
Deplump for Streaming Data

Nicholas Bartlett Frank Wood

Department of Statistics, Columbia University, New York, USA

Abstract
We present a general-purpose, lossless compressor for streaming data. This compressor
is based on the deplump probabilistic compressor for batch data. Approximations to the
inference procedure used in the probabilistic model underpinning deplump are introduced
that yield the computational asyptotics necessary for stream compression. We demonstrate
the performance of this streaming deplump variant relative to the batch compressor on a
benchmark corpus and find that it performs equivalently well despite these approximations.
We also explore the performance of the streaming variant on corpora that are too large to be
compressed by batch deplump and demonstrate excellent compression performance.

1 Introduction
Deplump [Gasthaus et al., 2010] is a general purpose, lossless, batch compressor based on a
probabilistic model of discrete sequences called the sequence memoizer [Wood et al., 2009].
Gasthaus et al. showed that although deplump is algorithmically similar to the PPM and
CTW compression algorithms, particularly their unbounded context lengths variants [Cleary
and Teahan, 1997; Willems, 1998], the coherent probabilistic model underlying deplump
gives it a consistent empirical advantage. In particular, Gasthaus et al. showed that deplump
generally outperformed CTW [Willems, 2009], PPMZ [Peltola and Tarhio, 2002], and PPM*
[Cleary and Teahan, 1997] on the large Calgary corpus, the Canterbury corpus, Wikipedia,
and Chinese text. Deplump was shown to underperform in comparison to the PAQ family of
compressors [Mahoney, 2005], but the point was made that deplump (or more specifically
the sequence memoizer) could replace one or all of the mixed, finite-order Markov-model
predictors included in PAQ.

When introduced in [Gasthaus et al., 2010], deplump was reposed on a sequence memo-
izer [Wood et al., 2009] whose space complexity was linear in the length of the input stream,
rendering deplump inappropriate for stream compression. Since then, two complimentary
approximations to inference in the sequence memoizer have emerged that, when combined
as they are in this paper, together result in a constant space sequence memoizer and thus a
stream-capable compressor. To review: the sequence memoizer is an incremental method
for estimating the conditional distributions in an n-gram model in the limit of n→∞. The
space complexity of the sequence memoizer is a function of the number of instantiated
nodes in the corresponding suffix-tree-shaped graphical model and the storage required

1

at each node. Bartlett et al. introduced an approximation to the sequence memoizer in
which the number of nodes in the tree remains of asymptotically constant order [Bartlett
et al., 2010]. Unfortunately, in that work the storage requirement at each node grew as an
uncharacterized but not-constant function of the input sequence length. Gasthaus and Teh
later introduced a method for constraining the memory used at each node in the tree to be of
constant order [Gasthaus and Teh, 2011] but did so in a way that requires the computational
cost of inference to grow as a super-linear function of the length of the training sequence.

The primary contribution of this work is to marry these two approximations such that
constant memory, linear time approximate inference in the sequence memoizer is achieved,
thereby rendering deplump appropriate for streaming lossless compression applications.
In addition to combining these two approximations, a third and final approximation is
introduced to constrain the computation required by the model representation introduced
in [Gasthaus and Teh, 2011]. As the asymptotic statistical characteristics of the combined
approximations are difficult to mathematically characterize, we include significant exper-
imental exploration of the approximation parameter space and the effect on compression
performance. Additionally, as the resulting deplump compression algorithm is of fairly
high implementation complexity, we have included a nearly comprehensive algorithmic
description of it in this paper. This accompanies a reference implementation which can be
explored at http://www.deplump.com/.

2 Methodology
In this section we first review the sequence memoizer model and the inference algorithm
used in the batch deplump compressor. We then review two approximations to this inference
algorithm that we combine for the first time in this paper. Taken together the two approxi-
mations ensure asymptotically constant model storage complexity. A third approximation,
novel to this paper, ensures that the asymptotic computational complexity of the inference
algorithm is linear in the length of the input sequence.

2.1 Review
Note that a distribution P over sequences can be factorized as P (S = [s0, s1, . . . , sm]) =
P (s0)P[s0](s1)P[s0,s1](s2) . . . P[s0,s1,...,sm−1](sm), where PU(s) = P (s|U). The sequence
memoizer [Wood et al., 2009] jointly models these conditional distributions using a hier-
archical Bayesian framework in which non-negative, integer parameters {cUσ , tUσ}σ∈Σ,U∈Σ+

are used to characterize each PU . If we define cU =
∑

σ∈Σ c
U
σ and tU =

∑
σ∈Σ t

U
σ then the

model is

PU(s) =
cUs − tUs δU

cU
+
tUδUPσ(U)(s)

cU

where σ([s1, s2, s3, . . .]) = [s2, s3, . . .] and Pσ([]) is the uniform distribution over Σ.
Given a model and observed data, the task of inference is to learn likely values of the

latent parameters. The latent parameters of the sequence memoizer are the counts in the

2

set of sets G = {{cUσ , tUσ}σ∈Σ | U ∈ Σ+} and δn for n ≥ 0. While |G| = ∞ for sequences
of unbounded length, [Wood et al., 2009] show that inference only requires computation
on H ⊂ G for any finite training sequence S such that |H| ≤ 2|S|. Unfortunately the
linear growth of |H| makes using the model intractable for streaming sequences. [Bartlett
et al., 2010] demonstrate an approximate inference method that maintains a constant bound
on |H| for arbitrary length sequences yet yields results comparable to inference in the
full model. Finally, Gasthaus and Teh [2011] develop an exact representation of H that
requires maintaining at most most 2|Σ||H| unique counts. Combining these results yields
an inference algorithm with asymptotically constant storage complexity forH.

2.2 Approximation
We introduce two more approximating procedures that combined with those above yield
streaming deplump. First, because the data structure used by batch deplump is a suffix tree
its storage complexity is linear in the input sequence length. For this reason, streaming
deplump cannot maintain a suffix tree representation of the entire input sequence. Instead a
fixed-length “reference sequence” is maintained (see Algorithm 2), along with a dynamically
updated suffix tree referencing only the suffixes found therein. Deleting nodes to constrain
the size of this context tree forces node-removal inference approximations of the sort defined
in [Bartlett et al., 2010], operations that are justifiable from a statistical perspective but
whose net practical effect on compression performance is characterized for the first time in
this paper.

As noted, the efficient representation introduced in Gasthaus and Teh [2011] maintains a
single pair of counts cUσ and tUσ for each U ∈ H and σ ∈ Σ. During incremental estimation,
for each symbol s in the input sequence, cUs is incremented in at least one node on the tree.
Clearly maxP∈H,σ∈Σ{cUσ} then grows monotonically as a function of the length of the input
sequence. Unfortunately incremental construction of the model includes an operation on
node elements known as fragmentation (Alg. 5) that requires computation proportional to
maxσ∈Σ{cUσ} for node U [Gasthaus and Teh, 2011]. Therefore, to ensure computational
complexity that is independent of the sequence length, cUσ must be bounded for all U ∈ H.
The effect of imposing this restriction on compression performance is also characterized for
the first time in this paper.

3 Algorithm
Our focus in this section is on providing the most complete implementation reference for
deplump to date with the changes necessary to achieve streaming asymptotics highlighted.
Many of the individual algorithms that appear in this section are justified and explained
in detail in earlier papers. We explain the functionality of each algorithm, but refer the
interested reader to the earlier papers for detailed mathematical justifications, in particular
[Wood et al., 2009; Gasthaus et al., 2010; Bartlett et al., 2010].

Given a sequence of symbols S = [s0, s1, s2, . . .] where each symbol sn comes from
from an ordered set of symbols {σ1, σ2, . . .} = Σ, streaming deplump works by repeatedly
producing a predictive distribution for the continuation of the sequence given the full

3

Algorithm 1 Deplump/Plump
1: procedure O ← DEPLUMP/PLUMP(I)
2: R ← [] ; O ← []
3: nc← 1 . node count
4: D ← {δ0, δ1, δ2, . . . , δ10, α} . discount parameters
5: for i = 1: |I| do
6: G ← ~0 . discount parameter gradients, |G| = |D|
7: {π,N} ← PMFNEXT (R)
8: if Plump then
9: O ← [O, DECODE(π, I)]

10: else
11: O ← [O, ENCODE(Σ

I[i]−1
j=1 πj,Σ

I[i]
j=1πj)]

12: UPDATECOUNTSANDDISCOUNTGRADIENTS(N , s, πs,TRUE)
13: D ← D + Gη/πs . update discount parameters
14: R ← [R s] . append symbol to reference sequence

preceding context and encoding the next symbol by passing that predictive distribution to an
entropy encoder. We assume that if the predictive distribution function is F and the next
symbol in the stream is s then an entropy encoder exists that takes F (s− 1) and F (s) as
arguments and returns a bit stream [Witten et al., 1987]. We use the notation s− 1 to refer
to the symbol prior to s in the symbol set Σ.

The algorithms of streaming deplump run over a constant space, incrementally con-
structed suffix-tree-like data structure. Note that the fact that this datastructure is of con-
stant size is a significant point of differentiation between this work and that of Gasthaus
et al. [2010]. This tree-shaped data structure efficiently encodes a subset of the unique
suffixes of all contexts in a sequence. Each edge in the tree has a label which is a sub-
sequence of the input sequence. Each edge label is represented by two indices into a
fixed-length suffix of the input sequence which we call the reference sequence (i.e. each
edge label is [ri+1, ri+2, . . . , rj] for indices i and j into the reference sequence where
[r1 = sn−T , . . . , rT = sn] after the nth input sequence element is processed.) Therefore,
each node in the tree corresponds to a subsequence [sm, . . . , sm+k] of the input sequence
and a (potentially non-sequential) set of subsequences of the reference sequence. We use N
to refer interchangeably to a node and the suffix in the input sequence to which the node
corresponds. For a given suffix the corresponding node is accessed by traversing edges of
the tree that match the suffix read from right to left.

Streaming deplump is given in Algorithm 1. Deplump processes each element of an input
sequence I incrementally. For each element sn of I, PMFNEXT computes the predictive
probability mass function π (conditioned on the observed contextR) needed for compression.
The element sn is then encoded by an entropy encoder with parameter π. PMFNEXT also
handles the incremental maintenance of the underlying constant-space datastructures by
both restricting the length of the reference sequence and constructing and deleting nodes
in the tree as needed. The final steps are to incrementally integrate the observation into
the approximated sequence memoizer and to adjust the back-off/smoothing parameters D.

4

Algorithm 2 PMFNext
1: function {π,N} ← PMFNEXT(R)
2: while |R| ≥ T do
3: R ← σ(R)

4: while nc > (L− 2) do
5: Delete random leaf node
6: nc← nc− 1

7: N ← GETNODE(R, T)
8: π ← PMF(N ,~0, 1.0) . |~0| = |Σ|

Algorithm 3 DrawCRP
1: function t← DRAWCRP(n, d, c)
2: t← 1
3: for i = 2 : n do
4: r ← 0
5: r ← 1 w.p. td+c

i−1+c

6: t← t+ r

Algorithm 4 PMF
1: function π ← PMF(N , π,m)
2: if cN > 0 then
3: for σ ∈ Σ do
4: πσ ← πσ +m(c

N
σ −tNσ dN
cN

)

5: if PA(N) 6= null then
6: π ← PMF(PA(N), π, dNm)
7: else
8: π ← (1− dNm)π + dNmPσ([])

Algorithm 5 GetNode
1: function S ← GETNODE(S, T)
2: Find the nodeM in the tree sharing

the longest suffix with S and update in-
dices on edges in the path fromM to
the root to point to more recent sections
ofR

3: ifM is a suffix of S then
4: if S 6=M and |M| < D then
5: S ← CREATENODE(S,M)
6: nc← nc+ 1

7: else
8: P← FRAGMENTNODE(M, S)
9: S ← CREATENODE(S,P)

10: nc← nc+ 1

Algorithm 6 ThinCounts
1: function THINCOUNTS(N)
2: while cN > k do
3: π = [

cNσ1

cN
,
cNσ2

cN
, . . . ,

cNσ|Σ
cN

]
4: s← MULTINOMIAL(π)
5: φ← PARTITION(cNs , t

N
s , d

N)
6: ψ ← (1

cNs
)φ

7: i← MULTINOMIAL(ψ)
8: if φi = 1 then
9: tNs ← tNs − 1

10: cNs ← cNs − 1

This involves updating counts in the tree and calculating a stochastic gradient for D. Both
of these are done in UPDATECOUNTSANDDISCOUNTGRADIENTS. The organization of
functions in this way minimizes the number of tree traversals that need to be performed, tree
traversals being a major component of the computational cost of this algorithm.

PMFNEXT (Alg. 2) starts by enforcing the bounds on |R| and |H|. Both of these
bounds require nodes to be removed from the tree (the first implicitly as a result of edge
labels becoming undefined and the second explicitly). Removing nodes from the underlying
datastructure is simple to do, but as an operation on the corresponding sequence memoizer
graphical model some care must be taken because node removal has ramifications in terms of
what kinds of approximations are being imposed on inference. Bartlett et al. [2010] showed
that removing leaf nodes from the sequence memoizer results in a coherent approximate
inference algorithm for the sequence memoizer. So, enforcing the bound on |H| < L is as
simple as incrementally removing leaf nodes uniformly at random. To facilitate random
deletion we maintain a count in each node of the number of leaf nodes in the subtree below
it. A random leaf node can then be obtained by traversing a weighted random path down the

5

Algorithm 7 UpdateCountsAndDiscountGradients
1: function UPDATECOUNTSANDDISCOUNTGRADIENTS(N , s, p, BackOff)
2: pp← p
3: if cN > 0 then
4: pp← (p− cNs −tNs dN

cN
)(cN
tN dN

)
5: w ← cNs + dN (tNpp− tNs)

6: if BackOff and c > 0 then
7: cNs ← cNs + 1
8: BackOff← 0
9: BackOff← 1 w.p. pp(t

N dN

w
) . w.p abbreviates “with probability”

10: if BackOff then
11: tNs ← tNs + 1

12: else if BackOff then
13: cNs ← cNs + 1; tNs ← tNs + 1

14: UPDATEDISCOUNTPARAMETERGRADIENTS

15: UPDATECOUNTSANDDISCOUNTGRADIENTS(PA(N), s, pp, BackOff)
16: THINCOUNTS(N)

tree.
The removal of nodes due to their edge labels becoming undefined is an unfortunate

consequence of having to constrain the reference sequenceR to be of constant length. Note
that without a bound |R| would grow in length by one as each symbol of the input sequence
is incorporated into the model. To maintain the upper bound on |R| we shortenR by one as
in a fixed length FIFO queue. Since the labels of edges in the tree index intoR then, when it
is shortened, some edges may end up having labels that index beyond the retained elements
of R resulting in “undefined” edges. Nodes below any undefined edges in the tree must
be removed because they can no longer be accessed. Their removal is justified in the same
way as before because all subtree removals can be implemented as a cascade of leaf node
removals. It is desirable to minimize the number of nodes removed due to the incessant
shortening ofR. One way to do this is to update all edge indices on all paths traversed in
the process of inserting nodes into the tree (Alg. 5). PMFNEXT finishes by accessing the
correct node for prediction using GETNODE (Alg. 5) and the predictive probability mass
function is calculated recursively by PMF (Alg. 4).

Incremental construction of the tree is handled by GETNODE within PMFNEXT which
creates two or fewer nodes in the tree for every call. Within the function GETNODE, nodes
are created by CREATENODE and FRAGMENTNODE. The function CREATENODE(N ,M)
simply creates a node N with parent M. FRAGMENTNODE (Alg. 8) implements the
fragmentation operation developed in [Wood et al., 2009] required to ensure proper sequence
memoizer inference in the case where an edge must be split and a node inserted, but does
so in the constant space node representation given in [Gasthaus and Teh, 2011]. This new
intervening node corresponds to a predictive context and the counts corresponding to a
proper estimate of this predictive distribution must be inferred. Practically this means that
value must be assigned to all counts tPs , c

P
s , t
M
s , c

M
s for s ∈ Σ. FRAGMENTNODE uses two

6

Algorithm 8 FragmentNode
1: function P ← FRAGMENTNODE(M,S)
2: P ← maximum overlapping suffix ofM and S
3: P ← CREATENODE(P , PA(M))
4: nc← nc+ 1
5: PA(M)← P
6: for σ ∈ Σ do
7: φ← PARTITION (cMσ , t

M
σ , d

M)
8: tPσ ← tMσ ; tMσ ← 0
9: for i = 1 : |φ| do

10: a← DRAWCRP(φ[i], dM/dP ,−dM)
11: tMσ ← tMσ + a

12: cPσ ← tMσ

Algorithm 9 Partition
1: function φ← PARTITION(c, t, d)
2: M ← t× c matrix of zeros
3: M(t, c)← 1.0
4: for j = (c− 1) : 1 do
5: for i = 1 : (t− 1) do
6: M(i, j)←M(i+ 1, j + 1) +M(i, j + 1)(j − id)

7: M(d, j)←M(t, j + 1)

8: φ← [1, 0, 0, . . . , 0] . |φ| = t
9: for j = 2 : c do

10: M(k, j)←M(k, j)(j − 1− kd)
11: r ← 0
12: r ← 1 w.p. M(k+1,j)

M(k+1,j)+M(k,j)

13: if r = 1 then
14: k ← k + 1
15: φ[k]← 1
16: else
17: i← MULTINOMIAL([φ[1]−d

j−1−kd ,
φ[2]−d
j−1−kd , . . . ,

φ[k]−d
j−1−kd])

18: φ[i]← φ[i] + 1

functions to do this: PARTITION(c, t, d) (Alg. 9) and DRAWCRP(n, d, c) (Alg. 3). The net
effect of FRAGMENTNODE is to create a new branching node at the shared suffix ofM and
S. The mathematical explanation of these algorithms is given in [Gasthaus and Teh, 2011].

Finally UPDATECOUNTSANDDISCOUNTS (Alg. 7) integrates the observation into the
underlying probability model, adjusting counts in potentially all nodes on the path from
the context in which the observation was made to the root of the context tree. UPDATE-
COUNTSANDDISCOUNTS also computes a partial stochastic gradient for the discount
parameter of each node on this path (this gradient is used in DEPLUMP to update D). The
details of the discount computation performed in UPDATEDISCOUNTPARAMETERGRADI-

7

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 321

1.5

2

2.5

3

depth

bi
ts

 /
 b

yt
e

L=103 L=104 L=105 L=106 L=107

Figure 1: Average (± std.) streaming deplump compression performance as measured in
bits in compressed output vs. bytes in uncompressed input. Here the depth limit (D) and
node limit (L) are varied. From this we conclude that setting the depth limit to D ≥ 16
and the node limit to the largest value possible given physical memory constraints leads to
optimal compression performance.

3 4 5 6 7 8 9

2

4

stream length (log10)

bi
ts

 /
by

te

L=103 L=104 L=105 L=106 L=107

Figure 2: Average (± std.) streaming deplump compression performance as measured in
bits in compressed output vs. bytes in uncompressed input. Here the input stream length and
node limit (L) are varied. From this we observe that average deplump streaming compression
performance monotonically improves as the input sequence grows in length but asymptotes
at a different value per node limit Also, it can be seen that large node limits may actually
hurt compression performance for small input sequences.

ENTS are too long to include. UPDATECOUNTSANDDISCOUNTS also uses THINCOUNTS

(Alg. 6) to enforce the bound on the counts in each node required to ensure computational
asymptotics appropriate for streaming compression.

To use streaming deplump a choice of approximation parameters must be made. The
full set of these parameters consists of D, D, T , k, L, η. D = [δ0, δ1, . . . , δ10, α] is a list
of discount parameters, each taking a real value in (0, 1). If we define δn = δα

n−10

10 for
n ≥ 10, and δn for n ≤ 10 then dN = Π

|N |
i=|PA(N)|+1δi. D is the maximum depth of the

suffix tree which corresponds to both the maximum context length used in modeling and
the maximum recursion depth of all of the algorithms. T is the bound on the length of the
reference sequenceR and is typically set to a multiple of the upper bound on the number of
node instances in the suffix tree L. The parameter k is the upper bound on the total count cN

in each node. The parameter η is a learning rate for the updating of the discount parameters
and is typically set to a very small value.

8

4 Experiments
As the performance of batch deplump was established relative to other lossless compressors
for a variety of datatypes in [Gasthaus et al., 2010], we focus our experiments on establishing
a) that the approximations to inference in the sequence memoizer combined in this paper
in order to make deplump a streaming compressor do not significantly adversely affect
compression performance, b) that the resulting compressor can indeed compress extremely
long sequences as the asymptotic guarantees would suggest it should, and c) which settings
of the approximation parameters produce the best compression performance. Most of the
experiments included in this paper use a complete Wikipedia text content dump [Wikipedia,
2010] as a test corpus (26.8Gb uncompressed, 7.8Gb gziped both with default parameters,
and 3.9Gb deplumped).

To establish what approximation parameters produce the best compression results we
first ran streaming deplump on the first 100Mb section of the corpus limiting the depth to
two different values (D = 16 and D = 1024) with a fixed limit on the number of nodes in
the tree (L = 106). We observed that in both cases only very few nodes had high total counts
(c > 8, 192) suggesting that it might be possible to set the count upper bound conservatively
(k = 8, 192) without significant compression performance degradation. To ensure that
compression performance did in fact not suffer, we compressed ten 100Mb subsections of
the corpus (sampled randomly with replacement) for multiple values of k between 128 and
32,768 (fixing L = 106 and D = 16). We observed that average compression performance
indeed varied insignificantly over all values of k.

The interplay between limiting the number of nodes in the tree and restricting the depth
of the tree was explored (results for which are shown in Figure 1). Here k was set to 8,192,
while L and the depth of the tree D were varied as indicated in the figure. The interplay
between stream length and node limit was also explored (Figure 2). In this experiment k
remained fixed at the same value and the depth was set to D = 16 while L varied as shown
in the figure. In both experiments, subsections of the corpus were sampled with replacement.
In the first experiment the sampled subsections were all of size 100Mb, while in the second
the sampled subsections varied in length.

Figure 1 indicates that compression performance becomes essentially indistinguishable
for depth restrictions greater than D = 10. However, this figure also suggests that compres-
sion performance improves as a function of the number of nodes in the tree for depths 6 and
greater. Figure 2 illustrates that the algorithm not only scales to very long sequences, but
average compression performance continues to improve as the sequence grows. Using a
large value of L appears to be beneficial for very long sequences.

Considering these results, we chose values for the approximating parameters (D = 32,
L = 107, k = 8, 192, T = 108, D = [.5, .7, .8, .82, .84, .88, .91, .92, .93, .94, .95, .93], and
η = 0.0001) then compared streaming deplump to to batch deplump. In this experiment we
achieved compression performance of 1.67 bites per byte on the 100Mb Wikipedia corpus
excerpt used for the Hutter Prize [Hutter, 2006] using the streaming variant of deplump.
Batch deplump [Gasthaus et al., 2010] achieved 1.66 bits per byte. If we were to have
instead taken the most obvious approach to streaming compression, namely, compressing
the sequence in blocks until a memory bound is hit and then starting over, performance
falls to 1.88 bits per byte (limiting the sequence length of each block such that the resulting

9

batch deplump compressor used a maximum amount of memory roughly equivalent to the
amount of memory used by the streaming variant). These results further demonstrate that
the streaming variant of deplump is a significant improvement over the naı̈ve approach to
compression of streaming data using batch deplump.

5 Discussion
In this paper we developed a new streaming variant of deplump. We showed that the
approximations introduced to make deplump stream-capable had almost no effect on com-
pression performance relative to batch deplump, meaning that streaming deplump likewise
outperforms unbounded context CTW, PPMZ, among others yet can be used to compress
streaming data of unbounded length. It remains the case that streaming deplump could be
integrated into the PAQ family of compressors.

References

Bartlett, N., Pfau, D., and Wood, F. (2010). Forgetting counts: Constant memory inference
for a dependent hierarchical Pitman-Yor process. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 63–70.

Cleary, J. G. and Teahan, W. J. (1997). Unbounded length contexts for PPM. The Computer
Journal, 40:67–75.

Gasthaus, J. and Teh, Y. W. (2011). Improvements to the sequence memoizer. In Proceedings
of Neural Information Processing Systems.

Gasthaus, J., Wood, F., and Teh, Y. W. (2010). Lossless compression based on the Sequence
Memoizer. In Data Compression Conference 2010, pages 337–345.

Hutter, M. (2006). Prize for compression human knowledge. URL: http://prize.
hutter1.net/.

Mahoney, M. V. (2005). Adaptive weighing of context models for lossless data compression.
Technical report, Florida Tech. Technical Report CS-2005-16, 2005.

Peltola, H. and Tarhio, J. (2002). URL: http://cs.hut.fi/u/tarhio/ppmz.
Wikipedia (2010). URL: http://download.wikimedia.org/enwiki/.
Willems, F. M. J. (1998). The context-tree weighting method: Extensions. IEEE Transac-

tions on Information Theory, 44(2):792–798.
Willems, F. M. J. (2009). CTW website. URL: http://www.ele.tue.nl/ctw/.
Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540.
Wood, F., Archambeau, C., Gasthaus, J., James, L., and Teh, Y. W. (2009). A stochastic

memoizer for sequence data. In Proceedings of the 26th International Conference on
Machine Learning, pages 1129–1136, Montreal, Canada.

10

