Software Visualizations

m As applied to the following tasks
- N . — project management
Software Visualization ~ execution tracing

— code review
Maria Tkatchenko — structure exploration
= Common themes
Nov 8, 2004 — abstraction
— context + overview
— pattern exploration

Papers discussed

|

= Software Visualization in the Large, Ball and

Eick,1996 Software Visualization in the

Execution Patterns in Object-Oriented Visualization, Large
De Pauw, et.al., 1998

Managing Software with New Visual Thomas A. Ball and Stephen

Representations, Chuah and Eick,1997

Program Auralization: Sound Enhancements to the G E|Ck, 1996
Programming Environment, DiGiano and

Baecker,1992

3D Representations for Software Visualization,

Marcus, Feng, Maletic, 2003

Overview Main Goals

|

m “Software is invisible” m Increasing programmer
m Four visual representations of software — Productivity
— To help software engineers cope with — Efficiency
complexity = Improving program structure
m Case studies involving different = Scalable visualizations
development tasks

Visualizing software Visual representations
m Structure +- Line representation
m Run-time behavior = Pixel representation
n Code itself — Show line as a pixel
= File summary representation
— File as a rectangle, inner time-series
m Hierarchical representation
— Zoomable tree-map

File summary

Pixel representation .
representation

1 —
]
3 —
—
—
© m—
]

o m—

s

il AR

e |'w‘I\II‘I,'“]IMMMHHW'r”
N

Critique (1) Critique (2)

m “Hiding system complexity... m Need for textual visualization of a
contributes to low programmer large system?
productivity” = Aim may be to condense too much
— Untrue of object-oriented information
— Good design, interfaces, documentation, = Good way to visualize non-functional

Sl [EEDEr properties of text if metadata available
m IDEs and special purpose tools now
deal with the issue identified

|

Execution Patterns in Object-
Oriented Visualization
Wim De Pauw, David
Lorenz, John Vlissides, and
Mark Wegman., 1998

Current execution tracing

m Textual
— Too much detail in output
— Hard to control
m OO visualization systems
— Microscopic — sequence of message sends
— Macroscopic - cumulative
m Very difficult to scale

Interaction diagram vs.
execution pattern

—] ﬁl:
(b)

(@)

A
Figure 1: Simple interaction diagram (a) and its corresponding execution pattern (b)

Overview

m Visualizing execution traces of object-
oriented programs

m Explore at different levels of
abstraction

m Classification of behavior into patterns
m Goals of tools:

— Explore structure of execution

— Find areas to optimize

Execution pattern view

m Observe any part of the programs
execution at various levels of detail
— Detail on demand
m Detect and present generalized
patterns of execution
— Pattern subsumes many parts of the trace
m Figure from paper

Useful features

m Collapsing/expanding subtrees

m More clear notation for interaction
diagrams
m Easy change in level of abstraction and
view
m Detection and collapsing of repetitions
= Tree operations
— Flattening
— Overlaying

Flattening Pattern detection

|

m Not only reduces clutter, but makes
things explicit

— A% —x —x = Similar vs. identical
|] || — Automatic pattern detection important
& — The slight differences often not that

important to the programmer
= Pattern matching
— Automatic

— Tools for programmer to express
similarity

Figure 14: Using flattening to visualize association

Patterns Experimental results

|

= Identity m Uncover unexpected behavior
m Class Identity *** = Help understand unfamiliar code

= MeSS:Qe Structure = Improve performance
= Depth-Limiting

m Repetition ***

m Polymorphism ***

m Associativity

m Commutativity ***

Contributions Critique (1)

= Intuitive and scalable metaphor m Collapsing of repetition is a great idea
» Generalization of similar execution — Use for design as well as analysis
patterns m Good use of the OO programming
= Execution patterns allow to principles and metaphor
characterize system complexity m Learning curve for distinguishing
patterns and classes

Critique (2)

m How often large-scale vs. local
exploration of execution is performed
m Library of patterns
— Instead of language to express similarity

— How much can be captured with common
patterns?

— Non-standard execution patterns

Overview

|

m Managing: tracking and scheduling
many resources
— Need a way to represent each one
= Way to view time-oriented information
m Glyphs to view summaries
— Combinations of established views
— Interpret by prior knowledge

Issues in Project Data
Management (2)

m Diversity/variety
— Resources and their attributes
— Flexible visual representations

m Data <-> “real-world” correspondence
— Data element to real-world entity

— Glyphs group properties of a data
element visually

|

Managing Software with New
Visual Representations
Mei C. Chuah, Stephen G.
Eick, 1997

Issues in Project Data
JrManagement (1)

= Time
— Deadline, milestones
= Large data volumes
— Unstructured

— Partition data and management
responsibilities hierarchically

Time-oriented
information

= Traditional:
— Animation
— Time-series plot
m Variation on time-series plot
— TimeWheel
— 3D-Wheel
= Show trends

L ETLHEEEED

= Each object attribute a time-series

m Individual time-series laid out around
a circle

m Preattentively pick out objects

m Small multiples show:
— General trend
— divergences

TimeWheel (4)

m Advantages over linear:
— Reduce number of eye movements
— Less susceptible to local patterns
— No ordering implication from reading
— Higher information density

Figure 9: 3D wheel interface of the 16 software releases
shown in Figure 3

< T o~
Figure 8: Left - increasing trend (sharp apex); Right -
decreasing/tapering trend (balloon)

TimeWheel (2)

#oterror-
added-ines #.of.crror-
#of-people (nop), 25 dc\c()cd-lmcs
, er

ot
#of-new-added-
#ines-of-code Z\‘ lines (anew)
(loc) Userld1

#of-new-deleted-
#ot-errors (er) lines (dnew)

At #of-undefined-
#ofile-changes added-lines (audef)
(fohg) #of-undefined-

deleted-iines (dudef)

Figure 1: TimeWheel Glyph

Figure 2: Left - increasing trend timeWheel (prickly
fruit); Right- decreasing trend timeWheel (hairy fruit)

3D-Wheel (1)

m Same as TimeWheel, use height to
encode time

m Dominant time trend through shape
= Common problem of occlusion
— Hard to identify divergences from trend

InfoBug (1)

m Interactive

= Use animation to show at different
times within the project

m Small footprint
= Preattentive patterns

InfoBug (2)

Figure 12: InfoBUG glyph

Critique

m Glyph seems like a good idea, but too
complicated at times
- Tail
— Hard to compare when scaled down

= Circular time-data looks good for
patterns

= Would be nice to see used with a
number of different systems, compare
patterns

Overview

m Use of sound in a programming
environment, not in a specific
application

m Auralization: use of non-speech audio
for supporting the understanding and
effective use of computer programs

|

InfoBug (3)

= Glyph:
— Head - code types in component
— Wings - # lines of code vs. # errors
— Body — size of components

— Tail - # lines added and deleted, to fix
errors or add functionality

Program Auralization: Sound
Enhancements to the
Programming Environment
Christopher J. DiGiano and
Ronald M. Baecker,1992

Benefits of sound

= New channel
— Don't add clutter to visual display
— directionless
m Varied across up to 20 dimensions
m Logarithmic nature
m Already familiar with its meaning

Program taxonomy

= Execution

— Behaviour of a program
= Review

— Modules

— keywords
= Preparation

— Syntactic structure

Execution (2)

m Classifications for values and events
— Common — typical structures
— Arbitrary — unpredictable elements
— Internal — internal state
= Values
— Map to many sound dimensions
= Events
— Patterns or “melodies” useful

Preparation

= Syntactic structure
= Stages
— Entering a program
— Compilation
m Loop example
— Scope
— scalability

Execution (1)

m Info about behaviour of the program
— Variables
— Internal state, control flow
= Trend detection
= Can represent:
— Values — data flow
— Events — control flow

Review

m Interactive exploration of code
— Modules, keywords

= Alternative to indentation, code style, ..

m Use “audio landmarks” to mark
important segments

m Recognize patterns when scrolling

Critique (1)

m Interesting, yet-unexplored idea

m Definitely would have benefited from
presenting a user study

m Useful for pattern recognition

= Hard to convince that it's good for
anything but highest-level overview

= Utility for monitoring background
activities

Critique (2)

|

= Enhancement to visual, couldn't 3D Representations for

| . I
replace Software Visualization
= No scalability

= Couldn't follow execution real-time Andrian Marcus, L_OUiS Fengr
= Workspace issues Jonathan I. Maletic, 2003

m Real-life examples?

Overview Dimensions of interest

|

m Tool using 3D, texture, .. to represent m Tasks — why visualize
multiple attributes in one view a Audience — users

m Visualization of large-scale software to = Target — data source
assist in comprehension and analysis

m Categorize info to display important
info more efficiently

= Visualization front-end, independent of
source of data

m Representation — how to show data
m Medium — where displayed

Features (1)

L

T
Mo

[LAMYRAN {) I M me

m Separate visualization from data
collection

= Manipulation on a per-element basis

m Users can develop own visualization
metaphors based on tasks

= Function similar to another tool done 7
years prior

|] [

I 0 0 T TP
CI T TR ™ T T T] 1A

M O O mE O

I T

OOO T Oom

I

Nesting Level
Level 0

W Level 1

W Level2

W Level3

W Level4

Features (2)

m Visual front-end — can be used with
output of many analysis tools

m Certain elements only suitable for
certain data types

Critique

m Propose to develop a stereoscopic
display — not practical?

m Visual elements only suitable for
certain data — guidance to users?

m Core components designed as an
application framework

— Extend with new mappings and visual
elements

+

Support for user needs

= Overview ***

= Zoom

n Filter

= Details-on-demand
= Relate ***

= History

m Extract

Conclusions

m Applying visualization to various
aspects of software engineering

= Various channels - visual, audio
m Building on existing ideas

m User studies and community
acceptance?

10

