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Abstract

This paper explores how to find, track, and learn
models of arbitrary objects in a video without
a predefined method for object detection. We
present a model that localizes objects via unsuper-
vised tracking while learning a representation of
each object, avoiding the need for pre-built detec-
tors. Our model uses a dependent Dirichlet pro-
cess mixture to capture the uncertainty in the num-
ber and appearance of objects and requires only
spatial and color video data that can be efficiently
extracted via frame differencing. We give two
inference algorithms for use in both online and
offline settings, and use them to perform accurate
detection-free tracking on multiple real videos.
We demonstrate our method in difficult detection
scenarios involving occlusions and appearance
shifts, on videos containing a large number of ob-
jects, and on a recent human-tracking benchmark
where we show performance comparable to state
of the art detector-based methods.

1 Introduction
Algorithms for automated object detection and tracking
in video have found application in a wide range of fields,
including robotic vision, cell tracking, sports analysis, video
indexing, and video surveillance [28, 33]. The goal of these
algorithms is to find the sequences of positions held by each
object of interest in a video. A majority of modern methods
require a pre-trained object detector or make use of prior
knowledge about the objects’ physical characteristics (such
as their color or shape) to perform detection [9]. Often,
these methods will apply the detector in each frame of a
video, and then use the detection results in tracking or data
association algorithms. Other algorithms use heuristics to
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find, or require manual initialization of, object positions
and then search for similar image patches in consecutive
frames to perform tracking [24]. Both techniques require
some predefined detection strategy for each type of object
they intend to find and track.

When the objects to be tracked have highly variable appear-
ance, if one wishes to track many different types of objects,
or if one simply does not know the types of objects in ad-
vance, it is often hard to find a suitable detection strategy
[5]. Furthermore, common video conditions such as variable
lighting, low quality images, non-uniform backgrounds, and
object occlusions can all reduce detection accuracy [31].

Cases such as these, where it is difficult to construct an
object detector in advance, prompt the need for a method
to automatically localize and track arbitrary objects. Some
methods towards this end have involved background subtrac-
tion and blob tracking, which segment foreground patches
to localize objects, and optical flow-based tracking, which
separate objects based on their relative motion. Both have
trouble consistently and accurately segmenting objects and
tracking through occlusion [29, 6]. A recent work intro-
duced the term “detection-free tracking” for this task, and
proposed a method based on spectral clustering of trajecto-
ries [18].

Bayesian models have also been employed to capture the
components of a video, and a number of recent works have
incorporated nonparametric Bayesian priors for finding the
patterns of motion in scenes [30, 17]. However, there has
been little work towards building Bayesian models of arbi-
trary objects in order to perform detection-free tracking.

In this paper, we develop a nonparametric Bayesian model
for jointly learning a representation of each object and per-
forming unsupervised tracking, thereby allowing for accu-
rate localization of arbitrary objects. We combine a de-
pendent Dirichlet process mixture with object and motion
models to form the dependent Dirichlet process mixture
of objects (DDPMO). The advantages of our model are
that it can (a) accurately localize and track arbitrary video
objects in a fully unsupervised fashion, (b) jointly learn a
time-varying model for each object and use these models to



The Dependent Dirichlet Process Mixture of Objects for Detection-free Tracking

increase the localization/tracking performance, (c) infer a
distribution over the number of distinct objects present in a
video, (d) incorporate a model for the motion of each object,
and (e) begin tracking as objects enter the video frame, stop
when they exit, and track through periods of partial or full
occlusion.

2 Dependent Dirichlet Process Mixture of
Objects

To find and track arbitrary video objects, the DDPMO mod-
els spatial and color features that are extracted as objects
travel within a video scene (described in Section 2.1). The
model isolates independently moving video objects and
learns object models for each that capture their shape and
appearance. The learned object models allow for tracking
through occlusions and in crowded videos. The unifying
framework is a dependent Dirichlet process mixture, where
each component is a (time-varying) object model. This
setup allows us to estimate the number of objects in a video
and track moving objects that may undergo changes in ori-
entation, perspective, and appearance.

2.1 Preliminaries

Dependent Dirichlet process prior. Dirichlet process
(DP) priors for component weights in mixture models have
long been used as nonparametric Bayesian tools to estimate
the number of clusters in data [3]. Dependent Dirichlet
process (DDP) mixtures extend this by allowing cluster
parameters to vary with some covariate [23]. In our case,
a DDP object mixture lets us estimate, and capture the
uncertainty in, the number of objects while modeling their
time-varying parameters.

A DDP known as a generalized Polya urn (GPU) [11] has
the desired properties that, when used in a mixture model,
clusters can be created and die off and cannot merge or
split. In this model, the n

th data point at time t, xt,n, has an
assignment ct,n to a cluster k 2 {1, . . . ,Kt,n} (where Kt,n

denotes the total number of assigned clusters after reaching
xt,n). Each assignment increases the cluster’s size m

k
t,n by

one. After each time step, cluster sizes may decrease when
observations are uniformly “unassigned” in a deletion step.
The generative process for the GPU, at each time step t, is
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where Cat is the categorical distribution, m\ct,n
t,n is the set

{m1
t,n, . . . ,m

Kt,n

t,n } \ {mct,n
t,n }, Binom is the binomial dis-

tribution, ↵ is the DP concentration parameter, and ⇢ is a
deletion parameter that controls temporal dependence of the
DDP. We will refer to this process as GPU(↵, ⇢).

Data. At each frame t, we assume we are given a set
of Nt foreground pixels, extracted via some background
subtraction method (such as those detailed in [33]). These
methods primarily segment foreground objects based on
their motion relative to the video background. For example,
an efficient method applicable for stationary videos is frame
differencing: in each frame t, one finds the pixel values
that have changed beyond some threshold, and records their
positions xs

t,n = (xs1
t,n, x

s2
t,n). In addition to the position of

each foreground pixel, we extract color information. The
spectrum of RGB color values is discretized into V bins, and
the local color distribution around each pixel is described
by counts of surrounding pixels (in an m ⇥ m grid) that
fall into each color bin, denoted x

c
t,n = (xc1

t,n, . . . , x
cV
t,n).

Observations are therefore of the form

xt,n = (xs
t,n,x

c
t,n) = (xs1

t,n, x
s2
t,n, x

c1
t,n, . . . , x

cV
t,n) (1)

Examples of spatial pixel data extracted via frame differenc-
ing are shown in Figure 1 (a)-(g).

2.2 DDPMO

Our object model F(✓kt ) is a distribution over pixel data,
where ✓

k
t represents the parameters of the k

th object at time
t. We wish to keep our object model general enough to be
applied to arbitrary video objects, but specific enough to
learn a representation that can aid in tracking. In this paper,
we model each object with

xt,n ⇠ F(✓kt ) = Normal(xs
t,n|µt,⌃t)Mult(xc

t,n|�t) (2)

where object parameters ✓t = {µt,⌃t, �t}, and
PV

j=1 �
j
t =

1. The object model captures the objects’ locus and extent
with the multivariate Gaussian and color distribution with
the multinomial. We demonstrate in Section 4 that this
representation can capture the physical characteristics of a
wide range of objects while allowing objects with different
shapes, orientations, and appearances to remain isolated
during tracking.

We would also like to model the motion of objects. Assum-
ing as little as possible, we take each object’s parameters ✓kt
to be a noisy version of the previous parameters ✓kt�1 (if the
object existed at the previous time step) and define

✓

k
t |✓kt�1 ⇠

(

T(✓kt�1) if k  Kt�1,Nt�1

G0 if k > Kt�1,Nt�1

(3)
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Figure 1: (a - f) Two pairs of consecutive frames and the
spatial observations xs

t,n extracted by taking the pixel-wise
frame difference between each pair. (g) The results of frame
differencing over a sequence of images (from the PETS2010
dataset).

where T denotes a transition kernel, the k > Kt�1,Nt�1

case is when a new cluster has been created at time t, and
G0 is the base distribution of the dependent Dirichlet pro-
cess, which represents the prior distribution over object
parameters. We define G0 to be

G0(✓
k
t ) = NiW(µk

t ,⌃
k
t |µ0,0, ⌫0,⇤0)Dir(�kt |q0) (4)

where NiW denotes the normal-inverse-Wishart distribution
and Dir denotes the Dirichlet distribution; these act as a
conjugate prior to the object model. We can therefore write
the generative process of the DDPMO as, for each time step
t = 1, . . . , T :

1. Draw {ct,1:Nt , Kt,Nt , m
1:Kt�1,Nt�1

t,0 } ⇠ GPU(↵, ⇢)

2. For k = 1, . . . ,Kt,Nt :

draw ✓

k
t ⇠

(

T(✓kt�1) if k  Kt�1,Nt�1

G0(µ0,0, ⌫0,⇤0, q0) if k > Kt�1,Nt�1

3. For n = 1, . . . , Nt: draw xt,n ⇠ F(✓ct,nt )

where the notation c1,1:N1 = {c1,1, . . . , c1,N1}. A graphical
model for the DDPMO is shown in Figure 2.

To meet technical requirements of the GPU, the transition
kernel T must satisfy

Z

G0(✓
k
t�1)T(✓

k
t |✓kt�1)d✓

k
t�1 = G0(✓

k
t ) (5)

or, equivalently, its invariant distribution must equal the base
distribution [19]. One way to satisfy this while providing

Figure 2: Graphical model of the dependent Dirichlet
process mixture of objects (DDPMO). All observations at
time t are denoted as xt and their assignments as ct.

a reasonable transition kernel is to introduce a set of M
auxiliary variables z

k
t = (zkt,1, . . . , z

k
t,M ) for cluster k at

time t such that

P (✓kt |✓kt�1) =

Z

P (✓kt |zkt )P (zkt |✓kt�1)dz
k
t (6)

With this addition, object parameters do not directly de-
pend on their values at a previous time, but are instead
dependent through an intermediate sequence of variables.
This allows the cluster parameters at each time step to
be marginally distributed according to the base distribu-
tion G0 while maintaining simple time varying behavior.
We can therefore sample from the transition kernel using
✓

k
t ⇠ T (✓kt�1) = T2 � T1(✓kt�1), where

z

k
t,1:M ⇠ T1(✓

k
t�1)

= Normal(µk
t�1,⌃

k
t�1)Mult(�kt�1) (7)

µ

k
t ,⌃

k
t , �

k
t ⇠ T2(z

k
t,1:M )

= NiW(µM ,M , ⌫M ,⇤M )Dir(qM ) (8)

where µM ,M , ⌫M ,⇤M and qM are posterior NiW and Dir
parameters, given the auxiliary variables zt,1:M (formulas
given in Section 3.1.1).

3 Inference

We describe two inference algorithms for the DDPMO: se-
quential Monte Carlo (SMC) with local Gibbs iterations,
and Particle Markov Chain Monte Carlo (PMCMC).

3.1 Sequential Monte Carlo

We first derive an SMC (particle filter) inference algorithm
where we draw samples from a proposal distribution by iter-
ating through local Gibbs updates (detailed in Section 3.1.1).
SMC allows us to make a single pass through the data and
draw posterior samples in an online fashion.
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Algorithm 1 SMC for the DDPMO
Input: Extracted pixel data {x1,1:N1 , . . . ,xT,1:NT }, num-

ber of particles L, number of local Gibbs iterations S

Output: Posterior samples
n

✓

1:K1,N1
1 , . . . , ✓

1:KT,NT
T

o(1:L)

of the object model parameters
1: for t = 1 to T do
2: for l = 1 to L do
3: for iter = 1 to S do
4: Sample (ct,1:Nt)

(l) ⇠ Q1 and
(✓

1:Kt,Nt
t )(l) ⇠ Q2

5: end for
6: for k = 1 to Kt,Nt do
7: Sample (�m

k
t )

(l) ⇠ Binom((mk
t,Nt

)(l), ⇢)

8: Set (mk
t+1,0)

(l) = (mk
t,Nt

)(l) � (�m

k
t )

(l)

9: Sample (zkt+1,1:M )(l) ⇠ T1((✓kt )
(l))

10: end for
11: Compute particle weight w̃(l)

t

12: end for
13: Normalize particle weights and resample particles
14: end for

3.1.1 Local Gibbs Updates

We perform Gibbs sampling on the assignments and object
parameters (at a given t) to draw SMC proposals; this allows
for the proposal of well-mixed samples given newly intro-
duced data in a particular frame. For an assignment ct,n, we
can compute a value proportional to the posterior for each
possible assignment value 1, . . . ,Kt,n, and then sample
from the resulting categorical distribution (after normaliz-
ing). The first proposal distribution Q1 is the probability
of an assignment ct,n given current cluster sizes, cluster
parameters, and concentration parameter ↵, written

Q1

⇣

ct,n|m
1:Kt,n�1

t,n�1 , ✓

1:Kt,n�1

t ,↵

⌘

/

Cat(m1
t,n�1, . . . ,m

Kt,n�1

t,n�1 ,↵)

⇥
(

F(xt,n|✓
ct,n
t ) if ct,n  Kt,n�1

R

P (xt,n|✓)G0(✓)d✓ ct,n > Kt,n�1

(9)

where we set the number of clusters Kt,n and their sizes
m

1:Kt,n

t,n appropriately as each ct,n is assigned, and assume
K1,0 = 0 for consistency at t = 1. The integral in the case
of a new cluster (k > Kt,n�1) has an analytic solution

Z

P (xt,n|✓)G0(✓)d✓ =

t⌫0�1

✓

x

s
t,n

�

�

µ0,
⇤0(0 + 1)

0(⌫0 � 1)

◆

⇥
V
Y

j=1

�(xc
t,n)

�(q0)
⇥

�(
PV

j=1 q0)

�(
PV

j=1 x
c
t,n)

(10)

where t⌫0�1 denotes the multivariate t-distribution with
⌫0 � 1 degrees of freedom, where we follow the three-value

parameterization [21], and � denotes the gamma function.

The conjugacy of appearance model and transition kernel
allow us to sample from the second proposal distribution Q2,
which is the posterior distribution over the object parameters
given current observations, auxiliary variables, and previous
time object parameters, written

Q2(✓
k
t |✓kt�1,x

k
t,1:Nt

, z

k
t,1:M ) =

F(xk
t,1:Nt

|✓kt )T2(✓
k
t |zkt,1:M )

= NiW(µk
t ,⌃

k
t |µN ,N , ⌫N ,⇤N )

⇥ Dir(�kt |qN )

(11)

where x

k
t,1:Nt

= {xt,n 2 xt,1:Nt |ct,n = k} and the pa-
rameters for the NiW and Dir distributions are given when
x

k
t,1:Nt

and z

k
t,1:M are taken to be the “observations” in the

following posterior updates

N = 0 +N (12)
⌫N = ⌫0 +N (13)

µN =
0

0 +N

µ0 +
N

0 +N

x

s (14)

⇤N = ⇤0 + S

x

s (15)

qN = q0 +
N
X

i=1

x

c
i (16)

where N is the number of observations, {µ0,0, ⌫0,⇤0}
are the NiW prior parameters, q0 is the Dir prior parameter,
x

s and x

c respectively denote the spatial and color features
of the observations, and x and S

x

respectively denote the
sample mean and sample covariance of the observations.

3.1.2 Particle Weights

At each time, the particle weights are set to be

w̃(l)
t =

P
⇣
(ct,1:Nt)

(l), (✓
1:Kt,Nt
t )(l),xt,1:Nt |⇤

⌘

P
⇣
(ct,1:Nt)(l), (✓

1:Kt,Nt
t )(l)|⇤

⌘ (17)

where we’ve defined

⇤ = {(✓
1:Kt�1,Nt�1

t�1 )(l), (m
1:Kt�1,Nt�1

t,0 )(l)} (18)

Note that the numerator decomposes into

P
⇣
xt,1:Nt |(ct,1:Nt)

(l), (✓
1:Kt,Nt
t )(l)

⌘

⇥ P
⇣
(ct,1:Nt)

(l), (✓
1:Kt,Nt
t )(l)|⇤

⌘ (19)

which can be computed using the DDPMO local probabil-
ity equations defined in Section 2.2, and the denominator
can be computed using equations 9 and 11. After the par-
ticle weights are computed, they are normalized; particles
are then redrawn based on their normalized weights in a
multinomial resampling procedure [15].
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3.1.3 Computational Cost

Assume N extracted pixels per frame, T frames, L particles,
M auxiliary variables, S local Gibbs iterations, and fewer
than K sampled objects (K(1:L)

T,NT
 K). In the SMC infer-

ence algorithm, each local Gibbs iterations is O(KN +M)
and evaluating each particle weight is O(K +N); the SMC
algorithm therefore scales as O(TL(K(SN +M) +SM +
N)). If we neglect the number of auxiliary variables M , as
we can usually fix this at a small value, the algorithm scales
as O(TLKSN). We have empirically found that an SMC
implementation in MATLAB, while not tuned for speed,
usually requires 4-20 seconds for every 1 second of video,
depending on the number of objects (after frame-rate has
been subsampled to approximately 3 images/second in all
cases). It is not unreasonable to believe that this could be
scaled to real time tracking, given parallel computation and
efficient image processing.

3.2 Particle Markov Chain Monte Carlo

SMC provides an efficient, online method for posterior in-
ference, but can suffer from degeneracy; notably, a large
majority of the returned particles correspond to a single,
non-optimal tracking hypothesis. Ideally, we would like to
infer a full posterior over object paths. MCMC methods
are guaranteed to yield true posterior samples as the num-
ber of samples tends to infinity; however, we have found
batch Gibbs sampling to be impractical for inference in the
DDPMO, as samples tend to remain stuck in local poste-
rior optima (often when a track begins on one object before
switching to another) and cannot converge to a high accu-
racy tracking hypothesis in a reasonable amount of time.

PMCMC [2] is a Markov chain Monte Carlo method that
attempts to remedy these problems by using SMC as an
intermediate sampling step to move efficiently through high
dimensional state spaces. We implement a specific case
known as the Particle Gibbs (PG) algorithm, where we
sample from the conditional distributions used in Gibbs
sampling via a modified version of Algorithm 1 referred to
as conditional sequential Monte Carlo.

3.2.1 Conditional SMC

Conditional SMC [2] allows for SMC to be used as a pro-
posal distribution in a Gibbs sampling algorithm. We must
first introduce the notion of a particle’s lineage. Let A1:L

t

denote the indices of the L particles chosen during the re-
sampling step in time t (in Algorithm 1). The lineage B

(l)
1:T

of a particle is recursively defined as B

(l)
T = l and for

t = (T � 1), . . . , 1, B

(l)
t = A

B(l)
t+1

t . More intuitively, for
the l

th particle, which contains the variables ⇥(l)
1:T at the

final time T, B(l)
t denotes the index of the particle that con-

tained the variables ⇥(l)
1:t⇢⇥(l)

1:T at time t.

Conditional SMC uses lineages to ensure that a given parti-
cle will survive all resampling steps, whereas the remaining
particles are generated as before. We define conditional
SMC for the DDPMO in Algorithm 2. Note that computa-
tion of particle weights and resampling (for relevant parti-
cles) is performed in the same manner as in SMC inference
(Algorithm 1).

Algorithm 2 Conditional SMC for the DDPMO
Input: Extracted pixel data {x1,1:N1 , . . . ,xT,1:NT }, num-

ber of particles L, number of local Gibbs itera-
tions S, condition particle �(⌘)

1:T with lineage B

(⌘)
1:T

(⌘ 2 {1, . . . , L})
Output: Particle-conditional posterior samples

{⇥1:T }(1:L) of all latent model variables
1: for t = 1 to T do
2: for l = 1 to L do
3: if l 6= B

(⌘)
t then

4: for iter = 1 to S do
5: Sample (ct,1:Nt)

(l) ⇠ Q1 and
(✓

1:Kt,Nt
t )(l) ⇠ Q2

6: end for
7: for k = 1 to Kt,Nt do
8: Sample (�m

k
t )

(l) ⇠ Binom((mk
t,Nt

)(l), ⇢)

9: Set (mk
t+1,0)

(l) = (mk
t,Nt

)(l) � (�m

k
t )

(l)

10: Sample (zkt+1,1:M )(l) ⇠ T1((✓kt )
(l))

11: end for
12: Set ⇥(l)

t =
n

(ct,1:Nt)
(l)
, (✓

1:Kt,Nt
t )(l),

(m
1:Kt,Nt
t+1,0 )(l), (z

1:Kt,Nt
t+1,1:M )(l)

o

13: else
14: Set ⇥(l)

t = �(⌘)
t

15: end if
16: Compute particle weight w̃(l)

t

17: end for
18: for l = 1 to L do
19: if l 6= B

(⌘)
t then

20: Normalize weights and resample particles
21: end if
22: end for
23: end for

3.2.2 Particle Gibbs

In the particle Gibbs (PG) algorithm [2], the model variables
are first initialized, and then conditional SMC (Algorithm
2) is run for a number of iterations. More specifically, at
the end of each iteration, a sample is drawn from the set of
weighted particles returned by conditional SMC, and this
sample is conditioned upon in the next iteration. The PG
algorithm for the DDPMO is formalized in Algorithm 3.

As the PG inference requires all variables to be initialized,
SMC inference (Algorithm 1) can be used as a quick way to
provide near-MAP initialization of variables.
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Algorithm 3 PMCMC (Particle Gibbs) for the DDPMO
Input: Extracted pixel data {x1,1:N1 , . . . ,xT,1:NT }, num-

ber of global Gibbs iterations G, number of particles L,
number of local Gibbs iterations S

Output: Posterior samples
n

✓

1:K1,N1
1 , . . . , ✓

1:KT,NT
T

o1:G

of the object model parameters
1: Initialize all model variables to �(L)

0

2: for g = 1 to G do
3: Run conditional SMC (Algorithm 2) with input

{x1,1:N1 , . . . ,xT,1:NT }, L, S, and conditional on
particle �(L)

g�1 to get particle set {⇥(1)
1:T , . . . ,⇥

(L)
1:T }

4: Draw �(L)
g ⇠ Unif({⇥(1)

1:T , . . . ,⇥
(L)
1:T })

5: end for
6: Return

n

✓

1:K1,N1
1 , . . . , ✓

1:KT,NT
T

o1:G
2 �(L)

1:G

4 Experiments
We demonstrate the DDPMO on three real video datasets:
a video of foraging ants, where we show improved perfor-
mance over other detection-free methods; a human tracking
benchmark video, where we show comparable performance
against object-specific methods designed to detect humans;
and a T cell tracking task where we demonstrate our method
on a video with a large number of objects and show how our
unsupervised method can be used to automatically train a
supervised object detector.

Detection-free comparison methods. Detection-free
tracking strategies aim to find and track objects without any
prior information about the objects’ characteristics nor any
manual initialization. One type of existing strategy uses
optical flow or feature tracking algorithms to produce short
tracklets, which are then clustered into full object tracks. We
use implementations of Large Displacement Optical Flow
(LDOF) [10] and the Kanade-Lucas-Tomasi (KLT) feature
tracker [27] to produce tracklets 1. Full trajectories are then
formed using the popular normalized-cut (NCUT) method
[25] to cluster the tracklets or with a variant that uses non-
negative matrix factorization (NNMF) to cluster motion
using tracklet velocity information [12] 2. We also com-
pare against a detection-free blob-tracking method, where
extracted foreground pixels are segmented into components
in each frame [26] and then associated with the nearest
neighbor criterion [33].

Performance metrics. For quantitative comparison, we
report two commonly used performance metrics for object
detection and tracking, known as the sequence frame detec-

1 The LDOF implementation can be found at http://www.seas.upenn.
edu/˜katef/LDOF.html and the KLT implementation at http://www.ces.
clemson.edu/˜stb/klt/.

2 The NCUT implementation can be found at http://www.cis.upenn.
edu/˜jshi/software/ and the NNMF implementation at http://www.

ornl.gov/˜czx/research.html.

tion accuracy (SFDA) and average tracking accuracy (ATA)
[22]. These metrics compare detection and tracking results
against human-authored ground-truth, where SFDA2 [0, 1]
corresponds to detection performance and ATA2 [0, 1] cor-
responds to tracking performance. We authored the ground-
truth for all videos with the Video Performance Evaluation
Resource (ViPER) tool [14].

4.1 Insect Tracking
In this experiment, we aim to demonstrate the ability of the
DDPMO to find and track objects in a difficult detection sce-
nario. The video contains six ants with a similar texture and
color distribution as the background. The ants are hard to
discern, and it is unclear how a predefined detection criteria
might be constructed. Futher, the ants move erratically and
the spatial data extracted via frame differencing does not
yield a clear segmentation of the objects in individual frames.
A still image from the video, with ant locations shown, is
given in Figure 3(a). We compare the SMC and PMCMC

Figure 3: The ants in (a) are difficult to discern (positions la-
beled). We plot 100 samples from the inferred posterior over
object parameters (using SMC (c) and PMCMC (d)) with
ground-truth bounding boxes overlaid (dashed). PMCMC
proves to give more accurate object parameter samples. We
also plot samples over object tracks (sequences of mean
parameters) using PMCMC in (f) , and its MAP sample in
(b). We show the SFDA and ATA scores for all comparison
methods in (e).

inference algorithms, and find that PMCMC yields more
accurate posterior samples (3(d)) than SMC (3(c)). Ground-
truth bounding boxes (dashed) are overlaid on the posterior
samples. The MAP PMCMC sample is shown in 3(b) and
posterior samples of the object tracks are shown in 3(f),
along with overlaid ground-truth tracks (dashed). SFDA

http://www.seas.upenn.edu/~katef/LDOF.html
http://www.seas.upenn.edu/~katef/LDOF.html
http://www.ces.clemson.edu/~stb/klt/
http://www.ces.clemson.edu/~stb/klt/
http://www.cis.upenn.edu/~jshi/software/
http://www.cis.upenn.edu/~jshi/software/
http://www.ornl.gov/~czx/research.html
http://www.ornl.gov/~czx/research.html
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and ATA performance metrics for all comparison methods
are shown in 3(e). The DDPMO yields higher metric values
than all other detection-free comparison methods, with PM-
CMC inference scoring higher than SMC. The comparison
methods seemed to suffer from two primary problems: very
few tracklets could follow object positions for an extended
sequence of frames, and clustering tracklets into full tracks
sharply decreased in accuracy when the objects came into
close contact with one another.

4.2 Comparisons with Detector-based Methods

In this experiment we aim to show that our general-purpose
algorithm can compete against state of the art object-specific
algorithms, even when it has no prior information about the
objects. We use a benchmark human-tracking video from
the International Workshop on Performance Evaluation of
Tracking and Surveillance (PETS) 2009-2013 conferences
[16], due to its prominence in a number of studies (listed in
Figure 4(f)). It consists of a monocular, stationary camera,
794 frame video sequence containing a number of walking
humans. Due to the large number of frames and objects in
this video, we perform inference with the SMC algorithm
only.

The DDPMO is compared against ten object-specific
detector-based methods from the PETS conferences. These
methods all either leverage assumptions about the orien-
tation, position, or parts of humans, or explicitly use pre-
trained human detectors. For example, out of the three
top scoring comparison methods, [9] uses a state of the
art pedestrian detector, [32] performs head and feet detec-
tion, and [13] uses assumptions about human geometry and
orientation to segment humans and remove shadows.

In Figure 4(a-d), the MAP sample from the posterior dis-
tribution over the object parameters is overlayed on the ex-
tracted data over a sequence of frames. The first 50 frames
from the video are shown in 4(e), where the assignment of
each data point is represented by color and marker type. We
show the SFDA and ATA values for all methods in 4(f), and
can see that the DDPMO yields comparable results, receiv-
ing the fourth highest SFDA score and tying for the second
highest ATA score.

4.3 Tracking Populations of T Cells

Automated tracking tools for cells are useful for cell biolo-
gists and immunologists studying cell behavior. We present
results on a video containing T cells that are hard to detect
using conventional methods due to their low constrast ap-
pearance against a background (Figure 5(a)). Furthermore,
there are a large number of cells (roughly 60 per frame,
92 total). In this experiment, we aim to demonstrate the
ability of the DDPMO to perform a tough detection task
while scaling up to a large number of objects. Ground-truth
bounding boxes for the cells at a single frame are shown in

Figure 4: DDPMO results on the PETS human tracking
benchmark dataset and comparison with object-detector-
based methods. The MAP object parameter samples are
overlaid on four still video frames (a-d). The MAP ob-
ject parameter samples are also shown for a sequence of
frames (a 50 time-step sequence) along with spatial pixel
observations (e) (where the assignment variables ct,n for
each pixel are represented by marker type and color). The
SFDA and ATA performance metric results for the DDPMO
and ten human-specific, detection-based tracking algorithms
are shown in (f), demonstrating that the DDPMO achieves
comparable performance to these human-specific methods.
Comparison results were provided by the authors of [16].
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5(b) and PMCMC inference results (where the MAP sample
is plotted) are shown in in 5(c). A histogram illustrating the
inferred posterior over the total number of cells is shown in
5(e). It peaks around 87, near the true value of 92 cells.

Figure 5: T cells are numerous, and hard to detect due to
low contrast images (a). For a single frame, ground-truth
bounding boxes are overlaid in (b), and inferred detection
and tracking results are overlaid in (c). A histogram showing
the posterior distribution over the total number of cells is
shown in (e). The SFDA and ATA for the detection-free
comparison methods are shown in (f). Inferred cell positions
(unsupervised) were used to automatically train an SVM for
supervised cell detection; SVM detected cell positions for a
single frame are shown in (d).

Manually hand-labeling cell positions to train a detector is
feasible but time consuming; we show how unsupervised
detection results from the DDPMO can be used to auto-
matically train a supervised cell detector (a linear SVM),
which can then be applied (via a sliding window across each
frame) as a secondary, speedy method of detection (Figure
5(d)). This type of strategy in conjunction with the DDPMO
could allow for an ad-hoc way of constructing detectors for
arbitrary objects on the fly, which could be taken and used
in other vision applications, without needing an explicit
predefined algorithm for object detection.

5 Conclusion

The DDPMO provides the ability to find, track, and learn
representations of arbitrary objects in a video, in a single
model framework, in order to accomplish detection-free
tracking. We detail inference algorithms that can be used
in both online and offline settings and provide results on
a number of real video datasets. We consistently achieve
better performance than other detection-free tracking strate-
gies and even achieve competitive performance with object-
specific detector-based methods on a human tracking bench-
mark video. Furthermore, we’ve demonstrated the ability
of our model to perform accurate localization and tracking
in videos with large numbers of objects, and in those that
contain instances of full or partial occlusion, objects with
shifting appearance or orientation, and objects for which it
is difficult to construct an explicit detection strategy.

We’ve also shown how the DDPMO can provide an unsuper-
vised, detection-free way to train a discriminative object de-
tector for arbitary objects. This combination could provide a
way to build object detectors for unknown objects on the fly
and increase the accuracy or speed of localization and track-
ing within our model framework. We envision the DDPMO
to be particularly useful in settings where the number and
type of objects are unknown, or the objects’ appearances are
highly variable, and a high-quality general-purpose object
localization and tracking method is desirable.

References

[1] A. Alahi, L. Jacques, Y. Boursier, and P. Vandergheynst,
Sparsity-driven people localization algorithm: Evaluation
in crowded scenes environments, Performance Evaluation
of Tracking and Surveillance (PETS-Winter), 2009 Twelfth
IEEE International Workshop on, IEEE, 2009, pp. 1–8.

[2] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein,
Particle markov chain monte carlo methods, Journal of the
Royal Statistical Society: Series B (Statistical Methodology)
72 (2010), no. 3, 269–342.

[3] Charles E Antoniak, Mixtures of dirichlet processes with ap-
plications to bayesian nonparametric problems, The annals
of statistics (1974), 1152–1174.

[4] D. Arsic, A. Lyutskanov, G. Rigoll, and B. Kwolek, Multi
camera person tracking applying a graph-cuts based fore-
ground segmentation in a homography framework, Perfor-
mance Evaluation of Tracking and Surveillance (PETS-
Winter), 2009 Twelfth IEEE International Workshop on,
IEEE, 2009, pp. 1–8.

[5] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie, Ro-
bust object tracking with online multiple instance learning,
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 33 (2011), no. 8, 1619–1632.

[6] John L Barron, David J Fleet, and SS Beauchemin, Perfor-
mance of optical flow techniques, International journal of
computer vision 12 (1994), no. 1, 43–77.



Willie Neiswanger, Frank Wood, Eric Xing

[7] J. Berclaz, F. Fleuret, and P. Fua, Multiple object tracking us-
ing flow linear programming, Performance Evaluation of
Tracking and Surveillance (PETS-Winter), 2009 Twelfth
IEEE International Workshop on, IEEE, 2009, pp. 1–8.

[8] D.S. Bolme, Y.M. Lui, BA Draper, and JR Beveridge, Sim-
ple real-time human detection using a single correlation
filter, Performance Evaluation of Tracking and Surveillance
(PETS-Winter), 2009 Twelfth IEEE International Workshop
on, IEEE, 2009, pp. 1–8.

[9] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Es-
ther Koller-Meier, and Luc Van Gool, Markovian tracking-
by-detection from a single, uncalibrated camera, (2009).

[10] Thomas Brox and Jitendra Malik, Large displacement optical
flow: descriptor matching in variational motion estimation,
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 33 (2011), no. 3, 500–513.

[11] F. Caron, M. Davy, and A. Doucet, Generalized Polya urn for
time-varying Dirichlet process mixtures, 23rd Conference on
Uncertainty in Artificial Intelligence (UAI’2007), Vancouver,
Canada, July 2007, 2007.

[12] Anil M Cheriyadat and Richard J Radke, Non-negative ma-
trix factorization of partial track data for motion segmenta-
tion, Computer Vision, 2009 IEEE 12th International Confer-
ence on, IEEE, 2009, pp. 865–872.

[13] D. Conte, P. Foggia, G. Percannella, and M. Vento, Perfor-
mance evaluation of a people tracking system on pets2009
database, Advanced Video and Signal Based Surveillance
(AVSS), 2010 Seventh IEEE International Conference on,
IEEE, 2010, pp. 119–126.

[14] D. Doermann and D. Mihalcik, Tools and techniques for
video performance evaluation, Pattern Recognition, 2000.
Proceedings. 15th International Conference on, vol. 4, IEEE,
2000, pp. 167–170.

[15] Randal Douc and Olivier Cappé, Comparison of resampling
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