Chapter 11: Manipulate Paper: Myriahedral Projections

Tamara Munzner
Department of Computer Science University of British Columbia
UBC CPSC 547: Information Visualization
Wed Oct 222014

Idiom design choices: Part I

Encode

Idiom design choices: Part 2

Manipulate
Θ Change

Θ Select

Θ Navigate
$\because \because$ 〉
Θ Partition

Θ Superimpose

Reduce
Θ Filter

Θ Aggregate

Θ Embed

Manipulate

Θ Change over Time

Θ Select

Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Attribute Reduction
\rightarrow Slice

\rightarrow Cut

\rightarrow Project

$$
\stackrel{\bullet}{\bullet \bullet} \rightarrow \left\lvert\, \begin{array}{ll}
\prime^{\prime} \\
\hline
\end{array}\right.
$$

Change over time

- change any of the other choices
- encoding itself
- parameters
- arrange: rearrange, reorder
-aggregation level, what is filtered...
- why change?
- one of four major strategies
- change over time
- facet data by partitioning into multiple views
- reduce amount of data shown within view
- embedding focus + context together
-most obvious, powerful, flexible
- interaction entails change

Idiom: Re-encode

System: Tableau

Idiom: Reorder

System: LineUp

- data: tables with many attributes

- task: compare rankings

[LineUp:Visual Analysis of Multi-Attribute Rankings. Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 20I3) I9:I2 (2013), 2277-2286.]

Idiom: Realign

System: LineUp

- stacked bars
- easy to compare
- first segment
- total bar
- align to different segment
-supports flexible comparison

[LineUp:Visual Analysis of Multi-Attribute Rankings.Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 20I3) I9:I2 (2013), 2277-2286.]

Idiom: Animated transitions

- smooth transition from one state to another
-alternative to jump cuts
- support for item tracking when amount of change is limited
- example: multilevel matrix views
- scope of what is shown narrows down
- middle block stretches to fill space, additional structure appears within
- other blocks squish down to increasingly aggregated representations

[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227-232, 2003.]

Select and highlight

- selection: basic operation for most interaction
- design choices
-how many selection types?
- click vs hover: heavyweight, lightweight
- primary vs secondary: semantics (eg source/target)
- highlight: change visual encoding for selection targets
- color
- limitation: existing color coding hidden
- other channels (eg motion)
-add explicit connection marks between items

Navigate: Changing item visibility

- change viewpoint
-changes which items are visible within view
- camera metaphor
- zoom
- geometric zoom: familiar semantics
- semantic zoom: adapt object representation based on available pixels » dramatic change, or more subtle one
- pan/translate
- rotate
- especially in 3D
- constrained navigation
- often with animated transitions
Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

- often based on selection set

Idiom: Semantic zooming

System: LiveRAC

- visual encoding change
- colored box
- sparkline
- simple line chart
- full chart: axes and tickmarks

Navigate: Reducing attributes

- continuation of camera metaphor - slice
- show only items matching specific value for given attribute: slicing plane
- axis aligned, or arbitrary alignment - cut
- show only items on far slide of plane from camera
- project
- change mathematics of image creation
- orthographic
- perspective
- many others: Mercator, cabinet, ...

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. - Chap II:Manipulate View
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) I3:6 (2007), I2401247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54-6I, 1996.
- Smooth and efficient zooming and panning. van $\mathrm{W}_{\mathrm{ijk}}$ and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I5-22, 2003.
- Starting Simple - adding value to static visualisation through simple interaction. Dix and Ellis. Proc.Advanced Visual Interfaces (AVI), pp. I24-I34, I998.

Myriahedral Projection

- cannot project from sphere to plane without distortion: something must give
- equal area (preserve distances)
-conformal (preserve angles)
-interrupt-free
- what if embrace not avoid interrupts?
- radial approach from computer graphics vs traditional cartography
- myriahedron: polyhedron with many faces
- project surface onto myriahedron
- label edges as folds/cuts
- unfold into flat map

[Fig I.Unfolding the Earth: Myriahedral Projections. van Wijk. The Cartographic Journal, Vol. 45, No. I, pp.32-42, February 2008.]

Cuts and folds

- mesh G
- dual mesh H
- cuts and folds (edge labels)
- foldout
- connected
- flattenable (no cycles)
-no foldovers
- safe to ignore problem in practice
- maximal spanning tree Hf
- minimal spanning tree G_{C}

[Fig 2. Unfolding the Earth: Myriahedral Projections. van Wijk. The Cartographic Journal, Vol. 45, No. I, pp. 32-42, February 2008.]

Graticular projections
 $w(\phi, \lambda)=-\left(W_{\phi}\left|\phi-\phi_{0}\right|+W_{\lambda} \min _{\mathrm{k}}\left|\lambda-\lambda_{0}+2 \pi k\right|\right)$

- meridian cuts: W_{ϕ} high
- фo determines
- cylindrical
- conical
- azimuthal

- cut surface of globe at single point and projec to a circle
- two hemispheres: W_{ϕ} negative
- parallel cuts:W ${ }^{\text {high }}$ - polyconical

[Fig 3. Unfolding the Earth: Myriahedral Projections. van Wijk.The Cartographic Journal, Vol. 45, No. I, pp.32-42, February 2008.]

Gaps and strips

- folds: edges aligned with w contours
- cuts: edges aligned with w gradients
- gaps show where distortion would be
- like Tissot indicatrix
- can't do all three:
- broaden strips to close gaps
- shorten strips to maintain equal area
- lengthen strips to maintain same
 aspect ratio
- many strips: gaps less visible

Recursive subdivision of polygons

octahedral

- ex: 5 levels of subdivision

- gaps quickly get small at lower subdivision levels
- already by second level
cubical

[Fig 5, 6. Unfolding the Earth: Myriahedral Projections. van Wijk.The Cartographic Journal, Vol. 45, No. I, pp.32-42, February 2008.]

Optimal mappings

- so cuts don't cross continents
- weight edges by land cut amounts
- sampled at 25 positions
- try for many orientations
- take minimum
- dymaxion is usual result

tetrahedron
 usual

[Fig 7. Unfolding the Earth: Myriahedral Projections. van Wijk.The Cartographic Journal, Vol. 45, No. I, pp.32-42, February 2008.]

Geography aligned meshes

- $f(\phi, \lambda)$: high in continents, low in oceans
- from image to matrix
- convolve (blur) with large mask

- taking sphere curvature into account
- lines: generate from f contours
-from flow vis alg: equally spaced streamlines in vector field
- polygons: from line intersections
- triangles: tesselate polys with > 4 edges
- folds/cuts: as before
- quality improvements hard to achieve, even with tensor vs vector field - so just leave boundaries fractured!

Geography aligned meshes

lines

polygons

triangles

folds/cuts

tensor

Geography aligned meshs, results

[Fig I2. Unfolding the Earth: Myriahedral Projections. van Wijk.The Cartographic Journal, Vol. 45, No. I, pp.32-42, February 2008.]

Geography aligned meshs, results

[Fig I2. Unfolding the Earth: Myriahedral Projections. van Wijk.The Cartographic Journal, Vol. 45, No. I, pp.32-42, February 2008.]

Discussion

- Cons
- unusual, computationally expensive
- pros
- education: explain basics of map projection
- entertainment
- accuracy
- inevitable distortions shown in natural and explicit way
- left to reader to guess where and which distortion occurs with standard maps
- methods
- CS approach: flow vis algorithms vs formulas
- serendipitous discovery through parameter changes
- user feedback
- reactions of 20 people: cartographers mixed, vs others more positive

