Chap 13: Reduce Items and Attributes
 Paper: Glimmer

Tamara Munzner
Department of Computer Science University of British Columbia

UBC CPSC 547: Information Visualization
Wed Oct 292014

Idiom design choices: Part 2

Manipulate
Θ Change

Θ Select

Θ Navigate

Θ Partition

Θ Superimpose

Reduce
Θ Filter

Θ Aggregate

Θ Embed

Reduce items and attributes

- reduce/increase: inverses
- filter
- pro: straightforward and intuitive
- to understand and compute
- con: out of sight, out of mind
- aggregation
- pro: inform about whole set
- con: difficult to avoid losing signal
- not mutually exclusive
- combine filter, aggregate
- combine reduce, change, facet

Reducing Items and Attributes

Reduce

\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

\oplus Aggregate

\oplus Embed

Idiom: dynamic filtering

System: FilmFinder

- item filtering

- browse through tightly coupled interaction
- alternative to queries that might return far too many or too few

[Visual information seeking:Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman.
Proc.ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313-3I7, 1994.]

Idiom: scented widgets

- augment widgets for filtering to show information scent
- cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans.
Visualization and Computer Graphics (Proc. InfoVis 2007) I3:6 (2007), I | 29-| | 36.]

Idiom: DOSFA

- attribute filtering
- encoding: star glyphs

[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng, Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I05-I I 2, 2003.]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
- new table: keys are bins, values are counts
- bin size crucial

- pattern can change dramatically depending on discretization
-opportunity for interaction: control bin size on the fly

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

- outliers beyond fence cutoffs explicitly shown
[40 years of boxplots.Wickham and Stryjewski. 20I 2. had.co.nz]

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:
-cluster band with variable transparency, line at mean, width by min/max values
- color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis ’99), pp. 43- 50, I999.]

Dimensionality reduction

- attribute aggregation
- derive low-dimensional target space from high-dimensional measured space
- use when you can't directly measure what you care about
- true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
- latent factors, hidden variables

Tumor
 Measurement Data

derived data: 2D target space

Dimensionality reduction for documents

Task 3

What?	Why?
Θ In Scatterplot	Θ Produce
Θ In Clusters \& points	Θ Annotate
Θ Out Labels for	
clusters	

Dimensionality vs attribute reduction

- vocab use in field not consistent
- dimension/attribute
- attribute reduction: reduce set with filtering
-includes orthographic projection
- dimensionality reduction: create smaller set of new dims/attribs
-typically implies dimensional aggregation, not just filtering
-vocab: projection/mapping

Estimating true dimensionality

- how do you know when you would benefit from DR?
- consider error for low-dim projection vs high-dim projection
- no single correct answer; many metrics proposed
- cumulative variance that is not accounted for
- strain: match variations in distance (vs actual distance values)
- stress: difference between interpoint distances in high and low dims

$$
\begin{aligned}
& \operatorname{stress}(D, \Delta)=\sqrt{\frac{\sum_{i j}\left(d_{i j}-\delta_{i j}\right)^{2}}{\sum_{i j} \delta_{i j}}} \\
& \square D: \text { matrix of lowD distances } \\
& \square \Delta: \text { matrix of hiD distances } \delta_{i j}
\end{aligned}
$$

Estimating true dimensionality

- scree plots as simple way: error against \# attribs

- original dataset: 294 dims
- estimate: almost all variance preserved with < 20 dims
[Fig 2. DimStiller:Workflows for dimensional analysis and reduction. Ingram et al. Proc.VAST 20I0, p 3-I0]

Dimensionality Reduction

- why do people do DR?
-improve performance of downstream algorithm
- avoid curse of dimensionality
- data analysis
- if look at the output: visual data analysis!
- DR tasks
- dimension-oriented task sequences
- name synthetic dimensions, map synthetic dims to original ones
- cluster-oriented task sequences
- verify clusters, name clusters, match clusters and classes
[Visualizing Dimensionally-Reduced Data: Interviews with Analysts and a Characterization of Task Sequences. Brehmer, Sedlmair, Ingram, and Munzner. Proc BELIV 201 4.]

Linear dimensionality reduction

- principal components analysis (PCA)
- describe location of each point as linear combination of weights for each axis
- finding axes: first with most variance, second with next most, ...

Nonlinear dimensionality reduction

- many techniques proposed
- MDS, charting, isomap, LLE,T-SNE
- many literatures: visualization, machine learning, optimization, psychology, ...
- pro: can handle curved rather than linear structure
- cons: lose all ties to original dims/attribs
-new dimensions cannot be easily related to originals

MDS: Multidimensional Scaling

- confusingly: entire family of methods, linear and nonlinear!
- classical scaling: minimize strain
- early formulation equivalent to PCA (linear)
- Nystrom/spectral methods approximate eigenvectors: $\mathrm{O}(\mathrm{N})$
- Landmark MDS [de Silva 2004], PivotMDS [Brandes \& Pich 2006]
- limitations: quality for very high dimensional sparse data
- distance scaling: minimize stress
- nonlinear optimization: $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- SMACOF [de Leeuw 1977]
-force-directed placement: $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Stochastic Force [Chalmers I996]
- limitations: quality problems from local minima
- Glimmer goal: $\mathrm{O}(\mathrm{N})$ speed and high quality

Spring-based MDS: naive

- repeat for all points
- compute spring force to all other points
- difference between high dim, low dim distance
- move to better location using computed forces
- compute distances between all points
$-\mathrm{O}\left(\mathrm{N}^{2}\right)$ iteration, $\mathrm{O}\left(\mathrm{N}^{3}\right)$ algorithm

Faster spring model: Stochastic

- compare distances only with a few points
- maintain small local neighborhood set
- each time pick some randoms, swap in if closer
- small constant: 6 locals, 3 randoms (typically)
$-\mathrm{O}(\mathrm{N})$ iteration, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ algorithm

Faster spring model: Stochastic

- compare distances only with a few points
-maintain small local neighborhood set

Glimmer algorithm

- multilevel to avoid local minima, designed to exploit GPU

- restriction to decimate
- relaxation as core computation
- relaxation to interpolate up to next level

[Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEE TVCG I5(2):249-26 I, 2009.]

Glimmer Strategy

- stochastic force alg suitable for fast GPU port
-but systematic testing shows it often terminates too soon
- use as subsystem within new multilevel GPU alg with much better convergence properties

[Fig 2,4. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEE TVCG I5(2):249-26I, 2009.]

Stochastic termination

- how do you know when it's done?
- no absolute threshold, depends on the dataset
-interactive click to stop does not work for subsystem

- sparse normalized stress approximation
- minimal overhead to compute (vs full stress)
- low pass filter
[Fig 9. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEE TVCG I5(2):249-26I, 2009.]

GPUs

- characteristics
- small set of localized texture accesses
- output at predetermined locations
- no variable length looping
- avoid conditionals: all floating point units execute same instr at same time
- mapping problems to GPU
- arrays become textures
-inner loops become fragment shader code
- program execution becomes rendering

Finding and verifying clusters

Glimmer

Pivot MDS

- sparse docs dataset -28K dims, 28K points
- speed equivalent to classical
- quality major improvement

$$
16.64 \mathrm{~s} \quad \text { stress }=0.157
$$

[Fig 8, 9. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEE TVCG I5(2):249-26I, 2009.]

Methods and outcomes

- methods
-quantitative algorithm benchmarks: speed, quality
- systematic comparison across IK-IOK instances vs a few spot checks
-qualitative judgements of layout quality
- outcomes
- characterized kinds of datasets where technique yields quality improvements
- sparse documents
- followup work
-Q-SNE: millions of documents
[Dimensionality Reduction for Documents with Nearest Neighbor Queries. Ingram, Munzner.
Neurocomputing. Special Issue Visual Analytics using Multidimensional Projections, to appear 2014.]

