
Forgetting Counts : Constant Memory Inference
for a Dependent Hierarchical Pitman-Yor Process

Nicholas Bartlett? bartlett@stat.columbia.edu
David Pfau† pfau@neurotheory.columbia.edu
Frank Wood? fwood@stat.columbia.edu
?Department of Statistics
†Center for Theoretical Neuroscience
Columbia University, 2960 Broadway, New York, NY 10027, USA

Abstract

We propose a novel dependent hierarchical
Pitman-Yor process model for discrete data.
An incremental Monte Carlo inference pro-
cedure for this model is developed. We show
that inference in this model can be performed
in constant space and linear time. The model
is demonstrated in a discrete sequence predic-
tion task where it is shown to achieve state
of the art sequence prediction performance
while using significantly less memory.

1. Introduction

In this paper we define a dependent hierarchical
Pitman-Yor process (HPYP) (Teh, 2006) and develop
a constant space, linear time incremental inference
procedure for models of discrete data based on it. This
contribution can be described as a “forgetting” proce-
dure for existing HPYP inference procedures that re-
tains only a “good,” constant-sized subset of the train-
ing data. In designing and justifying such a model and
inference procedure we extend definitions and infer-
ence methods for dependent sequences of Pitman-Yor
(PY) processes (Caron et al., 2007a;b) to the hierar-
chical case. We propose an incremental inference pro-
cedure for the resulting model that has two interpreta-
tions: either a valid inference procedure for a sequence
of dependent HPYP’s or as invalid (but approximately
correct) inference procedure for a single non-varying
HPYP. In the latter case, our approach can be de-
scribed as restricting the estimated model at all times
to the constant size model that “best” approximates

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

(in some sense of the word best) a full model that
would otherwise grow in the size of the training data.

Previous work on dependent Dirichlet and Pitman-Yor
processes (MacEachern, 2000; Srebro & Roweis, 2005;
Griffin & Steel, 2006; Caron et al., 2007a;b) was moti-
vated by the desire to construct generative procedures
that induce dependence between related processes. In
our work we are motivated instead by the goal of per-
forming constant space inference in a HPYP. As the
HPYP is a (Bayesian) nonparametric model, in order
to achieve this we must “forget” data. Conveniently,
forgetting is one of the main mechanisms for generat-
ing (and performing inference) in models of sequences
of dependent processes. This hints at why our infer-
ence procedure can be interpreted in two ways. If the
true generative process varies in some dependent way,
then it is possible that the implicit dependency in-
duced by a forgetting procedure can capture and model
that variation. If, on the other hand, the true genera-
tive process does not vary, the constant memory con-
straint still requires that we forget. This means choos-
ing an informative subset of the data to retain at the
cost of using an estimator that may be inconsistent.
This strategy of selecting a most informative subset of
training data is not unique in the Bayesian nonpara-
metric modeling literature. In sparse Gaussian pro-
cess modeling, forgetting strategies are used to achieve
constant time and space (independent of the number
of observations) inference procedures (Lawrence et al.,
2003; Csató & Opper., 2002; Snelson & Ghahramani,
2006).

Existing HPYP models have shown excellent predic-
tive performance but are impractical to estimate for
large datasets, motivating our exploration of constant
space inference. A linear space, linear time incremen-
tal estimator for the sequence memoizer (SM) (Wood
et al., 2009) (an HPYP model of unbounded depth for

Forgetting Counts

discrete sequence data) has been developed (Gasthaus
et al., 2010). A consequence of this development is
that a SM could be deployed as the probabilistic se-
quence prediction model in a general purpose lossless
compressor. A compressor built in this way was shown
to be better than other general purpose lossless com-
pressors (including gzip, bzip2, etc.). Unfortunately
an O(n) memory complexity bound (where here n is
the length of the sequence) makes the SM impracti-
cal for use in a compressor. Using the SM, arbitrar-
ily long data streams cannot be modeled on a fixed
computer and therefore cannot be compressed. The
obvious approach of estimating a new model for each
of a number of constant size subsequences achieves the
constant memory bound but, as we will show, can re-
liably be improved upon. We show that our proposed
constant space HPYP model and inference procedure
achieves near optimal results for reasonable (practi-
cal to implement on modern computers) memory con-
straints. This suggests that it might be possible to
build and deploy an improved, practical, state-of-the-
art compressor based on a constant space HPYP se-
quence prediction engine.

In the next section we review the Pitman-Yor process,
the HPYP, and the SM. Section 3 describes depen-
dent Pitman-Yor processes and defines a dependent
hierarchical Pitman-Yor process. Section 4 describes a
sequential Monte Carlo inference procedure for the de-
pendent HPYP defined in Section 3. Finally Section 5
compares the predictive performance of the constant
memory model to more complex models whose com-
plexity is allowed to grow. Why the predictive perfor-
mance of the constant memory model is comparable to
that of more complex models for reasonable memory
bounds is discussed in Section 6.

2. Background

2.1. Pitman-Yor Process

The Pitman-Yor process is a generalization of the
Dirichlet process with three parameters. If G ∼
PY(d, c,G0) we say G is distributed according to a
Pitman-Yor process with discount parameter d, con-
centration parameter c, and base measure G0. In the
case that d = 0 the Pitman-Yor process reduces to
the Dirichlet process (Pitman & Yor, 1997). A simple
model using the Pitman-Yor process, where a distri-
bution is drawn from a Pitman-Yor process and then
samples are drawn from the resulting distribution, can
be written as follows:

G|d, c,G0 ∼ PY(d, c,G0)
θi|G ∼ G, i = 1, . . . , N

It is possible to work in a representation where the
random distribution G is analytically marginalized out.
One can draw samples {θj}Nj=1 in this representation
using a two step process. The first step produces
a partition of the first N integers which follows the
two parameter Ewen’s sampling distribution ESN (d, c)
(Ewens & Tavare, 1995). The second step assigns to
each of the K segments of the partition a parameter
ψk drawn independently from G0. We set θj = ψk for
all integers j in segment k of the partition (Blackwell
& MacQueen, 1973).

Samples can be drawn from the Ewen’s sampling
distribution using the Chinese Restaurant Process
(CRP). Since the connection between the CRP and
the Ewen’s sampling distribution is essential to devel-
opments later in the paper we describe here the CRP in
detail. We imagine seating customers in a restaurant
with an infinite number of tables. The first customer
sits down at an empty table. Customers 2, . . . , N are
seated sequentially by seating the jth customer at a
table drawn from the following distribution:

p(occupied table i| previous) = ni−d
j−1+c

p(unoccupied table| previous) = tj−1d+c
j−1+c

where ni is the number of customers already sitting at
table i, tj−1 is the number of tables occupied by the
first j − 1 customers, and previous refers to the seat-
ing arrangement of the first j−1 customers. The final
seating arrangement in the restaurant defines a parti-
tion of the first N integers which follows the ESN (d, c)
distribution (Pitman, 1995). To complete the process
of generating a sample {θj}Nj=1 we must endow each
occupied table in the restaurant with a parameter ψk
drawn independently from G0. We set θj = ψk if cus-
tomer j is sitting at table k.

2.2. Hierarchical Pitman-Yor Process

An example hierarchical Pitman-Yor process is

G1|d1, c1,G0 ∼ PY(d1, c1,G0)
G2|d2, c2,G1 ∼ PY(d2, c2,G1)

θi|G2 ∼ G2 i = 1, . . . , N.

To obtain a sample from this hierarchical Pitman-Yor
process it is again possible to work in a representa-
tion where G2 and G1 are analytically marginalized
out. One can generate samples in this representation
by recursively applying the algorithm for the single
Pitman-Yor process. To draw a sample {θj}Nj=1 we
again need to produce a partition of the first N inte-
gers following the ESN (d2, c2) distribution. This can
be achieved using the CRP. In Figure 1 this is repre-
sented by the restaurant corresponding to G2. We will

Forgetting Counts

. . .

. . .

ψ 1 1 ψ 1 2

ψ =ψ2 1 ψ =ψ22 ψ =ψ23

Parent (G)

Child (G)1 2 1 11 1

1

2

Figure 1. Chinese restaurant franchise

denote the number of tables in the child restaurant as
K2. Each of the K2 tables must be endowed with a
parameter ψ2k drawn independently from G1. Since
G1 has been marginalized out we obtain {ψ2k}K2

k=1 by
again using the procedure for the single Pitman-Yor
process. A partition following the ESK2(d1, c1) distri-
bution is produced via the CRP. This is represented
in Figure 1 by the restaurant corresponding to G1. We
denote the number of tables in the parent restaurant
as K1. Each of the K1 tables is endowed with a pa-
rameter {ψ1k}K1

k=1 drawn independently from G0. We
set ψ2k = ψ1m if in the parent restaurant customer k
is sitting at table m and we set θj = ψ2k if in the child
restaurant customer j is sitting at table k. The re-
cursive application of the CRP in a hierarchical model
is known as the Chinese restaurant franchise (CRF)
(Teh et al., 2006). The number of child restaurants is
not restricted to one, as indicated by the dashed lines
in Figure 1. Furthermore, the recursive nature of the
CRF makes extensions to deeper hierarchies straight-
forward. For more detail refer to (Teh et al., 2006;
Teh, 2006).

2.3. Sequence Memoizer

The sequence memoizer (SM) (Wood et al., 2009) is
a model for discrete sequence data based on an un-
bounded depth hierarchical Pitman-Yor process. We
can write the model as:

G[]|UΣ, d0 ∼ PY(d0, 0,UΣ)

Gu|Gσ(u), d|u| ∼ PY(d|u|, 0,Gσ(u)) ∀u ∈ Σ+

θn|θn−1 . . . θ1 = u ∼ Gu

where UΣ is a uniform distribution over the set of sym-
bols, u is a particular context, Σ+ is the set of all such
contexts, and σ(u) is the context u modified by remov-
ing the most distant symbol. We assume |Σ| < ∞.
Figure 2 shows the graphical model instantiated by
the sequence patat. Note that in the SM graphical
model, nodes that are not branching nodes and are
not associated with observed data are not instantiated.

Gpatat

G

G

GaGp

Gpata

G

Gpat

U

p

pat

at

pat

t

a

a

t

a

at
p
pa

a
p

Figure 2. Sequence Memoizer graphical model

The node labeled Gpatat is only shown in the graphical
model to indicate that the next symbol in the sequence
will come from this distribution.

Inference in the SM model is performed in the CRF
respresentation. Inference takes worst case O(n2) time
and requiresO(n) space where n is the length of the se-
quence (Gasthaus et al., 2010). Quadratic time stems
from the fact that seating a customer in the appropri-
ate restaurant may require seating a customer in all
of the restaurants above it. The length of this path is
bounded by the length of the sequence. Each restau-
rant requires constant space because a restaurant need
only maintain a constant number of summary statis-
tics, the total number of customers and the total num-
ber of tables present of each type.1 Note this repre-
sentation requires reinstantiation of the full restaurant
state for some steps of inference; this can be done by
exploiting exchangeability. The fact that a restaurant
can be represented in constant space allows the full
model to be represented in O(n) space.

3. Theory

Towards developing a constant space HPYP model and
inference procedure we first review dependent PY pro-
cesses in Section 3.1. We then develop a dependent
HPYP in Section 3.2. In both of these processes de-
pendency arises from operations on customers in the
CRP representation. We define our dependent HPYP
in terms of operations on restaurants.

3.1. Dependent Pitman-Yor process

The ESN (d, c) distribution discussed in Section 2 has
an important consistency property. In the Chinese
restaurant metaphor this consistency property corre-
sponds to the fact that if a customer is removed uni-

1For symbol sets of finite cardinality.

Forgetting Counts

formly at random, the remaining customer configura-
tion represents a partition of the first N − 1 integers
following the ESN−1(d, c) distribution (Pitman, 1995).
This removal of a customer is known as a deletion op-
eration. Another deletion operation, known as size-
biased deletion, is one in which a customer is chosen
uniformly at random and all customers seated at the
same table are removed from the restaurant. Size bi-
ased deletion is known to satisfy a consistency property
for the one parameter Ewen’s distribution (Kingman,
1978), but the same is not true for the two parameter
case (Pitman, 1995).

This consistency property is exploited in a generative
procedure defined in the restaurant representation to
draw samples {{θtj}

Nt
j=1}Tt=1 from a sequence of depen-

dent random distributions {Gt}Tt=1 such that

Gt|d, c,G0 ∼ PY(d, c,G0), t = 1, . . . , T
θtj |Gt ∼ Gt, j = 1, . . . , Nt.

(1)

The variable t indexes the sequence. It may be useful
to think of t as time though the sequence dependence
need not be in time. The fact that each Gt in the
sequence has the same distribution is known as sta-
tionarity (Brockwell & Davis, 1991).

A generative procedure that uses the first consistency
property has been developed for dependent Dirichlet
process models (Caron et al., 2007a). The genera-
tive procedure works for Pitman-Yor process models
as well. It starts with an empty restaurant and gen-
erates {θ1

j}
N1
j=1 using the CRP as usual. The process

for generating {θ2
j}
N2
j=1 is different than that used to

generate {θ1
j}
N1
j=1 in that the CRP does not start with

an empty restaurant. The restaurant is instead ini-
tialized by retaining some of the customers from the
restaurant representation for G1. Once new customers
have been seated, previously unoccupied tables are en-
dowed with a parameter ψk drawn independently from
G0. We set θ2

j = ψk if the jth customer seated during
the second time step is seated at table k.

If l customers are deleted after time step 1 the partition
represented by the starting customer configuration of
the restaurant at time step 2 follows a ESN1−l(d, c)
distribution. Therefore, after seating new customers
in time step 2 the configuration results in a partition
that follows a ESN1−l+N2(d, c) distribution. Further-
more, the tables are endowed with parameter values
drawn independently from G0. This fact confirms that
the customer deletion process as described does gener-
ate samples from the model specified by Eqn. 1. Note
that the number of customers deleted from the restau-
rant between time steps is independent of the consis-
tency result and can thus be either stochastic or de-

. . .

ψ 1 1

ψ 1 2

. . .

ψ 1 1

ψ 1 2

. . .

ψ 1 1

ψ 1 2

ψ =ψ2 1 11

ψ =ψ22 12

ψ =ψ23 11

ψ =ψ2 1 11

ψ =ψ22 12

ψ =ψ2 1 11

ψ =ψ22 12

ψ =ψ23 12

generate generatedelete

Parent

Child

1

2

G

GG

G1

2
1 2

Figure 3. Depiction of dependent hierarchical Pitman-Yor
process in Chinese restaurant franchise representation

terministic. For example one could choose to remove
all customers in a restaurant.

If customers remain from one time step to the next
then the Gt’s are dependent. An exact charac-
terization of the dependence is non-trivial. It has
been shown in the analogous procedure for dependent
Dirichlet processes that removing fewer customers be-
tween time steps induces higher dependence (Caron
et al., 2007a). If no customers are deleted, Gt does
not vary with the index t. If all customers are deleted
between time steps t and t+ 1, Gt and Gt+1 are inde-
pendent conditional on G0. In designing a dependent
HPYP we will exploit this last characteristic.

3.2. Dependent HPYP

The mechanism for generating dependent PY pro-
cesses can be used to generate dependent HPYP’s as
well. We develop one such strategy for doing so here.
Consider the following two level model:

G1|d1, c1,G0 ∼ PY(d1, c1,G0) (2)
Gt2|d2, c2,G1 ∼ PY(d2, c1,G1), t = 1, . . . , T

θti |Gt2 ∼ Gt2, i = 1, . . . , Nt.

A procedure that can be used to generate data from
this model can be obtained by combining the Chinese
restaurant franchise with the customer deletion scheme
from Section 3.1. Note that the model specification
indicates that G1 does not vary with the index t. This
means that deletion of customers only occurs in the
child restaurant.

Forgetting Counts

Figure 3 shows a sample from the model given in
Eqn. 2 generated using the procedure described in this
section. The middle column of restaurants show the
restaurant configurations after a deletion step. Note
the configuration of the parent restaurant does not
change even though one of the tables in the child
restaurant has been removed. The restaurant configu-
rations in the third column show the resulting seating
arrangement after the sample {θ2

j}5j=1 was generated.
Here, a customer was added to the the parent restau-
rant in order to generate the parameter ψ12 given to
the third table in the child restaurant.

Extending the generative procedure to draw samples
from dependent HPYP’s of the type

Gt1|d1, c1,G0 ∼ PY(d1, d2,G0) (3)
Gt2|d2, c2,Gt1 ∼ PY(d2, c2,Gt1), t = 1, . . . , T

θti |Gt2 ∼ Gt2, i = 1, . . . , Nt

can be done. Dependence is induced between the Gt1’s
by using the deletion scheme in the parent restaurants.
In order to produce a sample from the model described
by Eqn. 3 the configuration of the child restaurants
must also be altered. If we assume independence of
the Gt2’s then the appropriate action is to delete all
customers in the child restaurant between time steps.
This is the action we are going to take. Without
the assumption of independence the extension is not
straightforward. It is likely that such a process exists,
but we do not develop it in this paper.

While the theory developed from this point forward is
applicable to all HPYP models we restrict our atten-
tion to the SM model. This is because we are specifi-
cally interested in using the deletion process to control
the memory complexity of inference in the SM.

3.3. Constant memory

The deletion mechanism used to define the dependent
HPYP can alternatively be viewed as a way to limit
the space complexity required to estimate the SM. As
noted earlier, the number of instantiated restaurants is
the limiting factor regarding memory usage. For this
discussion we will therefore consider a single instanti-
ated restaurant as a unit of memory. For the deletion
scheme to limit the amount of memory used in the SM,
we must be able to limit the number of instantiated
restaurants.

The number of instantiated restaurants can be lim-
ited using the deletion scheme developed for dependent
HPYP’s. Memory savings can be achieved by deleting
all the customers in a leaf restaurant since leaf restau-
rants without people do not need to be represented.

We call a restaurant a leaf restaurant if all restaurants
descended from it are empty. Nodes corresponding to
leaf restaurants are shaded in Fig. 2.

The theory developed in Section 3.1 aids in under-
standing the implied dependencies that arise from
deleting customers in leaf restaurants. For example,
in Fig. 2 consider what would happen if we deleted
all the customers in the restaurant labeled Gpa. Let
Gtpa = Gpa. Implicit in this deletion is the assumption
that the distribution over symbols following the con-
text pa in the sequence prior to the deletion step, Gtpa
is, conditioned on Ga, independent of the distribution
Gt+1
pa after the deletion at time t.

Returning to the SM model and the deletion of leaf
resaurants, we note that the parent restaurant of a
leaf restaurant may not be present in the SM tree.
An example is the restaurant Gpata in Figure 2. The
parent restaurant of Gpata is Gσ(pata) = Gata. The
parent in the SM tree is Gπ(pata) = Ga.

To attain memory savings by deleting restaurant Gpata
we must also delete all of the restaurants in the path
from Ga to Gpata. While the restaurants on this path
are not instantiated in the representation of the model,
they do contain customers and their deletion is signifi-
cant. The implicit model assumption made by deleting
Gpata is that the distributions in the subtree including
and below Gta before the deletion step and the same
distributions after the deletion step are independent.

This is the basic framework for both bounded memory
algorithms we present. That the model can vary over
time may be appropriate for very long sequences. Our
deletion process requires us to assume the indepen-
dence of a large number of distributions. While this
may seem troubling, a key insight is that the entire set
of distributions for which we must make the indepen-
dence assumption are dependent on an existing node
in the tree. Much of the information will be retained
in the tree by the remaining node.

Finally, we point out that the theory behind these dele-
tion operations holds for general hierarchical Pitman-
Yor processes and thus also for finite depth n-gram
style models. In Section 5 we show some results con-
cerning this type of model as well.

4. Inference

In Section 3 we defined a generative model for a de-
pendent HPYP. In this section we consider inference.

The sequential nature of the generative process sug-
gests using sequential Monte Carlo (SMC) for infer-
ence (Doucet et al., 2001). In Algorithm 1 we show

Forgetting Counts

Algorithm 1 Particle Filter
1: Initialize K particles {{Rk = ∅, wk = 1

K }}
K
k=1

2: Initialize u = []
3: while true do
4: x← NextObservation()
5: u← ux
6: for all k = 1, . . . ,K do
7: if |Rk| > maxRestaurants − 2 then
8: Rkd ← ProposeRestaurantToDelete()
9: Rk ← Rk \Rkd

10: end if
11: {Rku, Rkπ(u), . . . , R

k
[]} ← FindRestaurant(u)

12: Pk ← {Rku, Rkπ(u), . . . , R
k
[]}

13: Rk ← Rk ∪Pk

14: vk ← Seat(x,Pk)
15: wk ← vkwk

16: end for
17: # resample particles
18: # predict
19: end while

a SMC procedure for estimating the SM reviewed in
Section 2.3 in which the restaurant emptying depen-
dency mechanism of Section 3.2 is employed. In this
algorithm each particle consists of a set of occupied
restaurants and a weight. Each particle is updated
after each symbol in a streaming sequence.

NextObservation() returns the next symbol in the se-
quence. The variable u is the context in which the
symbol x was observed. ProposeRestaurantToDelete()
returns a restaurant to empty from proposal distribu-
tion to be defined. FindRestaurant(u) returns a path
from the restaurant G[] to the restaurant Gu. Finding
the path requires descending the tree from the root
and instantiating all necessary restaurants. The set
of instantiated restaurants in the particle is updated
to include restaurants in the FindRestaurant(u) path.
Seat(x,Pk) returns the a priori probability of observ-
ing x in the context u and seats a customer in the
restaurant Gu according to the posterior distribution
over tables given the state of the particle and the ob-
servation x. If Seat() sits the customer associated with
x at a new table it will also seat a customer in the par-
ent restaurant. This seating process may extend all the
way up to the restaurant G[].

Most steps of the particle filter are based on the es-
timation approach for the SM proposed in (Gasthaus
et al., 2010). However, this inferential procedure must
include the deletion step characteristic of the gener-
ative model. When the state of the model repre-
sented in each particle reaches the memory constraint

(maxRestaurants) we need to propose which restau-
rants to delete. We suggest two different proposal dis-
tributions to correspond with the two interpretations
of the model specification already discussed. The first
corresponds to the interpretation of the model as a
sequence of dependent distributions with Pitman-Yor
process distributions which vary sequentially across
the sequence. The second corresponds to the inter-
pretation of the model as a finite state approximation
of a model representation which grows linearly as a
function of the length of the data.

The first proposal distribution for the deletion of
restaurants is uniform over the leaf nodes of the cur-
rent state of the model. Using the generative process
as the proposal distribution is standard in particle fil-
tering approaches (Doucet et al., 2001). We refer to
the use of this proposal distribution as “random dele-
tion” in Figure 4 and elsewhere.

For the second proposal distribution we note that the
fixed state of the model can be used to approximate
the probability of the whole sequence. Furthermore,
by deleting different leaf restaurants the probability
of the sequence, given the updated state of the model,
changes. The second proposal distribution determinis-
tically proposes the leaf restaurant whose deletion least
negatively impacts the estimated likelihood of the ob-
served sequence. We refer to the use of this proposal
distribution as “greedy deletion”.

5. Experiments and Results

In tests of predictive probability using incremental in-
ference, the constant space deletion schemes outper-
formed commercial compressors and simpler constant
space models, while approaching the performance of
linear space methods even with significantly less space.
The data we used in our experiments was the Calgary
Corpus (CC) (Bell et al., 1989). The CC is a compres-
sion benchmark corpus that consists of 14 files cho-
sen to cover a typical range of file types. A separate
instance was trained for every combination of model
tested (naive, finite depth, random deletion, greedy
deletion) and file. Files were treated as a sequences of
bytes. Estimation was performed incrementally using
Algorithm 1 with K = 1. The posterior predictive
probability of each byte was calculated before that
byte was incorporated into the model. The random
number generator was initialized with a new seed for
every instance at the start of each run. Figure 4 shows
the average predictive performance of several sequen-
tial prediction models (error bars were too small to
be included). The reported results are the per-byte
log-loss in bits averaged over all files in the corpus.

Forgetting Counts

14,164 41,860 89,479 155,623 300,490 467,502 632,448 776,547
1.8

2

2.2

2.4

2.6
A
v
er
ag
e
L
og
 L
os
s (
b
it
s)

Restaurants

Naive

Finite Depth
Random Deletion
Greedy Deletion
Sequence Memoizer
gzip

bzip2

Figure 4. Performance comparison of constant memory sequence models of the Calgary Corpus

To evaluate our two procedures for constant space in-
ference, we compared to the full SM, two other sim-
ple constant space versions of the SM and two stan-
dard compressors. The SM does not delete any restau-
rants and incremental inference is linear in space and
time. The two inference procedures of interest (ran-
dom and greedy deletion) are both schemes for delet-
ing restaurants from the model, one which randomly
deletes restaurants and one which greedily deletes the
restaurants which make the smallest change possible
to the approximate likelihood of the data already ob-
served, as described in Section 4. Inference in the näıve
constant space SM runs the same as for a normal SM
until the maximum number of restaurants is reached,
at which point all restaurants are removed and infer-
ence continues along the remainder of the sequence.
The finite depth model takes the SM and bounds the
length of a preceding sequence included in an obser-
vation. Thus, it is a finite depth SM. Since we can-
not know the number of restaurants in a finite depth
model before estimation, we perform inference with
this model first and use the number of restaurants to
limit the space allowed by other models. This means
that the deletion strategies must actually choose a bet-
ter graphical model in order to outperform the finite
depth model with the same number of nodes. We also
compressed each file using gzip and bzip2 (Deutsch
et al., 1996; Seward, 1999). Default parameters were
used for the commercial compressors.

We first modeled each file with a finite depth SM model
and recorded the number of instantiated restaurants.
The model complexity was allowed to grow without
bound, meaning the finite depth model was at its full
representational capacity. The maximum number of
instantiated restaurants gave an upper bound on the
number of restaurants needed to model any file in the
corpus with an HPYP model of a given depth. We cal-
culated this upper bound for depths 2 through 9. This
set of bounds was then used as the maximum num-
ber of restaurants for the naive model and the random

and greedy deletion models. Results are shown in Fig-
ure 4. For comparison, the full SM model instantiated
1,160,765 restaurants when trained on the same docu-
ments.

Each of the four sequence models were fit ten times.
From that the variance of the inference procedure
was estimated. Our results show the standard devi-
ation of the average log loss to be less than 0.002 for
all of the methods. All differences detectable in the
graph are significant at the α = 0.01 level. We note
that the SM model paired with either deletion scheme
consistently outperforms the finite depth model and
the näıve model. We also note that both deletion
schemes approach the performance of the full SM with
only one sixth as many restaurants. Furthermore, the
greedy deletion scheme shows improvement over the
random deletion scheme, especially for tight memory
constraints. The SM model paired with either deletion
scheme outperformed the commercial compressors at
every threshold tested.

6. Discussion

In the course of this paper we developed a generative
model for a dependent HPYP. This model is amenable
to sequential Monte Carlo estimation. We know that
other ways to generate dependent HPYP’s will emerge,
and hope that others too will be amenable to efficient
incremental inference techniques. We explained how
dependency in our specific dependent HPYP formula-
tion arises from deleting whole restaurants in a Chinese
restaurant franchise representation. We show that this
restaurant deletion scheme can be either be determin-
istic or probabilistic. In contrast to others who have
used deletion in Chinese restaurant representations to
induce dependence between processes we suggested us-
ing a deterministic deletion policy to control the mem-
ory complexity of inference. The utility of our predic-
tive model seems promising, particularly when consid-
ering how it might be used in a probabilistic lossless

Forgetting Counts

compressor. This is because the performance of the
constant memory models is nearly indistinguishable
from that of state of the the art sequence models and
significantly better than that of existing commercial
compressors.

The techniques highlighted in this paper point to in-
teresting avenues for future research. In essence the
restaurant forgetting scheme amounts to a greedy
stochastic approach to graphical model structure
learning. As data continually arrives, only those
graphical model nodes corresponding to contexts that
are both meaningful and continually reappear will re-
main in the graphical model after many deletion op-
erations. While the deletion scheme utilized in this
work is highlighted in the context of a single family
of models corresponding to a single graphical model
architecture, it may be possible to use deletion opera-
tions in models of more general architecture.

References

Bell, T., Witten, I.H., and Cleary, J.G. Modeling
for text compression. ACM Computing Surveys
(CSUR), 21(4):557–591, 1989.

Blackwell, D. and MacQueen, J. Ferguson distribu-
tions via Polya urn schemes. The Annals of Statis-
tics, 1:353–355, 1973.

Brockwell, P.J. and Davis, R.A. Time series: theory
and methods. Springer, 1991.

Caron, F., Davy, M., and Doucet, A. Generalized
polya urn for time-varying Dirichlet process mix-
tures. In 23rd Conference on Uncertainty in Arti-
ficial Intelligence (UAI’2007), Vancouver, Canada,
July 2007, 2007a.

Caron, F., M., Davy, and Doucet, A. Stationary
Pitman-Yor processes. Poster, Isaac Newton Insti-
tute Workshop on Construction and Properties of
Bayesian nonparametric regression models, August
2007b.

Csató, L. and Opper., M. Sparse online Gaussian pro-
cesses. Neural Computation, pp. 641–668, 2002.

Deutsch, P. et al. GZIP file format specification version
4.3, 1996.

Doucet, A., de Freitas, N., and Gordon, N. Sequential
Monte Carlo Methods in Practice. Springer, 2001.

Ewens, WJ and Tavare, S. The Ewens sampling for-
mula. Multivariate Discrete Distributions. Wiley,
New York, 1995.

Gasthaus, J., Wood, F., and Teh, Y. W. Lossless com-
pression based on the Sequence Memoizer. In Data
Compression Conference 2010, pp. 337–345, 2010.

Griffin, J.E. and Steel, M.F.J. Order-based dependent
Dirichlet processes. Journal of the American Asso-
ciation of Statistics, 101(473):179–194, 2006.

Kingman, JFC. Random partitions in population ge-
netics. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 361
(1704):1–20, 1978.

Lawrence, N., Seeger, M., and Herbrich, R. Fast sparse
Gaussian process methods: The informative vector
machine. Advances in neural information processing
systems, pp. 625–632, 2003.

MacEachern, S. N. Dependent Dirichlet processes.
Technical report, Department of Statistics, Ohio
State University, 2000.

Pitman, J. Exchangeable and partially exchangeable
random partitions. Probability Theory and Related
Fields, 102(2):145–158, 1995.

Pitman, J. and Yor, M. The two-parameter Poisson-
Dirichlet distribution derived from a stable subordi-
nator. Annals of Probability, 25:855–900, 1997.

Seward, J. bzip2. Go online to
http://www.spec.org/osg/cpu2000/CINT2000/-
256.bzip2/docs/256.bzip2.html, 1999.

Snelson, E. and Ghahramani, Z. Sparse Gaussian pro-
cesses using pseudo-inputs. In Advances in Neural
Information Processing Systems 18, pp. 1257–1264.
MIT press, 2006.

Srebro, N. and Roweis, S. Time-varying topic models
using dependent Dirichlet processes. Technical Re-
port UTML-TR-2005-003, Department of Computer
Science, University of Toronto, 2005.

Teh, Y. W. A hierarchical Bayesian language model
based on Pitman-Yor processes. In Proceedings of
the Association for Computational Linguistics, pp.
985–992, 2006.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei,
D. M. Hierarchical Dirichlet processes. Journal
of the American Statistical Association, 101(476):
1566–1581, 2006.

Wood, F., Archambeau, C., Gasthaus, J., James, L.,
and Teh, Y. W. A stochastic memoizer for sequence
data. In Proceedings of the 26th International Con-
ference on Machine Learning, pp. 1129–1136, Mon-
treal, Canada, 2009.

