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Abstract— Neural prosthetic technology has moved from
the laboratory to clinical settings with human trials. The
motor cortical control of devices in such settings raises impor-
tant questions about the design of computational interfaces
that produce stable and reliable control over a wide range
of operating conditions. In particular, non-stationarity of
the neural code across different behavioral conditions or
attentional states becomes a potential issue. Non-stationarity
has been previously observed in animals where the encoding
model representing the mathematical relationship between
neural population activity and behavioral variables such
as hand motion changes over time. If such an encoding
model is formed and learned during a particular training
period, decoding performance (neural control) with the model
may not be consistent during successive periods even when
the same task is repeated. It is critical in both laboratory
experiments and in clinical settings to be able to evaluate
whether the representation of movement encoded by a neural
population has changed or not. Such information can be used
as a cue to retrain the system or as feedback to an adaptive
decoding algorithm. To that end, we develop a statistical
methodology to evaluate changes in the neural code over time
using a generative probabilistic decoding model. The changes
are evaluated by comparing the likelihoods of firing rates
given similar distributions of 2D hand kinematics collected
while a primate periodically performs a manual cursor control
task. A comparison is performed by measuring a distance
between probabilistic encoding models trained at different
times. The statistical significance of the distance measure-
ments are justified with a systematic statistical hypothesis
test. The experimental results demonstrate that the likelihood
changes over different periods with the change being greater
when more distant periods are compared.

Index Terms— Non-stationarity, Neural prostheses, Gener-
ative model, Distance measure, Hypothesis test

I. INTRODUCTION

Neural motor prostheses directly connect the central

nervous systems of severely disabled patients to external

devices such as computer cursors or robot arms. A great

deal of scientific and clinical progress has been made as

the result of new microelectrode recoding technology that

enables the chronic recording of populations of tens or

hundreds of cortical neurons. The current success of motor

cortical brain-machine interfaces (BMIs) has also been

driven by an understanding of how the brain encodes infor-

mation about body pose and motion and by new algorithms
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for transforming neural activity into a reliable control

signal. To decode the intended action from the electrical

activity recorded from motor cortical neural populations a

number of statistical methods have been proposed including

multidimensional linear filters [1], [2], Bayesian models

using the Kalman filter [3] or the particle filter [4], [5],

population vector coding [6], nonlinear neural networks [7],

[8], [9], and support vector machines [10].

These methods model the functional mapping between

neural activities and kinematic parameters (e.g. 2D hand

position and velocity) using stationary statistical assump-

tions (i.e. model parameters are estimated based on the

assumption that functional mapping is time invariant).

They may suffer from poor generalization or deteriorating

performance after training due to the intrinsic dynamics

of the functional mapping. It is well known that neuronal

tuning properties can change due to plasticity [11], [12].

There have also been a number of BMI studies reporting

the reorganization of functional properties of neural popu-

lations [13], or temporal changes of neuronal tuning prop-

erties [14]. These non-stationary characteristics of neural

populations become critical to practical aspects of neural

prostheses, especially for the design and implementation

of decoding algorithms. In particular, if the functional

mapping between neural activity and kinematic parameters

changes over time, the approximation of the mapping by

a decoding model learned during a certain time period

may not be as accurate at some future time. Therefore,

it is important to identify when and how the functional

mapping temporally changes such that the decoding models

can adapt to it or the model can be retrained. However, the

identification of such dynamics of neural populations is still

an open problem.

In this paper, we do not address the issue of the

identification of neural dynamics, but propose a basic

methodology to examine the non-stationary properties of

neural populations. This work supports the findings from

many other researchers regarding the time-variant func-

tional mapping between neural activity and kinematics.

With the proposed methodology, the statistical significance

of changes can be determined. This methodology is based

on the Bayesian decoding model that has been successfully

applied to BMIs. This model-based methodology will help

to advance the present decoding models such that they can

be applied more readily to non-stationary environments.

In this study, we analyze experimental data in which a



primate performs a cursor control task. During a recording

session, however, the primate does not always attend to

the control task and is occasionally distracted. (See [15]

for the analysis of these data showing that the attentional

states could be discriminated by classifying the temporal

sequence of firing rates.) Therefore, the data can be di-

vided into multiple disjoint attentional periods. We seek

to investigate if the functional mapping between neural

firing rates and hand kinematics changes between those

periods. The functional mapping is specified by a likelihood

function that models the probability of neural firing rates

conditioned on hand kinematics. The difference between

likelihood models trained during different periods is mea-

sured by two distance measures: the Bhattacharyya distance

and the Kullback-Liebler (KL) divergence. In order to

determine whether the measured distance is statistically

significant, a hypothesis test is employed with a bootstrap-

type random sampling procedure. The overall testing pro-

cedures and simulation results are reported in the following

sections. Note also that for this comparison of likelihood

models to be valid, the statistics of the hand motion in the

different periods must be the same; care is taken to ensure

this in Section II.B.

While previous studies have addressed changes in the

neural code using simple properties such as the “preferred

direction” of cells [11], our approach leverages a richer

probabilistic model of cortical coding. In particular, the

Bayesian encoding model captures the statistical variation

in the population activity as it relates to multiple behav-

ioral variables. Since such a model captures the statistical

variation in the neural activity it provides a principled foun-

dation on which to build an analysis of non-stationarity.

II. MODELING LIKELIHOOD OF FIRING RATES

A. Data Descriptions

The proposed approach is investigated using neural activ-

ity and hand kinematics recorded while monkeys performed

a sequential reaching task. We used one dataset from

each of 2 monkeys, denoted hereafter by monkey-1 and

monkey-2. The task and recording setup used to make the

recordings for both data sets were similar to that used in

[15]. Briefly, the monkey sat in a primate chair and held

a 2-link manipulandum which constrained movements to

the horizontal plane. Reach targets and a hand position

feedback cursor were presented on a video screen in front

of the animal. When a reach target was presented the

animal’s task was to move the manipulandum so that the

feedback cursor moved into the target and remained in the

target for 500ms, at which time that target was extinguished

and a new reach target was presented in a different location.

This was repeated for up to 10 targets per trial. Upon

successful completion of a trial the animal received a

juice reward. Hand kinematics and neural activity were

simultaneously recorded while the animal performed the

task. Spikes were manually isolated off-line. Firing rate

was estimated by binning spikes into 70 msec time bins,
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Fig. 1. A sample of the x, y hand trajectory: a monkey periodically
attends to a 2D hand motion task. Note several sections in the data where
the hand position remains perfectly constant. In these intervals the monkey
has removed their hand from the manipulandum and is not performing
the task.

and hand position and velocity were computed every 70

msec.

During a typical recording session each monkey spent

only a portion of the time actually performing the task.

Periodically they were distracted from the task, often

letting go of the manipulandum and performing natural

arm movements. When the monkeys were not gripping the

manipulandum no motion was recorded. These periods of

inactivity are easy to identify by inspection as depicted in

Fig. 1 where the x-, and y-coordinates of one monkey’s

hand position trajectory are displayed for a brief segment

of the data.

The determination of whether or not a monkey was per-

forming the task was made by detecting significant regions

of constant manipulandum position and zero velocity. Since

we have no record of what monkeys were doing during

such segments, we only use the task-related movement

segments for training models of neural coding.

B. Modeling a mapping between firing rates and hand

kinematics

Our goal in this study is to investigate temporal changes

to the mapping between firing rates and hand kinematics

and to develop a principled mathematical model for de-

tecting any such changes. Here we exploit previous work

on Bayesian decoding in which a linear Gaussian model

was used to relate neural activity to hand kinematics.

Such a “likelihood” model can be combined with a prior

probability model of hand kinematics to enable recursive

Bayesian decoding of motor cortical activity [3]. Here our

focus is not on decoding but rather on how the neural

encoding may change over time. Consequently we focus

on the likelihood term which represents the neural code.

Let X = {�x1, �x2, . . . , �xN} be a time ordered sequence

of hand kinematic parameters such as position, velocity

and acceleration and let Z = {�z1, �z2, . . . , �zN} be a

corresponding sequence of firing rates where each �zi =



[z1
i , z2

i , . . . , zM
i ]T is a vector of the firing rates of M single

units or multi-units. For simplicity, we assume E[�x] = 0
and E[�z] = 0 by centering X and Z, respectively.

The likelihood p(�zi|�xi) of the observed firing rates

conditioned on the hand kinematics can be derived from

the following generative model of neural activity:

�zi = f(�xi) + �wi. (1)

where �wi corresponds to noise in the observations. If we

assume that f(·) is a linear function and �wi follows a

multivariate Gaussian distribution with zero mean vector

and covariance W , (1) can be written as

�zi = H�xi + �wi, (2)

where H is a linear projection matrix. Note that the firing

rates are normally distributed: �zi ∼ N(H�xi,W ).
H and W can be estimated from training data using least

squares such that [16]

Ĥ = argminH

∑
i

∥∥�zi − H�xi

∥∥2
(3)

Ŵ =
1

N − 1

∑
i

(�zi − Ĥ�xi)(�zi − Ĥ�xi)T (4)

Here we focus on a simplified model in which the error

covariance matrix Ŵ is taken to be a diagonal matrix,

assuming conditional independence between units. This

reduces the chance of overfitting when the training data is

limited as it is in our experiments. The ideas developed here

however are fully general and apply when a full covariance

matrix can be estimated. Note that in the diagonal case the

sum of diagonal entries represents the total error variance

which can be used to evaluate how well the linear model

fits the data.

The linear Gaussian encoding model used here has

proven useful for decoding. Combining the likelihood with

a linear Gaussian prior over hand kinematics yields a

recursive Bayesian decoding method (the Kalman filter)

[3]. The approach provides accurate and efficient estimates

of hand kinematics from neural firing rates.

III. STATISTICAL EXPERIMENT DESIGN

A. Distance between Likelihoods

In order to investigate the temporal changes of the func-

tional mapping between firing rates and hand kinematics,

we compare the likelihood of observations given hand

kinematics from different attentional segments. Specifically

we train a linear Gaussian model pj(�z|�x) using the data in

each segment j in which the monkey is attending to the

task. A comparison between models can be accomplished

by measuring a distance between each pj(�z|�x). There are

numerous methods to measure the distance among which

we opt for using the well-generalized measures such as the

Bhattacharyya distance [17] and the Kullback-Leibler (KL)

divergence [18].

Consider two distributions p1(�y) and p2(�y) with means

�μ1 and �μ2 and covariances Σ1 and Σ2, respectively. As we

approximate the likelihood based on the linear Gaussian

generative model, the Bhattacharyya distance B12 between

two Gaussian distributions is given by

B12 =
1
8
(�μ1 − �μ2)T

(Σ1 + Σ2

2

)
−1

(�μ1 − �μ2)

+
1
2

log
|(Σ1 + Σ2)/2|√

|Σ1|
√
|Σ2|

. (5)

Since the mean of the Gaussian likelihood is zero, only

the second term including covariances need be considered

such that

B12 =
1
2

log
|(Σ1 + Σ2)/2|√

|Σ1|
√

|Σ2|
. (6)

Next, the KL divergence between p1(�y) and p2(�y) is

defined by

D(p1‖p2) =
∫

�y

p1(�y) log
p1(�y)
p2(�y)

. (7)

For two M -dimensional Gaussian distributions, the KL

divergence can be expressed as

D(p1‖p2) = tr(Σ−1
2 Σ1) + log|Σ2| − log|Σ1| − M. (8)

where tr(·) represents the trace of a matrix. Since the orig-

inal KL divergence is asymmetric, a symmetrized version

of the distance may be required which can be defined by

Ds(p1‖p2) =
1
2
(
D(p1‖p2) + D(p2‖p1)

)
=

1
2
(
tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2)

)
− M(9)

B. Statistical Methodology

While the above measures give a distance between two

likelihoods and hence two encoding models they do not

directly tell us whether the neural coding is the same or not.

For this, we evaluate whether the difference between mod-

els is statistically significant by developing a hypothesis

test. This test can be done in such a way that the temporal

variation of the likelihood is examined; given multiple

disjoint attentional segments, the earliest one is set as a

basis to which the rest of the segments are compared using

the statistical test. This reveals how much the likelihood

changes over time.

One must be careful however that the statistical differ-

ence between likelihoods is not the result of a difference

in the hand kinematics between the two segments. To

ensure that the statistics of the hand motions are the same

in each segment we impose conditions on the training

data such that the distributions of the hand kinematics

in different segments are approximately identical. This is

obviously a very strong constraint due to the fact that the

hand trajectory of a monkey may be a nonstationary time

series. Consequently we randomly sample hand motions

from each segment such that the distributions of motions

from each segment are the same. The training data then

empirically satisfies the condition that the hand motions

must be drawn from identical distributions. Then, the

statistical test of the likelihood difference is performed

only on sample sets that have similar hand kinematic



distributions. With this preprocessing, the temporal changes

of the likelihood will specifically indicate the change of the

functional properties of neural populations.

An overall procedure of the statistical test is as follows;

from two given segments, two disjoint sample sets are

randomly selected. A statistical test for identical hand kine-

matic distributions is performed between the two selected

sets. If the test reveals that hand kinematic distributions

are not statistically different, the likelihood for each set

is modeled using equations (3) and (4) and the distances

between the likelihood models are measured; otherwise,

new sets are randomly selected again. This process is

repeated by running Monte Carlo simulations to generate

the empirical distribution of the distance measurements,

similar to the bootstrap approach. The generation of dis-

tribution is performed 1) within the basis segment, and 2)

between one of the rest of the segments and the basis,

respectively. For this pair of empirical distributions, a

statistical test is performed with the null hypothesis that

two distributions are not statistically different. If this null

hypothesis is rejected at a given significance level, we can

state that the likelihood approximated from a given segment

is statistically different from the one in the basis segment.

This test is performed for each of the rest of the segments.

Now, let us describe our statistical methodology in detail.

Let {�z1i, �x1i}
N1
i=1 and {�z2i, �x2i}

N2
i=1 be disjoint randomly

selected sample sets both from the basis segment, or one

from the basis segment and the other from a different

segment. Before proceeding to model the likelihood, the

similarity of p(�x1) and p(�x2) must be examined. Here,

we employ another statistical hypothesis test to see if

the two distributions are equal to each other. Suppose

the hand kinematics follow a multivariate Gaussian dis-

tribution, which has been widely assumed in generative

decoding models, such that p(�x1) ∼ N(�μ1,Σ1) and

p(�x2) ∼ N(�μ2, Σ2). Then, a comparison of mean and

covariance is sufficient to check if p(�x1) and p(�x2) are

equally distributed. Hence, we first employ the likelihood

ratio test for the multivariate Gaussian distributions to test

equal covariance matrices [19]. The null hypothesis for the

test is given by

H0 : Σ1 = Σ2 = Σ. (10)

Let Q1 and Q2 be defined by

Qk =
Nk∑
i

(�xki − x̄k)(�xki − x̄k)T , k = 1, 2 (11)

where x̄k is the maximum likelihood estimate of mean,

i.e. x̄k = 1
Nk

∑
i �xki for k = 1, 2. Then the maximum

likelihood estimate of Σ1 and Σ2 are determined as

Σ̂k =
1

Nk − 1
Qk, k = 1, 2. (12)

The joint likelihood function for two distributions is defined

as the product of two individual likelihood functions,

where each likelihood function is represented as a Gaussian

density function. If we substitute the maximum likelihood

estimates of mean and covariance obtained above into

each Gaussian density function, we obtain the maximum

likelihood joint likelihood function represented as

L12(�̂μ1, �̂μ2, Σ̂1, Σ̂2) =
exp(−NM

2 )

(2π)
NM

2 |Σ̂1|
N1
2 |Σ̂2|

N2
2

(13)

where L12 denotes the joint likelihood function of �x1

and �x2, M is the dimension of �x and N = N1 + N2.

The alternative maximum likelihood function with the null

hypothesis, i.e. Σ1 = Σ2 = Σ, can also be similarly

represented as

L12(�̂μ1, �̂μ2, Σ̂, Σ̂) =
exp(−NM

2 )

(2π)
NM

2 |Σ̂|
N
2

, (14)

where Σ̂ is the maximum likelihood estimate of Σ, deter-

mined as Σ̂ = 1
N−1 (Q1+Q2). The likelihood ratio statistic

is then given by

� =
L12(μ̂1, μ̂2, Σ̂, Σ̂)

L12(μ̂1, μ̂2, Σ̂1, Σ̂2)

=
|Σ̂|−

N
2

|Σ̂1|−
N1
2 |Σ̂2|−

N2
2

= c12
|Q1|

−
N1
2 |Q2|

−
N2
2

|Q1 + Q2|−
N1+N2

2

, (15)

where

c12 =
N

NM
2

N
N1M

2
1 N

N2M

2
2

. (16)

Using the large sample theory, it is shown that −2 log �

approximately follows χ2
M(M+1)/2. Then, we can apply

the χ2 test for the null hypothesis.

Once the null hypothesis of equal covariance is accepted

at a significance level α, the next test for equal means

given equal covariance can be done with a relatively simple

method, called a Hotelling T 2 test [19]. The null hypothesis

for the mean is set to

H0 : �θ = �μ1 − �μ2 = �0. (17)

Let Sp ≡ (Q1 + Q2)/(N1 + N2 − 2). The the null T 2

statistic is calculated as

T 2
0 =

N1N2

N1 + N2
(x̄1 − x̄2)T S−1

p (x̄1 − x̄2). (18)

H0 is rejected at the α significance level if

T 2
0 ≥

M(N1 + N2 − 2)
N1 + N2 − M − 1

Fα
M,N1+N2−M−1. (19)

If the above hypotheses of equal mean and covariance are

accepted for p(�x1) and p(�x2), then we can move on to

approximate the likelihood from each sample set. If at least

one of them is rejected, new random sets are sampled and

tested again.

After approximating likelihoods, the Bhattacharyya dis-

tance and the symmetrized KL divergence between two

likelihoods are measured. This procedure is repeated

through Monte Carlo simulations, generating a set of



distance measurements. After simulations, we obtain the

set of distances within the basis segment if two data

sets are sampled from the same basis segment. The same

procedure can be performed for two data sets one of

which is sampled from the basis segment and the other

is sampled from a different segment. Then, we can test

if there is a significant difference between two distance

measurement sets. Since the distribution of distance is

unknown (and possibly non-normal), the nonparametric

one-sided Kolmogorov-Smirnov (KS) test is used to test

the null hypothesis given by

H0 : F1(d) ≤ F2(d) (20)

where d is a random variable representing the distance

measure (Bhattacharyya or symmetrized KL divergence)

and F (d) is the cumulative density function (cdf) of d.

Here we set F1(d) as the cdf of the distances within the

basis segment and F2(d) as the cdf of the distances between

the basis segment and another segment. This hypothesis

is tested by the empirical cdf F̂1(d) and F̂2(d) created

from given samples, with a test statistic of the maximum

difference between F̂1(d) and F̂2(d). The rejection of

H0 means that F1(d) > F2(d); this indicates that the

differences between distributions are much smaller for

samples drawn from the basis. Consequently, the distance

between different segments is statistically larger than the

distance within the basis segment. With this test, we can

justify the change of the likelihood of firing rates given

hand kinematics over subsequent attentional segments.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The spike counts of 44 single/multi units recorded from

monkey-1 and 53 single/multi units from monkey-2 are

used. All these units are recorded from the M1 cortical area

of each monkey. The spike counts and the hand kinematic

data are centered to have zero mean. Four subsequent

attentional segments are extracted from each monkey’s

data, respectively. The intervals from the basis segment to

the remaining segments are as follows; [210, 568, 1,715]

(seconds) for monkey-1, and [235, 588, 786] for monkey-2.

From each segment, N = 500 samples including bin count

and hand kinematic parameters (the x-, and y-coordinates

of position and velocity, respectively) are randomly se-

lected. The significance levels for the likelihood ratio test,

the T 2 test and the KS test are all set to 0.05. 10,000 Monte

Carlo runs are performed for each comparison.

B. Results

1) The KS Test: Table I displays the mean and standard

deviation of the Bhattacharyya distance and the sym-

metrized KL divergence measured for each segment. Note

that the statistics in the first row are obtained from two

sample sets within the basis segment, and the other statis-

tics in the remaining rows are between the corresponding

segment and the basis. The null hypothesis of the KS test

described in (20) is always rejected in every case; no matter

1 vs 1 2 vs 1 3 vs 1 4 vs 1
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1 vs 1 2 vs 1 3 vs 1 4 vs 1
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y−position
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Fig. 2. The average angles (in degrees) between the linear projection
vectors for position and velocity are evaluated over multiple attentional
segments from two recording sets: monkey-1 (left) and monkey-2 (right).

what distance we measure between the basis segment and

any other segment.

TABLE I

DISTANCE MEASUREMENT MEAN (STANDARD DEVIATION)

Compared Monkey-1 Monkey-2

segments Bhatt. KL Div. Bhatt. KL Div.

1 vs 1 0.17(0.09) 1.64(1.55) 0.27(0.10) 2.45(2.58)

2 vs 1 0.76(0.19) 9.85(6.50) 0.78(0.22) 8.73(7.90)

3 vs 1 0.62(0.16) 6.58(3.73) 0.53(0.14) 5.03(2.45)

4 vs 1 2.05(0.22) 51.07(45.75) 0.42(0.17) 4.98(13.13)

2) Comparison of Linear Projections: A difference be-

tween encoding models is viewed in another way by

evaluating the angle between the linear matrices relating

hand kinematics to firing rates (Equation (1)). When we

estimate the linear matrices H1 and H2 from (2) for two

given sample sets, the angles between two corresponding

column vectors of H1 and H2 (i.e. linear mapping vectors

between the firing rates and individual hand kinematics)

are evaluated. The average of the angles over Monte Carlo

runs for each segment are illustrated in Fig. 2. These results

show that the linear projection vectors between firing rates

and each hand motion parameter including position and

velocity tend to change over attentional segments.

For reference, the mean squared errors of the likelihood

approximation in (3) evaluated from the basis segment to

the last segment are as follows; 0.08±0.01, 0.08±0.01,

0.07±0.01, 0.07±0.01 for monkey-1, and 0.08±0.01,

0.08±0.01, 0.08±0.01, 0.08±0.01 for monkey-2. This

demonstrates that the linear Gaussian fitting for every

segment is fairly consistent.

V. CONCLUSIONS, DISCUSSION AND FUTURE WORK

We have proposed a statistical approach for detecting the

changes in the neural code relating population firing rates

and hand kinematics. We have observed such changes occur

over time when monkeys sporadically perform a cursor

control task. Here we leverage a learned linear Gaussian

model of motor cortical coding and the fact that the learned

models in different segments of the data are statistically

different. This observed change in neural coding of hand



kinematics over different attentional periods is consistent

with previous observations of the temporal change of

neuronal tuning properties. Our approach however provides

a formal statistical method for analyzing such changes.

The result may have practical implications for neural

prosthetic systems. Such systems will have a calibration

or training phase and our statistical tests could be used to

detect changes in the neural population code that might

suggest the need to retrain the system. It is worth noting

however that our analysis is performed off-line. In an on-

line control task the neural population may change in

different ways that continue to allow, or even improve,

neural control of devices. While our statistical approach

could be used to detect such changes, their analysis remains

future work.

In our analysis, spiking activity was determined off-

line by a human using standard spike sorting software.

It remains an open question whether spike detection was

consistent across segments of the data. A change in spike

detection rates could result in a change in our linear model

and this would be detected as a change by our method. The

impact of spike sorting error on the non-stationarity of the

data deserves further study.

We would like to remark that the statistical results

demonstrated here are based on the linear Gaussian as-

sumption. While this has been shown to be useful in

practice [3], it is only an approximation of the neural

code. Hence, it would be interesting to see if similar

results are produced with different modeling schemes. One

might employ nonparametric approaches to approximate

the conditional likelihood of firing rates given hand kine-

matics. Then, an information theoretic measure such as

the symmetrized KL divergence can be easily estimated

for such nonparametric models. Among many possibilities,

one can estimate the probabilistic models using Parzen

windows from samples and adopt Renyi’s entropy to define

the KL divergence [20]. This approach could provide more

reasonable distance measures without requiring the linear

Gaussian assumption.

However, building our statistical approach upon a de-

coding modeling framework (e.g. the generative modeling

approach in this paper) is advantageous since the direct link

between our statistical analysis and decoding might help in

neural prosthetic applications. For instance, understanding

how the likelihood changes over time could be used to

develop adaptive decoding models that cope with non-

stationarity. This insight is a path towards future applied

research.
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