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Abstract— Improving activity recognition, with special focus
on fall-detection, is the subject of this study. We show that
Kalman smoothed in-painting of missing pose information
and task-specific dimensionality reduction of activity feature
vectors leads to significantly improved activity classification
performance. We illustrate our findings by applying common
classification algorithms to dimensionally reduced feature vec-
tors, and compare our accuracy to previous work. In part two
we investigate our methods on a small subset of the data, in
order to ascertain what accuracy performance is achievable
with the smallest amount of information available.

I. INTRODUCTION

We investigate task-specific activity recognition, with the
goal of improving classification performance. We identify
two areas where improvements can be exploited to improve
activity classification accuracy. First, we propose a smooth-
ing model which can accurately in-paint missing pose data.
Second, we suggest transforming high-dimensional activity
feature vectors into a low-dimensional eigenspace using
supervised dimensionality reduction. While our ultimate aim
is a real-time system that infers pose continuously from
low-rank observations; there is immediate practical utility
associated with the smoothing methods developed in this
paper, particularly when used in conjunction with Zhang
et al.’s [1] technique for detecting when a serious fall may
have occurred. In this system, high confidence fall activity
recognition, preceding a period of constant negative gravita-
tional acceleration is necessary. The literature provides many
techniques for activity detection see e.g. [2]–[4], but few
have focused on smoothing and dimensionality reduction for
pose models as we do here. In the literature, feature vectors
used for classification are typically very large; Luštrek and
Kaluža [5], use feature vectors ranging in dimensionality
from 240 to 2,700. With careful use of cross-validation and
regularization, high-dimensional feature vectors can be used,
with high accuracy, for activity recognition. Higher accuracy
can be achieved still by using task-specific regularization.

II. PREVIOUS WORK

Zhang et al. [1] present a system with real-time classifi-
cation of human movements based on data collected from
a smartphone mounted on the subject’s waist. Using their
algorithm, body motion is labeled with five categories. Their
system measures acceleration, based on a tri-axial accelerom-
eter, where the system is continuously monitoring changes
to the gravitational acceleration parameter. If the smartphone
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acceleration is near absolute gravitational acceleration, for
the duration of a second or more, the subject is considered
motionless. Once this is detected the data is backdated for
1.5s [1], and that section of the data is used as the sequence
input for two classification algorithms which are employed
to determine if there actually was a fall event (one of the five
activity labels). But the feature vector used in the backdated
period has a size of 192, which is large and could lead
to problems with overfitting, especially as the number of
training samples used was low at N ≈ 730.

A very different approach is taken by Olivieri et al.
[6]. They demonstrate a low-cost, home-based health care
system based on automatic imaging recognition from video
sequences. They propose a software package based upon a
spatio-temporal motion representation, called Motion Vec-
tor Flow Instance (MVFI) templates, that capture relevant
velocity information by extracting dense optical flow from
video sequences of human actions. Automatic recognition
is achieved by first projecting each human action video
sequence, consisting of approximately 100 images, into a
canonical eigenspace (i.e. dimensionality reduction), and
then performing supervised learning to train multiple actions
from a large video database. The MVFI is approximately
100% accurate in binary classification between fall activities
and other actions [6], where they show that their methods is
robust and can perform in real-time.

Bourke and Lyons [7] describe a threshold-based algo-
rithm, to distinguish between activities of daily living (ADL)
and falls. A gyroscope based fall-detection sensor array is
used. Data analysis was performed to determine the angular
accelerations, angular velocities and changes in trunk angle
recorded, during eight different fall and ADL types. They
summarize their approach as thus; fall detection is achieved
by applying a threshold to the peak values from the resultant
angular velocity signals, recorded from fall and ADL data.
Consequently by setting the threshold values just below the
lowest recorded fall peak values of the studied parameters,
this ensures that any value which exceeds these limits will
be recorded as a fall. They achieved 100% specificity. That
said, their method relies heavily on test data (240 recorded
simulated falls) to obtain these thresholds, highlighting a
drawback of this supervised learning system.

For more recent studies, consider the work done by Albert
et al. [8]. In their study, 15 subjects were asked to simulate
four different types of falls; left and right lateral, forward
trips, and backward slips, while wearing smart phones and
dedicated accelerometers. Nine subjects also wore the de-
vices for ten days, to provide data for comparison with the



simulated falls. Five classification schemes were applied to a
large time-series feature set to detect falls. Their results are
robust, with both the Support Vector Machine (SVM) and the
Sparse Multinomial Logistic Regression classifier, achieving
accuracies close to 98% for pooled subject data when using
10-fold cross-validation, while that accuracy decreased to
97% when subject-wise cross-validation was used [8].

We will build upon the work by Luštrek and Kaluža
[5] by using the same body-centered coordinate system
and classification schemes. Their work is relevant to this
study because their dataset features significant sections of
missing information, such that 7.5% of their dataset is
irretrievable due to sensor failure. But of main importance
is the dimensionality reduction that we shall investigate in
order to improve classification performance, with particular
attention to their experiments where a feature vector with
dimensionality of 720 was used. Smoothed data is found
from Kalman Smoothing (KS) which we describe in section
III-C. On this data we implement several data-complete
canonical transformations, with special focus on linear dis-
criminant analysis (LDA), which are described in section
III-D. Our experiments are outlined in section IV and finally
a discussion and conclusion follow in section V.

III. METHODS

Bold lowercase Roman letters denote vectors and scalar
variables are denoted by simple Roman letters. Formally the
problem can be stated as follows; assume there is a labeled
training set S = {(φφφ 1,y1), . . . ,(φφφ N ,yN)}, where |S | = N,
j ∈ J = {1, . . . ,N} and φφφ j ∈X = {φφφ 1, . . . ,φφφ N} are the task-
specific feature vectors, with the activity (classes) given by
y j ∈ Y = {1, . . . ,K}. The training set is such that X ⊆ RD.
A classifier is then a function h : X → Y , that maps an
instance φφφ j to a label ŷ j = h(φφφ j). The accuracy of a classifier
is evaluated using a loss function l(h(φφφ j),y), which measures
the disparity between the predicted actual label set [9]. The
following sections describe how the feature vectors φφφ j are
chosen and evaluated.

A. Dataset

The dataset was collected with the Ubisense real time
infrared motion capture system [5], consisting of six infrared
cameras and infrared light sources. Three volunteers were
equipped with 12 infrared reflectors. The markers were
attached to the ankles, knees, hips, shoulders, elbows and
wrists (see Figure 2). They were tracked with the cameras,
and their three dimensional coordinates were measured.
Artificial Gaussian noise was added according to the specifi-
cations of the system’s manufacturer. The standard deviation
of the noise was 43.6mm horizontally and 54.4mm vertically
[5]. Data was collected at 60Hz which was downsampled to
10Hz (to simulate typical smart phone sample frequency).
The recording coordinate system was right-handed with the
y-axis as the vertical axis and the other two axes aligned with
the square walls of the room. A coordinate transformation
was used to map the exogenous reference frame to an
endogenous frame, where the y-axis passes through the two

hip tags, the z-axis becomes the vertical axis, with the origin
located between the two hip tags and finally the x-axis is
normal to the yz-plane.

Eight different short movement scenarios were repeated
ten times by each subject: walking in a straight line, walking
in a straight line whilst limping on the right leg, walking with
a heavy burden in the right hand, walking in a circle, walking
then stopping and resuming walking, falling in various fash-
ions, lying down (which could be mistaken for falling) and
sitting down (which also could be mistaken for falling). Each
scenario was labeled with one or more activities: falling, the
process of lying down, the process of sitting down, walking,
sitting (stationary) and lying (stationary).

B. Attribute Set

Let the collection of body tags be in the set i ∈ I =
{1, . . . ,12} and the time-frame t ∈ T = {1, . . . ,10}, where
the attribute vector, from which the classifier infers the
subject’s activity, consists of ten consecutive snapshots of the
subject’s posture, describing one second of activity. Luštrek
and Kaluža [5] used several attribute sets, clean and noisy,
exogenous and endogenous. We focus our work on noisy
observations of joint positions in endogenous coordinates
because we envision, ultimately, inferring pose from sensors
attached to the body.

Let ut
i denote the coordinates of the arbitrary tag i at time-

frame t. The feature vector φφφ j is then designed by letting
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where α and β are the angles of movement between the tag
and the z-axis, and the tag and the xz-plane respectively. We
solve the problem of missing data, by smoothing the original
dataset, from which feature vectors are generated.

C. Kalman Smoothing

Kalman filters are typically used for online inference
problems. But in an offline setting, such as in our problem
domain, we can go one step further and condition on past
and future observations (i.e. the tag coordinates), leading to
our uncertainty being significantly reduced and our posterior
state beliefs (i.e. the missing tag coordinates due to sensor
failure) improved [10]. Because linear Gaussian state-space
models (also known as linear dynamical systems) can be
represented by a tree-structured directed graph, inference
problems are solved efficiently using the sum-product algo-
rithm [11], the forwards and backwards recursions of which
are known as Kalman Smoothing.

Because the model has linear-Gaussian conditional distri-
butions, the transition and emission distributions (which de-
fine a first order Markov model), of the state and observations
(recall that z are the inferred tag-coordinates, conditioned on
the available data x), can be written [11] in the general linear



form

zt = Azt−1 +wt w∼N (w|0,ΓΓΓ)
xt = Czt +vt v∼N (v|0,ΣΣΣ)
z1 = µµµ0 +u u∼N (u|0,P0),

where we determine the parameters of the model θθθ =
{A,ΓΓΓ,C,ΣΣΣ,µµµ0,P0}, using maximum likelihood through the
expectation-maximisation algorithm.

D. Dimensionality Reduction

For each scenario iteration (ten for each subject) θθθ was
found through likelihood maximisation. Missing information,
i.e. tag coordinates due to sensor-failure, were inpainted from
the KS model and feature vectors were created from this
smoothed dataset. As noted in the previous section, we focus
our attention on a specific feature set used by Luštrek and
Kaluža [5], where φφφ j ∈R720 ∀ j, and N = 1,302. The authors
avoid overfitting by using cross-validation and regularization.
We will investigate the latter further by investigating task-
specific regularization by way of dimensionality reduction
(DR) through canonical transformations. Six methods were
investigated: Multiclass LDA, Principal Component Analysis
(PCA), Factor Analysis (FA), Truncated Singular Value De-
composition (TSVD), Gaussian Random Projection (GRP)
and Partial Least Squares Regression (PLSR) [12]. We
provide a synopsis of LDA, as it was found to increase
classification accuracy the most; we seek projection vectors
wk, k ∈ {1, . . . , |Y |−1}, arranged by columns in a projection
matrix W. We are looking for a projection that maximizes
the ratio of between-class to within-class scatter. It can
be shown [13] that the optimal projection matrix W∗ is
the one whose columns are the eigenvectors corresponding
to the largest eigenvalues λk, of the following generalized
eigenvalue problem

W∗ = argmax
W

|WTSBW|
|WTSW W|

,

where SW is the within-class scatter and SB is the between-
class scatter. The projections with maximum class separa-
bility information are the eigenvectors corresponding to the
largest eigenvalues of (S−1

W SB−λk)w∗k = 0, where w∗k ⊂W∗

are the columns on the optimal projection matrix.

IV. EXPERIMENTS

Classification experiments were carried out in the Waikato
Environment for Knowledge Analysis (WEKA), an open-
source suite of machine learning software written in Java.

Using our smoothed data and dimensionally reduced fea-
ture vectors, we compare performance with Luštrek and
Kaluža [5]. In their study the authors used eight different
classification schemes: Pruned C4.5 Decision Tree (C4.5),
Propositional Rule Learner (PRL), Naive Bayes Classifier
using Estimator Classes (NB), 3-Nearest Neighbors (3-NN),
multiclass Support Vector Machine (SVM), Random Forest
(RF), Bagging of the fast decision tree learner (Bag.) and
boosting of a nominal class classifier (the fast decision tree
learner) using the Adaboost M1 method (M1).

A. Single Tag Classification

In the second part of our experiments, information redun-
dancy was investigated and physical dimensionality reduction
studied. Now φφφ j ∈ R60, instead of using the full set of tags,
each tag was classified individually in order to ascertain
which tags were most informative in terms of activity recog-
nition, upon which LDA was implemented, see Figure 2. For
all experiments accuracy was computed using ten-fold cross-
validation, regularization and each classification scheme was
repeated ten times, yielding 100 folds for each algorithm.
Where N remained the same for all experiments in this paper.

V. RESULTS

The results are summarized in Figure 1, where the full
distribution of the classification accuracies have been sum-
marized in a box plots for LDA, because it showed that the
best performance compared to the others schemes (of which
only the max accuracy is shown in Figure 1).
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Fig. 1. Classification performance shown for all eight schemes, for all six
dimensionality reduction methods. LDA results, being the best, are shown
as box-plots over all folds.

A like-for-like comparison is only possible by considering
the best accuracies in our experiments. These results can be
seen at the maximum whiskers of each LDA box plot in
Figure 1, they are summarized in Table I:

TABLE I
CLASSIFICATION SCHEME (MAX) ACCURACY [%] COMPARISON

Study C4.5 PRL NB 3-NN SVM RF Bag. M1

Luštrek and Kaluža [5] 88.4 84.7 79.1 74.6 87.2 90.5 91.8 92.0
Dhir and Wood 100.0 99.2 99.2 99.2 88.5 99.2 100.0 99.2

Luštrek and Kaluža [5] only reported the best accuracies
for their experiments, and not the distribution over all their
folds, why only one point per scheme is shown in Figure 1.
As is seen in Table I, the KS model, which also doubles as a



generative model, used for inferring missing data, produces
data of high accuracy which validates its use as a generative
motion model, the outputs of which function well as viable
substitutes for classification. An accurate generative model
which can be sampled accordingly to infer pose continuously
from low-rank observations, has immediate practical utility
since data collection becomes easier, faster and negates the
use of complex feature selection to facilitate high classifica-
tion accuracy. This means that equipping the user with the
simplest of collection devices (e.g. smart phone), could be
enough to infer complex motion and pose.

That being said, the increased classification accuracy is
more likely to have been derived from dimensionality re-
duction methods. As can be seen multiclass LDA performs
particularly well where LDA: φφφ j ∈R720→ φφφ j ∈R5 ∀ j. LDA
preserves as much of the class discriminating information
as possible, by explicitly modeling the difference between
them, and thus finding a linear combination of features which
separates the activities. By using a new basis we project the
dataset onto a dimensional space with more powerful data
representation. We are performing offline inference, hence
the means and covariances are known, making this method
particularly suitable for our chosen application domain.

In the second part of our experiments, our feature vectors
are still high dimensional (φφφ j ∈R60 ∀ j). But we investigate
what can be considered physical DR, by treating each tag
as independent and running the smoothing model and the
classifiers on each independently. Where no information
was passed between tags. The original and dimensionally
reduced classification results are shown in Figure 2. The
results are not as good as in part one. First, the KS model
does not perform as well, owing to the lack of information
passed to the model from the other tags, resulting in less
exact inferred pose predictions. Moreover, the amount of
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Fig. 2. Time frame illustration from a walking activity, with best individual
tag classification accuracy quoted with each tag for feature vector of size
φφφ j ∈ R60 ∀ j , and of size φφφ j ∈ R5 ∀ j, within parentheses.

information contained in one second of activity, or ten
sequential body poses, is not enough to produce classifiers
which are discriminative enough to accurately categorize the
activities. Having an average generative model coupled with
an average discriminative classification performance, even
with LDA (the minor difference between classification accu-
racy between LDA and the original feature vector size, would
suggest that dimensionality reduction is not the foremost
problem), suggests that other features need to be considered
for single tags, or more tags used for these features in order
to maximize the utility of the information used for classifying
human motion models.
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