
Data-driven Sequential Monte Carlo

in Probabilistic Programming

Yura Perov Tuan Anh Le Frank Wood
Department of Engineering Science, University of Oxford

{perov,tuananh,fwood}@robots.ox.ac.uk

Abstract

Most of Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo
(SMC) algorithms in existing probabilistic programming systems subopti-
mally use only model priors as proposal distributions. In this work, we
describe an approach for training a discriminative model, namely a neural
network, in order to approximate the optimal proposal by using posterior
estimates from previous runs of inference. We show an example that in-
corporates a data-driven proposal for use in a non-parametric model in the
Anglican probabilistic programming system [10]. Our results show that
data-driven proposals can significantly improve inference performance so
that considerably fewer particles are necessary to perform a good posterior
estimation.

1 Background

We consider a generative model p(x1:N , y1:N) with hidden variables x1:N and observations
y1:N . In probabilistic programming, we let the observing random variable yn be the value
of the nth observe, and the hidden variables xn = x1:n be the execution trace before this
observe. The goal of SMC inference in probabilistic programming is to sample from a
family of distributions p (x1:n|y1:n) for n = 1, . . . , N . This is achieved by generating a set of
particles {x(p)

1:n}P
p=1 and the corresponding importance weights {w

(p)
n }P

p=1. We approximate
the target distribution as

qP
p=1 w

(p)
n ”

x

(p)
1:n

(x1:n). Particles at time n are generated using a
chosen proposal distribution qn (xn|xn≠1), which is used to propose those particles given
the set of particles {x̄(p)

1:(n≠1)} at the previous step n ≠ 1 that have been resampled from
an SMC estimate of p

!
x1:(n≠1)

--
y1:(n≠1)

"
. The weights corresponding to these particles are

then calculated as follows:

W

(p)
n =

p

1
x(p)

n

---x̄(p)
n≠1

2
p

1
yn

---x(p)
n

2

q

1
x(p)

n

---x̄(p)
n≠1

2
, w

(p)
n = W

(p)
n

qP
i=1 W

(i)
n

, p = 1, . . . , P.

Then, the proposal, resampling, and re-weighting steps are iterated for the next n.
In many applications of SMC inference, including probabilistic programming systems, the
proposal distribution is taken to be the prior distribution p (xn|xn≠1) of the generative
model. This simplifies the implementation of such systems as we can readily sample and
evaluate the densities of the proposed values directly from the generative model.
One of the problems SMC methods su�er from is high variance of weights and the related
problem of propagation of low weight particles that waste computation. This is because the
propose-from-prior method usually gives proposals far from the optimal one since the prior
is significantly di�erent from the posterior. These problems can be mitigated by resampling,

1

which intuitively resets the system at the expense of the increase in the immediate Monte
Carlo variance. However, resampling can introduce another problem of degenerate particle
trajectories in which only a few distinct values are used to represent the early part of
the inferred trajectories. Another approach to minimise the variance of the weights is
to use proposal distributions q̂n (xn|xn≠1) that approximate the the filtering distribution
p (xn|xn≠1, yn) [3], from which it is assumed impossible to sample directly because the
normalisation factor requires a marginalisation over xn. In particular, there are no known
ways to sample from these distributions directly in probabilistic programming systems.
In this paper, we explore using information from previous runs to improve the proposal
distribution so that it approximates the distribution p (xn|xn≠1, yn).

2 Data-driven proposals for Sequential Monte Carlo

We want to have data-driven proposals for a certain subset of random choices S ™
{1, . . . , N}. We assume that the model prior p (xn|xn≠1) has the same structure for all
n œ S so that we can learn the same proposals for all of them. Although it is impossible to
sample from the optimal proposal—the filtering distribution p (xn|fln) where the environ-
ment fln := (xn≠1, y1:n)—we can approximate it with a distribution q̂ (xn|N◊(„(fln))). This
proposal distribution is parametrised by the output of some discriminative model N◊, which
is in turn parametrised by ◊. The input of this model, namely features „(fln), is extracted
from the environment fln by a fixed feature extractor function „.

To train the discriminative model, we need M training inputs {„(fl(i)
n)}M

i=1 and related
outputs {x(i)

n }M
i=1 such that each x(i)

n is approximately drawn from the desired distribution
p

1
xn

---fl(i)
n

2
.

The loss function used to obtain the parameters ◊ of the discriminative model is based on
the Kullback-Leibler (KL) divergence. Taking the expectation of the KL-divergence with
respect to xn≠1|y1:n , we can simplify the loss function as follows:

L(◊) = Ep(xn≠1|y1:n) [DKL (p (xn|fln) Î q̂ (xn|N◊ („(fln))))]

= Ep(xn≠1|y1:n)

5
Ep(xn|xn≠1,y1:n)

5
log p (xn|fln)

q̂ (xn|N◊(„(fln)))

66

= Ep(xn|y1:n)

5
log p (xn|fln)

q̂ (xn|N◊(„(fln)))

6
= ≠Ep(xn|y1:n) [log q̂ (xn|N◊(„(fln)))] + c.

By ignoring the constant c and substituting the Monte Carlo approximation of p (xn|y1:n),qM
i=1

1
M ”

x

(i)
n

(xn), we get that

L(◊) ¥ ≠ 1
M

Mÿ

i=1
log q̂

1
x(i)

n

---N◊(„(fln))
2

. (1)

The loss function has a convenient form for neural networks because it can be decomposed to
a sum of losses corresponding to each neural network output. We also note that in practice,
we might use training outputs {x(i)

n }M
i=1 not from the filtering distribution p

1
xn

---x(i)
n≠1, y

(i)
1:n

2
,

but from the smoothing distribution p

1
xn

---x(i)
n≠1, y

(i)
1:N

2
. This is because most of statistical

inference in existing probabilistic programming systems is directed towards the approxima-
tion of the smoothing distributions.

3 Experiments

3.1 Dependent Dirichlet process mixture of objects
For further experiments, we have chosen the dependent Dirichlet process mixture of ob-
jects (DDPMO) model [8] in order to demonstrate applicability of our approach to more
complicated models. The DDPMO is a recent Bayesian non-parametric model for detection-
free tracking and object modelling. The DDPMO models the position and colour xt,n of a

2

foreground pixel n at a video frame t as an observed variable. This observed variable xt,n

depends on the latent variables of the model such as cluster assignments ct,1:Nt and object
parameters ◊

k
t for each cluster k. The DDPMO is a native Bayesian non-parametric model

since the number of clusters and the related object parameters is unbounded and dependent
on the observed data. The generative process of the DDPMO is described in the appendix.
The DDPMO model was implemented as an Anglican program. The full model source code
has 120 lines, with comments. In addition, the generalised Pólya urn (GPU) procedure
was written as an Anglican program. Its source code has 70 lines, with comments, and
can be used for any other model in the future. In order to make inference tractable, we
implement and employ exchangeable random procedures (XRP) for conjugate priors, which
are the essential part of the generative process in the DDPMO. These XRPs, implemented
in Anglican, can also be re-used.

3.1.1 Data-driven inference for DDPMO
In DDPMO, we focus on improving a particular proposal of cluster assignment for a new
data point (foreground pixel).
The features „(flk) of the environment flk = (xk≠1, y1:k), which are the inputs to the neural
network, consist of the following:

• Distances to the three nearest clusters in the ascending order, di œ R, i = 1, . . . , 3.
• Colour histograms of a 7◊7 patch surrounding these three clusters in the discretised

HSV space, normalised to sum to one, hi œ R10
,

q10
j=1 hij = 1.

• Colour histogram of a 7 ◊ 7 patch surrounding the new data point (i.e. pixel) in
the discretised HSV space, normalised to sum to one, c œ R10

,

q10
i=1 ci = 1.

Since we are aiming to approximate a posterior of a discrete random variable, we can use
a Categorical distribution for q̂n such that there is the same number of clusters K + 1,
where K is the number of unique clusters before processing the new pixel, and with the +1
corresponding to creating a new cluster in the DDPMO model. We directly set q̂ (xn|÷) to
the softmax output of the neural network. Therefore, the five outputs to the neural network
are the probabilities p1:3 of the three nearest clusters, the probability p4 of the remaining
K ≠ 3 existing clusters (so that each one has probability p4/(K ≠ 3)), and the probability
p5 of the new cluster. If K < 3, the prior proposal is used.
The cost function which is used for training of the neural network is the negative log proba-
bility given in (1). Noting that the weights are identical, we can use the negative log of the
softmax output, and hence we can use neural network packages out of the box.

3.1.2 Football
For our experiments, a soccer video dataset was chosen [2]. This choice was made because
the video contains many fast-moving, di�erently coloured and occluding objects. In addition,
there exists a human-annotated ground-truth for this dataset. We select a subsequence of
frames to form a training dataset, and another subsequence of frames to form a test dataset.
To measure the performance, we use and report commonly used performance metrics: the
sequence frame detection accuracy (SFDA) for object detection and the average tracking
accuracy (ATA) for tracking [5].
At first, we run SMC inference in Anglican for this model given the input frames from the
formed training dataset, with 5000 particles. This allows us to extract inputs and outputs
for the neural network, as described in the previous section. Then we train the neural
network using these extracted data. Once the neural network is trained, we run inference
on the test frame sequences. We measure inference performance with three di�erent types of
proposals: the DDPMO prior proposal (i.e. just following the generative model), the data-
driven proposal with the probabilities p1:5 from the neural network, and the hand-tuned
data-driven proposal with fixed probabilities p1:5 from empirical analysis. The hand-tuned
fixed probabilities p1:5 approximate the distribution over the output over the three closest
clusters, remaining old clusters, and a new cluster. Finally, we examine how the performance
of these methods di�er as we change the number of SMC particles.

3

Figure 1: Sequence frame detection accuracy for object detection (SFDA) and the average tracking
accuracy (ATA) metrics for di�erent types of proposal distributions on the testing dataset.

Figure 1 illustrates experimental results. We get significant improvement in performance
with the data-driven proposal. With 10 particles with the data-driven proposal, we get
results similar to the results from running 1000 particles using the prior proposal. The
data-driven proposal with the neural network show the same performance as the data-driven
proposal with a hand-tuned discriminative model that always returns fixed p1:5. Examples
of frames with detected and tracked objects are provided in Figure 2 in the appendix.

4 Conclusion and Future Work

This abstract presents an approach to use data-driven proposals for Bayesian non-parametric
models in probabilistic programming settings. Our experimental results show that the
data-driven proposal significantly improves the inference perfomance. We assume that our
proposal might be applied to non-parametric generative models that contain some distance
function between clusters and data points (i.e. observations).
The data-driven proposal, which is presented in this abstract, relies on the feature extractor.
The feature extractor maps the current state of the unbounded number of clusters with
their su�cient statistics to the input of the neural network. The feature extractor that we
implement and use is also the significant part of the data-driven proposal. This is proved
by the fact that the neural network performs as well as the fixed hand-tuned discriminative
model. This is probably because the spatial factor is important for the model, at least for the
dataset we worked with. Therefore, there is future work to verify whether for more complex
datasets and models data-driven proposals with neural networks provide more benefits.
Our work relates to other work in the field on data-driven proposals. Recent work includes
neural adaptive sequential Monte Carlo [4], where authors also adapt proposals by descend-
ing the inclusive Kullback-Leibler divergence between the proposal and the true posterior
distributions on hidden variables given observations. They use long short-term memory
(LSTM) recurrent neural networks to train proposal distributions. Another related recent
work is a new probabilistic programming language Picture [6], for which authors propose
and describe how to use data-driven proposals for models in vision. They also use neural
networks to learn proposals. To get the data to train the neural network, they sample both
hidden variables and observations from the generative model unconditionally o�ine. In
addition, the proposal that we implemented is related to the distance dependent Chinese
restaurant process (DDCRP) [1]. While the DDCRP incorporates the spatial information
into the model itself, our approach uses this information in the inference machinery, which
allow to advance existing Bayesian models, including the DDPMO.
In future work, more recent versions of neural networks architectures can be applied to
improve results by extracting better features and processing them more e�ciently. In par-
ticular, one can think of using convolutional neural networks that process the part of the
frame centered at the new observing pixel, or that even process the whole image.

4

References
[1] D. M. Blei and P. I. Frazier. Distance dependent chinese restaurant processes. The

Journal of Machine Learning Research, 12:2461–2488, 2011.
[2] T. D’Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo. A semi-automatic

system for ground truth generation of soccer video sequences. In Advanced Video and

Signal Based Surveillance, 2009. AVSS’09. Sixth IEEE International Conference on,
pages 559–564. IEEE, 2009.

[3] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later.

[4] S. Gu, R. E. Turner, and Z. Ghahramani. Neural adaptive sequential monte carlo.
arXiv preprint arXiv:1506.03338, 2015.

[5] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers,
M. Boonstra, V. Korzhova, and J. Zhang. Framework for performance evaluation of face,
text, and vehicle detection and tracking in video: Data, metrics, and protocol. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 31(2):319–336, 2009.
[6] T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. K. Mansinghka. Picture: a proba-

bilistic programming language for scene perception. 2015.
[7] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
[8] W. Neiswanger, F. Wood, and E. P. Xing. The dependent dirichlet process mixture of

objects for detection-free tracking and object modeling. 2014.
[9] A. Smith, A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo methods

in practice. Springer Science & Business Media, 2013.
[10] F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to probabilistic

programming inference. In Proceedings of the 17th International conference on Artificial

Intelligence and Statistics, pages 2–46, 2014.

5

Appendix

4.1 Object recognition and tracking results with the DDPMO

Figure 2: Frames of a soccer video dataset with detected and tracked objects using the DDPMO
model in the probabilistic programming system Anglican.

4.2 The dependent Dirichlet process mixture of objects (DDPMO) model

The DDPMO models the position and colour xt,n of a foreground pixel n at a video frame
t as an observed variable. This observed variable xt,n depends on the latent variables of the
model such as cluster assignments ct,1:Nt and object parameters ◊

k
t for each cluster k. The

generative process for each time step t = 1, . . . , T is as follows:

1. Draw {ct,1:Nt , Kt,Nt , m

1:Kt≠1,Nt≠1
t,0 } ≥ GPU(–, fl).

2. For k = 1, . . . , Kt,Nt :

draw ◊

k
t ≥

;
T(◊k

t≠1) if k Æ Kt≠1,Nt≠1

G0(÷0) if k > Kt≠1,Nt≠1 .

3. For n = 1, . . . , Nt: draw xt,n ≥ F(◊ct,n

t).

Here, Kt,n represents the total number of clusters after processing pixel xt,n and m

k
t,n

represents the size of cluster k at time after processing xt,n. F(◊k
t) is a generative model

that generates the foreground pixels given the object parameter ◊

k
t of cluster k. Distributions

T and G0 are transition and prior distributions of the object parameters ◊

k
t , which must

satisfy a technical condition of the GPU, such that
s
G0(◊k

t≠1) T
!
◊

k
t

--
◊

k
t≠1

"
d◊

k
t≠1 = G0(◊k

t).
The dependent Dirichlet process prior GPU(–, fl) is parametrised by the birth and deletion
rates – and fl, which, for each time t, governs the evolution of the number of clusters. In
this model, the target quantity to infer is

p

1
{ct,1:Nt , Kt,Nt , ◊

1:Kt,Nt
t }t=1:T

---{xt,n}t=1:T,n=1:Nt

2
.

4.3 Generalised Pólya urn

The generative model of the GPU is as follows:

1. For k = 1, . . . , Kt≠1,Nt≠1 :
(a) Draw �m

k
t≠1 ≥ Binomial(mk

t≠1,Nt≠1
, fl).

(b) Set m

k
t,0 = m

k
t≠1,Nt≠1

≠ �m

K
t≠1.

2. For n = 1, . . . , Nt

(a) Draw ct,n ≥ Categorical
3

m1
t,n≠1

–+
q

k
mk

t,n≠1
, . . . ,

m
Kt,n≠1
t,n≠1

–+
q

k
mk

t,n≠1
,

–
–+

q
k

mk
t,n≠1

4
.

(b) If ct,n Æ Kt,n≠1, set m

ct,n

t,n = m

ct,n

t,n≠1 + 1, m

\ct,n

t,n = m

\ct,n

t,n≠1 and Kt,n = Kt,n≠1;1

(c) Otherwise, set m

ct,n

t,n = 1, m

\ct,n

t,n = m

\ct,n

t,n≠1 and Kt,n = Kt,n≠1 + 1.

1m
\ct,n
t,n is the set {m1

t,n, . . . , m
Kt,n
t,n } \ {m

ct,n
t,n }.

6

4.4 The DDPMO code in Anglican

1 (ns ddpmo.ddpmo
2 (:use [anglican emit runtime]
3 [anglib xrp utils new-dists anglican-utils]
4 ddpmo.ddpmo-header)
5 (:require [clojure.core.matrix :as m]
6 [clojure.core.matrix
7 :refer [identity-matrix mmul add sub transpose matrix to-nested-vectors]
8 :rename {identity-matrix eye
9 add madd

10 sub msub
11 transpose mtranspose}]
12 [clojure.core.matrix.linear :as ml]))
13
14 (with-primitive-procedures
15 [multivariate-t mvn-conjugate-fast dirichlet-multinomial-process
16 DIRICHLET-MULTINOMIAL-PROCESS-STATE-INFO MVN-PROCESS-FAST-STATE-INFO
17 matrix produce-matrix-from-vector to-nested-vectors mtranspose matrix-to-clojure-vector]
18
19 (defquery ddpmo
20 "The Dependent Dirichlet Process Mixture of Objects for Detection-free Tracking"
21 [data Nts proposal-type]
22
23 (let [
24
25 ;;;;;; DDPMO model ;;;;;;
26
27 ;; Hyperparameters for squares/objects/football
28 alpha 0.1 ; for GPU
29 rho 0.32 ; for GPU
30 mu-0 (produce-matrix-from-vector [0 0]) ; for normal-inverse-wishart
31 k-0 0.05 ; for normal-inverse-wishart
32 nu-0 10 ; for normal-inverse-wishart (old prior 60)
33 Lambda-0 (matrix [[0.7 0] [0 0.07]])
34 q-0 (vec (repeat 10 10.0)) ; for Dirichlet.
35 ; The dimensionality must match number of RGB bins V
36 M 10 ; for G0 (eqns (7-8))
37 multinomial-trials 49 ; for eqn (2)... this is m x m where m = 2L + 1
38
39 extract-old-style-theta
40 (fn [theta]
41 (let
42 [mvn-process (retrieve (get theta ’positions))
43 dirichlet-multinomial-process-instance (retrieve (get theta ’colours))
44 mu-Sigma (MVN-PROCESS-FAST-STATE-INFO mvn-process)
45 ps (DIRICHLET-MULTINOMIAL-PROCESS-STATE-INFO
46 dirichlet-multinomial-process-instance)
47 theta]
48 {’mu (get mu-Sigma ’mu) ’Sigma (get mu-Sigma ’Sigma)
49 ’trials multinomial-trials ’ps ps}))
50
51 get-N (fn [t] (nth Nts (dec t)))
52
53 ;; Transition distribution
54 T (fn T [prev-theta]
55 (let [previous-mvn-process
56 (get prev-theta ’positions)
57 previous-dirichlet-multinomial-process (get prev-theta ’colours)
58
59 new-mvn-process (XRP (mvn-conjugate-fast mu-0 k-0 nu-0 Lambda-0))
60 new-dirichlet-multinomial-process
61 (XRP (dirichlet-multinomial-process q-0 multinomial-trials))
62
63 ;; Auxiliary transition

7

64 _ (repeatedly M (fn []
65 (INCORPORATE new-mvn-process
66 (SAMPLE previous-mvn-process))))
67 _ (repeatedly M (fn []
68 (INCORPORATE
69 new-dirichlet-multinomial-process
70 (SAMPLE previous-dirichlet-multinomial-process))))
71]
72 {’positions new-mvn-process ’colours new-dirichlet-multinomial-process}))
73
74 ;; Base distribution
75 G0 (fn G0 []
76 (let [mvn-process
77 (XRP (mvn-conjugate-fast mu-0 k-0 nu-0 Lambda-0))
78 dirichlet-multinomial-process-instance
79 (XRP (dirichlet-multinomial-process q-0 multinomial-trials))
80]
81 {’positions mvn-process ’colours dirichlet-multinomial-process-instance}))
82
83 [gpu get-theta] (create-gpu alpha rho G0 T get-N)
84
85 ;; Helper function
86 ;; Returns parameters for the corresponding table of foreground pixel n at time t
87 get-theta-t-n (mem (fn get-theta-t-n [t n]
88 (let [customers (gpu t n)
89 cs (get customers ’cs)
90 k (get cs (dec n))]
91 (get-theta t k))))
92
93 ;;;;;; OBSERVES ;;;;;;
94 observe-lines
95 (fn observe-lines [lines line-id]
96 (if (nil? (first lines))
97 true
98 (let [line (first lines)
99 pos (get line ’pos)

100 _ (store "current-pos" (matrix-to-clojure-vector pos))
101 col (get line ’col)
102 _ (store "current-col" col)
103 t (get line ’t)
104 n (get line ’n)
105 theta (get-theta-t-n t n)
106 positions-process (get theta ’positions)
107 colours-process (get theta ’colours)]
108
109 ; Observing positions.
110 (OBSERVE positions-process pos)
111
112 ; Observing colours
113 (OBSERVE colours-process col)
114
115 (if (= n (get-N t))
116 (let [gpu (gpu t n)
117 cs (get gpu ’cs)
118 relevant-clusters (distinct cs)
119 thetas (map (fn [k]
120 (let [theta (get-theta t k)
121 theta (extract-old-style-theta theta)
122 mu (get theta ’mu)
123 Sigma (get theta ’Sigma)
124 ps (get theta ’ps)]
125 {’k k ’mu mu ’Sigma Sigma ’ps ps}))
126 relevant-clusters)
127 res {’t t ’n n ’gpu gpu ’thetas thetas}]
128 (predict res)))

8

129 (observe-lines (rest lines) (inc line-id)))))]
130
131 (observe-lines data 0))))
132
133 (defn -main [data-set-name number-of-particles num-particles-to-output
134 proposal-type & ignore-following-args]
135 (let [number-of-particles (parse-int number-of-particles)
136 num-particles-to-output (parse-int num-particles-to-output)
137 proposal-type (str proposal-type)
138 _ (case proposal-type "prior" :okay "handtuned" :okay "nn" :okay)
139 [data Nts] (load-DDPMO-data data-set-name)
140 query-results (doquery :smc ddpmo [data Nts proposal-type]
141 :number-of-particles number-of-particles)
142 results
143 (doall
144 (map
145 (fn [particle-output particle-id]
146 (doall
147 (map
148 (fn [x]
149 (println (str particle-id "," (first x) "," (second x) ",0.0")))
150 (get particle-output :anglican.state/predicts))))
151 (take num-particles-to-output query-results)
152 (range num-particles-to-output)))]
153 results))

4.5 The GPU code in Anglican

1 ;;;;;; GPU definition ;;;;;;
2
3 ; Creates an instance of a GPU process.
4 ; Takes:
5 ; * GPU’s alpha and rho.
6 ; * Base distribution G0.
7 ; * Transition distribution T.
8 ; * function get-N which returns the number of points at each time.
9 ; Returns: [gpu get-theta]

10 (defm create-gpu [alpha rho G0 T get-N]
11 (let
12 [;; Given vector of table sizes ms = [m1 m2 ...], returns a new vector of table
13 ;; sizes by removing customers from tables with probability rho
14 remove-customers
15 (fn [ms]
16 (vec (map (fn [m]
17 (if (= m 0) 0 (- m (SAMPLE (binomial m rho)))))
18 ms)))
19
20 ;; Returns {’cs (vector of n cluster ids) ’K (number of unique clusters at n)
21 ;; ’ms (vector of cluster sizes at n)}
22 ;; after processing foreground pixel n at time t
23 ;; n goes from 1
24 ;; c_i goes from 0
25 ;; K = max(c_i) + 1
26 ;; t goes from 1
27 gpu (mem
28 (fn gpu [t n]
29 (if (= n 0)
30 ;; Initialise
31 (if (= t 1)
32 {’cs ’[] ’K 0 ’ms ’[]}
33 (let [prev-t-gpu (gpu (dec t) (get-N (dec t)))
34 prev-K (get prev-t-gpu ’K)
35 prev-ms (get prev-t-gpu ’ms)]
36 {’cs ’[] ’K prev-K ’ms (remove-customers prev-ms)}))

9

37
38 ;; Get from step (n - 1)
39 (let [prev-n-gpu (gpu t (dec n))
40 cs (get prev-n-gpu ’cs)
41 K (get prev-n-gpu ’K)
42 ms (get prev-n-gpu ’ms)
43 w (conj ms alpha)
44 c (SAMPLE (discrete w))
45 new-cs (conj cs c)
46 new-K (max K (inc c))
47 new-ms (assoc ms c (inc (get ms c 0)))]
48 {’cs new-cs ’K new-K ’ms new-ms}))))
49
50 ;; Returns parameters for table k at time t using either
51 ;; transition distribution T or base distribution G0
52 get-theta (mem (fn get-theta [t k]
53 (if (= t 1)
54 (G0)
55 (let [prev-customers (gpu (dec t) (get-N (dec t)))
56 prev-K (get prev-customers ’K)
57 initial-ms (get (gpu t 0) ’ms)]
58 (if (> k (dec prev-K))
59 (G0)
60 (if (= (nth initial-ms k) 0)
61 nil
62 (T (get-theta (dec t) k))))))))]
63 [gpu get-theta]))

4.6 Clojure code for the data-driven proposal

1 (def NUMBER-OF-NEAREST-CLUSTERS 3)
2
3 (def sort-thetas
4 (fn [thetas]
5 (let
6 [my-comparer
7 (fn [el1 el2]
8 (< (nth el1 2) (nth el2 2)))]
9 (sort my-comparer thetas))))

10
11 (def distance
12 (fn [[x1 y1] [x2 y2]]
13 "Returns Euclidean distance between two 2D points."
14 ; Important! Here x is really y, and vice versa.
15 ; This is because in the MATLAB code the first coordinate is y.
16 (pow (+ (pow (- x1 x2) 2.0) (pow (- y1 y2) 2.0)) 0.5)))

4.7 Anglican code (within the DDPMO model) for the data-driven proposal

1 get-thetas
2 (fn [t n]
3 "Returns thetas for active clusters (ms[i] > 0)
4 at data point (t, n). This function should be
5 called only when we already processed that data point."
6 (let
7 [
8 gpu-state (gpu t n)
9 ms (get gpu-state ’ms)

10 get-theta (fn [t k] (if (> (nth ms k) 0) (get-theta t k) nil))
11 thetas (map (fn [k] (list k (get-theta t k))) (range (count ms)))
12 thetas (filter (fn [el] (not (nil? (second el)))) thetas)
13]
14 thetas))
15

10

16 get-mean-coords
17 (fn [theta]
18 "Extracts mean from the theta as Clojure vector."
19 (let
20 [coords (matrix-to-clojure-vector
21 (get (MVN-PROCESS-FAST-STATE-INFO
22 (retrieve (get theta ’positions))) ’mu))]
23 coords))
24
25 get-nearest-thetas
26 (fn [t n [x y]]
27 "Gets an ordered list of theta which are the nearest to the point [x y]
28 based on the state at the previous data point (t, n - 1)."
29 (if (and (= t 1) (= n 1))
30 nil
31 (let
32 [[t n]
33 (if (= n 1)
34 [(- t 1) (get-N (- t 1))]
35 [t (- n 1)])]
36 (let
37 [thetas (get-thetas t n)
38 thetas (map (fn [[k theta]]
39 (list k theta (distance [x y]
40 (get-mean-coords theta)))) thetas)
41 thetas (sort-thetas thetas)
42 thetas (take NUMBER-OF-NEAREST-CLUSTERS thetas)]
43 (if (< (count thetas) NUMBER-OF-NEAREST-CLUSTERS)
44 nil
45 thetas)))))
46
47 ;; Do the trick to allow mutual recursion.
48 _ (store "get-nearest-thetas" get-nearest-thetas)

4.8 Code for the GPU to get data for the proposal for train datasets

1 NEAREST-THETAS ((retrieve "get-nearest-thetas") t n (retrieve "current-pos"))
2 for-proposal
3 (map
4 (fn [the-list]
5 (let
6 [theta-id (nth the-list 0)
7 theta (nth the-list 1)
8 distance-to-the-center (nth the-list 2)]
9 (list

10 theta-id
11 (DIRICHLET-MULTINOMIAL-PROCESS-STATE-INFO (retrieve (get theta ’colours)))
12 distance-to-the-center)))
13 NEAREST-THETAS)
14 nn-input
15 (concat
16 (apply concat (doall (map (fn [data]
17 (concat (nth data 1) (list (nth data 2)))) for-proposal)))
18 (doall (map (fn [x] (/ x 49.0)) (retrieve "current-col")))))
19 c (if (or (not (= (count nn-input) 43)) (= proposal-type "prior"))
20 (SAMPLE (discrete w))
21 (let
22 [dist (sample-cluster-id nn-input w 0.8
23 (map first NEAREST-THETAS) (= proposal-type "handtuned"))
24 [my-sample log-likelihood] (sample dist)]
25 (add-log-weight log-likelihood)
26 my-sample))

11

4.9 Code for the GPU to use the proposal for test datasets

1 NEAREST-THETAS ((retrieve "get-nearest-thetas") t n (retrieve "current-pos"))
2 for-proposal
3 (map
4 (fn [the-list]
5 (let
6 [theta-id (nth the-list 0)
7 theta (nth the-list 1)
8 distance-to-the-center (nth the-list 2)]
9 (list

10 theta-id
11 (DIRICHLET-MULTINOMIAL-PROCESS-STATE-INFO (retrieve (get theta ’colours)))
12 distance-to-the-center)))
13 NEAREST-THETAS)
14 _ (predict (list for-proposal c (retrieve "current-col") (count w)))

12

