
Probabilistic Deterministic Infinite Automata

David Pfau
Center for Theoretical Neuroscience

Columbia University
New York, NY 10027, USA

Nicholas Bartlett Frank Wood
Department of Statistics

Columbia University
New York, NY 10027, USA

Abstract

We propose a novel Bayesian nonparametric approach to learning with probabilis-
tic deterministic finite automata (PDFA). We define and develop a sampler for a
PDFA with an infinite number of states which we call the probabilistic determin-
istic infinite automata (PDIA). Posterior predictive inference in this model, given
a finite training sequence, can be interpreted as averaging over multiple PDFAs of
varying structure, where each PDFA is biased towards having few states. We sug-
gest that our method for averaging over PDFAs is a novel approach to predictive
distribution smoothing. We test PDIA inference both on PDFA structure learning
and on both natural language and DNA data prediction tasks. The results suggest
that the PDIA presents an attractive compromise between the computational cost
of hidden Markov models and the storage requirements of hierarchically smoothed
Markov models.

1 Introduction

The focus of this paper is a novel Bayesian framework for learning with probabilistic deterministic
finite automata (PDFA) [9]. A PDFA is a generative model for sequential data (PDFAs are reviewed
in Section 2). Intuitively a PDFA is similar to a hidden Markov model (HMM) [10] in that it
consists of a set of states, each of which when visited emits a symbol according to an emission
probability distribution. It differs from an HMM in how state-to-state transitions occur; transitions
are deterministic in a PDFA and nondeterministic in an HMM.

In our framework for learning with PDFAs we specify a prior over the parameters of a single large
PDFA that encourages state reuse. The inductive bias introduced by the PDFA prior provides a soft
constraint on the number of states used to generate the data. We then take the limit as the number
of states becomes infinite, yielding a model we call the probabilistic deterministic infinite automata
(PDIA).

Given a finite training sequence, the posterior distribution over PDIA parameters is an infinite mix-
ture of PDFAs. Samples from this distribution drawn via Markov chain Monte Carlo (MCMC) [6],
form a finite sample approximation to this infinite mixture. Using such a mixture we can average
over our uncertainty about the model parameters (including state cardinality) in a Bayesian way
during prediction and other inference tasks. We find that averaging over a finite number of PDFAs
trained on naturalistic data leads to better predictive performance than using a single “best” PDFA.

We chose to investigate learning with PDFAs because they are intermediate in expressive power
between HMMs and finite-order Markov models, and thus strike a good balance between gener-
alization performance and computational efficiency. A single PDFA is known to have relatively
limited expressivity. We argue that a finite mixture of PDFAs has greater expressivity than that of a
single PDFA but is not as expressive as a probabilistic nondeterministic finite automata (PNFA)1. A
PDIA is clearly highly expressive; an infinite mixture over the same is even more so. Even though

1PNFAs with no final probability are equivalent to hidden Markov models [3]

1

ours is a Bayesian approach to PDIA learning, the fact that we will only ever observe a finite amount
of data and draw a finite number of posterior samples stipulates that we will only ever compute with
finite mixtures of finite PDFAs and thus limit our discussion about expressivity to such models.

While model expressivity is a concern, computational considerations often dominate model choice.
We show that prediction in a trained mixture of PDFAs can have lower asymptotic cost than forward
prediction in the PNFA/HMM class of models. We also present evidence that averaging over PDFAs
gives predictive performance superior to HMMs trained with standard methods on naturalistic data.
We find that PDIA predictive performance is competitive with that of fixed-order, smoothed Markov
models with the same number of states. While sequence learning approaches such as the HMM
and smoothed Markov models are well known and now highly optimized, our PDIA approach to
learning is novel and as such is amenable to future improvement.

The remainder of the paper is organized as follows: Section 2 reviews PDFAs, Section 3 introduces
Bayesian PDFA inference, Section 4 presents experimental results on DNA and natural language,
and Section 5 discusses related work on PDFA induction and the theoretical expressive power of
mixtures of PDFAs. In Section 6 we discuss ways in which PDIA predictive performance might be
improved in future research.

2 Probabilistic Deterministic Finite Automata

A PDFA is formally defined as a 5-tupleM = (Q,Σ, δ, π, q0), whereQ is a finite set of states, Σ is a
finite alphabet of observable symbols, δ : Q×Σ→ Q is the transition function from a state/symbol
pair to the next state, π : Q × Σ → [0, 1] is the probability of the next symbol given a state and
q0 is the initial state.2 Throughout this paper we will use i to index over elements of Q, j to index
over elements of Σ and t to index elements of an observed string. For example, δij is shorthand for
δ(qi, σj), where qi ∈ Q and σj ∈ Σ.

Given a state qi, the probability that the next symbol takes the value σj is given by π(qi, σj). We
use the shorthand πqi

for the state-specific discrete distribution over symbols for state qi. We could
equivalently write σ|qi ∼ πqi

where σ is a random variable that takes values in Σ. Given a state
qi and a symbol σj , however, the next state qi′ is deterministic: qi′ = δ(qi, σj). Generating from a
PDFA involves first generating a symbol stochastically given the state the process is in: xt|ξt ∼ πξt

where ξt ∈ Q is the state at time t. Next, given ξt and xt transitioning deterministically to the
next state: ξt+1 = δ(ξt, xt). This is the reason for the confusing “probabilistic deterministic” name
for these models. Turning this around, given data, q0, and δ, there is no uncertainty about the path
through the states. This is a primary source of computational savings relative to HMMs.

PDFAs are more general than nth-order Markov models (i.e. m-gram models, m = n+ 1), but less
expressive than hidden Markov models (HMMs)[3]. For the case of nth-order Markov models, we
can construct a PDFA with one state per suffix x1x2 . . . xn. Given a state and a symbol xn+1, the
unique next state is the one corresponding to the suffix x2 . . . xn+1. Thus nth-order Markov models
are a subclass of PDFAs with O(|Σ|n) states. For an HMM, given data and an initial distribution
over states, there is a posterior probability for every path through the state space. PDFAs are those
HMMs for which, given a unique start state, the posterior probability over paths is degenerate at a
single path. As we explain in Section 5, mixtures of PDFAs are strictly more expressive than single
PDFAs, but still less expressive than PNFAs.

3 Bayesian PDFA Inference

We start our description of Bayesian PDFA inference by defining a prior distribution over the pa-
rameters of a finite PDFA. We then show how to analytically marginalize nuisance parameters out
of the model and derive a Metropolis-Hastings sampler for posterior inference using the resulting
collapsed representation. We discuss the limit of our model as the number of states in the PDFA goes
to infinity. We call this limit the probabilistic deterministic infinite automaton (PDIA). We develop
a PDIA sampler that carries over from the finite case in a natural way.

2In general q0 may be replaced by a distribution over initial states.

2

3.1 A PDFA Prior

We assume that the set of states Q, set of symbols Σ, and initial state q0 of a PDFA are known but
that the transition and emission functions are unknown. The PDFA prior then consists of a prior
over both the transition function δ and the emission probability function π. In the finite case δ and
π are representable as finite matrices, with one column per element of Σ and one row per element
of Q. For each column j (j co-indexes columns and set elements) of the transition matrix δ, our
prior stipulates that the elements of that column are i.i.d. draws from a discrete distribution φj over
Q, that is, δij ∼ [φ1, . . . ,φ|Σ|], 0 ≤ i ≤ |Q| − 1. The φj represent transition tendencies given
a symbol, if the ith element of φj is large then state qi is likely to be transitioned to anytime the
last symbol was σj . The φj’s are themselves given a shared Dirichlet prior with parameters αµ,
where α is a concentration and µ is a template transition probability vector. If the ith element of µ
is large then the ith state is likely to be transitioned to regardless of the emitted symbol. We place
a uniform Dirichlet prior on µ itself, with γ total mass and average over µ during inference. This
hierarchical Dirichlet construction encourages both general and context specific state reuse. We also
place a uniform Dirichlet prior over the per-state emission probabilities πqi with β total mass which
smooths emission distribution estimates. Formally:

µ|γ, |Q| ∼ Dir (γ/|Q|, . . . , γ/|Q|) (1)
φj |α,µ ∼ Dir(αµ) (2)

πqi |β, |Σ| ∼ Dir(β/|Σ|, . . . , β/|Σ|)
δij ∼ φj

where 0 ≤ i ≤ |Q| − 1 and 1 ≤ j ≤ |Σ|. Given a sample from this model we can run the PDFA
to generate a sequence of T symbols. Using ξt to denote the state of the PDFA at position t in the
sequence:

ξ0 = q0, x0 ∼ πq0 , ξt = δ(ξt−1, xt−1), xt ∼ πξt

We choose this particular inductive bias, with transitions tied together within a column of δ, because
we wanted the most recent symbol emission to be informative about what the next state is. If we
instead had a single Dirichlet prior over all elements of δ, transitions to a few states would be highly
likely no matter the context and those states would dominate the behavior of the automata. If we
tied together rows of δ instead of columns, being in a particular state would tell us more about the
sequence of states we came from than the symbols that got us there.

Note that this prior stipulates a fully connected PDFA in which all states may transition to all others
and all symbols may be emitted from each state. This is slightly different that the cannonical finite
state machine literature where sparse connectivity is usually the norm.

3.2 PDFA Inference

Given observational data, we are interested in learning a posterior distribution over PDFAs. To start
inference we need the likelihood function for a fixed PDFA; it is given by

p(x0:T |δ, π) = π(ξ0, x0)
T∏
t=1

π(ξt, xt).

Remember that ξt|ξt−1, xt−1 is deterministic given the transition function δ. We can marginalize π
out of this expression and express the likelihood of the data in a form that depends only on the counts
of symbols emitted from each state. Define the count matrix c for the sequence x0:T and transition
matrix δ as cij =

∑T
t=0 Iij(ξt, xt), where Iij(ξt, xt) is an indicator function that returns 1 if the

automaton was in state qi when it generated xt at step t in the sequence, i.e. ξt = qi and xt = σj ,
and 0 otherwise. This matrix c = [cij] gives the number of times each symbol is emitted from each
state. Due to multinomial-Dirichlet conjugacy we can express the probability of a sequence given
the transition function δ, the count matrix c and β:

p(x0:T |δ, c, β) =
∫
p(x0:T |π, δ)p(π|β)dπ =

|Q|−1∏
i=0

Γ(β)
Γ(β
|Σ|)
|Σ|

∏|Σ|
j=1 Γ(β

|Σ| + cij)

Γ(β +
∑|Σ|
j=1 cij)

(3)

3

Given that the state to state transitions are deterministic given the observed emissions, we can think
of the transition matrix δ as observed and express its marginal likelihood given µ by integrating out
all φj’s. Let vij be the number of times state qi is transitioned to given that σj was the last symbol
emitted, i.e. vij is the number of times δi′j = qi for all states i′ in the column j. The marginal
likelihood of δ in terms of µ is then:

p(δ|µ, α) =
∫
p(δ|φ)p(φ|µ, α)dφ =

|Σ|∏
j=1

Γ(α)∏|Q|−1
i=0 Γ(αµi)

∏|Q|−1
i=0 Γ(αµi + vij)

Γ(α+ |Q|)
(4)

We perform posterior inference in the finite model by sampling elements of δ and the vector µ. One
can sample δij given the rest of the matrix δ−ij using

p(δij |δ−ij , x0:T ,µ, α) ∝ p(x0:T |δij , δ−ij)p(δij |δ−ij ,µ, α) (5)

Both terms on the right hand side of this equation have closed-form expressions, the first given in
(3). The second can be found from (4) and is

P (δij = qi′ |δ−ij , α,µ) =
αµi′ + vi′j
α+ |Q| − 1

(6)

where vi′j is the number of elements in column j equal to qi′ excluding δij . As |Q| is finite,
we compute (5) for all values of δij and normalize to produce the required conditional probability
distribution.

Note that in (3), the count matrix c may be profoundly impacted by changing even a single element
of δ. The values in c depend on the specific sequence of states the automata used to generate x.
Changing the value of a single element of δ affects the state trajectory the PDFA must follow to
generate x0:T . Among other things this means that some elements of c that were nonzero may
become zero, and vice versa.

We can reduce the computational cost of inference by marginalizing out (“ignoring” until necessary)
transitions δij for which the corresponding counts cij are or become 0. In practical sampler imple-
mentations this means that one need not even represent transitions corresponding to zero counts.
The likelihood of the data (3) does not depend on the value of δij if symbol σj is never emitted
while the machine is in state qi. In this case sampling from (5) is the same as sampling without con-
ditioning on the data at all. Thus, if while sampling we change some transition that renders cij = 0
for some values for each of i and j, we can ignore δij until another transition is changed such that
cij becomes nonzero again. Under the marginal joint distribution of a column of δ the row entries in
that column are exchangeable, and so ignoring an entry of δ has the same effect as marginalizing it
out. When we marginalize out an element from a column of δ by ignoring it, we replace the |Q| − 1
in the denominator of (6) with D+

j =
∑|Q|−1
i=0 I(vij 6= 0), the number of entries in the jth column

of δ that are not marginalized out yielding

P (δij = qi′ |δ−ij , α,µ) =
αµi′ + vi′j

α+D+
j

. (7)

If when sampling δij it is assigned it a state qi′ such that some ci′j′ which was zero is now nonzero,
we simply reinstantiate δi′j′ by drawing from (7) and update D+

j′ . When sampling a single δij there
can be many such entries as the path through the machine dictated by x0:T may use many transitions
in δ that were marginalized out. In this case we update incrementally, increasing D+

j and vij as we
go.

While it is possible to construct a Gibbs sampler using (5) in this collapsed representation, such
a sampler technically requires a Monte Carlo integration over a potentially large subset of the
marginalized out entries of δ, a potentially high dimensional integral. A simpler strategy is to
pretend that all entries of δ exist but are sampled in a “just-in-time” manner. This gives rise to a
Metropolis Hastings (MH) sampler for δ where the choice for δij is either one of the instantiated
states or any one of the equivalent marginalized out states. Any time any marginalized out element
of δ is required we can pretend as if we had just sampled its value, and we know that because its
value had no effect on the likelihood of the data, we know that it would have been sampled directly
from (7). It is in this sense that all marginalized out states are equivalent – we known nothing more
about their connectivity structure than that given by the prior in (7).

4

For the MH sampler, denote the set of non-marginalized out δ entries δ+ = {δij : cij > 0}. We
propose a new value qi∗ for each δij ∈ δ+ according to (7). The conditional posterior probability
of this proposal is proportional to p(x0:T |δij = qi∗ , δ

+
−ij)P (δij = qi∗ |δ+

−ij). The Hastings cor-
rection exactly cancels out the proposal probability in the accept/reject ratio leaving an MH accept
probability for the δij being set to qi∗ given that its previous value was qi′ of

α(δij = qi∗ |δij = qi′) = min

(
1,
p(x0:T |δij = qi∗ , δ

+
−ij)

p(x0:T |δij = qi′ , δ
+
−ij)

)
. (8)

Whether qi∗ is marginalized out or not, evaluating p(x0:T |δij = qi∗ , δ
+
−ij) may require reinstantiat-

ing marginalized out elements of δ. As before, these values are sampled from (7) on a just-in-time
schedule. If the new value is accepted, all δij ∈ δ+ for which cij = 0 are removed.

In the finite case, one can sample µ by Metropolis-Hastings or use a MAP estimate as in [7]. Hy-
perparameters α, β and γ are also sampled via Metropolis-Hastings updates.

3.3 The Probabilistic Deterministic Infinite Automaton

We would like to avoid placing a strict upper bound on the number of states so that model complexity
can grow with the amount of training data. To see how to do this, consider what happens when
|Q| → ∞. In this case, the right hand side of equations (1) and (2) must be replaced by infinite
dimensional alternatives

µ ∼ PY(γ, d0, H)
φj ∼ PY(α, d,µ)
δij ∼ φj

where PY stands for Pitman Yor process and H in our case is a geometric distribution over the
integers with parameter λ. The resulting hierarchical model becomes the hierarchical Pitman-Yor
process (HPYP) over a discrete alphabet [14]. The discount parameters d0 and d are particular to the
infinite case, and when both are zero the HPYP becomes the well known hierarchical Dirichlet pro-
cess (HDP), which is the infinite dimensional limit of (1) and (2) [15]. Given a finite amount of data,
there can only be nonzero counts for a finite number of state/symbol pairs, so our marginalization
procedure from the finite case will yield a δ with at most T elements. Denote these non-marginalized
out entries by δ+. We can sample the elements of δ+ as before using (8) provided that we can pro-
pose from the HPYP. In many HPYP sampler representations this is easy to do. We use the Chinese
restaurant franchise representation [15] in which the posterior predictive distribution of δij given
δ+
−ij can be expressed with φj and µ integrated out as

P (δij = qi′ |δ+
−ij , α, γ) = E

[
vi′j − ki′jd
α+D+

j

+
α+ k·jd

α+D+
j

(
wi′ − κi′d0

γ + w·
+
γ + κ·d0

γ + w·
H(qi′)

)]
(9)

where wi′ , ki′j , κi′ , w· =
∑
i wi, k·j =

∑
i kij , and κ· =

∑
i κi are stochastic bookkeeping counts

required by the Chinese Restaurant franchise sampler. These counts must themselves be sampled
[15]. The discount hyperparameters can also be sampled by Metropolis-Hastings.

4 Experiments and Results

To test our PDIA inference approach we evaluated it on discrete natural sequence prediction and
compared its performance to HMMs and smoothed n-gram models. We trained the models on two
datasets: a character sequence from Alice in Wonderland [2] and a short sequence of mouse DNA.
The Alice in Wonderland (AIW) dataset was preprocessed to remove all characters but letters and
spaces, shift all letters from upper to lower case, and split along sentence dividers to yield a 27-
character alphabet (a-z and space). We trained on 100 random sentences (9,986 characters) and
tested on 50 random sentences (3,891 characters). The mouse DNA dataset consisted of a fragment
of chromosome 2 with 194,173 base pairs, which we treated as a single unbroken string. We used
the first 150,000 base pairs for training and the rest for testing. For AIW, the state of the PDIA
model was always set to q0 at the start of each sentence. For DNA, the state of the PDIA model at

5

PDIA PDIA-MAP HMM-EM bigram trigram 4-gram 5-gram 6-gram SSM
AIW 5.13 5.46 7.89 9.71 6.45 5.13 4.80 4.69 4.78

365.6 379 52 28 382 2,023 5,592 10,838 19,358
DNA 3.72 3.72 3.76 3.77 3.75 3.74 3.73 3.72 3.56

64.7 54 19 5 21 85 341 1,365 314,166

Table 1: PDIA inference performance relative to HMM and fixed order Markov models. Top rows:
perplexity. Bottom rows: number of states in each model. For the PDIA this is an average number.

0.5 1 1.5 2 2.5 3
x 104

−1.98

−1.96

−1.94

−1.92

−1.9

−1.88

−1.86
x 104

Iterations

Lo
g

Li
ke

lih
oo

d

0.5 1 1.5 2 2.5 3
x 104

325

350

375

400

425

450

St
at

es

Figure 1: Subsampled PDIA sampler trace for Alice in Wonderland. The top trace is the joint log
likelihood of the model and training data, the bottom trace is the number of states.

the start of the test data was set to the last state of the model after accepting the training data. We
placed Gamma(1,1) priors over α, β and γ, set λ = .001, and used uniform priors for d0 and d.

We evaluated the performance of the learned models by calculating the average per character pre-
dictive perplexity of the test data. For training data x1:T and test data y1:T ′ this is given by
2−

1
T ′ log2 P (y1:T ′ |x1:T). It is a measure of the average uncertainty the model has about what character

comes next given the sequence up to that point, and is at most |Σ|. We evaluated the probability of
the test data incrementally, integrating the test data into the model in the standard Bayesian way.

Test perplexity results are shown in Table 1 on the first line of each subtable. Every fifth sample
for AIW and every tenth sample for DNA after burn-in was used for prediction. For AIW, we ran
15,000 burn-in samples and used 3,500 samples for predictive inference. Subsampled sampler di-
agnostic plots are shown in Figure 1 that demonstrate the convergence properties of our sampler.
When modeling the DNA dataset we burn-in for 1,000 samples and use 900 samples for inference.
For the smoothed n-gram models, we report thousand-sample average perplexity results for hierar-
chical Pitman-Yor process (HPYP) [14] models of varying Markov order (1 through 5 notated as
bigram through 6-gram) after burning each model in for one hundred samples. We also show the
performance of the single particle incremental variant of the sequence memoizer (SM) [5], the SM
being the limit of an n-gram model as n → ∞. We also show results for a hidden Markov model
(HMM) [8] trained using expectation-maximization (EM). We determined the best number of hid-
den states by cross-validation on the test data (a procedure used here to produce optimistic HMM
performance for comparison purposes only).

The performance of the PDIA exceeds that of the HMM and is approximately equal to that of
a smoothed 4-gram model, though it does not outperform very deep, smoothed Markov models.
This is in contrast to [16], which found that PDFAs trained on natural language data were able to
predict as well as unsmoothed trigrams, but were significantly worse than smoothed trigrams, even
when averaging over multiple learned PDFAs. As can be seen in the second line of each subtable
in Table 1, the MAP number of states learned by the PDIA is significantly lower than that of the
n-gram model with equal predictive performance.

Unlike the HMM, the computational complexity of PDFA prediction does not depend on the number
of states in the model because only a single path through the states is followed. This means that the
asymptotic cost of prediction for the PDIA is O(LT ′), where L is the number of posterior samples
and T ′ is the length of the test sequence. For any single HMM it isO(KT ′), whereK is the number
of states in the HMM. This is because all possible paths must be followed to achieve the given HMM

6

0

1 2

3

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

(a) (b)

0

1 2

A/0.5 A/0.5

A/0.8 A/0.6

B/0.4B/0.2

Figure 2: Two PNFAs outside the class of PDFAs. (a) can be represented by a mixture of two
PDFAs, one following the right branch from state 0, the other following the left branch. (b), in
contrast, cannot be represented by any finite mixture of PDFAs.

predictive performance (although a subset of possible paths could be followed if doing approximate
inference). In PDIA inference we too can choose the number of samples used for prediction, but
here even a single sample has empirical prediction performance superior to averaging over all paths
in an HMM. The computational complexity of smoothing n-gram inference is equivalent to PDIA
inference, however, the storage cost for the large n-gram models is significantly higher than that of
the estimated PDIA for the same predictive performance.

5 Theory and Related Work

The PDIA posterior distribution takes the form of an infinite mixture of PDFAs. In practice, we
run a sampler for some number of iterations and approximate the posterior with a finite mixture
of PDFAs. For this reason, we now consider the expressive power of finite mixtures of PDFAs.
We show that they are strictly more expressive than PDFAs, but strictly less expressive than hidden
Markov models. Probabilistic non-deterministic finite automata (PNFA) are a strictly larger model
class than PDFAs. For example, the PNFA in 2(a) cannot be expressed as a PDFA [3]. However,
it can be expressed as a mixture of two PDFAs, one with Q = {q0, q1, q3} and the other with
Q = {q0, q2, q3}. Thus mixtures of PDFAs are a strictly larger model class than PDFAs. In general,
any PNFA where the nondeterministic transitions can only be visited once can be expressed as a
mixture of PDFAs. However, if we replace transitions to q3 with transitions to q0, as in 2(b), there
is no longer any equivalent finite mixture of PDFAs, since the nondeterministic branch from q0 can
be visited an arbitrary number of times.

Previous work on PDFA induction has focused on accurately discovering model structure when the
true generative mechanism is a PDFA. State merging algorithms do this by starting with the trivial
PDFA that only accepts the training data and merging states that pass a similarity test [1, 17], and
have been proven to identify the correct model in the limit of infinite data. State splitting algorithms
start at the opposite extreme, with the trivial single-state PDFA, and split states that pass a difference
test [12, 13]. These algorithms return only a deterministic estimate, while ours naturally expresses
uncertainty about the learned model.

To test if we can learn the generative mechanism given our inductive bias, we trained the PDIA on
data from three synthetic grammars: the even process [13], the Reber grammar [11] and the Feldman
grammar [4], which have up to 7 states and 7 symbols in the alphabet. In each case the mean number
of states discovered by the model approached the correct number as more data was used in training.
Results are presented in Figure 3. Furthermore, the predictive performance of the PDIA was nearly
equivalent to the actual data generating mechanism.

6 Discussion

Our Bayesian approach to PDIA inference can be interpreted as a stochastic search procedure for
PDFA structure learning where the number of states is unknown. In Section 5 we presented evidence
that PDFA samples from our PDIA inference algorithm have the same characteristics as the true
generative process. This in and of itself may be of interest to the PDFA induction community.

7

0 1A/0.5

B/0.5

B/1.0

(a) Even

0 1
B/1.0

2

3

4

5

6

T/0.5

P/0.5

S/0.6
X/0.4

V/0.3T/0.7

V/0.5

X/0.5

P/0.5

S/0.5

E/1.0

to 0from 6

(b) Reber

0 1 2 3

4

5

6

B/0.8125

B/0.8125

B/0.75

A/0.1875 A/0.5625 A/0.5625

B/0.0625

A/0.1875

B
/0.4375

A
/0.25

A/0.9375

B/0.4375A/0.75
B/0.25

(c) Feldman

10^1 10^2 10^3 10^4 10^5 10^6
1

2

3

4

5

6

7

8

Observations

St
at

es

Even Process

Feldman Grammar

Reber Grammar

(d) Posterior marginal PDIA state cardinality distribution

Figure 3: Three synthetic PDFAs: (a) even process [13], (b) Reber grammar [11], (c) Feldman
grammar [4]. (d) posterior mean and standard deviation of number of states discovered during PDIA
inference for varying amounts of data generated by each of the synthetic PDFAs. PDIA inference
discovers PDFAs with the correct number of states

We ourselves are more interested in establishing new ways to produce smoothed predictive con-
ditional distributions. Inference in the PDIA presents a completely new approach to smoothing,
smoothing by averaging over PDFA model structure rather than hierarchically smoothing related
emission distribution estimates. Our PDIA approach gives us an attractive ability to trade-off be-
tween model simplicity in terms of number of states, computational complexity in terms of asymp-
totic cost of prediction, and predictive perplexity. While our PDIA approach may not yet outperform
the best smoothing Markov model approaches in terms of predictive perplexity alone, it does outper-
form them in terms of computation required to achieve the same predictive perplexity. This suggests
that a future combination of smoothing over model structure and smoothing over emission distribu-
tions could produce excellent results. PDIA inference gives researchers another tool to choose from
when building models. If very fast prediction is desirable and the predictive perplexity difference
between the PDIA and, for instance, the most competitive n-gram is insignificant from an applica-
tion perspective, then doing finite sample inference in the PDIA offers a significant computational
advantage in terms of memory.

We indeed believe the most promising approach to improving PDIA predictive performance is to
construct a smoothing hierarchy over the state specific emission distributions, as is done in the
smoothing n-gram models. For an n-gram, where every state corresponds to a suffix of the sequence,
the predictive distributions for a suffix is smoothed by the predictive distribution for a shorter suffix,
for which there are more observations. This makes it possible to increase the size of the model indef-
initely without generalization performance suffering [18]. In the PDIA, by contrast, the predictive
probabilities for states are not tied together. Since states of the PDIA are not uniquely identified
by suffixes, it is no longer clear what the natural smoothing hierarchy is. It is somewhat surprising
that PDIA learning works nearly as well as n-gram modeling even without a smoothing hierarchy
for its emission distributions. Imposing a hierarchical smoothing of the PDIA emission distributions
remains an open problem.

8

References
[1] R. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state merging method.

Grammatical Inference and Applications, pages 139–152, 1994.

[2] L. Carroll. Alice’s Adventures in Wonderland. Macmillan, 1865. URL
http://www.gutenberg.org/etext/11.

[3] P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata and hidden Markov models:
probability distributions, learning models and induction algorithms. Pattern recognition, 38(9):1349–
1371, 2005.

[4] J. Feldman and J.F. Hanna. The structure of responses to a sequence of binary events. Journal of Mathe-
matical Psychology, 3(2):371–387, 1966.

[5] J. Gasthaus, F. Wood, and Y. W. Teh. Lossless compression based on the Sequence Memoizer. In Data
Compression Conference 2010, pages 337–345, 2010.

[6] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman & Hall, New
York, 1995.

[7] D. J. C. MacKay and L.C. Bauman Peto. A hierarchical Dirichlet language model. Natural language
engineering, 1(2):289–307, 1995.

[8] K. Murphy. Hidden Markov model (HMM) toolbox for Matlab, 2005. URL
http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html.

[9] M.O. Rabin. Probabilistic automata. Information and control, 6(3):230–245, 1963.

[10] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77:257–286, 1989.

[11] A.S. Reber. Implicit learning of artificial grammars. Journal of verbal learning and verbal behavior, 6
(6):855–863, 1967.

[12] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic automata with variable
memory length. Machine learning, 25(2):117–149, 1996.

[13] C.R. Shalizi and K.L. Shalizi. Blind construction of optimal nonlinear recursive predictors for discrete
sequences. In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence, pages 504–511.
UAI Press, 2004.

[14] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of
the Association for Computational Linguistics, pages 985–992, 2006.

[15] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the
American Statistical Association, 101(476):1566–1581, 2006.

[16] F. Thollard. Improving probabilistic grammatical inference core algorithms with post-processing tech-
niques. In Eighteenth International Conference on Machine Learning, pages 561–568, 2001.

[17] F. Thollard, P. Dupont, and C. del la Higuera. Probabilistic DFA inference using Kullback-Leibler diver-
gence and minimality. In Seventeenth International Conference on Machine Learning, pages 975–982.
Citeseer, 2000.

[18] F. Wood, C. Archambeau, J. Gasthaus, L. James, and Y. W. Teh. A stochastic memoizer for sequence data.
In Proceedings of the 26th International Conference on Machine Learning, pages 1129–1136, Montreal,
Canada, 2009.

9

