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Introduction 
• Context: Repeated Games & Stochastic Games 
• Want to learn the best strategy against the opponent(s) 
• Might not know all the payoff values beforehand 
• Might not know the transition probabilities between states 

(in a stochastic game) 
• Can use Reinforcement Learning! 
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Reinforcement Learning 
•  Inspired by behaviorist psychology 
•  Learn by interacting with the environment 
•  Trial-and-error approach 
• Positive feedback encourages given behavior 
• Negative feedback discourages given behavior 
• Balance between exploration and exploitation 
•  Long-term payoff 
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Q-Learning 
• Environment consists of states 
•  From each state agent can choose an action 
• Each action has an associated reward 
• After performing action, agent moves to another state 

(maybe) 
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Q-Learning 
• Each state-action pair has a corresponding Q-value: 

represents expected cumulative payoff from performing 
action in the given state 

• Update Q each time: 

• Goal: Find “optimal policy” i.e. actions that maximize V(s) 
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Q-Learning 

• How are actions chosen? 
•  Randomly, with probability explor  exploration 
•  According to max Q(s,a) with probability 1 – explor  exploitation 
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Q-Learning 

• How are actions chosen? 
•  Randomly, with probability explor  exploration 
•  According to max Q(s,a) with probability 1 – explor  exploitation 

• What’s a good learning rate (alpha) ? 
•  1/k 
•  0.1 
•  … 
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Play This Game Repeatedly: 

Player 1 

Player 2 
L2 R2 

L1 0,0 1,-1 

R1 -10,10 10,-10 



Q-Learning in Zero-Sum Stochastic Games 
• Naïve approach: apply Q-learning directly 

•  Might not work well against a good opponent with a complex 
strategy 

•  No guarantee of convergence 

• Better approach: play MaxMin and converge to Nash 
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Minimax Q-Learning 
• Q-values are over joint actions: Q(s,a,o) 

•  s = state 
•  a = your action 
•  o = action of the opponent 

•  Instead of playing action with highest Q(s,a,o), play MaxMin 
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Minimax Q-Learning 
• How are actions chosen? 

•  At the beginning set       to select actions uniformly at random for each 
state 

•  Before each step: 
•  Play random action with probability explor 
•  Play according to          with probability 1 – explor 

•  After each step: 
•  Update        to the MaxMin strategy (based on Q(s,a,o)) 
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Minimax Q-Learning 
• Does it work? 

•  Performs better than naïve Q-learning 
•  Guarantees convergence to Nash equilibrium (under certain 

conditions) 
•  No guarantee of rate of convergence L 
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Q-Learning in General-Sum Games 
• A much harder problem 
• Nash Q-Learning: 

• NashV(s) is the payoff value from computing a Nash 
equilibrium 

• Must keep track of all players’ Q-values to compute 
NashV(s) 

• Assumes all players play the same Nash equilibrium 
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Belief-based Reinforcement Learning 

• Uses some beliefs about opponents’ strategy to calculate 
V(s) 

•  Ideally beliefs are updated after each move 
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Other approaches 
• A Nash equilibrium is not always the “best” way to play 
• Can use other solution concepts: 

•  Correlated equilibrium 
•  Pareto-optimality 
•  Regret 
•  … 

• Methods developed for specific kinds of games 
•  E.g. “coordination games” (Battle of the Sexes) 
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Conclusion 
• Reinforcement learning can be useful in learning strategies 

in stochastic games 
•  It is not necessary to know the payoff matrix and transition 

probabilities beforehand 
• Many methods’ success depends on the accuracy of 

assumptions about other players’ strategies 
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