comparisons based on
using the mean squared error (instead of ReMSE) are given
in Appendix A and show qualitatively similar behavior.

4.2. Planning Cancer Treatment

To demonstrate how AMCI might be used in a more real-
world scenario, we now consider an illustrative example
relating to cancer diagnostic decisions. Imagine that an on-
cologist is trying to decide whether to administer a treat-
ment to a cancer patient. Because the treatment is highly
invasive, they only want to administer it if there is a realis-

2Variability in δ(y, θ) between different instances of {y, θ} is
considered in Figures 7 and 8 in Appendix A.

101 102 103 104

Number of samples N

10−4

10−2

100

102

R
eM

S
E

AMCI

SNIS q2

SNIS qm

SNIS bound

Figure 2: Relative mean squared errors for the cancer ex-
ample. Conventions as per Figure 1. It is worth noting that
it took about 104 more samples for the SNIS q2 estimator to
achieve the same level of accuracy as the AMCI estimator.

tic chance of it being successful, i.e. that the tumor shrinks
sufficiently to allow a future operation to be carried out.
However, they are only able to make noisy observations
about the current size of the tumor, and there are various
unknown parameters pertaining to its growth, such as the
patients predisposition to the treatment. To aid in the on-
cologists decision, the clinic provides a simulator of tumor
evolution, a model of the latent factors required for this
simulator, and a loss function for administering the treat-
ment given the final tumor size. We wish to construct an
amortization of this simulator, so that we can quickly and
directly predict the expected loss function for administering
the treatment from a pair of noisy observations of the tumor
size taken at separate points in time. A detailed description
of the model and proposal setup is in the Appendix C.3.

To evaluate the learned proposals we followed the same
procedure as for the tail integral example. Results are pre-
sented in Figure 2. AMCI again significantly outperformed
the literature baseline of SNIS q2—it took about N = 104

samples for SNIS q2 to achieve the level of relative error
of AMCI for N = 2. AMCI further maintained an advan-
tage over SNIS qm, which itself again closely matched the
optimal SNIS estimator. Further comparisons are given in
Appendix A and show qualitatively similar behavior.

5. Discussion
In all experiments AMCI performed better than SNIS with
either q2 or qm for its proposal. Moreover, it is clear that
AMCI is indeed able to break the theoretical bound on the
achievable performance of SNIS estimators: in some cases
AMCI is outperforming the best achievable error by any
SNIS estimator, regardless of the proposal the latter uses.
Interestingly, the mixture SNIS estimator we also introduce
proved to be a strong baseline as it closely matched the the-
oretical baseline in both experiments. However, such an
effective mixture proposal is only possible thanks learning
the multiple inference artifacts we suggest as part of the

Amortized Monte Carlo Integration

AMCI framework, while its performance was still gener-
ally inferior to AMCI itself.

We now consider the question of when we expect AMCI to
work particularly well compared to SNIS, and the scenar-
ios where it is less beneficial, or potentially even harmful.
We first note that scaling with increasing dimensionality
is a challenge for both because the importance sampling
upon which they rely suffers from the curse of dimension-
ality. However, the scaling of AMCI should be no worse
than existing amortization approaches as each of the amor-
tized proposals is trained in isolation and corresponds to a
conventional inference amortization.

We can gain more insights into the relative performance
of the two approaches in different settings using an infor-
mal asymptotic analysis in the limit of a large number of
samples. Assuming f(x; θ) ≥ 0 ∀x, θ for simplicity,3 then
both AMCI and SNIS can be expressed in the form of (10),
where for SNIS we set q1(x; y, θ) = q2(x; y), N =M , and
share samples between the estimators. Separately applying
the central limit theorem to Ê1 and Ê2 yields

µ̂(y, θ) =
Ê1

Ê2

→ E1 + σ1ξ1
E2 + σ2ξ2

, as N,M →∞ (26)

where ξ1, ξ2 ∼ N (0, 1) and

σ1 :=
1

N
Varq1(x;y,θ)

[
f(x; θ)p(x, y)

q1(x; y, θ)

]
, (27)

σ2 :=
1

M
Varq2(x;y)

[
p(x, y)

q2(x; y)

]
. (28)

Asymptotically, the mean squared error of µ̂(y, θ) is dom-
inated by its variance. Thus, by taking a first order Taylor
expansion of Var[µ̂(y, θ)] about 1/E2, we get, for large M ,

E
[(
µ̂(y, θ)− µ(y, θ)

)2]
≈ 1

E2
2

(
σ2
1 + σ2

2µ(y, θ)2 − 2µ(y, θ)σ1σ2Corr[ξ1, ξ2]
)

=
σ2
2

E2
2

(
(κ− Corr[ξ1, ξ2])2 + 1− Corr[ξ1, ξ2]2

)
(29)

where the approximation from the Taylor expansion be-
comes exact in the limitM →∞ and κ := σ1/(µ(y, θ)σ2)
is a measure of the relative accuracy of the two estimators.
See (43) in Appendix D.1 for a more verbose derivation.

For a given value of σ2, the value of κ for SNIS is com-
pleted dictated by the problem: in general, the larger the
mismatch between f(x; θ)p(x, y) and p(x, y), the larger κ
will be. This yields the expected result that the errors for
SNIS become large in this setting. For AMCI, we can con-
trol κ through ensuring a good proposal for both Ê1 and
Ê2, and, if desired, by adjusting M and N (relative to a

3The results trivially generalize to general f(x) with suitable
adjustment of the definition of σ1.

T
es

t

f (x; θ)p(x|y)

p(x|y)

θ

q1(x; y, θ)

q2(x; y)

10−4

10−1

102

T
es

t

AMCI

SNIS q2
10−3

10−1

101

T
es

t

−5.0 −2.5 0.0 2.5 5.0
x

101 102 103 104

Number of samples N

10−4

10−1

102

0.00 0.25 0.50 0.75 1.00
α

10−3

10−1

101

D
en

si
ty

R
eM

S
E

A
M

C
I

R
eM

S
E

Figure 3: Results for the one-dimensional tail integral
model in a setting with large mismatch [top] and low
mismatch [bottom], with (y, θ), respectively (1, 3) and
(3, 0.1). The left column illustrates the shape of the pro-
posal q1 and the achievable quality of fit to f(x; θ)p(x|y),
we see that AMCI is able to learn very accurate proposals
in both cases. The right column compares the performance
of the AMCI and the SNIS estimators where we see that the
gain for AMCI is much larger when the mismatch is large.
Uncertainty bands in column two are estimated over a 1000
runs and are almost imperceptibly small.

fixed budget M +N). Consequently, we can achieve better
errors than SNIS by driving κ down.

On the other hand, as f(x; θ)p(x, y) and p(x, y) become
increasingly well matched, then κ → 1 and we find that
AMCI has little to gain over SNIS. In fact, we see that
AMCI can potentially be worse than SNIS in this setting:
when f(x; θ)p(x, y) and p(x, y) are closely matched, we
also have Corr[ξ1, ξ2]2 ≈ 1 for SNIS, such that we ob-
serve a canceling effect, potentially leading to very low er-
rors. Achieving Corr[ξ1, ξ2]2 ≈ 1 can be more difficult for
AMCI, potentially giving rise to a higher error. However,
it could be possible to mitigate this by correlating the esti-
mates, e.g. through common random numbers.

To assess if this theory manifests in practice, we revisit our
tail integral example, comparing large and small mismatch
scenarios. The results, shown in Figure 3, agree with these
theoretical findings. In Appendix D we further showing
that the reusing of samples for both Ê1 and Ê2 in AMCI
can be beneficial when the targets are well matched.

More generally, as Theorem 1 tells us that the AMCI es-
timator can achieve an arbitrarily low error for any given
target function, while SNIS cannot, we know that its po-
tential gains are larger the more accurate we are able to
make our proposals. As such, as advances elsewhere in
the field allow us to produce increasingly effective amor-
tized proposals, e.g. through advanced normalizing flow
approaches (Grathwohl et al., 2019; Kingma & Dhariwal,
2018), the larger the potential gains are from using AMCI.

Amortized Monte Carlo Integration

Acknowledgments
We would like to thank Yee Whye Teh for providing help-
ful discussions at the early stages of the project. AG is sup-
ported by the UK EPSRC CDT in Autonomous Intelligent
Machines and Systems. FW is supported by DARPA D3M,
under Cooperative Agreement FA8750-17-2-0093, Intel
under its LBNL NERSC Big Data Center, and an NSERC
Discovery grant. TR is supported by the European Re-
search Council under the European Unions Seventh Frame-
work Programme (FP7/20072013) / ERC grant agreement
no. 617071. His research leading to these results also re-
ceived funding from EPSRC under grant EP/P026753/1.

References
Bugallo, M. F., Elvira, V., Martino, L., Luengo, D.,

Miguez, J., and Djuric, P. M. Adaptive importance sam-
pling: the past, the present, and the future. IEEE Signal
Processing Magazine, 34(4):60–79, 2017.

Chen, M.-H. and Shao, Q.-M. On Monte Carlo methods for
estimating ratios of normalizing constants. The Annals
of Statistics, 25(4):1563–1594, 08 1997.

Cremer, C., Li, X., and Duvenaud, D. Inference subopti-
mality in variational autoencoders. Proceedings of the
International Conference on Machine Learning (ICML),
2018.

Enderling, H. and Chaplain, M. A. Mathematical modeling
of tumor growth and treatment. Current pharmaceutical
design, 20–30:4934–40, 2014.

Evans, M. and Swartz, T. Methods for approximating in-
tegrals in statistics with special emphasis on Bayesian
integration problems. Statistical science, pp. 254–272,
1995.

Gelman, A. and Meng, X.-L. Simulating normalizing con-
stants: from importance sampling to bridge sampling to
path sampling. Statistical Science, 13(2):163–185, 05
1998.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever,
I., and Duvenaud, D. FFJORD: free-form continu-
ous dynamics for scalable reversible generative models.
International Conference on Learning Representations
(ICLR), 2019.

Hahnfeldt, P., Panigrahy, D., Folkman, J., and Hlatky, L.
Tumor development under angiogenic signaling. Cancer
Research, 59(19):4770–4775, 1999.

Hesterberg, T. C. Advances in importance sampling. PhD
thesis, Stanford University, 1988.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research (JMLR), 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations (ICLR), 2015.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. Advances in Neural
Information Processing Systems (NIPS), 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations (ICLR), 2014.

Lacoste-Julien, S., Huszár, F., and Ghahramani, Z. Approx-
imate inference for the loss-calibrated Bayesian. Pro-
ceedings of the International Conference on Artificial In-
telligence and Statistics (AISTATS), 2011.

Lamberti, R., Petetin, Y., Septier, F., and Desbouvries, F.
A double proposal normalized importance sampling es-
timator. 2018 IEEE Statistical Signal Processing Work-
shop (SSP), pp. 238–242, 2018.

Le, T. A., Baydin, A. G., and Wood, F. Inference compila-
tion and universal probabilistic programming. Proceed-
ings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2017.

Le, T. A., Igl, M., Jin, T., Rainforth, T., and Wood, F. Auto-
encoding sequential Monte Carlo. International Confer-
ence on Learning Representations (ICLR), 2018a.

Le, T. A., Kosiorek, A. R., Siddharth, N., Teh, Y. W.,
and Wood, F. Revisiting reweighted wake-sleep.
arXiv:1805.10469, 2018b.

Meng, X.-L. and Wong, W. H. Simulating ratios of nor-
malizing constants via a simple identity: A theoretical
exploration. Statistica Sinica, 6:831–860, 1996.

Oh, M.-S. and Berger, J. O. Adaptive importance sampling
in Monte Carlo integration. Journal of Statistical Com-
putation and Simulation, 41(3-4):143–168, 1992.

Owen, A. B. Monte Carlo theory, methods and examples.
2013.

Paige, B. and Wood, F. Inference networks for sequential
Monte Carlo in graphical models. Proceedings of the
International Conference on Machine Learning (ICML),
2016.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. Advances in
Neural Information Processing Systems (NIPS), 2017.

Amortized Monte Carlo Integration

Rainforth, T. Automating inference, learning, and design
using probabilistic programming. PhD thesis, 2017.

Rainforth, T., Cornish, R., Yang, H., Warrington, A., and
Wood, F. On Nesting Monte Carlo Estimators. Proceed-
ings of the International Conference on Machine Learn-
ing (ICML), 2018a.

Rainforth, T., Zhou, Y., Lu, X., Teh, Y. W., Wood, F.,
Yang, H., and van de Meent, J.-W. Inference trees:
Adaptive inference with exploration. arXiv preprint
arXiv:1806.09550, 2018b.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. Proceedings of the International
Conference on Machine Learning (ICML), 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. Proceedings of the International Confer-
ence on Machine Learning (ICML), 2014.

Ritchie, D., Horsfall, P., and Goodman, N. D.
Deep amortized inference for probabilistic programs.
arXiv:1610.05735, 2016.

Robert, C. The Bayesian choice: from decision-theoretic
foundations to computational implementation. Springer
Science & Business Media, 2007.

Robert, C. and Casella, G. Monte Carlo statistical methods.
Springer Science & Business Media, 2013.

Stuhlmüller, A., Taylor, J., and Goodman, N. Learning
stochastic inverses. Advances in Neural Information
Processing Systems (NIPS), 2013.

Veach, E. and Guibas, L. J. Optimally combining sampling
techniques for Monte Carlo rendering. Proceedings of
the 22nd annual conference on Computer graphics and
interactive techniques, pp. 419–428, 1995.

Webb, S., Goliński, A., Zinkov, R., Siddharth, N., Rain-
forth, T., Teh, Y. W., and Wood, F. Faithful inver-
sion of generative models for effective amortized infer-
ence. Advances in Neural Information Processing Sys-
tems (NIPS), 2018.

Wolpert, R. L. Monte Carlo integration in Bayesian statisti-
cal analysis. Contemporary Mathematics, 115:101–116,
1991.

Appendices for Amortized Monte Carlo Integration

Adam Goliński* Frank Wood Tom Rainforth*

A. Additional Experimental Results

101 102 103 104

Number of samples N

10−5

10−2

101

104

107

R
eM

S
E

101 102 103 104

Number of samples N

10−13

10−10

10−7

10−4

10−1

M
S

E

AMCI

SNIS q2

SNIS q1

SNIS qm

SNIS bound

Figure 4: Additional results for one-dimensional tail integral example as per Figure 1a. [left] Relative mean squared errors
(as per (25)). [right] Mean squared error E[(µ(y, θ) − µ̂(y, θ)2]. Conventions as per Figure 1. The results for SNIS q1
indicate that it severely underestimates E2 leading to very large errors, especially when the mismatch between p(x|y) and
f(x; θ) is as significant as in the tail integral case.

101 102 103 104

Number of samples N

10−1

104

109

1014

1019

R
eM

S
E

101 102 103 104

Number of samples N

10−23

10−21

10−19

10−17

M
S

E

AMCI

SNIS q2

SNIS q1

SNIS qm

SNIS bound

Figure 5: Additional results for five-dimensional tail integral example as per Figure 1b. [left] Relative mean squared errors
(as per (25)). [right] Mean squared error E[(µ(y, θ) − µ̂(y, θ)2]. Conventions as per Figure 1. The y-axis limits for the
MSE have been readjusted to allow clear comparison at higher N . Note that the SNIS qm yields MSE of 10−1 at N = 2,
while the SNIS q1 MSE is far away from the range of the plot for all N , giving a MSE of 10−0.9 at N = 2 and 10−1.2 at
N=104, with a shape very similar to the ReMSE for SNIS q1 as per the left plot. The extremely high errors for SNIS qm at
low values of N arise in the situation when all N samples drawn happen to come from distribution q1. We believe that the
results presented for qm underestimate the value of δ(y, θ) between around N = 6 and N = 100, due to the fact that the
estimation process for δ(y, θ), though unbiased, can have a very large skew. For N ≤ 6 there is a good chance of at least
one of the 100 trials we perform having all N samples originating from distribution q1, such that we generate reasonable
estimates for the very high errors this can induce. For N ≥ 100 the chances of this event occurring drop to below 10−30,
such that it does not substantially influence the true error. For 6 ≤ N ≤ 100, the chance the event will occur in our 100
trials is small, but the influence it has on the overall error is still significantly, meaning it is likely we will underestimate the
error. This effect could be alleviated by Rao-Blackwellizing the choice of the mixture component, but this would induce a
stratified sampling estimate, thereby moving beyond the SNIS framework.

Amortized Monte Carlo Integration

101 102 103 104

Number of samples N

10−4

10−2

100

102

104
R

eM
S

E

101 102 103 104

Number of samples N

10−8

10−6

10−4

10−2

100

M
S

E

AMCI

SNIS q2

SNIS q1

SNIS qm

SNIS bound

Figure 6: Additional results for cancer example as per Figure 2. [left] Relative mean squared errors (as per (25)). [right]
Mean squared error E[(µ(y, θ)− µ̂(y, θ)2]. Conventions as per Figure 1. Here, the SNIS q1 performs much better than in
the tail integral example because of smaller mismatch between p(x|y) and f(x; θ), meaning the estimates for E2 are more
reasonable. Nonetheless, we see that SNIS q1 still performs worse that even SNIS q2.

101 102 103 104

Number of samples N

10−5

10−3

10−1

101

R
eM

S
E

AMCI

SNIS q2

SNIS qm

SNIS bound

(a) One-dimensional

101 102 103 104

Number of samples N

10−3

10−2

10−1

100

101

R
eM

S
E

AMCI

SNIS q2

SNIS qm

SNIS bound

(b) Five-dimensional

Figure 7: Investigation of the variability of the results across datapoints y, θ for [left] the one-dimensional and [right]
the five-dimensional tail integral example. Unlike previous figures, the shading shows the estimates of the 25% and 75%
quantiles of δ(y, θ) estimated using a common set of 100 samples from y, θ ∼ p(y)p(θ), with the corresponding δ(y, θ)
then each separately estimated using 100 samples of the respective δ̂(y, θ). The solid lines for each estimator and the
dashed line remain the same as in previous figures – they indicate the median of δ(y, θ). Now the dashed line also has a
shaded area associated with it reflecting the variability in the SNIS bound across datapoints.

101 102 103 104

Number of samples N

10−4

10−3

10−2

10−1

100

101

R
eM

S
E

AMCI

SNIS q2

SNIS qm

SNIS bound

Figure 8: Investigation of the variability of the results across datapoints y, θ for cancer example. Conventions as per
Figure 7. The fact that the upper quantile of the AMCI error is larger than the upper quantile of the SNIS qm error suggests
that there are datapoints for which AMCI yields higher mean squared error than SNIS qm. However, AMCI is still always
better than the standard baseline, i.e. SNIS q2.

Amortized Monte Carlo Integration

B. Proof of Theorem 1
Theorem 1. If the following hold for a given θ and y,

Ep(x)
[
f+(x; θ)p(y|x)

]
<∞ (15)

Ep(x)
[
f−(x; θ)p(y|x)

]
<∞ (16)

Ep(x)
[
p(y|x)

]
<∞ (17)

and we use the corresponding set of optimal proposals q+1 (x; y, θ) ∝ f+(x; θ)p(x, y), q−1 (x; y, θ) ∝ f−(x; θ)p(x, y), and
q2(x; y) ∝ p(x, y), then the AMCI estimator defined in (14) satisfies

E
[
µ̂(y, θ)

]
= µ(y, θ), Var

[
µ̂(y, θ)

]
= 0 (18)

for any N ≥ 1, K ≥ 1, and M ≥ 1, such that it forms an exact estimator for that θ, y pair.

Proof. The result follows straightforwardly from considering each estimator in isolation. Note that the normalization
constants for distributions q+1 , q

−
1 , q2 are E+

1 , E
−
1 , E2, respectively, e.g.

∫
f+(x+; θ)p(x+, y) dx+ = E+

1 . Therefore,
starting with Ê2, we have

Ê2 =
1

M

M∑
m=1

p(xm, y)

q2(xm; y)
=

1

M

M∑
m=1

p(xm, y)

p(xm, y)/E2
=E2 (30)

for all possible values of xm. Similarly, for Ê+
1

Ê+
1 =

1

N

N∑
n=1

p(x+n , y)f+(x+n ; θ)

q1(x+n ; y, θ)
=

1

N

N∑
n=1

p(x+n , y)f+(x+n ; θ)

p(x+n , y)f+(x+n ; θ)/E+
1

=E+
1 (31)

for all possible values of x+n . Analogously, we have Ê−1 = E−1 for all possible values of x−k . Combining all of the above,
the result now follows.

C. Experimental details
C.1. One-dimensional tail integral

Let us recall the model from (24),

p(x) = N (x; 0,Σ1) p(y|x) = N (y;x,Σ2) f(x; θ) =
∏D

i=1
1xi>θi p(θ) = UNIFORM(θ; [0, uD]D)

where for the one-dimensional example D = 1 we used u1 = 5 and Σ1 = Σ2 = 1.

For our parameterized proposals q1(x; y, θ) and q2(x; y) we used a normalizing flow consisting of 10 radial flow layers
(Rezende & Mohamed, 2015) with a standard normal base distribution. The parameters of each flow were determined by
a neural network taking in the values of y and θ as input, and returning the parameters defining the flow transformations.
Each network comprised of 3 fully connected layers with 1000 hidden units each layer, with relu activation functions.

Training was done by using importance sampling to generate the values of θ and x as per (22) with

q′(θ, x) = p(θ) · HALFNORMAL(x;µ = θ, σ = Σ2).

and a learning rate of 10−2 with the Adam optimizer Kingma & Ba (2015).

The ground truth values of µ(y, θ) were determined analytically using µ(y, θ) = Ep(x|y)
[
f(x; θ)

]
=1− Φ(θ), where Φ(·)

is the standard normal cumulative distribution function.

C.2. Five-dimensional tail integral

In the context of the model definition in (24), for the five-dimensional example we used u5 = 3, Σ2 = I and

Σ1 =

1.2449 0.2068 0.1635 0.1148 0.0604
0.2068 1.2087 0.1650 0.1158 0.0609
0.1635 0.1650 1.1665 0.1169 0.0615
0.1148 0.1158 0.1169 1.1179 0.0620
0.0604 0.0609 0.0615 0.0620 1.0625

 .

Amortized Monte Carlo Integration

In this case, we used a conditional masked autoregressive flow (MAF) (Papamakarios et al., 2017) with standard normal
base distribution as the parameterization of our proposals q1(x; y, θ) and q2(x; y). Here the normalizing flows consisted of
16 flow layers with single 1024 hidden units layer within each flow and we used tanh rather than relu activation functions
as we found this made a significant difference in terms of training stability for the distribution q1. We did not find batch
normalization to help the performance or stability significantly, and hence we have not used it. We used the conditional
MAF implementation from http://github.com/ikostrikov/pytorch-flows.

Training was done using importance sampling to generate the values of θ and x as per (22) with

q′(θ, x) = p(θ) · HALFNORMAL(x;µ = θ, σ = diag(Σ2)).

We used a learning rate of 10−4 an the Adam optimizer.

The estimates of the ground truth values µ(y, θ) were determined numerically using an SNIS estimator with 1010 samples
and the proposal q(x; θ) = HALFNORMAL(x;µ = θ, σ = diag(Σ2)).

C.3. Planning Cancer Treatment

As explained in the main paper, this experiment revolves around an oncologist is trying to decide whether to administer
a treatment to a cancer patient. They have access to two noisy measurements of the tumor size, a simulator of tumor
evolution, a model of the latent factors required for this simulator, and a loss function for administering the treatment
given the final tumor size. We note that this is problem for which the target function f(x) does not have any changeable
parameters (i.e. θ = ∅).
The size of the tumor is measured at the time of admission t=0 and five days later (t=5), yielding observations c′0 and c′5.
These are noisy measurements of the true sizes c0 and c5. The loss function `(c100) is based only on the size of the tumor
after t= 100 days of treatment. The simulator for the development of the tumor takes the form of an ordinary differential
equation (ODE) and is taken from (Hahnfeldt et al., 1999; Enderling & Chaplain, 2014; Rainforth et al., 2018a).

The ODE itself is defined on two variables, the size of the tumor at time t, ct, and corresponding carrying capacity, Kt,
where we take K0 =700. In addition to the initial tumor size c0, the key parameter of the ODE, and the only one we model
as varying across patients, is ε ∈ [0, 1], a coefficient determining the patient’s response to the anti-tumor treatment. The
ODE now take the form

dc

dt
=−λc log

(
c

K

)
−εc dK

dt
=φc−ψKc2/3 (32)

where the values of the parameters φ=5.85, ψ=0.00873, λ=0.1923 are based on those recommended in Hahnfeldt et al.
(1999). We use the notation

ct = ω(K0, c0, ε, t) (33)

to denote the deterministic process of running an ODE solver on (32) with given inputs, up to time t, and assume the
following statistical model

c0 ∼ GAMMA(k = 25, θ = 20)

ε ∼ BETA(α = 5.0, β = 10.0)

c′t ∼ GAMMA

(
k =

c2t
10000

, θ =
ct

10000

)
.

To summarize and relate the model to the notation from Section 3: x= {c0, ε}, y= {c′0, c′1}. The function in this case is
fixed to the loss function for administering the treatment given the final tumor size provided to us by the clinic

f(x) = `(ω(700, c0, ε, t = 100)) (34)

`(c)=
1−2×10−8

2

(
tanh

(
−c−300

150

)
+1

)
+10−8. (35)

Amortization In this case, the amortization is performed using parametric distributions as proposals: a Gamma distri-
bution for c0 and a Beta distribution for ε, both parameterized by a multilayer perceptron with 16 layers with 5000 hidden
units each. Since we do not face an overwhelming mismatch between f(x) and p(x), unlike in the tail integral example,

http://github.com/ikostrikov/pytorch-flows

Amortized Monte Carlo Integration

the training was done by generating the values of x from the prior p(x) as per (21). We used a learning rate of 10−4 with
the Adam optimizer.

Similarly to the case of five-dimensional tail integral example, the estimates serving as ground truth values µ(y) have been
determined numerically using an SNIS estimator with 109 samples and the proposal set to the prior q(x) = p(x).

C.4. Mini-batching Procedure

AMCI operates in a slightly unusual setting for neural network training because instead of having a fixed dataset, we are
instead training on samples from our model p(x, y). The typical way to perform batch stochastic gradient optimization
involves many epochs over the training dataset, stopping once the error increases on the validation set. Each epoch is
itself broken down into multiple iterations, wherein one takes a random mini-batch (subsample) from the dataset (without
replacement) and updates the parameters based on a stochastic gradient step using these samples, with the epoch finishing
once the full dataset has been used.

However, there are different ways the training can proceed when we have the ability to generate an infinite amount of data
from our model p(x, y) and we now no longer fave the risk of overfitting. There are two extremes approaches one could
take. The first one would be sampling two large but fixed-size datasets (training and validation) before the time of training
and then following the standard training procedure for the finite datasets outlined above. The other extreme would be to
completely surrender the idea of dataset or epoch, and sample each batch of data presented to the optimizer directly from
p(x, y). In this case, we would not need a validation dataset as we would never be at risk of overfitting—we would finish
the training once we are satisfied with the convergence of the loss value.

Paige & Wood (2016) found that the method which empirically performed best in similar amortized inference setting
was one in the middle between the two extremes outlined above. They suggest a method which decides when to sample
new synthetic (training and validation) datasets, based on performance on the validation data set. They draw fixed-sized
training and validation datasets and optimize the model using the standard finite data procedure on the training dataset
until the validation error increases. When that happens they sample new training and validation datasets and repeat the
procedure. This continues until empirical convergence of the loss value. In practice, they allow a few missteps (steps
of increasing value) for the validation loss before they sample new synthetic datasets, and limit the maximum number of
optimization epochs performed on a single dataset.

We use the above method throughout all of our experiments. We allowed a maximum of 2 missteps w.r.t. the validation
dataset and maximum of 30 epochs on a single dataset before sampling new datasets.

Note that the way training and validation datasets are generated is modified slightly when using the importance sampling
approach for generating x and θ detailed in Section 3.3. Whenever we use the objective in (22), instead of sampling the
training and validation datasets from the prior p(x, y) we will sample them from the distribution q′(θ, x) · p(y|x) where q′

is a proposal chosen to be as close to p(x)p(θ)f(x; θ) as possible.

We note that while training was robust to the number of missteps allowed, adopting the general scheme of Paige & Wood
(2016) was very important in achieving effective training: we initially tried generating every batch directly from the model
p(x, y) and we found that the proposals often converged to the local minimum of just sampling from the prior.

D. Reusing samples
The AMCI estimator in (14) requires taking T = N + K + M samples, but only N , K, or M are used to evaluate
each of the individual estimators. Given that, in practice, we do not have access to the perfectly optimal proposals, it can
sometimes be more efficient to reuse samples in the calculation of multiple components of the expectation, particularly if
the target function is cheap to evaluate relative to the proposal. Care is required though to ensure that this is only done
when a proposal remains valid (i.e. has finite variance) for the different expectation.

To give a concrete example, in the case where f(x; θ) ≥ 0 ∀x, θ, such that we can use a single proposal for the numerator
as per (10), we could use the following estimator

µ(y, θ)≈ αÊ1(q1) + (1− α)Ê1(q2)

βÊ2(q1) + (1− β)Ê2(q2)
(36)

where Êi(qj) indicates the estimate for Ei using the samples from qj . The level of interpolation is set by parameters α, β

Amortized Monte Carlo Integration

T
es

t

f (x; θ)p(x|y)

p(x|y)

θ

q1(x; y, θ)

q2(x; y)

10−4

10−1

102

T
es

t

AMCI

SNIS q2
10−3

10−1

101

T
es

t

−5.0 −2.5 0.0 2.5 5.0
x

101 102 103 104

Number of samples N

10−4

10−1

102

0.00 0.25 0.50 0.75 1.00
α

10−3

10−1

101

D
en

si
ty

R
eM

S
E

A
M

C
I

R
eM

S
E

Figure 9: Extension of Figure 3. Column three presents the effects of reusing samples by varying the parameter α in (36)
(β = 0, number of samples is fixed to N =M = 64), where we see that this sample re-usage provides small gains for the
low mismatch case, but no gains in the high mismatch case. Uncertainty bands in columns two and three are estimated
over a 1000 runs and are very small.

which vary between 0 and 1. If we had direct access to the optimal proposals, it would naturally be preferable to set α=1
and β = 0, leading to a zero-variance estimator. However, for imperfect proposals, the optimal values vary slightly from
this (see Appendix D.1).

In relation to our discussion in Section 5, the third column of Figure 9 shows how when f(x; θ)p(x, y) and p(x, y) are
closely matched we can decrease the error of our AMCI estimator by reusing samples through setting α < 1.

Note that while it is possible to set β > 0 for negligible extra computational cost as Ê2(q1) depends only on weights
needed for calculating Ê1(q1), setting α < 1 requires additional evaluations of the target function and so will likely only
be beneficial when this is cheap relative to sampling from or evaluating the proposal.

D.1. Derivation of the optimal parameter values for α and β

In this section, we derive the optimal values of α and β in terms of minimizing the mean squared error (MSE) of the
estimator in (36). We assume that we are allocated a total sample budget of T samples, such that M = T −N .

Let the true values of the expectations in the numerator and denominator be denoted as E1 and E2, respectively. We also
define the following shorthands for the unbiased importance sampling estimators with respect to proposals q1 and q2 in
(36) a1 = 1

N

∑N
n
f(xn;θ)p(xn,y)
q1(xn;y,θ)

, b1 = 1
M

∑M
m

f(x∗m;θ)p(x∗m,y)
q2(x∗m;y) , a2 = 1

N

∑N
n

p(xn,y)
q1(xn;y,θ)

, b2 = 1
M

∑M
m

p(x∗m,y)
q2(x∗m;y) , where

xn ∼ q1(x; y, θ) and x∗m ∼ q2(x; y).

We start by considering the estimator according to (36)

µ :=
E1

E2
≈ µ̂ :=

Ê1

Ê2

:=
αa1 + (1− α)b1
βa2 + (1− β)b2

. (37)

Using the central limit theorem separately for Ê1 and Ê2, then we thus have, as N,M →∞,

µ̂→ E1 + σ1ξ1
E2 + σ2ξ2

, (38)

where ξ1, ξ2 ∼ N (0, 1) are correlated standard normal random variables and σ1 and σ2 are the standard deviation of the
estimators for the numerator and the denominator, respectively. Specifically we have

σ2
1 =Var[αa1 + (1− α)b1]

=α2Varq1 [a1] + (1− α)2Varq2 [b1],

Amortized Monte Carlo Integration

which by the weak law of large numbers

=
α2

N
Varq1 [f(x1)w1] +

(1− α)2

M
Varq2 [f(x∗1)w∗1] (39)

where w1 = p(x1, y)/q1(x1; y, θ), w∗1 = p(x∗1, y)/q2(x∗1; y), x1 ∼ q1(x; y, θ), and x∗1 ∼ q2(x; y). Analogously,

σ2
2 =

β2

N
Varq1 [w1] +

(1− β)2

M
Varq2 [w∗1]. (40)

Now going back to (38) and using Taylor’s Theorem on 1/ (E2 + σ2ξ2) about 1/E2 gives

µ̂ =
E1 + σ1ξ1

E2

(
1− σ2ξ2

E2

)
+O(ε)

=
E1

E2
+
σ1ξ1
E2
− E1σ2ξ2

E2
2

− σ1σ2ξ1ξ2
E2

2

+O(ε)

whereO(ε) represents asymptotically dominated terms. Note here the importance of using Taylor’s theorem, instead of just
a Taylor expansion, to confirm that these terms are indeed asymptotically dominated. We can further drop the σ1σ2ξ1ξ2/E2

2

term as this will be of order O(1/
√
MN) and will thus be asymptotically dominated, giving

=
E1

E2
+
σ1ξ1
E2
− E1σ2ξ2

E2
2

+O(ε). (41)

To calculate the MSE of µ̂, we start with the standard bias variance decomposition

E

[(
µ̂− E1

E2

)2
]

= Var [µ̂] +

(
E
[
µ̂− E1

E2

])2

. (42)

Considering first the bias squared term, we see that this depends only on the higher order terms O(ε), while the variance
does not. It straightforwardly follows that the variance term will be asymptotically dominant, so we see that optimizing for
the variance is asymptotically equivalent to optimizing for the MSE.

Now using the standard relationship Var[X+Y]=Var[X]+Var[Y]+2 Cov[X,Y] yields

Var[µ̂] = Var

[
E1

E2

]
+ Var

[
σ1ξ1
E2

]
+ Var

[
E1σ2ξ2
E2

2

]
+ 2 Cov

[
σ1ξ1
E2

,−E1σ2ξ2
E2

2

]
+O(ε)

≈ 0 +
σ2
1

E2
2

+
E2

1σ
2
2

E4
2

− 2
E1σ1σ2
E3

2

Cov[ξ1, ξ2]

=
1

E2
2

(
σ2
1 + σ2

2µ
2 − 2µσ1σ2Corr [ξ1, ξ2]

)
(43)

since Var[ξ1] = Var[ξ2] = 1 =⇒ Cov[ξ1, ξ2] = Corr [ξ1, ξ2],

=
α2

NE2
2

Varq1 [f(x1)w1] +
(1− α)2

ME2
2

Varq2 [f(x∗1)w∗1] +
E2

1β
2

NE4
2

Varq1 [w1] +
E2

1(1− β)2

ME4
2

Varq2 [w∗1]

− 2
E1

E3
2

Corr[ξ1, ξ2]

(
α2

N
Varq1 [f(x1)w1] +

(1− α)2

M
Varq2 [f(x∗1)w∗1]

)(
β2

N
Varq1 [w1] +

(1− β)2

M
Varq2 [w∗1]

)
To assist in the subsequent analysis, we assume that there is no correlation, Corr[ξ1, ξ2] = 0. Though this assumption is
unlikely to be exactly true, there are two reasons we believe it is reasonable. Firstly, because we expect to set α ≈ 1 and
β ≈ 0, the correlation should generally be small in practice as the two estimators rely predominantly on independent sets
of samples. Secondly, we believe this is generally a relatively conservative assumption: if one were to presume a particular
correlation, there are adversarial cases with the opposite correlation where this assumption is damaging.

Amortized Monte Carlo Integration

Given this assumption it is now straightforward to optimize for α and β by finding where the gradient is zero as follows

∇α(Var[µ̂]E2
2) =

2αVarq1 [f(x1)w1]

N
− 2(1− α)Varq2 [f(x∗1)w∗1]

T −N = 0

⇒ α∗ = N ·
(

(T −N)
Varq1 [f(x1)w1]

Varq2 [f(x∗1)w∗1]
+N

)−1
(44)

noting that

∇2
α(Var[µ̂]E2

2) =
Varq1 [f(x1)w1]

N
+

Varq2 [f(x∗1)w∗1]

T −N > 0

and hence it’s a local minimum. Analogously

β∗ = N ·
(

(T −N)
Varq1 [w1]

Varq2 [w∗1]
+N

)−1
. (45)

We note that it is possible to estimate all the required variances here using previous samples. It should therefore be possible
to adaptively set α and β by using these equations along with empirical estimates for these variances.

	1 Introduction
	2 Background
	2.1 Importance Sampling
	2.2 Inference Amortization

	3 AMCI
	3.1 Estimator
	3.2 Amortization
	3.2.1 Fixed function f(x)
	3.2.2 Parameterized function f(x;)

	3.3 Efficient Training

	4 Experiments
	4.1 Tail Integral Calculation
	4.2 Planning Cancer Treatment

	5 Discussion
	A Additional Experimental Results
	B Proof of Theorem 1
	C Experimental details
	C.1 One-dimensional tail integral
	C.2 Five-dimensional tail integral
	C.3 Planning Cancer Treatment
	C.4 Mini-batching Procedure

	D Reusing samples
	D.1 Derivation of the optimal parameter values for and

