Lecture 6: Color

Information Visualization CPSC 533C, Fall 2007

Tamara Munzner

UBC Computer Science

26 September 2007

News

- email has been going out with lect 2-5 quest grades
- is everybody receiving it?

Papers Covered

Representing Colors as Three Numbers, Maureen Stone, IEEE CG&A 25(4):78-85, Jul 2005.

http://www.stonesc.com/pubs/Stone%20CGA%2007-2005.pdf

Ware, Chapter 3: Lightness, Brightness, Contrast, and Constancy

Ware, Chapter 4: Color

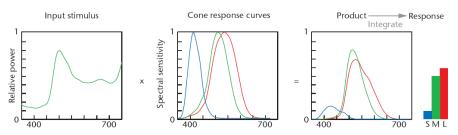
Tufte, Chapter 5: Color and Information

How Not to Lie with Visualization, Bernice E. Rogowitz and Lloyd A. Treinish, Computers In Physics 10(3) May/June 1996, pp 268-273.

http://www.research.ibm.com/dx/proceedings/pravda/truevis.htm

Further Reading

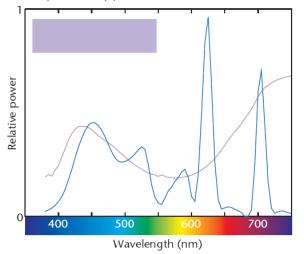
A Field Guide To Digital Color, Maureen Stone, AK Peters 2003.

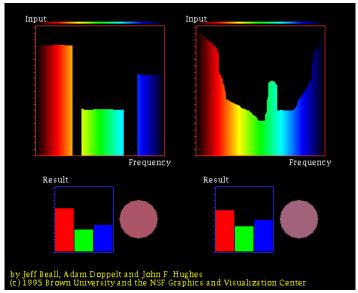

Face-based Luminance Matching for Perceptual Colormap Generation. Gordon Kindlmann, Erik Reinhard, Sarah Creem. IEEE Visualization 2002.

http://www.cs.utah.edu/~gk/papers/vis02

Color use guidelines for data representation. C. Brewer, 1999. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ ASApaper.html

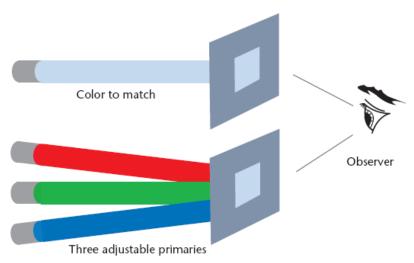
Trichromacy


- different cone responses area function of wavelength
- for a given spectrum
 - multiply by response curve
 - integrate to get response


[Stone, Representing Color As Three Numbers, CG&A 25(4):78-85, www.stonesc.com/pubs/Stone%20CGA%2007-2005.pdf]

Metamerism

- brain sees only cone response
- different spectra appear the same

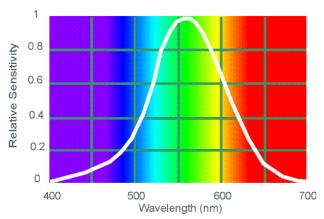


Metamerism Demo

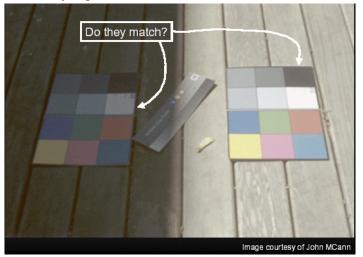
[www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/spectrum/metamers_java_browser.html]

Color Matching Experiments

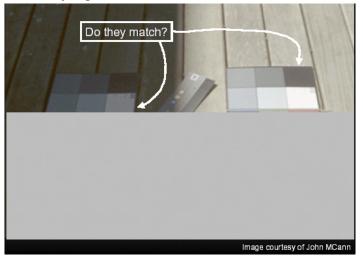
[Stone, Representing Color As Three Numbers, CG&A 25(4):78-85, www.stonesc.com/pubs/Stone%20CGA%2007-2005.pdf \cline{black}



Color Matching Functions


[Stone, Representing Color As Three Numbers, CG&A 25(4):78-85, www.stonesc.com/pubs/Stone%20CGA%2007-2005.pdf]

Spectral Sensitivity

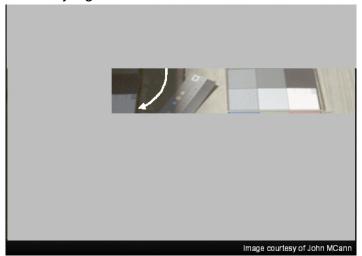

[Joy of Visual Perception, Peter Kaiser. http://www.yorku.ca/eye/photopik.htm]

relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

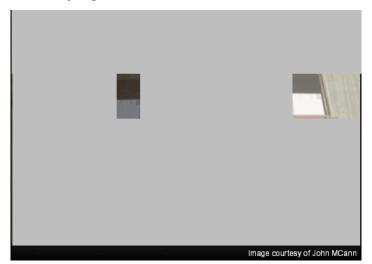
relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course

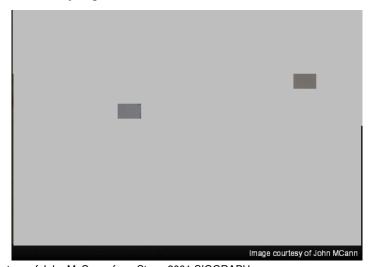


relative judgements

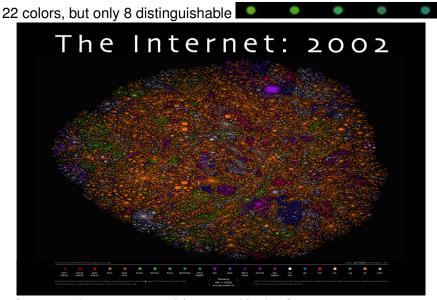
[courtesy of John McCann, from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]


relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course


relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

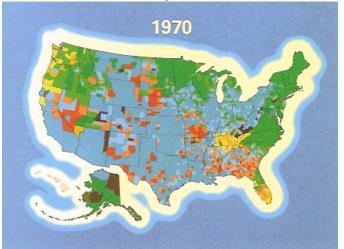


relative judgements

[courtesy of John McCann, from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Coloring Categorical Data

Coloring Categorical Data


- discrete small patches separated in space
- limited distinguishability: around 8-14
 - channel dynamic range: low
 - choose bins explicitly for maximum mileage
- maximally discriminable colors from Ware
 - maximal saturation for small areas

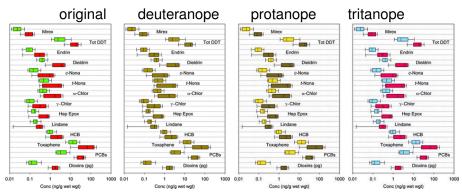
[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999. Figure 4.21]


Minimal Saturation For Large Areas

avoid saturated color in large areas "excessively exuberant"

Minimal Saturation For Large Areas

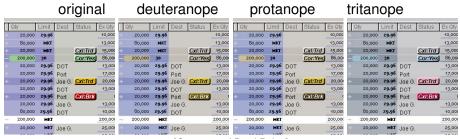
- large continouous areas in pastel
 - diverging colormap (bathymetric/hypsometric)



[Tufte, Envisioning Information, p. 91]

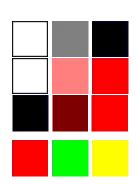
Color Deficiency

- deutanope
- protanope
 - has red/green deficit
 - ▶ 10% of males!
- tritanope
 - has yellow/blue deficit
- http://www.vischeck.com/vischeck
 - test your images
 - use this with your final projects!

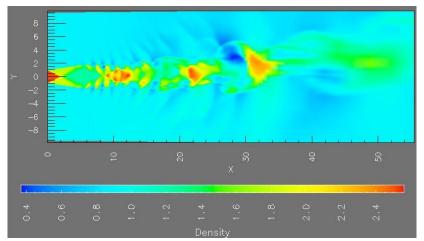

Color Deficiency Examples: vischeck

[www.cs.ubc.ca/~tmm/courses/cpsc533c-04-spr/a1/dmitry/533a1.html, citing Global Assessment of Organic Contaminants in Farmed Salmon, Hites et al, Science 2004 303:226-229.]

Designing Around Deficiencies


- red/green could have domain meaning
- then distinguish by more then hue alone
 - redundantly encode with saturation, brightness

[Courtesy of Brad Paley]


Coloring Ordered Data

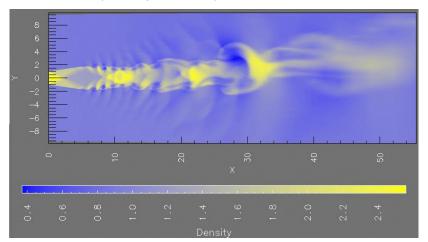
- innate visual order
 - greyscale/luminance
 - saturation
 - brightness
- unclear visual order
 - hue

Rainbow Colormap Advantages


- low-frequency segmentation
 - the red part, the orange part, the green part, ...

[Rogowitz and Treinish, Why Should Engineers and Scientists Be Worried About Color? http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

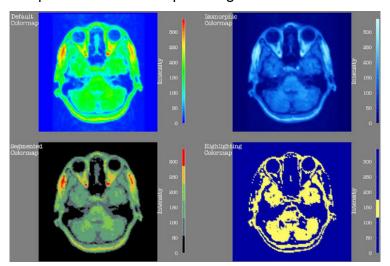
Rainbow Colormap Disadvantages


- segmentation artifacts
 - popular interpolation perceptually nonlinear!
- one solution: create perceptually linear colormap
 - but lose vibrancy

[Kindlmann, Reinhard, and Creem. Face-based Luminance Matching for Perceptual Colormap Generation. Proc. Vis 02 www.cs.utah.edu/ gk/lumFace]

Non-Rainbow Colormap Advantages

- high-frequency continuity
 - interpolating between just two hues



[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm]

Segmenting Colormaps

explicit rather than implicit segmentation

[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm]

Cartographic Color Advice, Brewer

