

Nonlinear Dimensionality Reduction

Donovan Parks

Overview

Direct visualization vs.
dimensionality reduction

Nonlinear dimensionality reduction techniques:

• ISOMAP, LLE, Charting

 A fun example that uses nonmetric, replicated MDS

Direct visualization

o Visualize all dimensions

Sources: Chuah (1998), Wegman (1990)

Dimensionality reduction

- Visualize the intrinsic low-dimensional structure within a high-dimensional data space
- Ideally 2 or 3 dimensions so data can be displayed with a single scatterplot

When to use:

Direct visualization:

 Interested in relationships between attributes (dimensions) of the data

• Dimensionality reduction:

 Interested in geometric relationships between data points

Nonlinear dimensionality reduction

Isometric mapping (ISOMAP)

 Mapping a Manifold of Perceptual Observations. Joshua B. Tenenbaum. Neural Information Processing Systems, 1998.

• Locally Linear Embedding (LLE)

- Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds. Lawrence K. Saul & Sam T. Roweis. University of Pennsylvania Technical Report MS-CIS-02-18, 2002.
- Charting
 - Charting a Manifold. Matthew Brand, NIPS 2003.

Why do we need nonlinear dimensionality reduction?

ISOMAP

 Extension of multidimensional scaling (MDS)

 Considers geodesic instead of Euclidean distances

Geodesic vs. Euclidean distance

Calculating geodesic distances

Q: How do we calculate geodesic distance?

Construct neighborhood graph
Compute geodesic distance matrix
Apply favorite MDS algorithm

ISOMAP Embedding

Modified from: Tenenbaum, 1998

Example: ISOMAP vs. MDS

Example: Punctured sphere

ISOMAP generally fails for manifolds with holes

+/-'s of ISOMAP

o Advantages:

- Easy to understand and implement extension of MDS
- Preserves "true" relationship between data points

o Disadvantages:

- Computationally expensive
- Known to have difficulties with "holes"

Locally Linear Embedding (LLE)

- Forget about global constraints, just fit locally
- Why? Removes the need to estimate distances between widely separated points
 - ISOMAP approximates such distances with an expensive shortest path search

Are local constraints sufficient? A Geometric Interpretation

 Maintains approximate global structure since local patches overlap

Are local constraints sufficient? A Geometric Interpretation

 Maintains approximate global structure since local patches overlap

LLE Algorithm

Source: Saul, 2002

Example: Synthetic manifolds

Modified from: Saul, 2002

Example: Real face images

Source: Roweis, 2000

+/-'s of LLE

o Advantages:

- More accurate in preserving local structure than ISOMAP
- Less computationally expensive than ISOMAP

o Disadvantages:

- Less accurate in preserving global structure than ISOMAP
- Known to have difficulty on non-convex manifolds (not true of ISOMAP)

Charting

 Similar to LLE in that it considers overlapping "locally linear patches" (called charts in this paper)

 Based on a statistical framework instead of geometric arguments

Charting the data

 Place Gaussian at each point and estimate covariance over local neighborhood

 Brand derives method for determining optimal covariances in the MAP sense

• Enforces certain constraints to ensure nearby Gaussians (charts) have similar covariance matrices

Find local coordinate systems

 Use PCA in each chart to determine local coordinate system

Connecting the charts

 Exploit overlap of each neighborhood to determine how to connect the charts

 Brand suggest a weighted least squares problem to minimize error in the projection of common points

Example: Noisy synthetic data

+/-'s of Charting

o Advantage:

 More robust to noise than LLE or ISOMAP

• Disadvantage:

- More testing needed to demonstrate robustness to noise
- Unclear computational complexity
 - Final step is quadratic in the number of charts

Conclusion: +/-'s of dimensionality reduction

o Advantages:

 Excellent visualization of relationship between data points

o Limitations:

- Computationally expensive
- Need many observations
- Do not work on all manifolds

Action Synopsis: A fun example

 Action Synopsis: Pose Selection and Illustration.
Jackie Assa, Yaron Caspi, Daniel Cohen-Or. ACM Transactions on Graphics, 2005.

Aspects of motion

Input: pose of person at each frame

• Aspects of motion:

- Joint position
- Joint angle
- Joint velocity
- Joint angular velocity

Dimensionality reduction

- Problem: How can these aspects of motion be combined?
- Solution: non-metric, replicated MDS
 - distance matrix for each aspect of motion
 - best preserves rank order of distances across several distance matrices

 Essentially NM-RMDS implicitly weights each distance matrix

Pose selection

- Problem: how do you select interesting poses from the "motion curve"?
 - Typically 5-9 dimensions
- Assa et al. argue that interesting poses occur at "locally extreme points"

Finding locally extreme points

Source: Assa, 2005

Do you need dimensionality reduction?

Source: Assa, 2005

Example: Monkey bars

Example: Potential application

Source: Assa, 2005

Critique of Action Synopsis

Pros:

- + Results are convincing
- + Justified algorithm with user study

Cons:

- Little justification for selected aspects of motion
- Requiring pose information as input is restrictive
- Unclear that having RMDS implicitly weight aspects of motion is a good idea

Literature

- Papers covered:
 - Mapping a Manifold of Perceptual Observations. Joshua B. Tenenbaum. Neural Information Processing Systems, 1998.
 - Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds. Lawrence Saul & Sam Roweis. University of Pennsylvania Technical Report MS-CIS-02-18, 2002.
 - Charting a Manifold. Matthew Brand, NIPS 2003.
 - Action Synopsis: Pose Selection and Illustration. Jackie Assa, Yaron Caspi, Daniel Cohen-Or. ACM Transactions on Graphics, 2005.
- Additional reading:
 - Multidimensional scaling. Forrest W. Young. Forrest.psych.unc.edu/teaching/p208a/mds/mds.html
 - A Global Geometric Framework for Nonlinear Dimensionality Reduction. Joshua B. Tenenbaum, Vin de Silva, John C. Langford, Science, v. 290 no.5500, 2000.
 - *Nonlinear dimensionality reduction by locally linear embedding.* Sam Roweis & Lawrence Saul. Science v.290 no.5500, 2000.
- Further citations:
 - Information Rich Glyphs for Software Management. M.C. Chuah and S.G. Eick, IEEE CG&A 18:4 1998.
 - Hyperdimensional Data Analysis Using Parallel Coordinates. Edward J. Wegman. Journal of the American Statistical Association, Vol. 85, No. 411. (Sep., 1990), pp. 664-675.