Large Scale Sequence Difference Visualization

Michael DiBernardo December 19th, 2005

Outline

- Review of problem
- Implementation
- Challenges
- Results

Specific Problem

- Two populations
 - One susceptible to HIV
 - One immune to HIV
- HIV sequences extracted from both cohorts
- How do the extracted viruses differ from the canonical HIV?

Objective

- Design a static overview that can:
 - Succinctly describe results in a journal figure etc.
 - Serve as a linked overview in an exploration tool

Design goals

- Immediate familiarity to biologists
- Allow for sufficient detail
 - SNPs
 - Small indels

Implementation

- JFreeChart used for substitution, insertion views
- Custom Java2D component used for gradients

Challenges

- Lack of critical feedback
- Solutions:
 - Cognitive walkthroughs
 - Input from previous colleagues in molecular biology

Challenges

- Lack of real data
- Solutions:
 - Generated data from probabilistic models of evolution
 - Invented a 'toy' experiment based on existing, publicly available data

Challenges

• Data density

- Even with stacking, 4+ bases per pixel
- JFreeChart behaviour undefined
- 'Solution':
 - Window averaging

Performance

• For 200k data points first prototype took:

- 2 minutes to launch
- 45 seconds to render
- Current version:
 - I0 seconds to launch
 - 8 seconds to render (still too slow)

Evaluation

• Problems are easiest to see on real data

Experiment

- 74 viral samples isolated from Kenyan and Ugandan victims
- Compared to a single sample from Ethiopia

Conclusions

- Averaging is a poor solution
 - Hides some details and 'lies' to user
- Insertions are sparse and would be a good candidate for abstraction
- Using a gradient to represent deletions is a decent approach

Conclusions

• I am not smart enough to work alone