News
http://www.research.ibm.com/dx/proceedings/pravda/truevis.htm

- email has been going out with lect 2-5 quest grades
- is everybody receiving it?

Papers Covered
Representing Colors as Three Numbers, Maureen Stone, IEEE CG\&A 25(4):78-85, Jul 2005.
http://www.stonesc.com/pubs/Stone\ CGA\ 07-2005.pdf Ware, Chapter 3: Lightness, Brightness, Contrast, and Constancy
Ware, Chapter 4: Color
Tufte, Chapter 5: Color and Information
How Not to Lie with Visualization, Bernice E. Rogowitz and Lloyd A. Treinish, Computers In Physics 10(3) May/June 1996, pp 268-273

Further Reading

AFie
2003
Face-based Luminance Matching for Perceptual Colormap Generation. Gordon Kindlmann, Erik Reinhard, Sarah Creem. IEEE Visualization 2002
hitp://www.cs.utah.edu/-gk/papers/vis02
Color use guidelines for data representation. C. Brewer, 1999 hittp://www.personal psu.edu/faculty/C/a/cab38/ColorSch/ ASApaper.html

Trichromacy

- different cone responses area function of wavelength
- for a given spectrum
- multiply by response curve

Color Matching Functions

Spectral Sensitivity

Color Constancy

courtesy of stern MeCam, from Stone 2001 SIGGRAPH course
courtasy of Joth McCam, trom Stone 2001 SIGGRAPH course

Color Constancy

Color Constancy

- relative judgements

Color Matching Experiments

Color Constancy

- relative judgements

Color Constancy

- relative judgements

Coloring Categorical Data

- deutanope
- protanope
- has red/green deficit
. 10% of males!
- 10% of males!
- tritanope
- has yellowiblue deficit
- http://www.vischeck.com/vischeck
- test your images
- use this with your final projects!
䢒

Rainbow Colormap Advantages

- low-frequency segmentation - the red part, the orange part, the green part,

Coloring Categorical Data

- discrete small patches separated in space
- limited distinguishability: around 8-14 - channel dynamic range: low
* choose bins explicitly for maximum mileage - maximally discriminable colors from Ware - maximal saturation for small areas

Color Deficiency Examples: vischeck
Minimal Saturation For Large Areas

- avoid saturated color in large areas

Designing Around Deficiencies
- redgreen could have domain meaning
- then distinguish by more then hue alone
- redundantly encode with saturation, brighness
original
deuteranope protanope tritanope

Rainbow Colormap Disadvantages

- segmentation artifacts
- popular interpolation perceptually noninear!
- one solution: create perceptually linear colormap - but lose vibrancy

Non-Rainbow Colormap Advantages

- high-Irequency continuity - interpolating between just two hues

Coloring Ordered Data

- innate visual order
- greyscale/luminance
* saturation
unclear visual order - hue

Minimal Saturation For Large Areas

- large continouous areas in pastel
- diverging colormap (bathymetric/hypsometric)

Segmenting Colormaps

* explicit rather than implicit segmentation

Cartographic Color Advice, Brewer

