Lecture 8: Multiples/Interaction

Information Visualization CPSC 533C, Fall 2007

Tamara Munzner

UBC Computer Science

3 October 2007

Readings Covered

Ware, Chap 10: Interacting with Visualizations. first half, p 317-324

Tufte, Chap 4: Small Multiples

State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Jonathan C. Roberts. Proc. Conference on Coordinated & Multiple Views in Exploratory Visualization (CMV) 2007.

Building Highly-Coordinated Visualizations In Improvise. Chris Weaver. Proc. InfoVis 2004

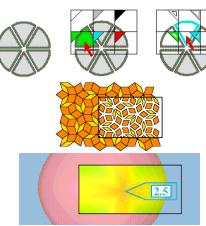
Exploring High-D Spaces with Multiform Matrices and Small Multiples. Alan MacEachren, Xiping Dai, Frank Hardisty, Diansheng Guo, and Gene Lengerich. Proc InfoVis 2003.

Further Readings

Toolglass and magic lenses: the see-through interface. Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. Proc. SIGGRAPH'93, pp. 73-76.

Excentric Labeling: Dynamic Neighborhood Labeling for Data Visualization. Jean-Daniel Fekete and Catherine Plaisant. Proc. CHI'99, pages 512-519.

Ware Interaction

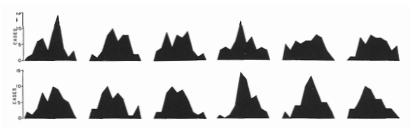

- low-level control loops, data manipulation
 - choice reaction time
 - depends on number of choices
 - selection time: Fitts' Law
 - depends on distance, target size
 - path tracing
 - depends on width
 - learning: power law of practice
 - also subtask chunking

Ware Interaction

- ▶ low-level control loops
 - two-handed interaction: Guiard's theory
 - coarse vs. fine control e.g. paper vs. pen positioning

Two-Handed Interaction Example

- toolglass: semi-transparent click-through tool
- magic lens: see-through tool

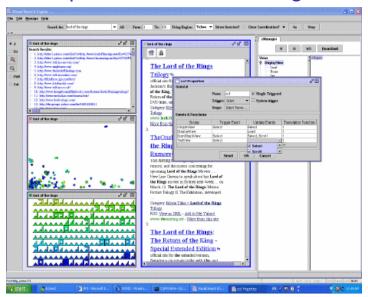

[Toolglass and magic lenses: the see-through interface. Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. Proc. SIGGRAPH'93, pp. 73-76.]

Ware Interaction

- low-level control loops
 - two-handed interaction: Guiard's theory
 - coarse vs. fine control e.g. paper vs. pen positioning
 - vigilance
 - difficult, erodes with fatigue
 - control compatability
 - learning/transfer: adaption time depends
 - hover/mouseover/tooltip
 - faster than explicit click

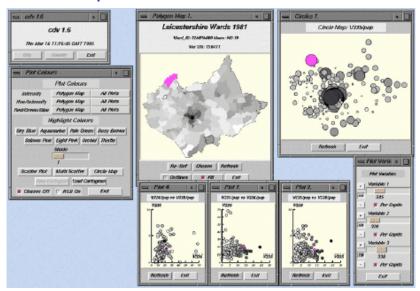
Small Multiples

- several small windows with
 - same visual encoding
 - different data
 - shown side by side

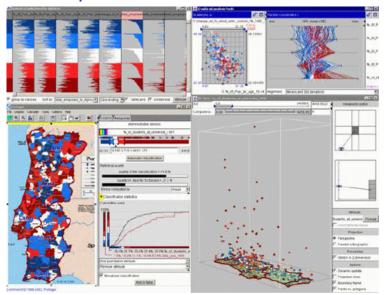


[Edward Tufte. The Visual Display of Quantitative Information, p 172]

Coordinated Multiple Views (CMV)


- more general than small multiples
- multiple views
 - multiform: different visual encodings of same data
 - different resolutions of same encoding
 - overview+detail
- power of linking
 - linked highlighting (brushing)
 - linked navigation
 - linked parameter changes

CMV Example: Visual Search Engine


[VSE from Boukhelfia, Roberts, and Rodgers, Figure 3 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization.

CMV Example: cdv

[cdv from Dykes, Figure 2 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]

CMV Example: CommonGIS

[CommonGIS from Andrienko and Andrienko, Figure 4 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization.

Replace, Replicate, Overlay

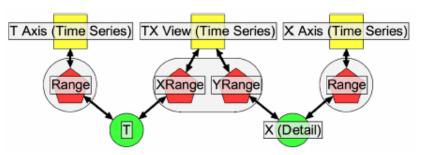
- when to do which
- design problem
 - always replace: too much reliance on memory
 - always replicate: too many windows
 - always overlay: too much clutter in single window

Architectural Issues

- must play nicely with other views
 - rendering, preprocessing, responding to commands
- most issues also true for scalability of single view
 - guaranteed response time independent of dataset size
- loose confederation
 - multithreaded, each component can work in background
- tighter confederation: return control to master regularly (TJ,H3)
 - divide work into pieces, enqueue
 - continue serving queue when control is returned

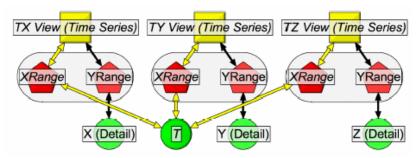
Animated Transitions

- animated transitions vs. jump cuts
 - object constancy
 - guaranteed frame rate avoids slowdown with large data
- early PARC architectural solution: Cognitive Co-Processor
 - split work into small chunks
 - animation vs. idle states
 - governor controls frame rate
- video: 3D Rooms

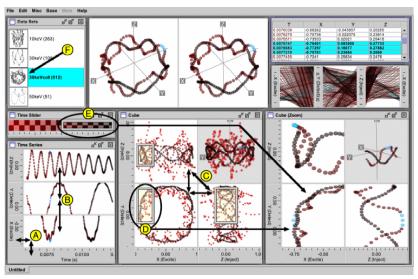

[The cognitive coprocessor architecture for interactive user interfaces. George Robertson, Stuart K. Card, and Jock D. Mackinlay, Proc. UIST '89, pp 10-18.]

Improvise

- tightly integrated coordination approach
 - components with many external control capabilities
- live properties
 - value slots, ports
 - change in response to user action
 - naive approaches fall into cycles
- coordinated queries
 - filters, projections


Coordinating Axes

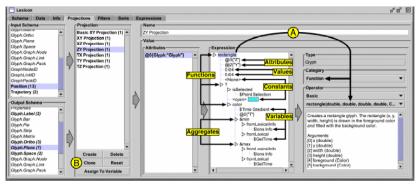
scatterplot from components



Coordinating Multiple Scatterplots

sync horizontal but not vertical scrolling

Example: Complex Application

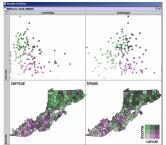


Selection

- selection decoupled from data
- selection-dependent loading, filtering, projection
- highlighting: user-customizeable differentiation of selected vs. unselected items
- video

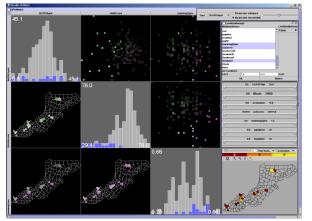
Critique

- sophisticated and powerful approach to coordination
- but very large learning curve to build new apps


Multiform Matrices and Small Multiples

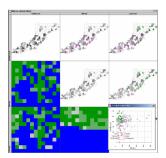
- matrices for bivariate exploration (SPLOM and other)
 - vs. small multiples for univariate
- uniform vs. multiform multiples
- techniques
 - juxtaposition
 - sorting/ordering
 - manipulation
 - linking multiple bivariate views

[Exploring High-D Spaces with Multiform Matrices and Small Multiples. Alan MacEachren, Xiping Dai, Frank Hardisty, Diansheng Guo, and Gene Lengerich. Proc InfoVis 2003.]


Multiform Bivariate Small Multiple

- common variable: per capita income
- per-column variables: type of cancer mortality
- per-row forms: scatterplot, choropleth/thematic map
- left bright green: high income, low cervical cancer
 - hypoth: not screened
- right dark green: low income, high breast cancer
 - hypoth: late childbearing

Multiform Bivariate Matrix

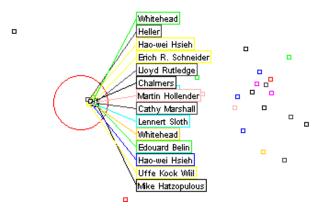

- scatterplots/maps, histograms along diagonal
 - per-column vars: mortality, early detection, recent screening
- univariate map var: screening facility availability

[Exploring High-D Spaces with Multiform Matrices and Small Multiples. MacEachren et al. Proc. InfoVis 2003. 1

Spacefill Form

- linked highlight of low doctor ratio counties from scatterplot
- spacefill shows it's roughly half the items

[Exploring High-D Spaces with Multiform Matrices and Small Multiples. MacEachren et al, Proc. InfoVis 2003.]



Sorting and Linking

- sorting
 - manual: direct manipulation from user
 - automatic: conditional entropy metric
 - automatic: hierarchical clustering to find interesting
- linking
 - highlighting
 - many others
 - background color, subspce, conditioning, ...
 - conditioning: filter in/out of given range on another var
- video

Excentric Labels

- show labels around mouseover region
- demo

[Excentric Labeling: Dynamic Neighborhood Labeling for Data Visualization. Jean-Daniel Fekete and Catherine Plaisant. Proc. CHI'99, pages 512-519.] [http://www.cs.umd.edu/hcil/excentric/]

Critique

- great previous work taxonomy
- great explanation of how vis techniques used with specific data can lead to hypothesis generation
- careful use of color