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Abstract

Constructing tractable dependent probabil-
ity distributions over structured continuous
random vectors is a central problem in statis-
tics and machine learning. It has proven dif-
ficult to find general constructions for models
in which efficient exact inference is possible,
outside of the classical cases of models with
restricted graph structure (chain, tree, etc.)
and linear-Gaussian or discrete potentials. In
this work we identify a graphical model class
in which exact inference can be performed ef-
ficiently, owing to a certain “low-rank” struc-
ture in the potentials. While we focus on
the case of tree graphical models, the low-
rank treatment can also be applied for effi-
cient exact inference in certain sparsely-loopy
models. We explore this new class of models
by applying the resulting inference methods
to neural spike rate estimation and motion-
capture joint-angle smoothing tasks.

1 Introduction

Graphical models make it easy to compose simple dis-
tributions into large, more expressive joint distribu-
tions. Unfortunately, in only a small subclass of graph-
ical models is exact computation of marginals and con-
ditionals relatively easy. In particular, while the prob-
lem of exact inference in discrete Markov random fields
(MRFs) has seen a great deal of attention recently
(Wainwright and Jordan, 2008), non-Gaussian MRFs
defined on more general (non-discrete) state spaces re-
main a more-or-less open challenge.
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As a simple example, consider inference over a chain of
dependent probabilities. Such a situation could arise
when modeling survey responses conducted over many
years in which the same yes/no question is asked but
where some years are missing and of interest. One
might want to estimate a population mean latent pos-
itive response probability for every year (including
those years missing responses) that varies slowly from
year to year. This requires specifying a smoothing
prior on a sequence of variables that lie between be-
tween zero and one. There are many ways to specify
such a smoothing prior, but even in this simple exam-
ple it is hard to think of models that allow us to com-
pute conditional expectations exactly and efficiently.
(For example, the constraints on the latent variables
and non-Gaussian likelihood rule out Kalman filtering
in a transformed space.)

Similar to inferring latent sentiment in a survey re-
sponse modeling application, one can find other latent
variable “smoothing” tasks in fields as diverse as neu-
roscience and motion capture. In neuroscience, it is
of interest to infer the latent probability of spiking for
a neuron given only observations of individual spikes
over time. Note that this problem is very similar to
the survey response problem above. We show results
from “smoothing” neural firing probabilities to demon-
strate the exact inference techniques proposed in this
paper. We also show an example of smoothing motion
capture joint angle data.

The aim of this work is to expand the class of models
for which exact inference is computationally feasible.
We start by reviewing an auxiliary variable method
for introducing Markov chain dependencies between
random variables of arbitrary type. We then develop
an efficient method for exact inference in a subset of
such models, and identify a new class of “low-rank”
models in which exact inference is efficient.
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(a) A simple Markov chain X with
observations Y .

(b) The same Markov chain ex-
pressed with latent variables Z.

(c) The factor graph of a low rank
Markov chain.

Figure 1

2 Related Work

To begin, we first review the work of (Pitt et al., 2002)
and (Pitt and Walker, 2005), who describe an auxil-
iary variable approach to introducing dependency be-
tween random variables of arbitrary types. Refer to
the graphical model in Figure 1 and consider the se-
quence of random variables X = {xt}T

t=1. Assume that
we would like to bias estimation of the xt’s such that
for all values of t xt ≈ xt+1. For now, also assume that
we would like the x’s in this chain to be marginally
identically distributed a priori, i.e. xt ∼ G0(xt) for
all t (this will be relaxed in later sections). One way
to proceed is to require that G0 is the invariant dis-
tribution of a Markov chain with transition kernel
p(xt|xt−1), i.e. G0(xt) =

∫
p(xt|xt−1)G0(xt−1)dxt−1.

This constraint on p(xt|xt−1) is the same as that for
any MCMC sampler of G0; thus p(xt|xt−1) can be any
valid sampler transition kernel, e.g. the Metropolis-
Hastings transition kernel.

In (Pitt and Walker, 2005) a particular transition ker-
nel based on the Gibbs sampler is considered. Their
clever idea was to form a joint distribution p(x, z)
(dropping the subscript notation for the moment),
defined as p(x, z) = p(z|x)G0(x). Clearly, if we
Gibbs-sample from this distribution, i.e. sample z1 ∼
p(z1|x1), x2 ∼ p(x2|z1), z2 ∼ p(z2|x2), . . ., then the
marginal sequence x1, . . . , xT is marginally distributed
as G0, as desired. One advantage of this approach is
that we have a great deal of freedom in our choice of
p(z|x). (Pitt and Walker, 2005) and others (Caron
et al., 2007; Gasthaus et al., 2009) suggest choosing
p(z|x) to be conjugate to G0(x), since this implies that
p(x|z) is in the same family as G0, making sampling
more straightforward. In addition, we can easily in-
corporate noisy observations yt from this model (as
shown in Figure 1): if the likelihood of yt given xt

is also conjugate to G0, then p(xt|zt−1, yt) remains in
the same family as as G0, making conditional Gibbs
sampling from p(X|Y ) straightforward, by alternately
sampling from Z|X, then X|(Z, Y ).

As the “number” of z samples is increased, neighboring
values of x are more closely coupled together. The
number of samples used in this scheme corresponds to
a more general statement about the rank of a Markov
random field potential linking neighboring x’s; a fact
that we elaborate on in the following.

3 Low-rank Markov chains

Constructing a Gibbs sampler to sample the x’s and
z’s conditioned on observations (y’s in Figure 1) is only
asymptotically exact. What has been overlooked until
now (to our knowledge) is that the x’s can often be
analytically marginalized out, leaving a Markov chain
in z’s only, where computation remains tractable when
the z’s are discrete random variables with a small state
space. Thus, in the subset of this class of models in
which the z’s are discrete random variables, exact in-
ference can be efficiently performed.

To see how this is possible, consider the form of the
joint distribution of the graphical model in Figure 1b
when the z’s are discrete random variables. In this
case we can write

p(X) = p(x1)
T−1∏
t=1

∑
zt

p(zt|xt)p(xt+1|zt).

We disregard the observations yt for now. This can be
re-expressed in the following equivalent form

p(X) ∝
T−1∏
t=1

Rt∑
zt=1

ft,zt(xt)gt,zt(xt+1), (1)

for appropriate functions ft,zt and gt,zt , where each
sum is a potential coupling neighboring x variables,
and where Rt is the size of the state space of zt, which
we will refer to as the “rank” of the potential. (The
converse is also true; it is straightforward to show that,
given nonnegative ft,zt and gt,zt , we can construct
corresponding conditionals p(zt|xt) and p(xt+1|zt), al-
though the resulting Markov chain in the x’s may be
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non-stationary). In fact, the conditional distribution
p(X|Y ) can be expressed in exactly the same form, by
absorbing the observation densities p(yt|xt) in the f
or g terms. In Figure 1c we have chosen to include the
yt’s in the g factor.

Now, if the x’s were discrete random variables, then
eq. (1) would represent a discrete Markov chain in
which the transition matrices are of rank Rt. Recall
that exact inference in such a low-rank Markov chain
is relatively easy (Siddiqi et al., 2010), since the com-
putational complexity of the forward-backward algo-
rithm is dominated by the cost of multiplication by
the transition matrix, and multiplication by low-rank
matrices is relatively cheap.

The key idea is that, as long as the z’s are discrete
random variables with small state space, exact infer-
ence on the Markov chain X defined in eq. (1) re-
mains tractable. Even in the general (non-discrete)
case, exact inference requires just O(R2) time (assum-
ing constant Rt = R), as in a standard low-rank hid-
den Markov model; here the z’s correspond to the la-
tent variables. Consider the partition function

∫
dX1:T

T−1∏
t=1

Rt∑
zt=1

ft,zt(xt)gt,zt(xt+1)

=
R1∑

z1=1

(∫
dx1f1,z1(x1)

∫
dx2g1,z1(x2)

R2∑
z2=1

(
f2,z2(x2)

∫
dx3g2,z2(x3) · · ·

We arrive at the distribution of Z simply by removing
the sums over zt. Rearranging the sums and integrals
above reveals the Markov structure of Z.

p(Z) ∝
∫

dx1f1,z1(x1)
∫

dx2g1,z1(x2)f2,z2(x2)∫
dx3g2,z2(x3) · · ·

∫
dxT gT−1,zT−1(xT ) (2)

We can use forward-backward to compute exact
marginals or samples from p(Z); since given Z, the
x’s are independent, we can therefore easily compute
exact marginals or samples from p(X) as well. To be
explicit, the forward and backward variables are as fol-

lows:

A
(j1)
1 =

∫
dx1f1,j1(x1)

A
(jt)
t =

Rt−1∑
jt−1

A
(jt−1)
t−1

∫
dxtgt−1,jt−1(xt)ft,jt(xt)

B
(jT )
T =

∫
dxT gT−1,jT

(xT )

B
(jt)
t =

Rt+1∑
jt+1

B
(jt+1)
t+1

∫
dxtgt,jt(xt)ft,jt+1(xt) (3)

The validity of these expressions can be shown by in-
duction on t. The marginal moments of X can be
expressed in terms of the forward and backward vari-
ables:

p(xt) ∝
Rt−1∑
zt−1

A
(zt−1)
t−1

Rt∑
zt

B
(zt)
t+1gt−1,zt−1(xt)ft,zt(xt)

To summarize, if the inner products∫
gt−1,i(x)ft,j(x)dx can be evaluated then we

can perform exact inference in X (or more generally
in X given observations Y ) in O(

∑T
t=1 R2

t ) time,
by the forward-backward algorithm sketched above.
(Note that we need only compute these inner products
once; these can therefore be pre-tabulated if necessary
before inference begins.) It is straightforward to show
that the linear scaling of this inference with T holds
for general acyclic Markov random fields (i.e., trees)
with potentials of the low-rank form described in
eq. (1). Moreover, for certain graphs with cycles, the
full p(X) or p(X|Y ) can be treated efficiently as a
weighted sum of trees, as discussed further below.

When employing such a model to model data, it will
usually not be the case that we know the rank of the
potential functions f and g. In this case R has to be
estimated from data. This is a standard model selec-
tion problem; a Bayesian approach would exploit the
marginal likelihood p(Y |R) =

∫
p(X|R)p(Y |X)dX of

the observed data Y given the rank R. This marginal
likelihood can be computed directly from our forward
recursion (as usual in the context of hidden Markov
models (Rabiner, 1989)); see Fig. 2 for an illustration.

Finally, one slight caveat: Z is guaranteed to be a
proper Markov chain only if all the inner products over
f and g are positive. On the other hand, mathemati-
cally there is nothing against performing the recursive
inference with the above forward backward variables
when the inner products can be negative, though nu-
merical issues due to cancellation of numbers below
machine precision may be a problem in this case. We
will stick to nonnegative potentials in this work.
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Figure 2: The marginal likelihood can be used to es-
timate the rank of the underlying process X generat-
ing data Y . Here a sample X0 was generated from
the beta-binomial time series model p(X|R) with rank
R = 5; i.e., Rt = 5 for all times t. We plot the loglike-
lihood (circles) log p(X0|R) as a function of R. Then
we generate data Y from p(Y |X0) and use the data
to estimate the rank by maximizing the loglikelihood
log p(Y |R) (crosses) as a function of R. As the bino-
mial parameter Nt ≡ N increases, the data Y become
more informative about X0, and p(Y |R) approaches
p(X0|R).

4 Examples

4.1 Beta-binomial and Dirichlet-multinomial
time series

We now return to the probability-smoothing exam-
ple we mentioned in the introduction. We con-
sider a time series of binomial distributed data yt ∼
Binomial(Nt, xt). If we choose any prior p(X) such
that the posterior p(X|{Nt}, Y ) has the form of eq.
(1), then exact inference is tractable. For example, we
could choose xt and zt to have the following simple
conjugate Beta-binomial form:

x1 ∼ Beta(α, β)
zt|xt ∼ Binomial(zt;Rt, xt)

xt+1|zt ∼ Beta(α + zt, β + Rt − zt)

Thus xt is marginally Beta(α, β), and the dependence
between xt and xt+1 — i.e., the smoothness of the x’s
as a function of time — is set by Rt: large values of
Rt lead to strongly-coupled xt and xt+1. Equation (1)

in this case becomes

p(X) =
T−1∏
t=1

Rt∑
zt=0

aztx
zt
t (1− xt)Rt−zt

xzt
t+1(1− xt+1)Rt−zt , (4)

which we will call the beta-binomal smoother, for the
appropriate coeffcients azt .

We could consider more general priors of the form

p(X) ∝
∏

t

Rt∑
i=0

atix
αi
t (1− xt)βixγi

t+1(1− xt+1)δi ,

where αi, βi, γi, and δi are greater than or equal
to −1 so that the inner product integrals don’t di-
verge, and ati > 0 for the reasons described above.
Given the form of the binomial likelihood, that the
posterior p(X|{Nt}, Y ) will have the same form, but
with the constants αi, βi, γi, and δi modified accord-
ingly. Distributions of this form could be considered
as tractable conjugate priors for binomial time series
data. Note that the necessary inner products can be
computed easily in terms of standard Beta functions,
and inference proceeds in O(R2) time, assuming con-
stant Rt = R.

Multivariate generalizations are conceptually straight-
forward: we replace beta distributions with Dirichlets
and binomials by multinomials, since by analogy to
the beta-binomial model, the Dirichlet is conjugate to
the multinomial distribution. Let

~x1 ∼ Dirichlet(~α)
~zt|~xt ∼ Multinomial(Rt, ~xt)
~xt|~zt ∼ Dirichlet(~α + ~zt)

~yt|~xt, nt ∼ Multinomial(~yt; ~xt, nt).

Just as in the beta-binomial case, this defines a se-
quence of marginally-Dirichlet distributed probabili-
ties xt, with Rt controlling the smoothness of the state
path X. Inference in this case scales quadratically with
the total number of possible histograms ~zt that might
be observed.

4.2 Smoothing conjugate priors for
multinomial data

In many cases one would like a conjugate prior for
multinomial data that leads to smooth estimates of
the underlying probabilities. In the preceding exam-
ple, we constructed a conjugate prior for count data
that has smooth and nonnegative sample paths. If we
further constrain these sample paths to sum to one,
then we could interpret X as a discrete probability
distribution; it is easy to see that the resulting smooth-
ing prior p(X) is conjugate to multinomial data, due
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Figure 3: The inferred spiking probability density from spike train data assuming a binomial spiking model and
the beta-binomial smoother. The black bars are the observed spikes. The solid white line is the inferred mean
of the spiking probability. Each time unit is 2 ms.

to the completely factorized form of the multinomial
likelihood. However, it is not immediately clear how to
exploit the model’s low-rank structure to perform in-
ference in a tractable way, since the constraint that the
components of X sum to one breaks the tree structure
of the graphical model.

One approach is to transform to a larger state space,
xt → qt = (xt st), where st denotes the cumulative
sum st = x1 + x2 + · · · + xt. This leads to a Markov
prior on the augmented state variable Q of the form

p(Q) ∝ δ(x1 = s1)xν1
1

∑
j1

aj1x
j11
1 xj12

2 δ(x2 = s2 − s1)

· · · δ(sT = 1)

where s0 ≡ 0. As outlined in greater detail in the
appendix, we can perform forward backward inference
on this density by recursively integrating the above
density to compute the normalization constant, and
then rearranging the summations into the form of a
sum-product algorithm. The resulting inference algo-
rithm requires O(N2T ) storage and O(N6T ) process-
ing time.

4.3 Phase data

So far our random variables have lived in vector spaces;
standard approximation methods (e.g., Laplace ap-
proximation (Kass and Raftery, 1995) or expecta-
tion propagation (Minka, 2001)) can often be invoked
to perform approximate inference in these settings.
However, our method may be applied on arbitrary
manifolds, where these classical approximations break
down. As a concrete example, consider a time-series of

phase variables (angles). The von Mises distribution

p(xt|µt, κt) ∝ eκt cos(xt−µt)

(with mean and concentration parameters µt and κt)
is popular for modeling one-dimensional angular data,
largely because the necessary normalization factors
can be computed easily, and furthermore this model
has the convenient feature that, like the normal den-
sity, it is conjugate to itself (Gelman et al., 2003). As
in our previous examples, this univariate distribution
can be augmented to tractably model smoothed time-
series data. For instance, we could take

p(X) ∝
∏

t

R∑
i=0

e(R/2) cos(xt− 2πi
R+1 )e(R/2) cos(xt+1− 2πi

R+1 )

(5)
This acts as a smoothing prior, since at each time t,
for each corresponding pairwise potential, each of the
terms in the sum over i is a unimodal function peaked
at xt = xt+1 = 2πi

R+1 . That is, each term contributes a
bump along the diagonal, and therefore the sum over
i corresponds to a nearly-diagonal transition matrix,
i.e. to a smoothing prior. Larger values of R lead to
smoother sample paths in X. Inference proceeds as
in the previous examples; if the observations yt also
have von Mises densities given xt (as in the example
application discussed in the next section), then the
necessary inner products can be computed easily in
terms of Bessel functions.

As in the Dirichlet-multinomial case, extensions to
multivariate phase data are conceptually straightfor-
ward (the von Mises-Fisher density generalizes the uni-
variate von Mises density (Mardia and Jupp, 2000);
see (Cadieu and Koepsell, 2010) for another general-
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ization). We will describe another generalization, to
oscillatory or narrowband time series data, below.

5 Experiments

We began by analyzing some simple neural spike train
data1 using the beta-binomial smoother. A segment
of a spike train in which each time unit represents 2
ms was obtained. The spikes (the binary observations
{yt}) were modeled as draws from a binomial distribu-
tion with time-varying probability xt. The smoother
(4) described above was used with α = β = 1, setting
the a priori marginals to be uniform distributions. We
used R = 100, which leads to a prior autocorrelation
time of approximately 60 ms. The forward backward
algorithm was run to infer the probability distribution
over xt as a function of time as shown in Figure 3.
The results are qualitatively reasonable: the marginal
mean varies smoothly over time, rising during times of
higher spike rates.

We also performed some basic comparisons to Gibbs
sampling in this model. The Gibbs sampler is the stan-
dard approach to computation in this type of model,
but as emphasized above it only leads to approximate
solutions, whereas the marginalized forward-backward
approach we have introduced here provides exact re-
sults. The basic result, shown in Figure 4 is unsur-
prising: many Gibbs sweeps are required to achieve a
certain error level, particularly in cases where the sam-
ple paths from the conditional distribution p(X|Y, R)
are strongly coupled.

Next we turned to a dataset involving phase vari-
ables. We analyzed joint articulation motion capture
data from the CMU Graphics Lab Motion Capture
Database2. Specifically, a time-series of angles of ex-
tension of the right radius of a man drinking from a
bottle of soda was analyzed. This motion was mod-
eled with the von Mises smoother (5) with R = 20
and κ = 2. The observations yt were modeled as von
Mises draws with mean xt. The forward backward al-
gorithm smoothed the data effectively and allowed for
appropriate inference in the presence of missing data,
as illustrated in Fig. 5.

Conceptually, we are applying a rather simple state
space model to this data, with the true underlying
angle (the hidden state variable) modeled as xt+1 =
xt + εt, and the observation modeled as yt = xt + ηt

for appropriate noise terms εt and ηt. This state-space
viewpoint suggests some natural further generaliza-
tions. For example, if we let xt+1 = xt +2πω+εt, then

1http://neurotheory.columbia.edu/
larry/book/exercises.html

2http://mocap.cs.cmu.edu/
search.php?subjectnumber=13&trinum=9
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Figure 4: For different amounts N of data, the
marginal means of a Markov chain X of length T = 100
were computed both exactly and approximately by
Gibbs sampling, using the beta-binomial smoother.
Here we plot the root mean square error per time step
of the Gibbs solution with respect to the exact solution
as a function of the number of Gibbs sweeps. For each
value N of the binomial count parameter we plot this
curve for three values of the rank R. Each curve is the
median of 25 traces, each the average of 10 indepen-
dent runs of the Gibbs sampler. Each of the 25 traces
corresponds to different randomly generated input
data from p(Y |R). The sampler was initialized with
each xt drawn independently from the marginal prior
distribution, p(xt) = Uniform([0, 1]). The Gibbs es-
timates converge most quickly when p(X|Y, R) is most
uncoupled, that is, when R is small and/or N is large;
when R is large or N is small the Gibbs error requires
many sweeps to shrink towards zero.

xt could model a narrowband signal with dominant fre-
quency ω. Our inference methods can be applied in a
straighforward manner to this oscillatory model, and
may therefore be useful in a number of potential appli-
cations, e.g. the analysis of noisy electroencephalogra-
phy data, or in the acoustic applications described in
(Cadieu and Koepsell, 2010).

6 Discussion

We have introduced a class of “low-rank” models for
continuous-valued data in which exact inference is pos-
sible by efficient forward-backward methods. These
exactly-solvable models are perhaps of most interest in
cases where standard approximation methods (e.g., ex-
pectation propagation or Laplace approximation) are
unreliable, such as the application to circular data time
series discussed in section 4.3. Even in less “exotic”
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Figure 5: The inferred probability density of the angle in the motion capture data. The solid white line is the
observed signal. The dotted white line, mostly obscured by the solid white line, is the inferred mean. Colorbar
indicates the inferred posterior p(xt|Y ). The yellow bands appear in the intervals where all the observations were
suppressed. They are tapered because deeper within the band, where observation are farthest away, the density
is relatively agnostic and therefore more nearly uniform. Inset: Data from inference with no data held out. The
solid line is the observed signal. The dashed line is the inferred mean. Much of the evident noise in the signal
has been smoothed. Each time unit is 2 ms.

cases, such as the beta-binomial model discussed in
section 4.1, classical methods based on Gibbs sampling
can mix slowly (c.f. Fig. 4), making the exact sampler
introduced here more attractive. (More generally, of
course, there is significant value in exact, not approx-
imate, inference methods: in mission-critical applica-
tions, for example, it is essential to have methods that
are guaranteed to return the correct answer 100% of
the time.) Thus we hope that these low-rank models
might prove useful in a wide range of applications.

Directions for future theoretical research include: in-
vestigating connections with recent work on inference
via reproducing Hilbert space kernel methods by (Song
et al., 2010b), (Song et al., 2010a); finding conditions
in which tractable inference by belief propagation is
possible in densely loopy graphs; and finding exam-
ples of such models with continuous z where efficient
exact inference is possible.

Further, there are a number of models that include
inference in a large number of chains of dependent,
constrained random variables for which our exact in-
ference approach might not only improve inference
but may result in significant computational savings.
One example is the generalized Polya-urn dependent
Dirichlet process (GPU-DDP) mixture (Caron et al.,
2007). The GPU-DDP models time series observa-
tions as being draw from a time-dependent Dirichlet
mixture. The latent parameters of the mixture com-
ponents are allowed to change over time, but must be
constrained in the same way that the auxiliary vari-
able random walk of (Pitt et al., 2002) constrains the

latent sample paths in this paper. Inference in GPU-
DDP mixtures is hard, suffering from slow mixing and
high computational complexity, particularly in the low
sample count, high-rank domain in which our exact in-
ference approach excels. Applying our inference pro-
cedure ito GPU-DDP inference should result in sub-
stantial improvements.

Appendix

In section 4.2 we describe a polynomial time smoother
for multinomial data confined to the unit simplex. In
this appendix we walk through a derivation of the for-
ward variables of this smoother. We show that infer-
ence on the joint density is O(N2T ) in storage and
O(N6T 2) in processing time.

The joint density in the expanded state space is

p(Q) =
N∑
k1

ak1x
ν1+k11−1
1 δ(x1 = s1 − s0)·

N∑
k2

ak2x
ν2+k12+k21−1
2 δ(x2 = s2 − s1) · · ·

N∑
kT−1

akT−1x
νT−1+kT−2,2+kT−1,1
T−1 δ(xT−1 = sT−1 − sT−2)·

x
νT +kT−1,2−1
T δ(xT = sT − sT−1)δ(sT = 1) (6)

where ki is a multi-index [ki1, ki2] and s0 ≡ 0. The co-
efficients {ai} are chosen to be the same across time,
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though this is only for notational convenience. Fur-
thermore, for our purposes the {νi − 1} may be omit-
ted and considered absorbed by the indices, to further
simplify the notation. Lastly, we define δi ≡ δ(xi =
si − si−1). To perform inference, we are interested in
recursively computing the normalization constant

Z =
∫ 1

0

ds1

∫ s1

0

dx1 · · ·
∫ 1

0

dsT

∫ sT

0

dxT p(Q)

=
∫ 1

0

ds1

∫ s1

0

dx1

N∑
k1

ak1x
k11
1 δ1·

∫ 1

0

ds2

∫ s2

0

dx2

N∑
k2

ak2x
k12+k21
2 δ2 · · · (7)

We integrate from left to right, first integratin dxi,
then dsi.

Z =
N∑
k1

ak1

∫ 1

0

ds1(s1 − s0)k11

∫ 1

0

ds2

∫ s2

0

dx2∑
k2

ak2x
k12+k21
2 δ2 · · ·

=
∑
k1

ak1

∫ 1

0

ds2

∫ s2

0

dx2(s2 − x2)k11 ·

∑
k2

ak2x
k12+k21
2 · · ·

=
∑
k1

ak1

∑
k2

ak2B(k12 + k21, k11)·∫ 1

0

ds3

∫ s3

0

dx3(s3 − x3)k11+k12+k21 (8)

where B(α, β) is the Beta function, and the last equal-
ity is found by a change of variables. Next define
k02 ≡ kT,1 ≡ 0, and Ki ≡

∑i
j=1 kj−1,2 + kj,1. Lastly,

define bi ≡ B(ki−1,2 + ki,1,Ki). Continuing with the
integration we soon find

Z =
N∑
k1

ak1

(
N∑
k2

ak2b2

(
N∑
k3

ak3b3 · · · N∑
kT−2

akT−2bT−2

 N∑
kT−1

akT−1bT−1bT

 · · ·


(9)

Though this looks already to be in the form of a sum-
product algorithm, it is not because Bi depends on the
values of all the indices kj≤i. We can rearrange this
summation into the form of a tractable sum-product

algorithm as follows.

Z =
N(2T−2)∑

KT =0

 min{N,KT }∑
kn−1,1=max{0,Kn−(2(T−2)−1)N}

·

a[kT−1,1,KT−KT−1]bT

· · ·
 min{N,K2−k2,1}∑

k11=max{0,K2−k2,1−N}

·

a[k11,K2−k11−k21]b2

)
· · ·
))

(10)

The forward variables A(i,j), then, are as follows.

A
(i,j)
2 =

min{N,j−i}∑
k=max{0,j−i−N}

a[k,j−k−i]B(j − k, k)

i ∈ {0, · · · , N}, j ∈ {i, · · · , i + 2N}

A
(i,j)
t =

min{N,j−i}∑
k=max{0,j−i−(2t−3)N}

j−i∑
l=max{k,j−i}

a[k,j−l−i]B(j − l, l)A(k,l)
t−1

i ∈ {0, · · · , N}, j ∈ {i, · · · , i + 2(t− 1)N}

A
(j)
T =

min{N,j}∑
k=max{0,j−(2t−4)N}

j∑
l=max{k,j−N}

a[k,j−l]B(j − l, l)A(k,l)
T−1

j ∈ {0, · · · , 2(T − 1)N} (11)

and Z =
∑2T−2

k=0 A
(k)
T . Similar expressions can be de-

rived for backward variables C
(l,k)
t , and then marginal

quantities can by computed readily. For instance, the
singleton marginal density is

p(xt) =
1
Z

N∑
i=0

i+2(t−2)N∑
j=i

N∑
k=0

2(T−t−1)N∑
l=k

A
(i,j)
t−1 C

(k,l)
t+1 B(j, l)

N∑
kt−1,2=0

N∑
kt,1=0

a[i,kt−1,2]a[kt,1,k]x
kt−1,2+kt,1
t (1− xt)j+l (12)

So we need O(N2T ) storage for the forward and back-
ward variables, and we need O(N6T 2) processing time
to compute marginal quantities.
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