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Abstract— Human locomotion and activity recognition sys-
tems form a critical part in a robot’s ability to safely and
effectively operate in a environment populated with human
end users. Previous work in this area relies upon strong
assumptions about the labels in the training data; e.g. that
are noise-free and that they exist at all. Our approach does
not predefine the relevant behaviours or their number, as both
are learned directly from observations, similar to real-world
human-robot interactions, where labels are neither available.
Instead we introduce models that make no assumptions about
the state space, by presenting a fully unsupervised nonparamet-
ric Bayesian recognition approach, in which we leverage recent
advances in state space modelling with automatic inference
using probabilistic programming. We demonstrate the utility
of full model optimisation using Bayesian optimisation and
validate our approach on several challenging problems, using
different feature modalities.

I. INTRODUCTION

A generative model describes a process, usually one by
which observable data is generated. Generative models rep-
resent knowledge about the causal structure of the world. It
is possible to use deterministic generative models to describe
possible ways a process could unfold, but due to sparsity of
observations or actual randomness there will often be many
ways that our observations could have been generated. We
are interested in sequential data, from which we aim to infer
meaningful states, along with the defining characteristics of
each state. More often than not, such state discovery needs
to be done in an unsupervised fashion, as the application
domain commands little or no information about the latent
state cardinality of the state space. One such domain is
activity recognition systems for modern robotics.

Being able to determine the mode of locomotion of a
human user or the system’s place in its operating environ-
ment, is necessary for effective use of robotic systems for
everyday usage; from aiding elderly users with their daily
activities of living to providing accurate assistance to the user
in an industrial and/or home setting. Although many previous
works have focused on this topic, recognising complex
activities endures as a challenging task which is still an open
problem [1]. We contribute a fully unsupervised approach to
the problem of locomotion and activity recognition, through
the use of Bayesian nonparametric state-space models (SSM)
that use probabilistic programming (PPS) general-purpose
inference [2]. Specifically we demonstrate the utility of the
stateful hierarchical Dirichlet process hidden Markov model.
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Nonparametric Bayesian SSMs, are a subset of the larger
family of infinite hidden Markov models (iHMM) [3].
Parametric HMMs have been used with great success for
approaching learning problems in sequential data, such as
speech and finance. In the nonparametric Bayesian paradigm,
inference is performed in models with an infinite number of
states. By adopting this approach, as introduced in [4], we
can perform activity recognition on datasets without using
prior knowledge about the activities or their number.

The paper is organised as follows; in §II we give a
thorough exegesis of infinite HMMs as well as an outline
of our extensions. Section §III gives an brief overview of
the employed inference schemes, as used in our PP frame-
work, and §IV reviews BO. Finally, experiments and results
are demonstrated for synthetic and human observations in
sections §V and §VI respectively.

II. BAYESIAN NONPARAMETRIC STATE-SPACE MODELS

Two of the most important examples of SSMs is the
HMM in which the latent variables are discrete, and linear
dynamical systems (LDS), in which the latent variables are
Gaussian. In this paper we will restrict ourselves to the
former model class, but note that our methodology is fully
applicable to LDSs.

A. Hierarchical mixture models

In order to infer state cardinality from observations and
to flexibly model the distribution of continuous data, we
adopt Bayesian nonparametrics. It requires the specification
of a prior model for continuous distributions. A fruitful and
general approach for defining such a prior model was first
suggested by [5] in terms of an infinite dimensional mixture
model:

P ∼ P

Xi | P
i.i.d.∼ P i = 1, 2, . . .

Yi | Xi
ind.∼ F (· | Xi) i = 1, 2, . . . (1)

where P is a discrete random probability measure (RPM)
with distribution P , Y1:n are a collection of continuous
and possibly multivariate observations and X1:n are the
corresponding collection of latent random variables from
an exchangeable sequence directed by P . In which F (· |
Xi) is some continuous distribution parametrised by Xi.
The nonparametric hierarchical model (1) defines a mixture
model (MM) with a potentially countably infinite number of
components. Because the RPM in equation (1) is discrete,
this means that the pair of consecutive values of X take
on the the same value with a strictly positive probability.



This value is a mixture component. By setting the RPM
to the Dirichlet process (DP) [6] we obtain the familiar
DPMM. The Dirichlet process, denoted by DP(γ,H), is a
stochastic process over countably infinite random measures
on parameter space Θ. It is uniquely defined by a base
measure H on Θ and a concentration parameter γ.

The DP is typically used as a prior on the mixture
components θ, of a MM of unknown complexity resulting
in the aforementioned DPMM. But there are many scenarios
in which groups of data are thought to be produced by
related, yet unique, generative processes. Indeed, a recurring
problem in many areas of information technology is that of
segmenting a signal into a set of time intervals that have
a useful interpretation in some underlying domain. In such
scenarios we can take a hierarchical Bayesian approach.

We posit that observations can be subdivided in a count-
able collection of groups. Groups of observations are mod-
elled by considering a collection of DPs {Gj : j ∈ J },
defined on a common space Θ, where J indexes the
groups. By placing a global DP prior DP(γ,H) on the
base distribution G0, from whence we draw group specific
distributions Gj ∼ DP(α,G0), we receive the hierarchical
DP (HDP). The HDP induces sharing of atoms among the
random measures Gj since each inherits its set of atoms from
the same G0 [4]. This idea can be used to develop HMMs
with unknown, potentially infinite, state spaces [7].

B. Hidden Markov models with infinite state spaces

Formally, an HMM is a doubly-stochastic Markov chain in
which a state sequence {θ1, . . . , θT } is drawn according to a
Markov chain on a discrete state space Θ with transition
kernels {Gθ : θ ∈ Θ} [8]. Corresponding observations
{y1, . . . , yT }, conditional on the state sequence, are drawn
from a fixed emission distribution yt | θt ∼ F (θt) ∀t ∈
{1, . . . , T}. By employing the HDP in an HMM setting, a
prior distribution is defined on transition kernels, yielding
the HDP-HMM [4] (see figure 1); an HMM with a countably
infinite state space

G0 | γ,H ∼ DP(γ,H), (2)
Gθ | α,G0 ∼ DP(α,G0) for θ ∈ Θ, (3)
θt | θt−1, Gθt−1 ∼ Gθt−1 for t = 1, . . . , T, (4)
yt | θt ∼ F (θt). (5)

To properly qualify this nonparametric Bayesian approach
to HMMs, consider that each Gθ is a DP draw, and is
interpreted as the transition distribution over θt | θt−1.
All transition distributions are linked by the same discrete
measure G0. Hence, in expectation E[Gθ] = G0, ∀θ ∈
Θ. Thus, transition distributions tend to have their mass
concentrated around a common set of states, providing the
desired bias towards re-entering and re-using a consistent set
of states [9].

C. Stateful representations

The rate at which re-entering and re-using states unfolds
in the HDP-HMM is typically too fast for many real-world

· · ·

γ

H

G0

α

Gθ

θ 2 Θ

θ0

θ1 θ2 θT

y1 y1 yT

Fig. 1. Graphical model representation of the HDP-HMM [4].

problems. The model construction furthermore encourages
the creation of redundant states and rapid switching amongst
these too [8]. To combat this, the sticky HDP-HMM [10] (see
figure 2a) augments the HDP-HMM with an extra parameter
κ > 0 that biases the process towards self-transitions and
thus provides a method to encourage longer state durations.
Hence transitions kernels, equation (3) above, are instead
sampled as so:

Gθ | α,G0, κ, θ ∼ DP
(
α+ κ,

αG0 + κδθ
α+ κ

)
. (6)

where δθ is a point mass at θ.
This model shares the original HDP-HMM’s restriction

to geometric state durations, thus limiting the model’s ex-
pressiveness regarding duration structure. More importantly,
its global self-transition bias is shared among all states,
and so it does not allow for learning state-specific duration
information [9]. Instead, we propose that by allowing for
group-specific self-transition biases κθ, greater heterogeneity
can be achieved in the dwell-time distribution of the inferred
states. We extended it further by allowing for group-specific
concentrations: αθ. Hence equation (6) becomes

Gθ | αθ, G0, κθ, θ ∼ DP
(
αθ + κθ,

αθG0 + κθδθ
αθ + κθ

)
(7)

which we refer to as the stateful HDP-HMM (see figure
2b) - in reference to its pronounced usage of memoized
groups and their statistics. In adopting this approach we
imbue the original sticky HDP-HMM with more flexibility
w.r.t. modelling the state duration more accurately. We allow
for state-specific duration information to be encoded via κθ
and also admit αθ to determine the extent of the repetition
of the values of Gθ.

III. INFERENCE AND LEARNING

Inference in HDP models is typically achieved using
bespoke model-specific algorithms, usually using one of
the various mathematical representations available for non-
parametric models, including; stick-breaking representations,
urn models and truncations [8]. The authors in [4] present
three related Markov chain Monte Carlo (MCMC) sampling
schemes for the hierarchical DP mixture model. The exten-
sion to HDP-HMMs can be done with Gibbs sampling or
slice sampling [11], or by truncating the allowable state-
space and then us the forwards-backwards algorithm. We
instead adopt probabilistic programs for our inference.

Probabilistic programs are regular programs extended by
two constructs [12]: (I) the ability to draw random values
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(a) Sticky HDP-HMM [10]
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Fig. 2. Graphical model representations of the sticky and stateful HDP-HMM with state-persistence imbued in the generative process. HDP-HMM
extensions are indicated by coloured nodes and arrows.

from probability distributions, and (II) the ability to condition
values computed in the programs on probability distributions.
A PPS unifies techniques for formal description of computa-
tion with the representation and use of uncertain knowledge.
PPSs’ main advantage is in separating the modelling and
the inference problems which allows us to focus on the on
the former without worrying about the latter. Throughout
this paper, our weapon of choice will be a PPS Anglican
[2]. Anglican has implementations of several importance
sampling based methods such as sequential Monte Carlo
(SMC) and particle Markov chain Monte Carlo [13]. For
reference, w.r.t. to SMC; consider the generative model
p(x1:T , y1:T ) with hidden variables x1:T and observations
y1:T . In a PPS, we let the observing random variable yt be the
value of the tth observe, and the hidden variables xt = x1:t
be the execution trace before this observe. These methods
then give us a particle estimate of our posterior p(x1:T |y1:T )
along with the estimate of the marginal likelihood p(y1:T ):

p̂(x1:T |y1:T ) =
1∑P

i=1Wi

P∑
j=1

Wjδx(j)
1:T

(x1:T ) (8)

p̂(y1:T ) =

P∑
j=1

Wj , (9)

where {Wj}j=1,...,P are the unnormalised weights calculated
by weighting the particles {x(j)

1:T }j=1,...,P . Where x1:T are
our latent variables and δ·(·) is the Dirac measure on sample
x
(j)
1:T such that δ

x
(j)
1:T

= 0 if x
(j)
1:T /∈ x1:T and 1 otherwise.

IV. BAYESIAN OPTIMISATION

Selecting model hyperparameters θ is a common problem
within machine learning and indeed statistics. The appropri-
ateness of the hyperparameters, or the fitness of the model,
can be, for example, modelled by the marginal likelihood of
the model. To this end, we use the aforementioned particle-
based inference algorithms in Anglican to provide us with
a noisy estimates of P(y1:T ). As this is expensive since
inference must be performed, often on large datasets, it fits
well with the Bayesian optimisation (BO) framework which
allows us to find the global maximum of some expensive
black-box function f : Rd → R [14]. This is particularly
true for PPS where the objective function is often expensive
to evaluate, as is typically takes the form of an intractable

integral such as the log marginal likelihood: logP(y1:T ).
Formally, BO seeks to find the global maximum, on a d-
dimensional space with bounds B:

θ∗ = arg max
θ∈B⊂R

f(θ) (10)

where we may only be able to evaluate f noisily. BO models
the objective function as a random function and uses this
model to determine informative sample locations. A popular
approach is to model the underlying function as a Gaussian
process (GP), fully specified by its mean µ and covariance
function K. We incorporate prior beliefs about f by placing
a prior measure over the space of such possible objectives.
By conditioning f on the available data Dn = {θi, yi}ni=1,
the posterior over functions P(f | Dn) is retrieved. This
allows estimation of the expected value and uncertainty in
f(θ), ∀θ ∈ Rd. BO calculates this posterior and uses it to
define an acquisition function a(·), which assigns a utility to
evaluating f at particular θ, based on the trade off between
exploration and exploitation in finding the maximum. Each
evaluation yields an additional training point (θi, yi). After
updating the GP with the latter, BO repeats the cycle until
convergence or an upper bound on the total number of
evaluations. By interleaving optimisation of the acquisition
function, evaluating f at the suggested point and updating
the surrogate, BO forms an efficient global optimisation
algorithm, in the number of function evaluations, whilst
naturally dealing with noise in the outputs [15].

V. SYNTHETIC EXPERIMENTS

We explore the relative performance between the three
models introduced hitherto, by simulating data from a very
noisy three-state HMM with Gaussian emissions, see figure
3. We treat the hyperparameters of the models as unknown
quantities and perform full Bayesian inference over these
quantities. We use the conjugate prior to the multivariate
Gaussian emission distribution, namely the normal inverse
Wishart prior NIW(µ0, λ, ν,Ψ). Through conjugacy we seek
the posterior distribution of {µj ,Σj} ∀j ∈ J , where we
index group-specific parameter samples by j, given a set
of observations yt ∼ N (µj ,Σj). The parameters of the
conjugate prior are set as follows: µ0 = Y (the empirical
mean), ν = D+ 2, λ = 0.01 and Ψ = S ×Cov(Y ). Where
Y = [y1, y2, . . . , yT ]> and yt ∈ RD. Where λ are the pseudo
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Fig. 3. Raw observations with ground truth.

counts, µ0 is the mean, ν the degrees of freedom, Ψ the scale
matrix and S is a scaling factor.

Performance is measured with the maximum likelihood
estimate of the normalised mutual information − a clustering
metric [16]. For all models we place a prior of Γ(1, 0.01)
on the concentration parameter γ, of the base measure G0

and use the same discrete measure H for all models. We
place non-informative hyperpriors on the space of α and κ
and perform inference using sequential Monte Carlo (smc)
and particle Gibbs (an iterated and conditional form of smc)
(pgibbs) [2]. We condition the models on the data and
sample state trajectories. We set the emission prior to be
NIW(Y, 3, 0.01, 0.75× Cov(Y)).

For experiments with BO we seek to maximise logP(y1:T )
by optimising the model hyperparameters used to sample
state trajectories s.t. θ , {αα, αβ , γ, λ, C, ν}, where αα
and βα are the shape and rate parameters of the gamma
distribution respectively, which is the prior on the concen-
tration parameter α. For the sticky and stateful HDP-HMM
we extend this set to {αα, βα, ακ, βκ, γ, λ, C, ν}. We use the
expected improvement [15] as our acquisition function aEI.
For all BO experiments we use 1000 particles for inference
and use the samples to optimise aEI. Once θ∗ is recovered,
these hyperparameters are used for the respective model,
and experiments rerun for the full particle set {k | k ∈
{0, . . . , 4} ∧ 2k × 103}.

Further we make use of two kernels; the radial basis
function KRBF and the Matérn 3/2 -kernel KM32 (see [17]
for details). These are popular choices in the literature, we
explore both because KRBF is infinitely differentiable, which
means that the GP with this covariance function has mean
square derivatives of all orders, and is thus very smooth
[17]. Smoothness this strong is typically unrealistic for many
physical processes, hence KM32 is explored as well. It is
only once differentiable and therefore only makes weak
assumptions about the smoothness of f .

Performing full Bayesian inference on the model parame-
ters, for all three models, yields the results in the top row of
figure 4. It is clear from this instance that NMI increases with
particle count, but so too does computational cost. Equally
model structure plays a large role where the stateful HDP-
HMM demonstrates better clustering ability than the other
two models. At the same time neither model, for this low
number of particles, performs well, and performs best under
smc inference. Instead by optimising the hyperparameters
demonstrates a clear gain − even for a signal as noisy as the
test case (figure 3), for all models.
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Fig. 4. The median (thick line), the 25th and 75th NMI quantile
comparison of inferred latent state sequences, and the ground truth, using
smc and pgibbs. The first row depicts baseline results without optimised
hyperparameters, and the second row results optimised parameters.

VI. HUMAN LOCOMOTION RECOGNITION

In this section we apply our methodology and specifically
the stateful HDP-HMM, to two challenging labelled human
locomotion datasets. It is important to note that labelling data
is very subjective and tedious work. Sometimes annotators
make mistakes which add noise into the labels. Treating
these noisy labels as the ground truth is typically harmful
for most learning methods [1]. Steps are sometimes taken
to alleviate this labelling bias, e.g. [18] suggested a method
that models each label as a multinomial distribution rather
than deterministic. In [1], the authors treat all of the labels as
noisy data, and add minor probability mass to incorrect labels
enabling the model to converge to a better representation of
the actions. Hence, with this in mind we use the labels with
caution, in inferring statistical properties of the observations.

A. TUM Kitchen Everyday Manipulation Activities

The TUM-Kitchen dataset [19] is recorded in a home-care
scenario where subjects perform daily activities in a kitchen.
The kitchen is equipped with a set of ambient sensors and
four static overhead cameras. The full body joints are tracked
with a motion capture system. Labels are provided for the
left and right hand, and the trunk of the subject. We use joint
positions as they are a common feature set for locomotion
segmentation [20]. Where D = {yi}ni=1 and yi ∈ R28×3 s.t.
there are 28 tracked 3D joints. We select a subset consisting
of the left arm (upper arm, forearm, hand and fingers) s.t.
yi ∈ R4×3 and n = 1000 (total of 12,000 datapoints). Results
are shown in figure 5a.
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Fig. 5. Top panel show experimental results with the raw data, the manually labelled state sequence (•) and the two inferred segmentation sequences
with kernels KRBF (•) and KM32 (•) respectively, for the highest log-likelihoods. The bottom panels show the expected state switching probability under
the two kernels.

It is clear that our unsupervised segmentation is differ-
ent to the ground truth. This was expected as has been
discussed. Of greater interest is that the correct number
of activities has been inferred (eight) for the KM32 kernel,
whereas using KRBF inferred a state cardinality of ten. What
is worth noting is that the manually labelled sequence is
segmented into highly discrete activities such as “reaching”
or “carrying while locomoting” [19]. Locomotion, however,
is not that discrete and instead consists of atomic motions,
the combination of which serves to create larger locomotion
behaviours. Tellingly, this periodic behaviour is indeed what
is demonstrated in the inferred latent state sequences for the
left hand. It being indicative of the periodicity and swing,
often exhibited in human locomotion. That being said, it is
also clear that our segmentation demonstrably fails to register
certain activities. Indeed, consider the bottom two panels of
figure 5a, where the expected probability of a state switch

is displayed; E[xt 6= xt−1]. For example there is a clear
region in the middle of dataset ∼ 500s where the subject
is grasping and reaching for objects, that is evidently not
being registered with our methods. This is most likely due
to an unrepresentative feature set. On the other hand the
expectation plots demonstrate in more detail the dynamic
switching behaviour of the dataset. From it, it would not
be unreasonable to suggest that the labelling provided for
this dataset is too coarse. This becomes evident when cross-
validating with video evidence. Despite this, we achieve an
NMI score of 0.54 and 0.51 for KM32 and KRBF respectively.

B. PAMAP2 Physical Activity Monitoring

The PAMAP2 Physical Activity Monitoring dataset [21]
contains observations of 18 different physical activities such
as running, cycling and walking (each subject performs a
smaller subset of these) performed by nine subjects wearing



three inertial measurement units (IMU) and a heart rate
monitor. Where yi ∈ R3×17. Where each IMU recorded large
and small scale 3D acceleration, 3D gyroscopic readings and
3D magnetometer measurements. We select the gyroscopic
observations s.t. yi ∈ R9 and n = 2528 (total of 22,752
datapoints) as they are perceptively the more complicated
segmentation case. Note that the authors have provided a
special class for “transient motion” such as switching be-
tween the performance of different activities. These regions
are of particular interest since the switching behaviour of the
observations serves to inform the segmentation of atomic
motions (if any) which may or may not be present in the
observations. Results are shown in figure 5b.

The PAMAP2 datasets is significantly more challenging
than TUM Kitchen, particularly as we have chosen a difficult
modality. Starting with the inferred state cardinality, using
KM32 yields seven and KRBF six. Compared to true value
of nine. Perhaps the biggest problem with the observation
is that they are very noisy, and as such, the clustering
becomes very challenging, as there is little to distinguish
inbetween features; consequently assigning the wrong labels
to activities. It is worth noting that activities with relatively
little noise such as ‘walking’ (start: ∼ 2200s) and high noise
such as ‘vacuum cleaning’ (start: ∼ 1300s) are labelled with
ease since these features are easy to distinguish from noise
and/or other similar activities (in feature space). We achieve
a similar NMI score of 0.54 and 0.41 for KM32 and KRBF

respectively. This is to be expected given that the smoothness
assumption the latter kernel makes, are inappropriate for this
labelling task. Further, by considering the expected switching
probability in the bottom two panels of figure 5b, we can
use these expectations as a different form of labelling. The
trajectories that we display in the main panel of figure 5b, is
indeed the maximum log-marginal-likelihood sequence under
the observations. However we use all sampled sequences to
generate the expectation plots. As is shown, they do indeed
demonstrate more certain segmentation as they are weighted
probability functions. Thus, we take uncertainty into account;
although state sequences are poor compared to the ground
truth, we can estimate validity of the inferred state switches
in the sequence, using the calculated expectations.

VII. CONCLUSION

By using little prior knowledge of the state space and the
data at hand, we demonstrated through the use of Nonpara-
metric SSMs and Bayesian optimisation, a methodology for
sampling complete activity sequences. We have shown that
quality of the feature set greatly influences the utility and
accuracy of the recognition. Moreover, by using probabilistic
programming, it is possible to leverage powerful inference
methodologies, in a black-box manner. Married with BO,
these methods define a powerful new way in which activity
recognition can be induced in an almost automatic manner.
Since we do not need to preselect the state space cardinality
nor model hyperparameters.

There are number of different ways in which results can
be improved. The most obvious, to start, is to pick a feature

set that captures the full modalities of human locomotion in
some setting. Secondly inference algorithmic development
is ever ongoing, and will become more adept at performing
inference in high-dimensional state spaces. Finally, BO has
been used throughout this work, but usually only with default
settings and standard kernels. Kernels are the most important
item in BO, and should be chosen with care. Or better yet,
their structured learned from observations as well.
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