Lecture 3: Focus+Context Information Visualization CPSC 533C, Fall 2007

Tamara Munzner

UBC Computer Science

17 September 2007

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Papers Covered

A Review and Taxonomy of Distortion-Oriented Presentation Techniques. Y.K. Leung and M.D. Apperley, ACM Transactions on Computer-Human Interaction, Vol. 1, No. 2, June 1994, pp. 126-160. [http://www.ai.mit.edu/people/jimmylin/papers/Leung94.pdf]

A Fisheye Follow-up: Further Reflection on Focus + Context. George W. Furnas. SIGCHI 2006.

The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95. [http://citeseer.nj.nec.com/lamping95focuscontext.html]

SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Catherine Plaisant, Jesse Grosjean, and Ben B. Bederson. Proc. InfoVis 2002.

ttp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2002-05.html/2002-05.pdf TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. SIGGRAPH 2003. [http://www.cs.ubc.ca/~tmm/papers/tj/]

Focus+Context Intuition

move part of surface closer to eye

- stretchable rubber sheet
- borders tacked down
- merge overview and detail into combined view

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Bifocal Display

		Γ
		Ļ
		L

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Perspective Wall

1D						

Polyfocal: Continuous Magnification

Fisheye Views: Continuous Mag

1D

	ПТ	TTIM
	H	
	 \vdash	
	 ++	
	 LL.	

III	11			-	
			_		
	+	 		+	$\left \right $
	\downarrow				Ш
Ш			_		П
				+	

2D rect

Multiple Foci

polyfocal magnification function dips allow this

Fisheye Followup

- degree of interest (DOI): a priori importance (API), distance (D)
 - distortion vs. selection
 - agnostic to geometry
- what is shown vs. how it is shown
- how shown
 - geometric distortion: TrueSize as implicit API
 - ZUIs: temporal/memory harder than side by side
 - multiple views: topological discontinuity at edges
 - multires displays: big and heavy...

2D Hyperbolic Trees

- static structure, allowing distance defn
- LOD/API at points within structure
- interaction focused at point/region
- fisheye effect from hyperbolic geometry

Avoiding Disorientation

- problem
 - maintain user orientation when showing detail
 - hard for big datasets
- exponential in depth
 - node count, space needed

Overview and detail

- two windows: add linked overview
 - cognitive load to correlate

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Overview and detail

- two windows: add linked overview
 - cognitive load to correlate

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

solution

- merge overview, detail
- focus+context

Noneuclidean Geometry

Euclid's 5th Postulate

- exactly 1 parallel line
- spherical
 - geodesic = great circle
 - no parallels

hyperbolic

infinite parallels

(torus.math.uiuc.edu/jms/java/dragsphere)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Parallel vs. Equidistant

- euclidean: inseparable
- hyperbolic: different

Exponential Amount Of Room

room for exponential number of tree nodes

2D hyperbolic plane embedded in 3D space

[Thurston and Weeks 84]

hemisphere area

hyperbolic: exponential $2\pi \sinh^2 r$

euclidean: polynomial $2\pi r^2$

(日) (日) (日) (日) (日) (日) (日)

Models, 2D

Klein/projective Poincare/conformal Upper Half Space

[Three Dimensional Geometry and Topology, William Thurston, Princeton University Press]

1D Klein

hyperbola projects to line

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

hyperbola projects to disk

(graphics.stanford.edu/papers/munzner_thesis/html/node8.html#hyp2Dfig)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Klein vs Poincare

- Klein
 - straight lines stay straight
 - angles are distorted
- Poincare
 - angles are correct
 - straight lines curved
- graphics
 - Klein: 4x4 real matrix
 - Poincare: 2x2 complex matrix

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Upper Half Space

cut and unroll Poincare

one point on circle goes to infinity

[demo: www.geom.umn.edu/~crobles/hyperbolic/hypr/modl/uhp/uhpjava.html]

Minkowski

[www-gap.dcs.st-and.ac.uk/~history/Curves/Hyperbola.html]

[www.geom.umn.edu/~crobles/hyperbolic/hypr/modl/mnkw/]

the hyperboloid itself embedded one dimension higher

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

SpaceTree

focus+context tree: filtering, not geometric distortion

animated transitions

semantic zooming

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの