# Chap 13: Reduce Items and Attributes Paper: Glimmer

### **Tamara Munzner**

### Department of Computer Science University of British Columbia

UBC CPSC 547: Information Visualization Wed Oct 29 2014

http://www.cs.ubc.ca/~tmm/course/547-14/#chap13



### Idiom design choices: Part 2



2

### **Reduce** items and attributes

- reduce/increase: inverses
- filter
  - -pro: straightforward and intuitive
    - to understand and compute
  - con: out of sight, out of mind
- aggregation
  - -pro: inform about whole set
  - con: difficult to avoid losing signal
- not mutually exclusive
  - combine filter, aggregate
  - combine reduce, change, facet

Filter  $(\rightarrow)$ 



3









→ Attributes



### Idiom: dynamic filtering

- item filtering
- browse through tightly coupled interaction
  - -alternative to queries that might return far too many or too few



[Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman. Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313–317, 1994.]

### System: FilmFinder

|                               | Carto                         |
|-------------------------------|-------------------------------|
| iana Jones & the Last Crusade | Title :                       |
| he Rose, The Thunderball      |                               |
| Ht for PARVEFSBENeTJef Again  | A B C D F GHLM NPR S T WZ     |
| Highlander                    | Actor : Connery, Sean         |
| a ana ang 🛓                   | <u>AL</u>                     |
| ntouchables, The              | AB C D FGH JRLM PR S TWZ      |
| eat Train Robbery, The        | ALL                           |
| Outland                       | AB C D FGH KL M P R S TW Z    |
|                               | Director : ALL                |
| Would Be King, The<br>Marian  | ALL AB C D FGH JKL M PR S TWZ |
| uba _                         | 60 Length 269                 |
| Offence, The                  | E d                           |
| Sword of the Valiant          | 0 450                         |
| Family Business               | Ratings 🗏 G 🛛 🖛 PG            |
| Meteor                        | ■ PG-13 ■ R                   |
|                               | Films Shown: 24               |
| 180 1985 1990                 |                               |
| Action War Sci-Fi W           | /estern Horror                |

### Idiom: scented widgets

- augment widgets for filtering to show *information scent* -cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel



[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2007) 13:6 (2007), 1129–1136.]



### Idiom: **DOSFA**

- attribute filtering
- encoding: star glyphs





[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng, Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 105–112, 2003.]



## Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data

- new table: keys are bins, values are counts

- bin size crucial
  - -pattern can change dramatically depending on discretization
  - opportunity for interaction: control bin size on the fly



### Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
  - -5 quant attribs
    - median: central line
    - lower and upper quartile: boxes
    - lower upper fences: whiskers
      - -values beyond which items are outliers
  - -outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

4

 $\sim$ 

0

N



### Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: *hierarchical clustering*
- encoding:
  - -cluster band with variable transparency, line at mean, width by min/max values
  - -color by proximity in hierarchy







[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis '99), pp. 43–50, 1999.]



### **Dimensionality reduction**

- attribute aggregation
  - -derive low-dimensional target space from high-dimensional measured space
  - -use when you can't directly measure what you care about
    - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
    - latent factors, hidden variables



### derived data: 2D target space

### Dimensionality reduction for documents





Out Labels for clusters

- → In Clusters & points

### Why?

- $\rightarrow$  Produce
- Annotate

### Dimensionality vs attribute reduction

- vocab use in field not consistent -dimension/attribute
- attribute reduction: reduce set with filtering -includes orthographic projection
- dimensionality reduction: create smaller set of new dims/attribs
  - -typically implies dimensional aggregation, not just filtering
  - -vocab: projection/mapping

### Estimating true dimensionality

- how do you know when you would benefit from DR? - consider error for low-dim projection vs high-dim projection
- no single correct answer; many metrics proposed - cumulative variance that is not accounted for
  - strain: match variations in distance (vs actual distance values)
  - stress: difference between interpoint distances in high and low dims

stress(
$$D, \Delta$$
) =  $\sqrt{\frac{\sum_{ij} (d_{ij} - \delta_{ij})^2}{\sum_{ij} \delta_{ij}^2}}$ 

D: matrix of lowD distances  $\Delta$ : matrix of hiD distances  $\delta_{ii}$ 

### Estimating true dimensionality

• scree plots as simple way: error against # attribs



- original dataset: 294 dims
- estimate: almost all variance preserved with < 20 dims

[Fig 2. DimStiller:Workflows for dimensional analysis and reduction. Ingram et al. Proc.VAST 2010, p 3-10]

### **Dimensionality Reduction**

- why do people do DR?
  - improve performance of downstream algorithm
    - avoid curse of dimensionality
  - data analysis
    - if look at the output: visual data analysis!
- DR tasks
  - -dimension-oriented task sequences
    - name synthetic dimensions, map synthetic dims to original ones
  - -cluster-oriented task sequences
    - verify clusters, name clusters, match clusters and classes

[Visualizing Dimensionally-Reduced Data: Interviews with Analysts and a Characterization of Task <u>Sequences</u>. Brehmer, SedImair, Ingram, and Munzner. Proc BELIV 2014.]

### Linear dimensionality reduction

- principal components analysis (PCA)
  - -describe location of each point as linear combination of weights for each axis
  - -finding axes: first with most variance, second with next most, ...



[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]

### Nonlinear dimensionality reduction

- many techniques proposed
  - MDS, charting, isomap, LLE, T-SNE
  - many literatures: visualization, machine learning, optimization, psychology, ...
- pro: can handle curved rather than linear structure
- cons: lose all ties to original dims/attribs
  - -new dimensions cannot be easily related to originals

### MDS: Multidimensional Scaling

- confusingly: entire family of methods, linear and nonlinear!
- classical scaling: minimize strain
  - -early formulation equivalent to PCA (linear)
  - -Nystrom/spectral methods approximate eigenvectors: O(N)
    - Landmark MDS [de Silva 2004], PivotMDS [Brandes & Pich 2006]
  - -limitations: quality for very high dimensional sparse data
- distance scaling: minimize stress
  - nonlinear optimization:  $O(N^2)$ 
    - SMACOF [de Leeuw 1977]
  - -force-directed placement:  $O(N^2)$ 
    - Stochastic Force [Chalmers 1996]
    - limitations: quality problems from local minima
- Glimmer goal: O(N) speed and high quality

### Spring-based MDS: naive

- repeat for all points
  - -compute spring force to all other points
  - -difference between high dim, low dim distance
  - -move to better location using computed forces
- compute distances between all points  $O(N^2)$  iteration  $O(N^3)$  algorithm





19

### Faster spring model: Stochastic

- compare distances only with a few points
  - -maintain small local neighborhood set
  - -each time pick some randoms, swap in if closer
- small constant: 6 locals, 3 randoms (typically) -O(N) iteration,  $O(N^2)$  algorithm





### Faster spring model: Stochastic

• compare distances only with a few points - maintain small local neighborhood set



21

### Glimmer algorithm

• multilevel to avoid local minima, designed to exploit GPU

- restriction to decimate
- relaxation as core computation
- relaxation to interpolate up to next level

[Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009.]





### Glimmer Strategy

- stochastic force alg suitable for fast GPU port
  - but systematic testing shows it often terminates too soon

 use as subsystem within new multilevel GPU alg with much better convergence properties



[Fig 2,4. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009.]

23

### Stochastic termination

how do you know when it's done?

-no absolute threshold, depends on the dataset

-interactive click to stop does not work for subsystem



- sparse normalized stress approximation
  - -minimal overhead to compute (vs full stress)
  - -low pass filter

[Fig 9. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009.]

### GPUs

- characteristics
  - small set of localized texture accesses
  - output at predetermined locations
  - no variable length looping
  - -avoid conditionals: all floating point units execute same instr at same time
- mapping problems to GPU
  - -arrays become textures
  - -inner loops become fragment shader code
  - -program execution becomes rendering

### Finding and verifying clusters

- sparse docs dataset
  - -28K dims, 28K points
    - speed equivalent to classical
    - quality major improvement





[Fig 8, 9. Glimmer: Multilevel MDS on the GPU. Ingram, Munzner, Olano. IEEETVCG 15(2):249-261, 2009.]

### Methods and outcomes

### methods

- quantitative algorithm benchmarks: speed, quality
  - systematic comparison across IK-IOK instances vs a few spot checks
- qualitative judgements of layout quality

### outcomes

- characterized kinds of datasets where technique yields quality improvements
  - sparse documents
- followup work
  - –Q-SNE: millions of documents

[Dimensionality Reduction for Documents with Nearest Neighbor Queries. Ingram, Munzner. Neurocomputing. Special Issue Visual Analytics using Multidimensional Projections, to appear 2014.]